/usr/include/CGAL/Homogeneous/VectorH2.h is in libcgal-dev 4.11-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | // Copyright (c) 1999
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Stefan Schirra
#ifndef CGAL_HOMOGENEOUS_VECTOR_2_h
#define CGAL_HOMOGENEOUS_VECTOR_2_h
#include <CGAL/Origin.h>
#include <CGAL/array.h>
#include <CGAL/Kernel_d/Cartesian_const_iterator_d.h>
#include <CGAL/Handle_for.h>
#include <boost/next_prior.hpp>
namespace CGAL {
template < class R_ >
class VectorH2
{
typedef VectorH2<R_> Self;
typedef typename R_::FT FT;
typedef typename R_::RT RT;
typedef typename R_::Point_2 Point_2;
typedef typename R_::Segment_2 Segment_2;
typedef typename R_::Ray_2 Ray_2;
typedef typename R_::Line_2 Line_2;
typedef typename R_::Direction_2 Direction_2;
typedef typename R_::Vector_2 Vector_2;
typedef cpp11::array<RT, 3> Rep;
typedef typename R_::template Handle<Rep>::type Base;
typedef Rational_traits<FT> Rat_traits;
Base base;
public:
typedef const FT Cartesian_coordinate_type;
typedef const RT& Homogeneous_coordinate_type;
typedef Cartesian_const_iterator_d<typename Rep::const_iterator> Cartesian_const_iterator;
typedef R_ R;
VectorH2() {}
template < typename Tx, typename Ty >
VectorH2(const Tx & x, const Ty & y,
typename boost::enable_if< boost::mpl::and_<boost::is_convertible<Tx, RT>,
boost::is_convertible<Ty, RT> > >::type* = 0)
: base(CGAL::make_array<RT>(x, y, RT(1))) {}
VectorH2(const FT& x, const FT& y)
: base(CGAL::make_array<RT>(
Rat_traits().numerator(x) * Rat_traits().denominator(y),
Rat_traits().numerator(y) * Rat_traits().denominator(x),
Rat_traits().denominator(x) * Rat_traits().denominator(y)))
{
CGAL_kernel_assertion(hw() > 0);
}
VectorH2(const RT& x, const RT& y, const RT& w )
: base( w >= RT(0) ? CGAL::make_array( x, y, w)
: CGAL::make_array<RT>(-x, -y, -w) ) {}
const Self&
rep() const
{
return static_cast<const Self& >(*this);
}
bool operator==( const VectorH2<R>& v) const;
bool operator!=( const VectorH2<R>& v) const;
bool operator==( const Null_vector&) const;
bool operator!=( const Null_vector& v) const;
const RT & hx() const { return CGAL::get_pointee_or_identity(base)[0]; };
const RT & hy() const { return CGAL::get_pointee_or_identity(base)[1]; };
const RT & hw() const { return CGAL::get_pointee_or_identity(base)[2]; };
FT x() const { return FT(hx()) / FT(hw()); };
FT y() const { return FT(hy()) / FT(hw()); };
FT cartesian(int i) const;
const RT & homogeneous(int i) const;
FT operator[](int i) const;
Cartesian_const_iterator cartesian_begin() const
{
return make_cartesian_const_iterator_begin(CGAL::get_pointee_or_identity(base).begin(),
boost::prior(CGAL::get_pointee_or_identity(base).end()));
}
Cartesian_const_iterator cartesian_end() const
{
return make_cartesian_const_iterator_end(boost::prior(CGAL::get_pointee_or_identity(base).end()));
}
int dimension() const;
Direction_2 direction() const;
Vector_2 perpendicular(const Orientation& o ) const;
// Vector_2 operator+(const VectorH2 &v) const;
Vector_2 operator-(const VectorH2 &v) const;
Vector_2 operator-() const;
Vector_2 opposite() const;
FT squared_length() const;
// Vector_2 operator/(const RT &f) const;
//Vector_2 operator/(const FT &f) const;
// undocumented:
VectorH2(const Direction_2 & dir)
: base ( dir) {}
VectorH2(const Point_2 & p)
: base ( p) {}
};
template < class R >
inline
bool
VectorH2<R>::operator==( const Null_vector&) const
{ return (hx() == RT(0)) && (hy() == RT(0)); }
template < class R >
inline
bool
VectorH2<R>::operator!=( const Null_vector& v) const
{ return !(*this == v); }
template < class R >
CGAL_KERNEL_INLINE
bool
VectorH2<R>::operator==( const VectorH2<R>& v) const
{
return ( (hx() * v.hw() == v.hx() * hw() )
&&(hy() * v.hw() == v.hy() * hw() ) );
}
template < class R >
inline
bool
VectorH2<R>::operator!=( const VectorH2<R>& v) const
{ return !(*this == v); } /* XXX */
template < class R >
CGAL_KERNEL_INLINE
typename VectorH2<R>::FT
VectorH2<R>::cartesian(int i) const
{
CGAL_kernel_precondition( (i==0 || i==1) );
if (i==0)
return x();
return y();
}
template < class R >
CGAL_KERNEL_INLINE
const typename VectorH2<R>::RT &
VectorH2<R>::homogeneous(int i) const
{
CGAL_kernel_precondition( (i>=0) && (i<=2) );
return CGAL::get_pointee_or_identity(base)[i];
}
template < class R >
inline
typename VectorH2<R>::FT
VectorH2<R>::operator[](int i) const
{ return cartesian(i); }
template < class R >
inline
int
VectorH2<R>::dimension() const
{ return 2; }
template < class R >
CGAL_KERNEL_INLINE
typename VectorH2<R>::Direction_2
VectorH2<R>::direction() const
{ return Direction_2(hx(), hy()); }
template < class R >
inline
typename VectorH2<R>::Vector_2
VectorH2<R>::operator-() const
{ return VectorH2<R>(- hx(), - hy(), hw() ); }
template < class R >
inline
typename VectorH2<R>::Vector_2
VectorH2<R>::opposite() const
{ return VectorH2<R>(- hx(), - hy(), hw() ); }
template <class R>
CGAL_KERNEL_INLINE
typename VectorH2<R>::Vector_2
VectorH2<R>::operator-(const VectorH2<R>& v) const
{
return VectorH2<R>( hx()*v.hw() - v.hx()*hw(),
hy()*v.hw() - v.hy()*hw(),
hw()*v.hw() );
}
template <class R>
CGAL_KERNEL_INLINE
typename VectorH2<R>::FT
VectorH2<R>::squared_length() const
{
typedef typename R::FT FT;
return
FT( CGAL_NTS square(hx()) + CGAL_NTS square(hy()) ) /
FT( CGAL_NTS square(hw()) );
}
template < class R >
CGAL_KERNEL_INLINE
typename R::Vector_2
VectorH2<R>::perpendicular(const Orientation& o) const
{
CGAL_kernel_precondition(o != COLLINEAR);
if (o == COUNTERCLOCKWISE)
return typename R::Vector_2(-hy(), hx(), hw());
else
return typename R::Vector_2(hy(), -hx(), hw());
}
} //namespace CGAL
#endif // CGAL_HOMOGENEOUS_VECTOR_2_h
|