/usr/include/CGAL/Cartesian/Circle_3.h is in libcgal-dev 4.11-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 | // Copyright (c) 2000
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Monique Teillaud, Pedro Machado, Sebastien Loriot
#ifndef CGAL_CARTESIAN_CIRCLEC3_H
#define CGAL_CARTESIAN_CIRCLEC3_H
#include <CGAL/Interval_nt.h>
namespace CGAL {
template <class R_ >
class CircleC3 {
typedef typename R_::Sphere_3 Sphere_3;
typedef typename R_::Plane_3 Plane_3;
typedef typename R_::Point_3 Point_3;
typedef typename R_::Vector_3 Vector_3;
typedef typename R_::Direction_3 Direction_3;
typedef typename R_::FT FT;
typedef std::pair<Sphere_3, Plane_3> Rep;
typedef typename R_::template Handle<Rep>::type Base;
Base base;
public:
typedef R_ R;
CircleC3() {}
CircleC3(const Point_3& center, const FT& squared_r, const Direction_3& d)
{
CGAL_kernel_assertion(squared_r >= FT(0));
// non-degenerated Direction
CGAL_kernel_assertion((d.dx() != FT(0)) || (d.dy() != FT(0)) || (d.dz() != FT(0)));
base = Rep(Sphere_3(center,squared_r),
plane_from_point_direction(center, d));
}
CircleC3(const Point_3& center, const FT& squared_r, const Vector_3& normal)
{
CGAL_kernel_assertion(squared_r >= FT(0));
// non-degenerated Vector
CGAL_kernel_assertion((normal.x() != FT(0)) ||
(normal.y() != FT(0)) ||
(normal.z() != FT(0)));
base = Rep(Sphere_3(center,squared_r),
Plane_3(center, normal.direction()));
}
CircleC3(const Point_3& center, const FT& squared_r, const Plane_3& p)
{
// the plane contains the center and it is not degenerate
CGAL_kernel_assertion(!R().is_degenerate_3_object()(p));
CGAL_kernel_assertion((p.a() * center.x() +
p.b() * center.y() +
p.c() * center.z() +
p.d()) == CGAL::ZERO);
CGAL_kernel_assertion(squared_r >= FT(0));
base = Rep(Sphere_3(center,squared_r), p);
}
CircleC3(const Sphere_3 &s1, const Sphere_3 &s2) {
Object obj = R().intersect_3_object()(s1, s2);
// s1,s2 must intersect
CGAL_kernel_precondition(!(obj.is_empty()));
const typename R::Circle_3* circle_ptr=object_cast<typename R::Circle_3>(&obj);
if(circle_ptr!=NULL)
base = Rep(circle_ptr->diametral_sphere(), circle_ptr->supporting_plane());
else {
const typename R::Point_3* point=object_cast<typename R::Point_3>(&obj);
CGAL_kernel_precondition(point!=NULL);
CircleC3 circle = CircleC3(*point, FT(0), Vector_3(FT(1),FT(0),FT(0)));
base = Rep(circle.diametral_sphere(), circle.supporting_plane());
}
}
CircleC3(const Plane_3 &p, const Sphere_3 &s, int) : base(s, p) {}
CircleC3(const Plane_3 &p, const Sphere_3 &s) {
Object obj = R().intersect_3_object()(p, s);
// s1,s2 must intersect
CGAL_kernel_precondition(!(obj.is_empty()));
const typename R::Circle_3* circle_ptr=object_cast<typename R::Circle_3>(&obj);
if(circle_ptr!=NULL)
base = Rep(circle_ptr->diametral_sphere(), circle_ptr->supporting_plane());
else {
const typename R::Point_3* point=object_cast<typename R::Point_3>(&obj);
CGAL_kernel_precondition(point!=NULL);
CircleC3 circle = CircleC3(*point, FT(0), Vector_3(FT(1),FT(0),FT(0)));
base = Rep(circle.diametral_sphere(), circle.supporting_plane());
}
}
CircleC3(const Point_3 &p, const Point_3 &q, const Point_3 &r) {
// p, q, r are not collinear
CGAL_kernel_precondition(!R().collinear_3_object()(p, q, r));
Plane_3 p1 = R().construct_plane_3_object()(p, q, r);
Plane_3 p2 = R().construct_bisector_3_object()(p, q);
Plane_3 p3 = R().construct_bisector_3_object()(p, r);
Object obj = R().intersect_3_object()(p1, p2, p3);
// must be a point, otherwise they are collinear
const Point_3& center=*object_cast<Point_3>(&obj);
FT sqr = R().compute_squared_distance_3_object()(center, r);
Sphere_3 s = R().construct_sphere_3_object()(center, sqr);
base = Rep(s, p1);
}
const Plane_3& supporting_plane() const
{
return get_pointee_or_identity(base).second;
}
const Sphere_3& supporting_sphere() const
{
return diametral_sphere();
}
Point_3 center() const
{
return diametral_sphere().center();
}
FT squared_radius() const
{
return diametral_sphere().squared_radius();
}
const Sphere_3& diametral_sphere() const
{
return get_pointee_or_identity(base).first;
}
double approximate_area() const
{
return CGAL_PI * to_double(squared_radius());
}
double approximate_squared_length() const
{
return CGAL_PI * CGAL_PI * 4.0 * to_double(squared_radius());
}
FT area_divided_by_pi() const
{
return squared_radius();
}
FT squared_length_divided_by_pi_square() const
{
return 4 * squared_radius();
}
// this bbox function
// can be optimize by doing different cases
// for each variable = 0 (cases with is_zero)
CGAL::Bbox_3 bbox() const
{
typedef CGAL::Interval_nt<false> Interval;
CGAL::Interval_nt<false>::Protector ip;
const Sphere_3 &s = diametral_sphere();
const FT &sq_r = s.squared_radius();
const Point_3 &p = s.center();
if(sq_r == FT(0)) return p.bbox();
const Plane_3 &plane = supporting_plane();
const Interval a = CGAL::to_interval(plane.a());
const Interval b = CGAL::to_interval(plane.b());
const Interval c = CGAL::to_interval(plane.c());
const Interval x = CGAL::to_interval(p.x());
const Interval y = CGAL::to_interval(p.y());
const Interval z = CGAL::to_interval(p.z());
const Interval r2 = CGAL::to_interval(sq_r);
const Interval r = CGAL::sqrt(r2); // maybe we can work with r2
// in order to save this operation
// but if the coefficients are to high
// the multiplication would lead to inf
// results
const Interval a2 = CGAL::square(a);
const Interval b2 = CGAL::square(b);
const Interval c2 = CGAL::square(c);
const Interval sqr_sum = a2 + b2 + c2;
const Interval mx = r * CGAL::sqrt((sqr_sum - a2)/sqr_sum);
const Interval my = r * CGAL::sqrt((sqr_sum - b2)/sqr_sum);
const Interval mz = r * CGAL::sqrt((sqr_sum - c2)/sqr_sum);
return CGAL::Bbox_3((x-mx).inf(),(y-my).inf(),(z-mz).inf(),
(x+mx).sup(),(y+my).sup(),(z+mz).sup());
}
bool operator==(const CircleC3 &) const;
bool operator!=(const CircleC3 &) const;
bool has_on(const Point_3 &p) const;
bool has_on_bounded_side(const Point_3 &p) const;
bool has_on_unbounded_side(const Point_3 &p) const;
Bounded_side bounded_side(const Point_3 &p) const;
bool is_degenerate() const
{
return diametral_sphere().is_degenerate();
}
};
template < class R >
inline
bool
CircleC3<R>::
has_on(const typename CircleC3<R>::Point_3 &p) const
{
return R().has_on_3_object()(diametral_sphere(),p) &&
R().has_on_3_object()(supporting_plane(),p);
}
template < class R >
inline
bool
CircleC3<R>::
has_on_bounded_side(const typename CircleC3<R>::Point_3 &p) const
{
CGAL_kernel_precondition(R().has_on_3_object()(supporting_plane(), p));
return squared_distance(center(),p) < squared_radius();
}
template < class R >
inline
bool
CircleC3<R>::
has_on_unbounded_side(const typename CircleC3<R>::Point_3 &p) const
{
CGAL_kernel_precondition(R().has_on_3_object()(supporting_plane(), p));
return squared_distance(center(),p) > squared_radius();
}
template < class R >
CGAL_KERNEL_INLINE
Bounded_side
CircleC3<R>::
bounded_side(const typename CircleC3<R>::Point_3 &p) const
{
CGAL_kernel_precondition(is_degenerate() || R().has_on_3_object()(supporting_plane(), p));
return diametral_sphere().bounded_side(p);
}
template < class R >
CGAL_KERNEL_INLINE
bool
CircleC3<R>::operator==(const CircleC3<R> &t) const
{
if (CGAL::identical(base, t.base))
return true;
if(!(center() == t.center() &&
squared_radius() == t.squared_radius())) return false;
const typename R::Plane_3 p1 = supporting_plane();
const typename R::Plane_3 p2 = t.supporting_plane();
if(is_zero(p1.a())) {
if(!is_zero(p2.a())) return false;
if(is_zero(p1.b())) {
if(!is_zero(p2.b())) return false;
return p1.c() * p2.d() == p1.d() * p2.c();
}
return (p2.c() * p1.b() == p1.c() * p2.b()) &&
(p2.d() * p1.b() == p1.d() * p2.b());
}
return (p2.b() * p1.a() == p1.b() * p2.a()) &&
(p2.c() * p1.a() == p1.c() * p2.a()) &&
(p2.d() * p1.a() == p1.d() * p2.a());
}
template < class R >
CGAL_KERNEL_INLINE
bool
CircleC3<R>::operator!=(const CircleC3<R> &t) const
{
return !(*this == t);
}
} //namespace CGAL
#endif // CGAL_CARTESIAN_CIRCLEC3_H
|