This file is indexed.

/usr/include/CGAL/Cartesian/Circle_3.h is in libcgal-dev 4.11-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
// Copyright (c) 2000  
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved. 
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
// Author(s)     : Monique Teillaud, Pedro Machado, Sebastien Loriot

#ifndef CGAL_CARTESIAN_CIRCLEC3_H
#define CGAL_CARTESIAN_CIRCLEC3_H

#include <CGAL/Interval_nt.h>

namespace CGAL {

template <class R_ >
class CircleC3 {
  typedef typename R_::Sphere_3                 Sphere_3;
  typedef typename R_::Plane_3                  Plane_3;
  typedef typename R_::Point_3                  Point_3;
  typedef typename R_::Vector_3                 Vector_3;
  typedef typename R_::Direction_3              Direction_3;
  typedef typename R_::FT                       FT;

  typedef std::pair<Sphere_3, Plane_3>             Rep;
  typedef typename R_::template Handle<Rep>::type  Base;
  Base base;  

public:
  typedef R_                                     R;

  CircleC3() {}

  CircleC3(const Point_3& center, const FT& squared_r, const Direction_3& d)
  {
    CGAL_kernel_assertion(squared_r >= FT(0));
    // non-degenerated Direction
    CGAL_kernel_assertion((d.dx() != FT(0)) || (d.dy() != FT(0)) || (d.dz() != FT(0)));
    base = Rep(Sphere_3(center,squared_r),
                plane_from_point_direction(center, d));
  }

  CircleC3(const Point_3& center, const FT& squared_r, const Vector_3& normal) 
  {
    CGAL_kernel_assertion(squared_r >= FT(0));
    // non-degenerated Vector
    CGAL_kernel_assertion((normal.x() != FT(0)) ||
                          (normal.y() != FT(0)) ||
                          (normal.z() != FT(0)));
    base = Rep(Sphere_3(center,squared_r),
                Plane_3(center, normal.direction()));
  }

  CircleC3(const Point_3& center, const FT& squared_r, const Plane_3& p)
  {
    // the plane contains the center and it is not degenerate
    CGAL_kernel_assertion(!R().is_degenerate_3_object()(p));
    CGAL_kernel_assertion((p.a() * center.x() +
                           p.b() * center.y() +
                           p.c() * center.z() +
                           p.d()) == CGAL::ZERO);
    CGAL_kernel_assertion(squared_r >= FT(0));
    base = Rep(Sphere_3(center,squared_r), p);
  }

  CircleC3(const Sphere_3 &s1, const Sphere_3 &s2) {
    Object obj = R().intersect_3_object()(s1, s2);
    // s1,s2 must intersect
    CGAL_kernel_precondition(!(obj.is_empty()));
    const typename R::Circle_3* circle_ptr=object_cast<typename R::Circle_3>(&obj);
    if(circle_ptr!=NULL)
      base = Rep(circle_ptr->diametral_sphere(), circle_ptr->supporting_plane());
    else {
      const typename R::Point_3* point=object_cast<typename R::Point_3>(&obj);
      CGAL_kernel_precondition(point!=NULL);
      CircleC3 circle = CircleC3(*point, FT(0), Vector_3(FT(1),FT(0),FT(0)));
      base = Rep(circle.diametral_sphere(), circle.supporting_plane());
    }
  }

  CircleC3(const Plane_3 &p, const Sphere_3 &s, int) : base(s, p) {}

  CircleC3(const Plane_3 &p, const Sphere_3 &s) {
    Object obj = R().intersect_3_object()(p, s);
    // s1,s2 must intersect
    CGAL_kernel_precondition(!(obj.is_empty()));
    const typename R::Circle_3* circle_ptr=object_cast<typename R::Circle_3>(&obj);
    if(circle_ptr!=NULL)
      base = Rep(circle_ptr->diametral_sphere(), circle_ptr->supporting_plane());
    else {
      const typename R::Point_3* point=object_cast<typename R::Point_3>(&obj);
      CGAL_kernel_precondition(point!=NULL);
      CircleC3 circle = CircleC3(*point, FT(0), Vector_3(FT(1),FT(0),FT(0)));
      base = Rep(circle.diametral_sphere(), circle.supporting_plane());
    }
  }

  CircleC3(const Point_3 &p, const Point_3 &q, const Point_3 &r) {
	  // p, q, r are not collinear
	  CGAL_kernel_precondition(!R().collinear_3_object()(p, q, r));
		Plane_3 p1 = R().construct_plane_3_object()(p, q, r);
    Plane_3 p2 = R().construct_bisector_3_object()(p, q);
    Plane_3 p3 = R().construct_bisector_3_object()(p, r);
    Object obj = R().intersect_3_object()(p1, p2, p3);
    // must be a point, otherwise they are collinear
    const Point_3& center=*object_cast<Point_3>(&obj);
		FT sqr = R().compute_squared_distance_3_object()(center, r);
		Sphere_3 s = R().construct_sphere_3_object()(center, sqr);
		base = Rep(s, p1);
  }

  const Plane_3& supporting_plane() const
  {
    return get_pointee_or_identity(base).second;
  }

  const Sphere_3& supporting_sphere() const
  {
    return diametral_sphere();
  }

  Point_3 center() const
  {
    return diametral_sphere().center();
  }

  FT squared_radius() const
  {
    return diametral_sphere().squared_radius();
  }

  const Sphere_3& diametral_sphere() const
  {
    return get_pointee_or_identity(base).first;
  }

  double approximate_area() const
  {
    return CGAL_PI * to_double(squared_radius());
  }

  double approximate_squared_length() const
  {
    return CGAL_PI * CGAL_PI * 4.0 * to_double(squared_radius());
  }

  FT area_divided_by_pi() const
  {
    return squared_radius();
  }

  FT squared_length_divided_by_pi_square() const
  {
    return 4 * squared_radius();
  }

  // this bbox function
  // can be optimize by doing different cases
  // for each variable = 0 (cases with is_zero)
  CGAL::Bbox_3 bbox() const
  {
    typedef CGAL::Interval_nt<false> Interval;
    CGAL::Interval_nt<false>::Protector ip;
    const Sphere_3 &s = diametral_sphere();
    const FT &sq_r = s.squared_radius();
    const Point_3 &p = s.center();
    if(sq_r == FT(0)) return p.bbox();
    const Plane_3 &plane = supporting_plane();
    const Interval a = CGAL::to_interval(plane.a());
    const Interval b = CGAL::to_interval(plane.b());
    const Interval c = CGAL::to_interval(plane.c());
    const Interval x = CGAL::to_interval(p.x());
    const Interval y = CGAL::to_interval(p.y());
    const Interval z = CGAL::to_interval(p.z());
    const Interval r2 = CGAL::to_interval(sq_r);
    const Interval r = CGAL::sqrt(r2); // maybe we can work with r2
                                       // in order to save this operation
                                       // but if the coefficients are to high
                                       // the multiplication would lead to inf
                                       // results
    const Interval a2 = CGAL::square(a);
    const Interval b2 = CGAL::square(b);
    const Interval c2 = CGAL::square(c);
    const Interval sqr_sum = a2 + b2 + c2;
    const Interval mx = r * CGAL::sqrt((sqr_sum - a2)/sqr_sum);
    const Interval my = r * CGAL::sqrt((sqr_sum - b2)/sqr_sum);
    const Interval mz = r * CGAL::sqrt((sqr_sum - c2)/sqr_sum);
    return CGAL::Bbox_3((x-mx).inf(),(y-my).inf(),(z-mz).inf(),
                        (x+mx).sup(),(y+my).sup(),(z+mz).sup());
  }

  bool operator==(const CircleC3 &) const;
  bool operator!=(const CircleC3 &) const;

  bool has_on(const Point_3 &p) const;
  bool has_on_bounded_side(const Point_3 &p) const;
  bool has_on_unbounded_side(const Point_3 &p) const;
  Bounded_side bounded_side(const Point_3 &p) const;

  bool is_degenerate() const
  {
    return diametral_sphere().is_degenerate();
  }

};

template < class R >
inline
bool
CircleC3<R>::
has_on(const typename CircleC3<R>::Point_3 &p) const
{
  return R().has_on_3_object()(diametral_sphere(),p) &&
         R().has_on_3_object()(supporting_plane(),p);
}

template < class R >
inline
bool
CircleC3<R>::
has_on_bounded_side(const typename CircleC3<R>::Point_3 &p) const
{
  CGAL_kernel_precondition(R().has_on_3_object()(supporting_plane(), p));
  return squared_distance(center(),p) < squared_radius();
}

template < class R >
inline
bool
CircleC3<R>::
has_on_unbounded_side(const typename CircleC3<R>::Point_3 &p) const
{
  CGAL_kernel_precondition(R().has_on_3_object()(supporting_plane(), p));
  return squared_distance(center(),p) > squared_radius();
}

template < class R >
CGAL_KERNEL_INLINE
Bounded_side
CircleC3<R>::
bounded_side(const typename CircleC3<R>::Point_3 &p) const
{
  CGAL_kernel_precondition(is_degenerate() || R().has_on_3_object()(supporting_plane(), p));
  return diametral_sphere().bounded_side(p);
}

template < class R >
CGAL_KERNEL_INLINE
bool
CircleC3<R>::operator==(const CircleC3<R> &t) const
{
  if (CGAL::identical(base, t.base))
    return true;
  if(!(center() == t.center() &&
       squared_radius() == t.squared_radius())) return false;

  const typename R::Plane_3 p1 = supporting_plane();
  const typename R::Plane_3 p2 = t.supporting_plane();

  if(is_zero(p1.a())) {
    if(!is_zero(p2.a())) return false;
    if(is_zero(p1.b())) {
      if(!is_zero(p2.b())) return false;
      return p1.c() * p2.d() == p1.d() * p2.c();
    }
    return (p2.c() * p1.b() == p1.c() * p2.b()) &&
           (p2.d() * p1.b() == p1.d() * p2.b());
  }
  return (p2.b() * p1.a() == p1.b() * p2.a()) &&
         (p2.c() * p1.a() == p1.c() * p2.a()) &&
         (p2.d() * p1.a() == p1.d() * p2.a());
}

template < class R >
CGAL_KERNEL_INLINE
bool
CircleC3<R>::operator!=(const CircleC3<R> &t) const
{
  return !(*this == t);
}

} //namespace CGAL

#endif // CGAL_CARTESIAN_CIRCLEC3_H