This file is indexed.

/usr/include/bullet/LinearMath/btQuaternion.h is in libbullet-dev 2.87+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/



#ifndef BT_SIMD__QUATERNION_H_
#define BT_SIMD__QUATERNION_H_


#include "btVector3.h"
#include "btQuadWord.h"


#ifdef BT_USE_DOUBLE_PRECISION
#define btQuaternionData btQuaternionDoubleData
#define btQuaternionDataName "btQuaternionDoubleData"
#else
#define btQuaternionData btQuaternionFloatData
#define btQuaternionDataName "btQuaternionFloatData"
#endif //BT_USE_DOUBLE_PRECISION



#ifdef BT_USE_SSE

//const __m128 ATTRIBUTE_ALIGNED16(vOnes) = {1.0f, 1.0f, 1.0f, 1.0f};
#define vOnes (_mm_set_ps(1.0f, 1.0f, 1.0f, 1.0f))

#endif

#if defined(BT_USE_SSE) 

#define vQInv (_mm_set_ps(+0.0f, -0.0f, -0.0f, -0.0f))
#define vPPPM (_mm_set_ps(-0.0f, +0.0f, +0.0f, +0.0f))

#elif defined(BT_USE_NEON)

const btSimdFloat4 ATTRIBUTE_ALIGNED16(vQInv) = {-0.0f, -0.0f, -0.0f, +0.0f};
const btSimdFloat4 ATTRIBUTE_ALIGNED16(vPPPM) = {+0.0f, +0.0f, +0.0f, -0.0f};

#endif

/**@brief The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatrix3x3, btVector3 and btTransform. */
class btQuaternion : public btQuadWord {
public:
  /**@brief No initialization constructor */
	btQuaternion() {}

#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))|| defined(BT_USE_NEON) 
	// Set Vector 
	SIMD_FORCE_INLINE btQuaternion(const btSimdFloat4 vec)
	{
		mVec128 = vec;
	}

	// Copy constructor
	SIMD_FORCE_INLINE btQuaternion(const btQuaternion& rhs)
	{
		mVec128 = rhs.mVec128;
	}

	// Assignment Operator
	SIMD_FORCE_INLINE btQuaternion& 
	operator=(const btQuaternion& v) 
	{
		mVec128 = v.mVec128;
		
		return *this;
	}
	
#endif

	//		template <typename btScalar>
	//		explicit Quaternion(const btScalar *v) : Tuple4<btScalar>(v) {}
  /**@brief Constructor from scalars */
	btQuaternion(const btScalar& _x, const btScalar& _y, const btScalar& _z, const btScalar& _w) 
		: btQuadWord(_x, _y, _z, _w) 
	{}
  /**@brief Axis angle Constructor
   * @param axis The axis which the rotation is around
   * @param angle The magnitude of the rotation around the angle (Radians) */
	btQuaternion(const btVector3& _axis, const btScalar& _angle) 
	{ 
		setRotation(_axis, _angle); 
	}
  /**@brief Constructor from Euler angles
   * @param yaw Angle around Y unless BT_EULER_DEFAULT_ZYX defined then Z
   * @param pitch Angle around X unless BT_EULER_DEFAULT_ZYX defined then Y
   * @param roll Angle around Z unless BT_EULER_DEFAULT_ZYX defined then X */
	btQuaternion(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
	{ 
#ifndef BT_EULER_DEFAULT_ZYX
		setEuler(yaw, pitch, roll); 
#else
		setEulerZYX(yaw, pitch, roll); 
#endif 
	}
  /**@brief Set the rotation using axis angle notation 
   * @param axis The axis around which to rotate
   * @param angle The magnitude of the rotation in Radians */
	void setRotation(const btVector3& axis, const btScalar& _angle)
	{
		btScalar d = axis.length();
		btAssert(d != btScalar(0.0));
		btScalar s = btSin(_angle * btScalar(0.5)) / d;
		setValue(axis.x() * s, axis.y() * s, axis.z() * s, 
			btCos(_angle * btScalar(0.5)));
	}
  /**@brief Set the quaternion using Euler angles
   * @param yaw Angle around Y
   * @param pitch Angle around X
   * @param roll Angle around Z */
	void setEuler(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
	{
		btScalar halfYaw = btScalar(yaw) * btScalar(0.5);  
		btScalar halfPitch = btScalar(pitch) * btScalar(0.5);  
		btScalar halfRoll = btScalar(roll) * btScalar(0.5);  
		btScalar cosYaw = btCos(halfYaw);
		btScalar sinYaw = btSin(halfYaw);
		btScalar cosPitch = btCos(halfPitch);
		btScalar sinPitch = btSin(halfPitch);
		btScalar cosRoll = btCos(halfRoll);
		btScalar sinRoll = btSin(halfRoll);
		setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
			cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
			sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
			cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
	}
  /**@brief Set the quaternion using euler angles 
   * @param yaw Angle around Z
   * @param pitch Angle around Y
   * @param roll Angle around X */
	void setEulerZYX(const btScalar& yawZ, const btScalar& pitchY, const btScalar& rollX)
	{
		btScalar halfYaw = btScalar(yawZ) * btScalar(0.5);  
		btScalar halfPitch = btScalar(pitchY) * btScalar(0.5);  
		btScalar halfRoll = btScalar(rollX) * btScalar(0.5);  
		btScalar cosYaw = btCos(halfYaw);
		btScalar sinYaw = btSin(halfYaw);
		btScalar cosPitch = btCos(halfPitch);
		btScalar sinPitch = btSin(halfPitch);
		btScalar cosRoll = btCos(halfRoll);
		btScalar sinRoll = btSin(halfRoll);
		setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, //x
                         cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, //y
                         cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, //z
                         cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); //formerly yzx
	}

	  /**@brief Get the euler angles from this quaternion
	   * @param yaw Angle around Z
	   * @param pitch Angle around Y
	   * @param roll Angle around X */
	void getEulerZYX(btScalar& yawZ, btScalar& pitchY, btScalar& rollX) const
	{
		btScalar squ;
		btScalar sqx;
		btScalar sqy;
		btScalar sqz;
		btScalar sarg;
		sqx = m_floats[0] * m_floats[0];
		sqy = m_floats[1] * m_floats[1];
		sqz = m_floats[2] * m_floats[2];
		squ = m_floats[3] * m_floats[3];
		rollX = btAtan2(2 * (m_floats[1] * m_floats[2] + m_floats[3] * m_floats[0]), squ - sqx - sqy + sqz);
		sarg = btScalar(-2.) * (m_floats[0] * m_floats[2] - m_floats[3] * m_floats[1]);
		pitchY = sarg <= btScalar(-1.0) ? btScalar(-0.5) * SIMD_PI: (sarg >= btScalar(1.0) ? btScalar(0.5) * SIMD_PI : btAsin(sarg));
		yawZ = btAtan2(2 * (m_floats[0] * m_floats[1] + m_floats[3] * m_floats[2]), squ + sqx - sqy - sqz);
	}

  /**@brief Add two quaternions
   * @param q The quaternion to add to this one */
	SIMD_FORCE_INLINE	btQuaternion& operator+=(const btQuaternion& q)
	{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		mVec128 = _mm_add_ps(mVec128, q.mVec128);
#elif defined(BT_USE_NEON)
		mVec128 = vaddq_f32(mVec128, q.mVec128);
#else	
		m_floats[0] += q.x(); 
        m_floats[1] += q.y(); 
        m_floats[2] += q.z(); 
        m_floats[3] += q.m_floats[3];
#endif
		return *this;
	}

  /**@brief Subtract out a quaternion
   * @param q The quaternion to subtract from this one */
	btQuaternion& operator-=(const btQuaternion& q) 
	{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		mVec128 = _mm_sub_ps(mVec128, q.mVec128);
#elif defined(BT_USE_NEON)
		mVec128 = vsubq_f32(mVec128, q.mVec128);
#else	
		m_floats[0] -= q.x(); 
        m_floats[1] -= q.y(); 
        m_floats[2] -= q.z(); 
        m_floats[3] -= q.m_floats[3];
#endif
        return *this;
	}

  /**@brief Scale this quaternion
   * @param s The scalar to scale by */
	btQuaternion& operator*=(const btScalar& s)
	{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		__m128	vs = _mm_load_ss(&s);	//	(S 0 0 0)
		vs = bt_pshufd_ps(vs, 0);	//	(S S S S)
		mVec128 = _mm_mul_ps(mVec128, vs);
#elif defined(BT_USE_NEON)
		mVec128 = vmulq_n_f32(mVec128, s);
#else
		m_floats[0] *= s; 
        m_floats[1] *= s; 
        m_floats[2] *= s; 
        m_floats[3] *= s;
#endif
		return *this;
	}

  /**@brief Multiply this quaternion by q on the right
   * @param q The other quaternion 
   * Equivilant to this = this * q */
	btQuaternion& operator*=(const btQuaternion& q)
	{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		__m128 vQ2 = q.get128();
		
		__m128 A1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(0,1,2,0));
		__m128 B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0));
		
		A1 = A1 * B1;
		
		__m128 A2 = bt_pshufd_ps(mVec128, BT_SHUFFLE(1,2,0,1));
		__m128 B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1));
		
		A2 = A2 * B2;
		
		B1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(2,0,1,2));
		B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2));
		
		B1 = B1 * B2;	//	A3 *= B3
		
		mVec128 = bt_splat_ps(mVec128, 3);	//	A0
		mVec128 = mVec128 * vQ2;	//	A0 * B0
		
		A1 = A1 + A2;	//	AB12
		mVec128 = mVec128 - B1;	//	AB03 = AB0 - AB3 
		A1 = _mm_xor_ps(A1, vPPPM);	//	change sign of the last element
		mVec128 = mVec128+ A1;	//	AB03 + AB12

#elif defined(BT_USE_NEON)     

        float32x4_t vQ1 = mVec128;
        float32x4_t vQ2 = q.get128();
        float32x4_t A0, A1, B1, A2, B2, A3, B3;
        float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
        
        {
        float32x2x2_t tmp;
        tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) );       // {z x}, {w y}
        vQ1zx = tmp.val[0];

        tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) );       // {z x}, {w y}
        vQ2zx = tmp.val[0];
        }
        vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1); 

        vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);

        vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
        vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);

        A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx);                    // X Y  z x 
        B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W  W X 

        A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
        B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));

        A3 = vcombine_f32(vQ1zx, vQ1yz);        // Z X Y Z
        B3 = vcombine_f32(vQ2yz, vQ2xz);        // Y Z x z

        A1 = vmulq_f32(A1, B1);
        A2 = vmulq_f32(A2, B2);
        A3 = vmulq_f32(A3, B3);	//	A3 *= B3
        A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); //	A0 * B0

        A1 = vaddq_f32(A1, A2);	//	AB12 = AB1 + AB2
        A0 = vsubq_f32(A0, A3);	//	AB03 = AB0 - AB3 
        
        //	change the sign of the last element
        A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);	
        A0 = vaddq_f32(A0, A1);	//	AB03 + AB12
        
        mVec128 = A0;
#else
		setValue(
            m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(),
			m_floats[3] * q.y() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.x() - m_floats[0] * q.z(),
			m_floats[3] * q.z() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.y() - m_floats[1] * q.x(),
			m_floats[3] * q.m_floats[3] - m_floats[0] * q.x() - m_floats[1] * q.y() - m_floats[2] * q.z());
#endif
		return *this;
	}
  /**@brief Return the dot product between this quaternion and another
   * @param q The other quaternion */
	btScalar dot(const btQuaternion& q) const
	{
#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		__m128	vd;
		
		vd = _mm_mul_ps(mVec128, q.mVec128);
		
        __m128 t = _mm_movehl_ps(vd, vd);
		vd = _mm_add_ps(vd, t);
		t = _mm_shuffle_ps(vd, vd, 0x55);
		vd = _mm_add_ss(vd, t);
		
        return _mm_cvtss_f32(vd);
#elif defined(BT_USE_NEON)
		float32x4_t vd = vmulq_f32(mVec128, q.mVec128);
		float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_high_f32(vd));  
		x = vpadd_f32(x, x);
		return vget_lane_f32(x, 0);
#else    
		return  m_floats[0] * q.x() + 
                m_floats[1] * q.y() + 
                m_floats[2] * q.z() + 
                m_floats[3] * q.m_floats[3];
#endif
	}

  /**@brief Return the length squared of the quaternion */
	btScalar length2() const
	{
		return dot(*this);
	}

  /**@brief Return the length of the quaternion */
	btScalar length() const
	{
		return btSqrt(length2());
	}
	btQuaternion& safeNormalize()
	{
		btScalar l2 = length2();
		if (l2>SIMD_EPSILON)
		{
			normalize();
		}
		return *this;
	}
  /**@brief Normalize the quaternion 
   * Such that x^2 + y^2 + z^2 +w^2 = 1 */
	btQuaternion& normalize() 
	{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		__m128	vd;
		
		vd = _mm_mul_ps(mVec128, mVec128);
		
        __m128 t = _mm_movehl_ps(vd, vd);
		vd = _mm_add_ps(vd, t);
		t = _mm_shuffle_ps(vd, vd, 0x55);
		vd = _mm_add_ss(vd, t);

		vd = _mm_sqrt_ss(vd);
		vd = _mm_div_ss(vOnes, vd);
        vd = bt_pshufd_ps(vd, 0); // splat
		mVec128 = _mm_mul_ps(mVec128, vd);
    
		return *this;
#else    
		return *this /= length();
#endif
	}

  /**@brief Return a scaled version of this quaternion
   * @param s The scale factor */
	SIMD_FORCE_INLINE btQuaternion
	operator*(const btScalar& s) const
	{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		__m128	vs = _mm_load_ss(&s);	//	(S 0 0 0)
		vs = bt_pshufd_ps(vs, 0x00);	//	(S S S S)
		
		return btQuaternion(_mm_mul_ps(mVec128, vs));
#elif defined(BT_USE_NEON)
		return btQuaternion(vmulq_n_f32(mVec128, s));
#else
		return btQuaternion(x() * s, y() * s, z() * s, m_floats[3] * s);
#endif
	}

  /**@brief Return an inversely scaled versionof this quaternion
   * @param s The inverse scale factor */
	btQuaternion operator/(const btScalar& s) const
	{
		btAssert(s != btScalar(0.0));
		return *this * (btScalar(1.0) / s);
	}

  /**@brief Inversely scale this quaternion
   * @param s The scale factor */
	btQuaternion& operator/=(const btScalar& s) 
	{
		btAssert(s != btScalar(0.0));
		return *this *= btScalar(1.0) / s;
	}

  /**@brief Return a normalized version of this quaternion */
	btQuaternion normalized() const 
	{
		return *this / length();
	} 
	/**@brief Return the ***half*** angle between this quaternion and the other
   * @param q The other quaternion */
	btScalar angle(const btQuaternion& q) const 
	{
		btScalar s = btSqrt(length2() * q.length2());
		btAssert(s != btScalar(0.0));
		return btAcos(dot(q) / s);
	}
	
	/**@brief Return the angle between this quaternion and the other along the shortest path
	* @param q The other quaternion */
	btScalar angleShortestPath(const btQuaternion& q) const 
	{
		btScalar s = btSqrt(length2() * q.length2());
		btAssert(s != btScalar(0.0));
		if (dot(q) < 0) // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
			return btAcos(dot(-q) / s) * btScalar(2.0);
		else 
			return btAcos(dot(q) / s) * btScalar(2.0);
	}

	/**@brief Return the angle [0, 2Pi] of rotation represented by this quaternion */
	btScalar getAngle() const 
	{
		btScalar s = btScalar(2.) * btAcos(m_floats[3]);
		return s;
	}

	/**@brief Return the angle [0, Pi] of rotation represented by this quaternion along the shortest path */
	btScalar getAngleShortestPath() const 
	{
		btScalar s;
		if (m_floats[3] >= 0)
			s = btScalar(2.) * btAcos(m_floats[3]);
		else
			s = btScalar(2.) * btAcos(-m_floats[3]);
		return s;
	}


	/**@brief Return the axis of the rotation represented by this quaternion */
	btVector3 getAxis() const
	{
		btScalar s_squared = 1.f-m_floats[3]*m_floats[3];
		
		if (s_squared < btScalar(10.) * SIMD_EPSILON) //Check for divide by zero
			return btVector3(1.0, 0.0, 0.0);  // Arbitrary
		btScalar s = 1.f/btSqrt(s_squared);
		return btVector3(m_floats[0] * s, m_floats[1] * s, m_floats[2] * s);
	}

	/**@brief Return the inverse of this quaternion */
	btQuaternion inverse() const
	{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		return btQuaternion(_mm_xor_ps(mVec128, vQInv));
#elif defined(BT_USE_NEON)
        return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)vQInv));
#else	
		return btQuaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]);
#endif
	}

  /**@brief Return the sum of this quaternion and the other 
   * @param q2 The other quaternion */
	SIMD_FORCE_INLINE btQuaternion
	operator+(const btQuaternion& q2) const
	{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		return btQuaternion(_mm_add_ps(mVec128, q2.mVec128));
#elif defined(BT_USE_NEON)
        return btQuaternion(vaddq_f32(mVec128, q2.mVec128));
#else	
		const btQuaternion& q1 = *this;
		return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_floats[3] + q2.m_floats[3]);
#endif
	}

  /**@brief Return the difference between this quaternion and the other 
   * @param q2 The other quaternion */
	SIMD_FORCE_INLINE btQuaternion
	operator-(const btQuaternion& q2) const
	{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		return btQuaternion(_mm_sub_ps(mVec128, q2.mVec128));
#elif defined(BT_USE_NEON)
        return btQuaternion(vsubq_f32(mVec128, q2.mVec128));
#else	
		const btQuaternion& q1 = *this;
		return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_floats[3] - q2.m_floats[3]);
#endif
	}

  /**@brief Return the negative of this quaternion 
   * This simply negates each element */
	SIMD_FORCE_INLINE btQuaternion operator-() const
	{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		return btQuaternion(_mm_xor_ps(mVec128, btvMzeroMask));
#elif defined(BT_USE_NEON)
		return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)btvMzeroMask) );
#else	
		const btQuaternion& q2 = *this;
		return btQuaternion( - q2.x(), - q2.y(),  - q2.z(),  - q2.m_floats[3]);
#endif
	}
  /**@todo document this and it's use */
	SIMD_FORCE_INLINE btQuaternion farthest( const btQuaternion& qd) const 
	{
		btQuaternion diff,sum;
		diff = *this - qd;
		sum = *this + qd;
		if( diff.dot(diff) > sum.dot(sum) )
			return qd;
		return (-qd);
	}

	/**@todo document this and it's use */
	SIMD_FORCE_INLINE btQuaternion nearest( const btQuaternion& qd) const 
	{
		btQuaternion diff,sum;
		diff = *this - qd;
		sum = *this + qd;
		if( diff.dot(diff) < sum.dot(sum) )
			return qd;
		return (-qd);
	}


  /**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion
   * @param q The other quaternion to interpolate with 
   * @param t The ratio between this and q to interpolate.  If t = 0 the result is this, if t=1 the result is q.
   * Slerp interpolates assuming constant velocity.  */
	btQuaternion slerp(const btQuaternion& q, const btScalar& t) const
	{

		const btScalar magnitude = btSqrt(length2() * q.length2());
		btAssert(magnitude > btScalar(0));
		
		const btScalar product = dot(q) / magnitude;
		const btScalar absproduct = btFabs(product);
		
		if(absproduct < btScalar(1.0 - SIMD_EPSILON))
		{
			// Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
			const btScalar theta = btAcos(absproduct);
			const btScalar d = btSin(theta);
			btAssert(d > btScalar(0));
			
			const btScalar sign = (product < 0) ? btScalar(-1) : btScalar(1);
			const btScalar s0 = btSin((btScalar(1.0) - t) * theta) / d;
			const btScalar s1 = btSin(sign * t * theta) / d;
			
			return btQuaternion(
				(m_floats[0] * s0 + q.x() * s1),
				(m_floats[1] * s0 + q.y() * s1),
				(m_floats[2] * s0 + q.z() * s1),
				(m_floats[3] * s0 + q.w() * s1));
		}
		else
		{
			return *this;
		}
	}

	static const btQuaternion&	getIdentity()
	{
		static const btQuaternion identityQuat(btScalar(0.),btScalar(0.),btScalar(0.),btScalar(1.));
		return identityQuat;
	}

	SIMD_FORCE_INLINE const btScalar& getW() const { return m_floats[3]; }

	SIMD_FORCE_INLINE	void	serialize(struct	btQuaternionData& dataOut) const;

	SIMD_FORCE_INLINE	void	deSerialize(const struct	btQuaternionData& dataIn);

	SIMD_FORCE_INLINE	void	serializeFloat(struct	btQuaternionFloatData& dataOut) const;

	SIMD_FORCE_INLINE	void	deSerializeFloat(const struct	btQuaternionFloatData& dataIn);

	SIMD_FORCE_INLINE	void	serializeDouble(struct	btQuaternionDoubleData& dataOut) const;

	SIMD_FORCE_INLINE	void	deSerializeDouble(const struct	btQuaternionDoubleData& dataIn);

};





/**@brief Return the product of two quaternions */
SIMD_FORCE_INLINE btQuaternion
operator*(const btQuaternion& q1, const btQuaternion& q2) 
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
	__m128 vQ1 = q1.get128();
	__m128 vQ2 = q2.get128();
	__m128 A0, A1, B1, A2, B2;
    
	A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0,1,2,0)); // X Y  z x     //      vtrn
	B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0)); // W W  W X     // vdup vext

	A1 = A1 * B1;
	
	A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1)); // Y Z  X Y     // vext 
	B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1)); // z x  Y Y     // vtrn vdup

	A2 = A2 * B2;

	B1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2)); // z x Y Z      // vtrn vext
	B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2)); // Y Z x z      // vext vtrn
	
	B1 = B1 * B2;	//	A3 *= B3

	A0 = bt_splat_ps(vQ1, 3);	//	A0
	A0 = A0 * vQ2;	//	A0 * B0

	A1 = A1 + A2;	//	AB12
	A0 =  A0 - B1;	//	AB03 = AB0 - AB3 
	
    A1 = _mm_xor_ps(A1, vPPPM);	//	change sign of the last element
	A0 = A0 + A1;	//	AB03 + AB12
	
	return btQuaternion(A0);

#elif defined(BT_USE_NEON)     

	float32x4_t vQ1 = q1.get128();
	float32x4_t vQ2 = q2.get128();
	float32x4_t A0, A1, B1, A2, B2, A3, B3;
    float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
    
    {
    float32x2x2_t tmp;
    tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) );       // {z x}, {w y}
    vQ1zx = tmp.val[0];

    tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) );       // {z x}, {w y}
    vQ2zx = tmp.val[0];
    }
    vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1); 

    vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);

    vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
    vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);

    A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx);                    // X Y  z x 
    B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W  W X 

	A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
    B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));

    A3 = vcombine_f32(vQ1zx, vQ1yz);        // Z X Y Z
    B3 = vcombine_f32(vQ2yz, vQ2xz);        // Y Z x z

	A1 = vmulq_f32(A1, B1);
	A2 = vmulq_f32(A2, B2);
	A3 = vmulq_f32(A3, B3);	//	A3 *= B3
	A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); //	A0 * B0

	A1 = vaddq_f32(A1, A2);	//	AB12 = AB1 + AB2
	A0 = vsubq_f32(A0, A3);	//	AB03 = AB0 - AB3 
	
    //	change the sign of the last element
    A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);	
	A0 = vaddq_f32(A0, A1);	//	AB03 + AB12
	
	return btQuaternion(A0);

#else
	return btQuaternion(
        q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(),
		q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(),
		q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(),
		q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z()); 
#endif
}

SIMD_FORCE_INLINE btQuaternion
operator*(const btQuaternion& q, const btVector3& w)
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
	__m128 vQ1 = q.get128();
	__m128 vQ2 = w.get128();
	__m128 A1, B1, A2, B2, A3, B3;
	
	A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(3,3,3,0));
	B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(0,1,2,0));

	A1 = A1 * B1;
	
	A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1));
	B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1));

	A2 = A2 * B2;

	A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2));
	B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2));
	
	A3 = A3 * B3;	//	A3 *= B3

	A1 = A1 + A2;	//	AB12
	A1 = _mm_xor_ps(A1, vPPPM);	//	change sign of the last element
    A1 = A1 - A3;	//	AB123 = AB12 - AB3 
	
	return btQuaternion(A1);
    
#elif defined(BT_USE_NEON)     

	float32x4_t vQ1 = q.get128();
	float32x4_t vQ2 = w.get128();
	float32x4_t A1, B1, A2, B2, A3, B3;
    float32x2_t vQ1wx, vQ2zx, vQ1yz, vQ2yz, vQ1zx, vQ2xz;
    
    vQ1wx = vext_f32(vget_high_f32(vQ1), vget_low_f32(vQ1), 1); 
    {
    float32x2x2_t tmp;

    tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) );       // {z x}, {w y}
    vQ2zx = tmp.val[0];

    tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) );       // {z x}, {w y}
    vQ1zx = tmp.val[0];
    }

    vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);

    vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
    vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);

    A1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ1), 1), vQ1wx); // W W  W X 
    B1 = vcombine_f32(vget_low_f32(vQ2), vQ2zx);                    // X Y  z x 

	A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
    B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));

    A3 = vcombine_f32(vQ1zx, vQ1yz);        // Z X Y Z
    B3 = vcombine_f32(vQ2yz, vQ2xz);        // Y Z x z

	A1 = vmulq_f32(A1, B1);
	A2 = vmulq_f32(A2, B2);
	A3 = vmulq_f32(A3, B3);	//	A3 *= B3

	A1 = vaddq_f32(A1, A2);	//	AB12 = AB1 + AB2
	
    //	change the sign of the last element
    A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);	
	
    A1 = vsubq_f32(A1, A3);	//	AB123 = AB12 - AB3
	
	return btQuaternion(A1);
    
#else
	return btQuaternion( 
         q.w() * w.x() + q.y() * w.z() - q.z() * w.y(),
		 q.w() * w.y() + q.z() * w.x() - q.x() * w.z(),
		 q.w() * w.z() + q.x() * w.y() - q.y() * w.x(),
		-q.x() * w.x() - q.y() * w.y() - q.z() * w.z()); 
#endif
}

SIMD_FORCE_INLINE btQuaternion
operator*(const btVector3& w, const btQuaternion& q)
{
#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
	__m128 vQ1 = w.get128();
	__m128 vQ2 = q.get128();
	__m128 A1, B1, A2, B2, A3, B3;
	
	A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0,1,2,0));  // X Y  z x
	B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0));  // W W  W X 

	A1 = A1 * B1;
	
	A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1));
	B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1));

	A2 = A2 *B2;

	A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2));
	B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2));
	
	A3 = A3 * B3;	//	A3 *= B3

	A1 = A1 + A2;	//	AB12
	A1 = _mm_xor_ps(A1, vPPPM);	//	change sign of the last element
	A1 = A1 - A3;	//	AB123 = AB12 - AB3 
	
	return btQuaternion(A1);

#elif defined(BT_USE_NEON)     

	float32x4_t vQ1 = w.get128();
	float32x4_t vQ2 = q.get128();
	float32x4_t  A1, B1, A2, B2, A3, B3;
    float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
    
    {
    float32x2x2_t tmp;
   
    tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) );       // {z x}, {w y}
    vQ1zx = tmp.val[0];

    tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) );       // {z x}, {w y}
    vQ2zx = tmp.val[0];
    }
    vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1); 

    vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);

    vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
    vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);

    A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx);                    // X Y  z x 
    B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W  W X 

	A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
    B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));

    A3 = vcombine_f32(vQ1zx, vQ1yz);        // Z X Y Z
    B3 = vcombine_f32(vQ2yz, vQ2xz);        // Y Z x z

	A1 = vmulq_f32(A1, B1);
	A2 = vmulq_f32(A2, B2);
	A3 = vmulq_f32(A3, B3);	//	A3 *= B3

	A1 = vaddq_f32(A1, A2);	//	AB12 = AB1 + AB2
	
    //	change the sign of the last element
    A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);	
	
    A1 = vsubq_f32(A1, A3);	//	AB123 = AB12 - AB3
	
	return btQuaternion(A1);
    
#else
	return btQuaternion( 
        +w.x() * q.w() + w.y() * q.z() - w.z() * q.y(),
		+w.y() * q.w() + w.z() * q.x() - w.x() * q.z(),
		+w.z() * q.w() + w.x() * q.y() - w.y() * q.x(),
		-w.x() * q.x() - w.y() * q.y() - w.z() * q.z()); 
#endif
}

/**@brief Calculate the dot product between two quaternions */
SIMD_FORCE_INLINE btScalar 
dot(const btQuaternion& q1, const btQuaternion& q2) 
{ 
	return q1.dot(q2); 
}


/**@brief Return the length of a quaternion */
SIMD_FORCE_INLINE btScalar
length(const btQuaternion& q) 
{ 
	return q.length(); 
}

/**@brief Return the angle between two quaternions*/
SIMD_FORCE_INLINE btScalar
btAngle(const btQuaternion& q1, const btQuaternion& q2) 
{ 
	return q1.angle(q2); 
}

/**@brief Return the inverse of a quaternion*/
SIMD_FORCE_INLINE btQuaternion
inverse(const btQuaternion& q) 
{
	return q.inverse();
}

/**@brief Return the result of spherical linear interpolation betwen two quaternions 
 * @param q1 The first quaternion
 * @param q2 The second quaternion 
 * @param t The ration between q1 and q2.  t = 0 return q1, t=1 returns q2 
 * Slerp assumes constant velocity between positions. */
SIMD_FORCE_INLINE btQuaternion
slerp(const btQuaternion& q1, const btQuaternion& q2, const btScalar& t) 
{
	return q1.slerp(q2, t);
}

SIMD_FORCE_INLINE btVector3 
quatRotate(const btQuaternion& rotation, const btVector3& v) 
{
	btQuaternion q = rotation * v;
	q *= rotation.inverse();
#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
	return btVector3(_mm_and_ps(q.get128(), btvFFF0fMask));
#elif defined(BT_USE_NEON)
    return btVector3((float32x4_t)vandq_s32((int32x4_t)q.get128(), btvFFF0Mask));
#else	
	return btVector3(q.getX(),q.getY(),q.getZ());
#endif
}

SIMD_FORCE_INLINE btQuaternion 
shortestArcQuat(const btVector3& v0, const btVector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized
{
	btVector3 c = v0.cross(v1);
	btScalar  d = v0.dot(v1);

	if (d < -1.0 + SIMD_EPSILON)
	{
		btVector3 n,unused;
		btPlaneSpace1(v0,n,unused);
		return btQuaternion(n.x(),n.y(),n.z(),0.0f); // just pick any vector that is orthogonal to v0
	}

	btScalar  s = btSqrt((1.0f + d) * 2.0f);
	btScalar rs = 1.0f / s;

	return btQuaternion(c.getX()*rs,c.getY()*rs,c.getZ()*rs,s * 0.5f);
}

SIMD_FORCE_INLINE btQuaternion 
shortestArcQuatNormalize2(btVector3& v0,btVector3& v1)
{
	v0.normalize();
	v1.normalize();
	return shortestArcQuat(v0,v1);
}




struct	btQuaternionFloatData
{
	float	m_floats[4];
};

struct	btQuaternionDoubleData
{
	double	m_floats[4];

};

SIMD_FORCE_INLINE	void	btQuaternion::serializeFloat(struct	btQuaternionFloatData& dataOut) const
{
	///could also do a memcpy, check if it is worth it
	for (int i=0;i<4;i++)
		dataOut.m_floats[i] = float(m_floats[i]);
}

SIMD_FORCE_INLINE void	btQuaternion::deSerializeFloat(const struct	btQuaternionFloatData& dataIn)
{
	for (int i=0;i<4;i++)
		m_floats[i] = btScalar(dataIn.m_floats[i]);
}


SIMD_FORCE_INLINE	void	btQuaternion::serializeDouble(struct	btQuaternionDoubleData& dataOut) const
{
	///could also do a memcpy, check if it is worth it
	for (int i=0;i<4;i++)
		dataOut.m_floats[i] = double(m_floats[i]);
}

SIMD_FORCE_INLINE void	btQuaternion::deSerializeDouble(const struct	btQuaternionDoubleData& dataIn)
{
	for (int i=0;i<4;i++)
		m_floats[i] = btScalar(dataIn.m_floats[i]);
}


SIMD_FORCE_INLINE	void	btQuaternion::serialize(struct	btQuaternionData& dataOut) const
{
	///could also do a memcpy, check if it is worth it
	for (int i=0;i<4;i++)
		dataOut.m_floats[i] = m_floats[i];
}

SIMD_FORCE_INLINE void	btQuaternion::deSerialize(const struct	btQuaternionData& dataIn)
{
	for (int i=0;i<4;i++)
		m_floats[i] = dataIn.m_floats[i];
}


#endif //BT_SIMD__QUATERNION_H_