This file is indexed.

/usr/include/Bpp/Phyl/Model/BinarySubstitutionModel.h is in libbpp-phyl-dev 2.4.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
//
// File: BinarySubstitutionModel.h
// Created by: Laurent Gueguen
// Created on: 2009
//

/*
   Copyright or © or Copr. Bio++ Development Team, (November 16, 2004)

   This software is a computer program whose purpose is to provide classes
   for phylogenetic data analysis.

   This software is governed by the CeCILL  license under French law and
   abiding by the rules of distribution of free software.  You can  use,
   modify and/ or redistribute the software under the terms of the CeCILL
   license as circulated by CEA, CNRS and INRIA at the following URL
   "http://www.cecill.info".

   As a counterpart to the access to the source code and  rights to copy,
   modify and redistribute granted by the license, users are provided only
   with a limited warranty  and the software's author,  the holder of the
   economic rights,  and the successive licensors  have only  limited
   liability.

   In this respect, the user's attention is drawn to the risks associated
   with loading,  using,  modifying and/or developing or reproducing the
   software by the user in light of its specific status of free software,
   that may mean  that it is complicated to manipulate,  and  that  also
   therefore means  that it is reserved for developers  and  experienced
   professionals having in-depth computer knowledge. Users are therefore
   encouraged to load and test the software's suitability as regards their
   requirements in conditions enabling the security of their systems and/or
   data to be ensured and,  more generally, to use and operate it in the
   same conditions as regards security.

   The fact that you are presently reading this means that you have had
   knowledge of the CeCILL license and that you accept its terms.
 */

#ifndef _BINARYSUBSTITUTIONMODEL_H_
#define _BINARYSUBSTITUTIONMODEL_H_

#include "AbstractSubstitutionModel.h"
#include <Bpp/Seq/Alphabet/BinaryAlphabet.h>

namespace bpp
{
/**
 * @brief The Model on two states
 *
 * \f[
 * Q = r.\begin{pmatrix}
 * -\kappa & \kappa  \\
 * 1 & -1  \\
 * \end{pmatrix}
 * \f]
 * \f[
 * \pi = diag\left(\frac{1}{\kappa+1}, \frac{\kappa}{\kappa+1}\right)
 * \f]
 * Normalization: \f$r\f$ is set so that \f$\sum_i Q_{i,i}\pi_i = -1\f$:
 * \f[
 * Q = \begin{pmatrix}
 * -\frac{\kappa + 1}2 & \frac{\kappa + 1}2 \\
 * \frac{\kappa+1}{2\kappa} & -\frac{\kappa+1}{2\kappa}\\
 * \end{pmatrix}
 * \f]
 *
 * The eigen values are \f$\left(0, - \frac{(\kappa+1)^2}{2\kappa}\right)\f$,
 * and IF \f$\kappa \neq 1\f$, the left eigen vectors are, by row:
 * \f[
 * U = \begin{pmatrix}
 *  \frac{1}{1+\kappa} &  \frac{\kappa}{1+\kappa} \\
 *  \frac{\kappa-1}{\kappa+1} & -\frac{\kappa-1}{\kappa+1} \\
 * \end{pmatrix}
 * \f]
 * and the right eigen vectors are by column:
 * \f[
 * U^{-1} = \begin{pmatrix}
 *  1 &  \frac \kappa{\kappa-1} \\
 *  1 &  - \frac 1{\kappa-1} \\
 * \end{pmatrix}
 * \f]
 *
 * The probabilities of changes are computed analytically using the formulas, with \f$\lambda= \frac{(\kappa+1)^2}{2\kappa}\f$ :
 * \f[
 * P_{i,j}(t) = \begin{pmatrix}
 * \frac{1}{\kappa+1} + \frac{\kappa}{\kappa+1}e^{-\lambda t} & \frac{\kappa}{\kappa+1} - \frac{\kappa}{\kappa+1}e^{-\lambda t} \\
 * \frac{1}{\kappa+1} - \frac{1}{\kappa+1}e^{-\lambda t} & \frac{\kappa}{\kappa+1} + \frac{1}{\kappa+1}e^{-\lambda t} \\
 * \end{pmatrix}
 * \f]
 *
 * \f[
 * \frac{\partial P_{i,j}(t)}{\partial t} = \begin{pmatrix}
 * -\frac {\kappa+1} 2 e^{-\lambda t}  & \frac {\kappa+1} 2 e^{-\lambda t} \\
 * \frac {\kappa+1} {2\kappa} e^{-\lambda t}  & - \frac {\kappa+1} {2\kappa} e^{-\lambda t} \\
 * \end{pmatrix}
 * \f]
 * \f{multline*}
 * \frac{\partial^2 P_{i,j}(t)}{\partial t^2} = \\
 * \begin{pmatrix}
 * \frac {\lambda (\kappa+1)} 2 e^{-\lambda t}  & -\ frac {\lambda (\kappa+1)} 2 e^{-\lambda t} \\
 * \frac {\lambda (\kappa+1)} {2\kappa} e^{-\lambda t}  & - \frac {\lambda (\kappa+1)} {2\kappa} e^{-\lambda t} \\
 * \end{pmatrix}
 * \f}
 *
 * The parameter is named \c "kappa"
 * and its value may be retrieve with the command
 * \code
 * getParameterValue("kappa")
 * \endcode
 *
 */

class BinarySubstitutionModel :
  public AbstractReversibleSubstitutionModel
{
private:
  double kappa_;

protected:
  mutable double lambda_, exp_;
  mutable RowMatrix<double> p_;

public:
  BinarySubstitutionModel(const BinaryAlphabet* alpha, double kappa = 1.);

  virtual ~BinarySubstitutionModel() {}

  BinarySubstitutionModel* clone() const { return new BinarySubstitutionModel(*this); }

  
public:
  double Pij_t    (size_t i, size_t j, double d) const;
  double dPij_dt  (size_t i, size_t j, double d) const;
  double d2Pij_dt2(size_t i, size_t j, double d) const;
  const Matrix<double>& getPij_t    (double d) const;
  const Matrix<double>& getdPij_dt  (double d) const;
  const Matrix<double>& getd2Pij_dt2(double d) const;

  std::string getName() const { return "Binary"; }

  void setFreq(std::map<int, double>& freqs);

  size_t getNumberOfStates() const { return 2; }

protected:
  void updateMatrices();
};
} // end of namespace bpp.

#endif  // _BINARYSUBSTITUTIONMODEL_H_