/usr/include/Bpp/Phyl/Model/BinarySubstitutionModel.h is in libbpp-phyl-dev 2.4.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | //
// File: BinarySubstitutionModel.h
// Created by: Laurent Gueguen
// Created on: 2009
//
/*
Copyright or © or Copr. Bio++ Development Team, (November 16, 2004)
This software is a computer program whose purpose is to provide classes
for phylogenetic data analysis.
This software is governed by the CeCILL license under French law and
abiding by the rules of distribution of free software. You can use,
modify and/ or redistribute the software under the terms of the CeCILL
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info".
As a counterpart to the access to the source code and rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty and the software's author, the holder of the
economic rights, and the successive licensors have only limited
liability.
In this respect, the user's attention is drawn to the risks associated
with loading, using, modifying and/or developing or reproducing the
software by the user in light of its specific status of free software,
that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or
data to be ensured and, more generally, to use and operate it in the
same conditions as regards security.
The fact that you are presently reading this means that you have had
knowledge of the CeCILL license and that you accept its terms.
*/
#ifndef _BINARYSUBSTITUTIONMODEL_H_
#define _BINARYSUBSTITUTIONMODEL_H_
#include "AbstractSubstitutionModel.h"
#include <Bpp/Seq/Alphabet/BinaryAlphabet.h>
namespace bpp
{
/**
* @brief The Model on two states
*
* \f[
* Q = r.\begin{pmatrix}
* -\kappa & \kappa \\
* 1 & -1 \\
* \end{pmatrix}
* \f]
* \f[
* \pi = diag\left(\frac{1}{\kappa+1}, \frac{\kappa}{\kappa+1}\right)
* \f]
* Normalization: \f$r\f$ is set so that \f$\sum_i Q_{i,i}\pi_i = -1\f$:
* \f[
* Q = \begin{pmatrix}
* -\frac{\kappa + 1}2 & \frac{\kappa + 1}2 \\
* \frac{\kappa+1}{2\kappa} & -\frac{\kappa+1}{2\kappa}\\
* \end{pmatrix}
* \f]
*
* The eigen values are \f$\left(0, - \frac{(\kappa+1)^2}{2\kappa}\right)\f$,
* and IF \f$\kappa \neq 1\f$, the left eigen vectors are, by row:
* \f[
* U = \begin{pmatrix}
* \frac{1}{1+\kappa} & \frac{\kappa}{1+\kappa} \\
* \frac{\kappa-1}{\kappa+1} & -\frac{\kappa-1}{\kappa+1} \\
* \end{pmatrix}
* \f]
* and the right eigen vectors are by column:
* \f[
* U^{-1} = \begin{pmatrix}
* 1 & \frac \kappa{\kappa-1} \\
* 1 & - \frac 1{\kappa-1} \\
* \end{pmatrix}
* \f]
*
* The probabilities of changes are computed analytically using the formulas, with \f$\lambda= \frac{(\kappa+1)^2}{2\kappa}\f$ :
* \f[
* P_{i,j}(t) = \begin{pmatrix}
* \frac{1}{\kappa+1} + \frac{\kappa}{\kappa+1}e^{-\lambda t} & \frac{\kappa}{\kappa+1} - \frac{\kappa}{\kappa+1}e^{-\lambda t} \\
* \frac{1}{\kappa+1} - \frac{1}{\kappa+1}e^{-\lambda t} & \frac{\kappa}{\kappa+1} + \frac{1}{\kappa+1}e^{-\lambda t} \\
* \end{pmatrix}
* \f]
*
* \f[
* \frac{\partial P_{i,j}(t)}{\partial t} = \begin{pmatrix}
* -\frac {\kappa+1} 2 e^{-\lambda t} & \frac {\kappa+1} 2 e^{-\lambda t} \\
* \frac {\kappa+1} {2\kappa} e^{-\lambda t} & - \frac {\kappa+1} {2\kappa} e^{-\lambda t} \\
* \end{pmatrix}
* \f]
* \f{multline*}
* \frac{\partial^2 P_{i,j}(t)}{\partial t^2} = \\
* \begin{pmatrix}
* \frac {\lambda (\kappa+1)} 2 e^{-\lambda t} & -\ frac {\lambda (\kappa+1)} 2 e^{-\lambda t} \\
* \frac {\lambda (\kappa+1)} {2\kappa} e^{-\lambda t} & - \frac {\lambda (\kappa+1)} {2\kappa} e^{-\lambda t} \\
* \end{pmatrix}
* \f}
*
* The parameter is named \c "kappa"
* and its value may be retrieve with the command
* \code
* getParameterValue("kappa")
* \endcode
*
*/
class BinarySubstitutionModel :
public AbstractReversibleSubstitutionModel
{
private:
double kappa_;
protected:
mutable double lambda_, exp_;
mutable RowMatrix<double> p_;
public:
BinarySubstitutionModel(const BinaryAlphabet* alpha, double kappa = 1.);
virtual ~BinarySubstitutionModel() {}
BinarySubstitutionModel* clone() const { return new BinarySubstitutionModel(*this); }
public:
double Pij_t (size_t i, size_t j, double d) const;
double dPij_dt (size_t i, size_t j, double d) const;
double d2Pij_dt2(size_t i, size_t j, double d) const;
const Matrix<double>& getPij_t (double d) const;
const Matrix<double>& getdPij_dt (double d) const;
const Matrix<double>& getd2Pij_dt2(double d) const;
std::string getName() const { return "Binary"; }
void setFreq(std::map<int, double>& freqs);
size_t getNumberOfStates() const { return 2; }
protected:
void updateMatrices();
};
} // end of namespace bpp.
#endif // _BINARYSUBSTITUTIONMODEL_H_
|