/usr/include/botan-2/botan/secmem.h is in libbotan-2-dev 2.4.0-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | /*
* Secure Memory Buffers
* (C) 1999-2007,2012 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#ifndef BOTAN_SECURE_MEMORY_BUFFERS_H_
#define BOTAN_SECURE_MEMORY_BUFFERS_H_
#include <botan/types.h> // IWYU pragma: export
#include <botan/mem_ops.h> // IWYU pragma: export
#include <vector> // IWYU pragma: export
#include <algorithm>
#include <deque>
#include <type_traits>
namespace Botan {
template<typename T>
class secure_allocator
{
public:
/*
* Assert exists to prevent someone from doing something that will
* probably crash anyway (like secure_vector<non_POD_t> where ~non_POD_t
* deletes a member pointer which was zeroed before it ran).
* MSVC in debug mode uses non-integral proxy types in container types
* like std::vector, thus we disable the check there.
*/
#if !defined(_ITERATOR_DEBUG_LEVEL) || _ITERATOR_DEBUG_LEVEL == 0
static_assert(std::is_integral<T>::value, "secure_allocator supports only integer types");
#endif
typedef T value_type;
typedef std::size_t size_type;
#ifdef BOTAN_BUILD_COMPILER_IS_MSVC_2013
secure_allocator() = default;
secure_allocator(const secure_allocator&) = default;
secure_allocator& operator=(const secure_allocator&) = default;
~secure_allocator() = default;
template <typename U>
struct rebind
{
typedef secure_allocator<U> other;
};
void construct(value_type* mem, const value_type& value)
{
std::_Construct(mem, value);
}
void destroy(value_type* mem)
{
std::_Destroy(mem);
}
#else
secure_allocator() BOTAN_NOEXCEPT = default;
secure_allocator(const secure_allocator&) BOTAN_NOEXCEPT = default;
secure_allocator& operator=(const secure_allocator&) BOTAN_NOEXCEPT = default;
~secure_allocator() BOTAN_NOEXCEPT = default;
#endif
template<typename U>
secure_allocator(const secure_allocator<U>&) BOTAN_NOEXCEPT {}
T* allocate(std::size_t n)
{
return static_cast<T*>(allocate_memory(n, sizeof(T)));
}
void deallocate(T* p, std::size_t n)
{
deallocate_memory(p, n, sizeof(T));
}
};
template<typename T, typename U> inline bool
operator==(const secure_allocator<T>&, const secure_allocator<U>&)
{ return true; }
template<typename T, typename U> inline bool
operator!=(const secure_allocator<T>&, const secure_allocator<U>&)
{ return false; }
template<typename T> using secure_vector = std::vector<T, secure_allocator<T>>;
template<typename T> using secure_deque = std::deque<T, secure_allocator<T>>;
// For better compatability with 1.10 API
template<typename T> using SecureVector = secure_vector<T>;
template<typename T>
std::vector<T> unlock(const secure_vector<T>& in)
{
std::vector<T> out(in.size());
copy_mem(out.data(), in.data(), in.size());
return out;
}
template<typename T, typename Alloc>
size_t buffer_insert(std::vector<T, Alloc>& buf,
size_t buf_offset,
const T input[],
size_t input_length)
{
const size_t to_copy = std::min(input_length, buf.size() - buf_offset);
if(to_copy > 0)
{
copy_mem(&buf[buf_offset], input, to_copy);
}
return to_copy;
}
template<typename T, typename Alloc, typename Alloc2>
size_t buffer_insert(std::vector<T, Alloc>& buf,
size_t buf_offset,
const std::vector<T, Alloc2>& input)
{
const size_t to_copy = std::min(input.size(), buf.size() - buf_offset);
if(to_copy > 0)
{
copy_mem(&buf[buf_offset], input.data(), to_copy);
}
return to_copy;
}
template<typename T, typename Alloc, typename Alloc2>
std::vector<T, Alloc>&
operator+=(std::vector<T, Alloc>& out,
const std::vector<T, Alloc2>& in)
{
const size_t copy_offset = out.size();
out.resize(out.size() + in.size());
if(in.size() > 0)
{
copy_mem(&out[copy_offset], in.data(), in.size());
}
return out;
}
template<typename T, typename Alloc>
std::vector<T, Alloc>& operator+=(std::vector<T, Alloc>& out, T in)
{
out.push_back(in);
return out;
}
template<typename T, typename Alloc, typename L>
std::vector<T, Alloc>& operator+=(std::vector<T, Alloc>& out,
const std::pair<const T*, L>& in)
{
const size_t copy_offset = out.size();
out.resize(out.size() + in.second);
if(in.second > 0)
{
copy_mem(&out[copy_offset], in.first, in.second);
}
return out;
}
template<typename T, typename Alloc, typename L>
std::vector<T, Alloc>& operator+=(std::vector<T, Alloc>& out,
const std::pair<T*, L>& in)
{
const size_t copy_offset = out.size();
out.resize(out.size() + in.second);
if(in.second > 0)
{
copy_mem(&out[copy_offset], in.first, in.second);
}
return out;
}
/**
* Zeroise the values; length remains unchanged
* @param vec the vector to zeroise
*/
template<typename T, typename Alloc>
void zeroise(std::vector<T, Alloc>& vec)
{
clear_mem(vec.data(), vec.size());
}
/**
* Zeroise the values then free the memory
* @param vec the vector to zeroise and free
*/
template<typename T, typename Alloc>
void zap(std::vector<T, Alloc>& vec)
{
zeroise(vec);
vec.clear();
vec.shrink_to_fit();
}
}
#endif
|