/usr/include/boinc/lib/coproc.h is in libboinc-app-dev 7.9.3+dfsg-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 | // This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// Structures representing coprocessors (e.g. GPUs);
// used in both client and server.
//
// Notes:
//
// 1) The use of "CUDA" is misleading; it really means "NVIDIA GPU".
// 2) The design treats each resource type as a pool of identical devices;
// for example, a scheduler request contains a request
// (#instances, instance-seconds) for CUDA jobs.
// In reality, the instances of a resource type can have different properties:
// In the case of CUDA, "compute capability", driver version, RAM, speed, etc.
// How to resolve this discrepancy?
//
// Prior to 21 Apr 09 we identified the fastest instance
// and pretended that the others were identical to it.
// This approach has a serious flaw:
// suppose that the fastest instance has characteristics
// (version, RAM etc.) that satisfy the project's requirements,
// but other instances to not.
// Then BOINC executes jobs on GPUs that can't handle them,
// the jobs fail, the host is punished, etc.
//
// We could treat each GPU has a separate resource,
// with its own backoffs, etc.
// However, this would imply tying jobs to instances,
// which is undesirable from a scheduling viewpoint.
// It would also be a big code change in both client and server.
//
// Instead, (as of 21 Apr 09) our approach is to identify a
// "most capable" instance, which in the case of CUDA is based on
// a) compute capability
// b) driver version
// c) RAM size
// d) est. FLOPS
// (in decreasing priority).
// We ignore and don't use any instances that are less capable
// on any of these axes.
//
// This design avoids running coprocessor apps on instances
// that are incapable of handling them, and it involves no server changes.
// Its drawback is that, on systems with multiple and differing GPUs,
// it may not use some GPUs that actually could be used.
//
// Modified (as of 23 July 14) to allow coprocessors (OpenCL GPUs and OpenCL
// accelerators) from vendors other than original 3: NVIDIA, AMD and Intel.
// For these original 3 GPU vendors, we still use the above approach, and the
// COPROC::type field contains a standardized vendor name "NVIDIA", "ATI" or
// "intel_gpu". But for other, "new" vendors, we treat each device as a
// separate resource, creating an entry for each instance in the
// COPROCS::coprocs[] array and copying the device name COPROC::opencl_prop.name
// into the COPROC::type field (instead of the vendor name.)
#ifndef BOINC_COPROC_H
#define BOINC_COPROC_H
#include <vector>
#include <string>
#ifdef _WIN32
#include "boinc_win.h"
#endif
#ifdef _USING_FCGI_
#include "boinc_fcgi.h"
#endif
#include "miofile.h"
#include "error_numbers.h"
#include "parse.h"
#include "cal_boinc.h"
#include "cl_boinc.h"
#include "opencl_boinc.h"
#define MAX_COPROC_INSTANCES 64
#define MAX_RSC 8
// max # of processing resources types
// arguments to proc_type_name() and proc_type_name_xml().
//
#define PROC_TYPE_CPU 0
#define PROC_TYPE_NVIDIA_GPU 1
#define PROC_TYPE_AMD_GPU 2
#define PROC_TYPE_INTEL_GPU 3
#define PROC_TYPE_MINER_ASIC 4
#define NPROC_TYPES 5
extern const char* proc_type_name(int);
// user-readable name
extern const char* proc_type_name_xml(int);
// name used in XML and COPROC::type
extern int coproc_type_name_to_num(const char* name);
// deprecated, but keep for simplicity
#define GPU_TYPE_NVIDIA proc_type_name_xml(PROC_TYPE_NVIDIA_GPU)
#define GPU_TYPE_ATI proc_type_name_xml(PROC_TYPE_AMD_GPU)
#define GPU_TYPE_INTEL proc_type_name_xml(PROC_TYPE_INTEL_GPU)
// represents a requirement for a coproc.
// This is a parsed version of the <coproc> elements in an <app_version>
// (used in client only)
//
struct COPROC_REQ {
char type[256]; // must be unique
double count;
int parse(XML_PARSER&);
};
struct PCI_INFO {
bool present;
int bus_id;
int device_id;
int domain_id;
PCI_INFO(): present(false), bus_id(0), device_id(0),domain_id(0) {}
void write(MIOFILE&);
int parse(XML_PARSER&);
};
// represents a set of identical coprocessors on a particular computer.
// Abstract class;
// objects will always be a derived class (COPROC_CUDA, COPROC_ATI)
// Used in both client and server.
//
struct COPROC {
char type[256]; // must be unique
int count; // how many are present
bool non_gpu; // coproc is not a GPU
double peak_flops;
double used; // how many are in use (used by client)
bool have_cuda; // True if this GPU supports CUDA on this computer
bool have_cal; // True if this GPU supports CAL on this computer
bool have_opencl; // True if this GPU supports openCL on this computer
double available_ram;
bool specified_in_config;
// If true, this coproc was listed in cc_config.xml
// rather than being detected by the client.
// the following are used in both client and server for work-fetch info
//
double req_secs;
// how many instance-seconds of work requested
double req_instances;
// client is requesting enough jobs to use this many instances
double estimated_delay;
// resource will be saturated for this long
// temps used in client (enforce_schedule())
// to keep track of what fraction of each instance is in use
// during instance assignment
//
double usage[MAX_COPROC_INSTANCES];
double pending_usage[MAX_COPROC_INSTANCES];
// the device number of each instance
// These are not sequential if we omit instances (see above)
//
int device_nums[MAX_COPROC_INSTANCES];
int device_num; // temp used in scan process
bool instance_has_opencl[MAX_COPROC_INSTANCES];
cl_device_id opencl_device_ids[MAX_COPROC_INSTANCES];
int opencl_device_count;
int opencl_device_indexes[MAX_COPROC_INSTANCES];
PCI_INFO pci_info;
PCI_INFO pci_infos[MAX_COPROC_INSTANCES];
bool running_graphics_app[MAX_COPROC_INSTANCES];
// is this GPU running a graphics app (NVIDIA only)
double last_print_time;
OPENCL_DEVICE_PROP opencl_prop;
#ifndef _USING_FCGI_
void write_xml(MIOFILE&, bool scheduler_rpc=false);
void write_request(MIOFILE&);
#endif
int parse(XML_PARSER&);
inline void clear() {
// can't just memcpy() - trashes vtable
type[0] = 0;
count = 0;
non_gpu = false;
peak_flops = 0;
used = 0;
have_cuda = false;
have_cal = false;
have_opencl = false;
specified_in_config = false;
req_secs = 0;
req_instances = 0;
opencl_device_count = 0;
estimated_delay = 0;
available_ram = 0;
for (int i=0; i<MAX_COPROC_INSTANCES; i++) {
device_nums[i] = 0;
instance_has_opencl[i] = false;
opencl_device_ids[i] = 0;
opencl_device_indexes[i] = 0;
running_graphics_app[i] = true;
}
device_num = 0;
memset(&opencl_prop, 0, sizeof(opencl_prop));
memset(&pci_info, 0, sizeof(pci_info));
last_print_time = 0;
}
inline void clear_usage() {
for (int i=0; i<count; i++) {
usage[i] = 0;
pending_usage[i] = 0;
}
}
COPROC() {
clear();
}
int device_num_index(int n) {
for (int i=0; i<count; i++) {
if (device_nums[i] == n) return i;
}
return -1;
}
void merge_opencl(
std::vector<OPENCL_DEVICE_PROP> &opencls,
std::vector<int>& ignore_dev
);
void find_best_opencls(
bool use_all,
std::vector<OPENCL_DEVICE_PROP> &opencls,
std::vector<int>& ignore_dev
);
};
// Based on cudaDeviceProp from /usr/local/cuda/include/driver_types.h
// doesn't have to match exactly since we get the attributes one at a time.
//
// This is used for 2 purposes:
// - it's exported via GUI RPC for GUIs or other tools
// - it's sent from client to scheduler, for use by app plan functions
// Properties not relevant to either of these can be omitted.
//
struct CUDA_DEVICE_PROP {
char name[256];
double totalGlobalMem;
double sharedMemPerBlock;
int regsPerBlock;
int warpSize;
double memPitch;
int maxThreadsPerBlock;
int maxThreadsDim[3];
int maxGridSize[3];
int clockRate;
double totalConstMem;
int major; // compute capability
int minor;
double textureAlignment;
int deviceOverlap;
int multiProcessorCount;
};
typedef int CUdevice;
struct COPROC_NVIDIA : public COPROC {
int cuda_version; // CUDA runtime version
int display_driver_version;
CUDA_DEVICE_PROP prop;
COPROC_USAGE is_used; // temp used in scan process
#ifndef _USING_FCGI_
void write_xml(MIOFILE&, bool scheduler_rpc);
#endif
COPROC_NVIDIA(): COPROC() {
clear();
}
void get(std::vector<std::string>& warnings);
void correlate(
bool use_all,
std::vector<int>& ignore_devs
);
void description(char* buf, int buflen);
void clear();
int parse(XML_PARSER&);
void set_peak_flops();
void fake(int driver_version, double ram, double avail_ram, int count);
};
// encode a 3-part version as // 10000000*major + 10000*minor + release
// Note: ATI release #s can exceed 1000
//
inline int ati_version_int(int major, int minor, int release) {
return major*10000000 + minor*10000 + release;
}
struct COPROC_ATI : public COPROC {
char name[256];
char version[50];
int version_num;
// CAL version (not driver version) encoded as an int
bool atirt_detected;
bool amdrt_detected;
CALdeviceattribs attribs;
CALdeviceinfo info;
COPROC_USAGE is_used; // temp used in scan process
#ifndef _USING_FCGI_
void write_xml(MIOFILE&, bool scheduler_rpc);
#endif
COPROC_ATI(): COPROC() {
clear();
}
void get(std::vector<std::string>& warnings);
void correlate(
bool use_all,
std::vector<int>& ignore_devs
);
void description(char* buf, int buflen);
void clear();
int parse(XML_PARSER&);
void set_peak_flops();
void fake(double ram, double avail_ram, int);
};
struct COPROC_INTEL : public COPROC {
char name[256];
char version[50];
double global_mem_size;
COPROC_USAGE is_used; // temp used in scan process
#ifndef _USING_FCGI_
void write_xml(MIOFILE&, bool scheduler_rpc);
#endif
COPROC_INTEL(): COPROC() {
clear();
}
void get(std::vector<std::string>& warnings);
void correlate(
bool use_all,
std::vector<int>& ignore_devs
);
void clear();
int parse(XML_PARSER&);
void set_peak_flops();
void fake(double ram, double avail_ram, int);
};
typedef std::vector<int> IGNORE_GPU_INSTANCE[NPROC_TYPES];
struct COPROCS {
int n_rsc;
COPROC coprocs[MAX_RSC];
// array of processor types on this host.
// element 0 always represents the CPU.
// The remaining elements, if any, are GPUs or other coprocessors
// The following contain vendor-specific info about GPUs.
// (These GPUs are also represented by elements in the coprocs array)
//
COPROC_NVIDIA nvidia;
COPROC_ATI ati;
COPROC_INTEL intel_gpu;
void write_xml(MIOFILE& out, bool scheduler_rpc);
void get(
bool use_all,
std::vector<std::string> &descs,
std::vector<std::string> &warnings,
IGNORE_GPU_INSTANCE &ignore_gpu_instance
);
void detect_gpus(std::vector<std::string> &warnings);
int launch_child_process_to_detect_gpus();
void correlate_gpus(
bool use_all,
std::vector<std::string> &descs,
IGNORE_GPU_INSTANCE &ignore_gpu_instance
);
void get_opencl(
std::vector<std::string> &warnings
);
void correlate_opencl(
bool use_all,
IGNORE_GPU_INSTANCE& ignore_gpu_instance
);
cl_int get_opencl_info(
OPENCL_DEVICE_PROP& prop,
cl_uint device_index,
std::vector<std::string>& warnings
);
int parse(XML_PARSER&);
void set_path_to_client(char *path);
int write_coproc_info_file(std::vector<std::string> &warnings);
int read_coproc_info_file(std::vector<std::string> &warnings);
int add_other_coproc_types();
#ifdef __APPLE__
void opencl_get_ati_mem_size_from_opengl(std::vector<std::string> &warnings);
#endif
void summary_string(char* buf, int len);
// Copy a coproc set, possibly setting usage to zero.
// used in round-robin simulator and CPU scheduler,
// to avoid messing w/ master copy
//
void clone(COPROCS& c, bool copy_used) {
n_rsc = c.n_rsc;
for (int i=0; i<n_rsc; i++) {
coprocs[i] = c.coprocs[i];
if (!copy_used) {
coprocs[i].used = 0;
}
}
}
void clear() {
n_rsc = 0;
for (int i=0; i<MAX_RSC; i++) {
coprocs[i].clear();
}
nvidia.clear();
ati.clear();
intel_gpu.clear();
COPROC c;
strcpy(c.type, "CPU");
c.clear_usage();
add(c);
}
inline void clear_usage() {
for (int i=0; i<n_rsc; i++) {
coprocs[i].clear_usage();
}
}
inline bool none() {
return (n_rsc == 1);
}
inline int ndevs() {
int n=0;
for (int i=1; i<n_rsc; i++) {
n += coprocs[i].count;
}
return n;
}
inline bool have_nvidia() {
return (nvidia.count > 0);
}
inline bool have_ati() {
return (ati.count > 0);
}
inline bool have_intel_gpu() {
return (intel_gpu.count > 0);
}
int add(COPROC& c) {
if (n_rsc >= MAX_RSC) return ERR_BUFFER_OVERFLOW;
for (int i=1; i<n_rsc; i++) {
if (!strcmp(c.type, coprocs[i].type)) {
return ERR_DUP_NAME;
}
}
coprocs[n_rsc++] = c;
return 0;
}
void bound_counts();
// make sure instance counts are within legal range
COPROC* lookup_type(const char* t) {
for (int i=1; i<n_rsc; i++) {
if (!strcmp(t, coprocs[i].type)) {
return &coprocs[i];
}
}
return NULL;
}
COPROC* proc_type_to_coproc(int t) {
switch(t) {
case PROC_TYPE_NVIDIA_GPU: return &nvidia;
case PROC_TYPE_AMD_GPU: return &ati;
case PROC_TYPE_INTEL_GPU: return &intel_gpu;
case PROC_TYPE_MINER_ASIC: return lookup_type("miner_asic");
}
return NULL;
}
COPROCS() {
n_rsc = 0;
nvidia.count = 0;
ati.count = 0;
intel_gpu.count = 0;
COPROC c;
strcpy(c.type, "CPU");
c.clear_usage();
add(c);
}
};
extern void fake_opencl_gpu(char*);
#endif
|