This file is indexed.

/usr/lib/ocaml/batteries/batSet.mli is in libbatteries-ocaml-dev 2.6.0-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
(*
 * BatSet - Extended operations on sets
 * Copyright (C) 1996 Xavier Leroy
 *               2009 David Rajchenbach-Teller, LIFO, Universite d'Orleans
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version,
 * with the special exception on linking described in file LICENSE.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *)

(** Sets over ordered types.

    This module implements the set data structure, given a total
    ordering function over the set elements. All operations over sets
    are purely applicative (no side-effects).  The implementation uses
    balanced binary trees, and is therefore reasonably efficient:
    insertion and membership take time logarithmic in the size of the
    set, for instance.

    {b Note} OCaml, Batteries Included, provides two implementations
    of sets: polymorphic sets and functorized sets. Functorized sets
    (see {!S} and {!Make}) are slightly more complex to use but offer
    stronger type-safety. Polymorphic sets make it easier to shoot
    yourself in the foot. In case of doubt, you should use functorized
    sets.

    The functorized set implementation is built upon Stdlib's
    {{:http://caml.inria.fr/pub/docs/manual-ocaml/libref/Set.html}Set}
    module, but provides the complete interface.

    @author Xavier Leroy
    @author Nicolas Cannasse
    @author Markus Mottl
    @author David Rajchenbach-Teller
*)

(** {4 Functorized Sets} *)

module type OrderedType = BatInterfaces.OrderedType
(** Input signature of the functor {!Set.Make}. *)

module type S =
sig
  type elt
  (** The type of the set elements. *)

  type t
  (** The type of sets. *)

  val empty: t
  (** The empty set. *)

  val is_empty: t -> bool
  (** Test whether a set is empty or not. *)

  val singleton: elt -> t
  (** [singleton x] returns the one-element set containing only [x]. *)

  val mem: elt -> t -> bool
  (** [mem x s] tests whether [x] belongs to the set [s]. *)

  val find : elt -> t -> elt
  (** [find x s] returns the element in s that tests equal to [x] under its comparison function.
      @raise Not_found if no element is equal
  *)

  val add: elt -> t -> t
  (** [add x s] returns a set containing all elements of [s],
      plus [x]. If [x] was already in [s], [s] is returned unchanged. *)

  val remove: elt -> t -> t
  (** [remove x s] returns a set containing all elements of [s],
      except [x]. If [x] was not in [s], [s] is returned unchanged. *)

  val update: elt -> elt -> t -> t
  (** [update x y s] replace [x] by [y] in [s].
      [update] is faster when [x] compares equal to [y] according
      to the comparison function used by your set.
      @raise Not_found if [x] is not in [s].
      @since 2.4 *)

  val union: t -> t -> t
  (** Set union. *)

  val inter: t -> t -> t
  (** Set intersection. *)

  val diff: t -> t -> t
  (** Set difference. *)

  val sym_diff: t -> t -> t
  (** [sym_diff s t] returns the set of all elements in [s] or [t]
    but not both.  This is the same as [diff (union s t) (inter s
    t)]. *)

  val compare: t -> t -> int
  (** Total ordering between sets. Can be used as the ordering function
    for doing sets of sets. *)

  val equal: t -> t -> bool
  (** [equal s1 s2] tests whether the sets [s1] and [s2] are
      equal, that is, contain equal elements. *)

  val subset: t -> t -> bool
  (** [subset s1 s2] tests whether the set [s1] is a subset of
      the set [s2]. *)

  val disjoint: t -> t -> bool
  (** [disjoint s1 s2] tests whether the sets [s1] and [s2] contain no shared
      elements. (i.e. [inter s1 s2] is empty.) *)

  val compare_subset: t -> t -> int
  (** Partial ordering between sets as generated by [subset] *)

  val iter: (elt -> unit) -> t -> unit
  (** [iter f s] applies [f] in turn to all elements of [s].
      The elements of [s] are presented to [f] in increasing order
      with respect to the ordering over the type of the elements. *)

  val at_rank_exn: int -> t -> elt
  (** [at_rank_exn i s] returns element at rank [i] in [s], that is
      the [i]-th element in increasing order
      (the [0]-th element being the smallest element of [s]).
      @raise Not_found if [s = empty].
      @raise Invalid_argument error_message if [i < 0 || i >= cardinal s]
      @since 2.4 *)

  val map: (elt -> elt) -> t -> t
  (** [map f x] creates a new set with elements [f a0],
      [f a1]... [f aN], where [a0],[a1]..[aN] are the
      values contained in [x]*)

  val filter: (elt -> bool) -> t -> t
  (** [filter p s] returns the set of all elements in [s]
      that satisfy predicate [p]. *)

  val filter_map: (elt -> elt option) -> t -> t
  (** [filter_map f m] combines the features of [filter] and
      [map].  It calls calls [f a0], [f a1], [f aN] where [a0],[a1]..[aN]
      are the elements of [m] and returns the set of pairs [bi]
      such as [f ai = Some bi] (when [f] returns [None], the
      corresponding element of [m] is discarded). *)

  val fold: (elt -> 'a -> 'a) -> t -> 'a -> 'a
  (** [fold f s a] computes [(f xN ... (f x1 (f x0 a))...)],
      where [x0],[x1]..[xN] are the elements of [s], in increasing order. *)

  val for_all: (elt -> bool) -> t -> bool
  (** [for_all p s] checks if all elements of the set
      satisfy the predicate [p]. *)

  val exists: (elt -> bool) -> t -> bool
  (** [exists p s] checks if at least one element of
      the set satisfies the predicate [p]. *)

  val partition: (elt -> bool) -> t -> t * t
  (** [partition p s] returns a pair of sets [(s1, s2)], where
      [s1] is the set of all the elements of [s] that satisfy the
      predicate [p], and [s2] is the set of all the elements of
      [s] that do not satisfy [p]. *)

  val split: elt -> t -> t * bool * t
  (** [split x s] returns a triple [(l, present, r)], where
        [l] is the set of elements of [s] that are
        strictly less than [x];
        [r] is the set of elements of [s] that are
        strictly greater than [x];
        [present] is [false] if [s] contains no element equal to [x],
        or [true] if [s] contains an element equal to [x]. *)

  val split_opt: elt -> t -> t * elt option * t
  (** [split_opt x s] returns a triple [(l, maybe_v, r)], where
        [l] is the set of elements of [s] that are
        strictly less than [x];
        [r] is the set of elements of [s] that are
        strictly greater than [x];
        [maybe_v] is [None] if [s] contains no element equal to [x],
        or [Some v] if [s] contains an element [v] that compares equal to [x].
      @since 2.2.0
  *)

  val split_lt: elt -> t -> t * t
  (** [split_lt x s] returns a pair of sets [(l, r)], such that
      [l] is the subset of [s] with elements < [x];
      [r] is the subset of [s] with elements >= [x].
      @since 2.2.0 *)

  val split_le: elt -> t -> t * t
  (** [split_le x s] returns a pair of sets [(l, r)], such that
      [l] is the subset of [s] with elements <= [x];
      [r] is the subset of [s] with elements > [x].
      @since 2.2.0 *)

  val cardinal: t -> int
  (** Return the number of elements of a set. *)

  val elements: t -> elt list
  (** Return the list of all elements of the given set.
      The returned list is sorted in increasing order with respect
      to the ordering [Ord.compare], where [Ord] is the argument
      given to {!Set.Make}. *)

  val to_list: t -> elt list
  (** Alias for [elements].
      @since 2.2.0 *)

  val to_array: t -> elt array
  (** Same as [to_list] but with an array instead of a list.
      @since 2.4 *)

  val min_elt: t -> elt
  (** Return the smallest element of the given set
      (with respect to the [Ord.compare] ordering).

    @raise Not_found if the set is empty. *)

  val pop_min: t -> elt * t
  (** Returns the smallest element of the given set
      along with the rest of the set.
      Semantically equivalent and faster than

      [let mini = min_elt s in (mini, remove mini s)]

      @raise Not_found if the set is empty.
      @since 2.4 *)

  val pop_max: t -> elt * t
  (** Returns the biggest element of the given set
      along with the rest of the set.
      Semantically equivalent and faster than

      [let maxi = max_elt s in (maxi, remove maxi s)]

      @raise Not_found if the set is empty.
      @since 2.4 *)

  val max_elt: t -> elt
  (** Same as {!Set.S.min_elt}, but returns the largest element of the
      given set. *)

  val choose: t -> elt
  (** Return one element of the given set, or raise [Not_found] if
      the set is empty. Which element is chosen is unspecified,
      but equal elements will be chosen for equal sets. *)

  val pop : t -> elt * t
  (** returns one element of the set and the set without that element.
      @raise Not_found if given an empty set *)

  val enum: t -> elt BatEnum.t
  (** Return an enumeration of all elements of the given set.
      The returned enumeration is sorted in increasing order with respect
      to the ordering [Ord.compare], where [Ord] is the argument
      given to {!Set.Make}. *)

  val backwards: t -> elt BatEnum.t
  (** Return an enumeration of all elements of the given set.
      The returned enumeration is sorted in decreasing order with respect
      to the ordering [Ord.compare], where [Ord] is the argument
      given to {!Set.Make}. *)

  val of_enum: elt BatEnum.t -> t

  val of_list: elt list -> t
  (** builds a set from the given list.

      @since 2.3.0
  *)

  val of_array: elt array -> t
  (** builds a set from the given array.

      @since 2.4
  *)


  (** {6 Boilerplate code}*)

  (** {7 Printing}*)

  val print :  ?first:string -> ?last:string -> ?sep:string ->
    ('a BatInnerIO.output -> elt -> unit) ->
    'a BatInnerIO.output -> t -> unit

  (** {7 Infix operators} *)

  module Infix : sig
    val (<--) : t -> elt -> t (** insertion *)
    val (<.) : t -> t -> bool  (** strict subset *)
    val (>.) : t -> t -> bool  (** strict superset *)
    val (<=.) : t -> t -> bool (** subset *)
    val (>=.) : t -> t -> bool (** superset *)
    val (-.) : t -> t -> t     (** difference *)
    val (&&.) : t -> t -> t   (** intersection *)
    val (||.) : t -> t -> t   (** union *)
  end

  (** {6 Override modules}*)

  (**
     The following modules replace functions defined in {!Set} with functions
     behaving slightly differently but having the same name. This is by design:
     the functions meant to override the corresponding functions of {!Set}.
  *)

  (** Operations on {!Set} without exceptions.*)
  module Exceptionless : sig
    val min_elt: t -> elt option
    val max_elt: t -> elt option
    val choose:  t -> elt option
    val find: elt -> t -> elt option
  end


  (** Operations on {!Set} with labels.

    This module overrides a number of functions of {!Set} by
    functions in which some arguments require labels. These labels are
    there to improve readability and safety and to let you change the
    order of arguments to functions. In every case, the behavior of the
    function is identical to that of the corresponding function of {!Set}.
  *)
  module Labels : sig
    val iter : f:(elt -> unit) -> t -> unit
    val fold : f:(elt -> 'a -> 'a) -> t -> init:'a -> 'a
    val for_all : f:(elt -> bool) -> t -> bool
    val exists : f:(elt -> bool) -> t -> bool
    val map: f:(elt -> elt) -> t -> t
    val filter : f:(elt -> bool) -> t -> t
    val filter_map: f:(elt -> elt option) -> t -> t
    val partition : f:(elt -> bool) -> t -> t * t
  end

end
(** Output signature of the functor {!Set.Make}. *)

(*
module IStringSet : S with type elt = String.t
(** A set of strings. Comparison of strings ignores case (i.e. "foo" = "Foo")*)

module NumStringSet : S with type elt = String.t
(** A set of strings. Comparison of strings takes into account embedded numbers (i.e. "a23" < "a123", "a01" = "a1") *)

module RopeSet    : S with type elt = BatRope.t
(** A set of ropes. Comparison of ropes takes case into account (i.e. r"foo" <> r"Foo")*)

module IRopeSet   : S with type elt = BatRope.t
(** A set of ropes. Comparison of ropes ignores case (i.e. r"foo" = r"Foo")*)

 *)

module Make (Ord : OrderedType) : S with type elt = Ord.t
(** Functor building an implementation of the set structure
    given a totally ordered type.

    @documents Set.Make
*)


module Make2(O1 : OrderedType) (O2 : OrderedType) : sig
  module Product : S with type elt = O1.t * O2.t

  val cartesian_product : Make(O1).t -> Make(O2).t -> Product.t
  (** cartesian product of the two sets *)
end

(** {6 Common instantiations} *)

module Int : S with type elt = int
module Int32 : S with type elt = int32
module Int64 : S with type elt = int64
module Nativeint : S with type elt = nativeint
module Float : S with type elt = float
module Char : S with type elt = char
module String : S with type elt = string

(** {4 Polymorphic sets}

    The definitions below describe the polymorphic set interface.

    They are similar in functionality to the functorized {!Make}
    module, but the compiler cannot ensure that sets using different
    element ordering have different types: the responsibility of not
    mixing non-sensical comparison functions together is to the
    programmer. If in doubt, you should rather use the {!Make}
    functor for additional safety.

    @author Nicolas Cannasse
    @author Markus Mottl
    @author David Rajchenbach-Teller
*)

type 'a t
(** The type of sets. *)

include BatEnum.Enumerable with type 'a enumerable = 'a t
include BatInterfaces.Mappable with type 'a mappable = 'a t

val empty: 'a t
(** The empty set, using [compare] as comparison function *)

val is_empty: 'a t -> bool
(** Test whether a set is empty or not. *)

val singleton : 'a -> 'a t
(** Creates a new set with the single given element in it. *)

val mem: 'a -> 'a t -> bool
(** [mem x s] tests whether [x] belongs to the set [s]. *)

val find: 'a -> 'a t -> 'a
(** [find x s] returns the set element that compares equal to [x].
    @raise Not_found if no such element exists

    @since 2.1
*)

val add: 'a -> 'a t -> 'a t
(** [add x s] returns a set containing all elements of [s],
    plus [x]. If [x] was already in [s], [s] is returned unchanged. *)

val remove: 'a -> 'a t -> 'a t
(** [remove x s] returns a set containing all elements of [s],
    except [x]. If [x] was not in [s], [s] is returned unchanged. *)

val update: 'a -> 'a -> 'a t -> 'a t
(** [update x y s] replace [x] by [y] in [s].
    [update] is faster when [x] compares equal to [y] according
    to the comparison function used by your set.
    @raise Not_found if [x] is not in [s].
    @since 2.4 *)

val union: 'a t -> 'a t -> 'a t
(** [union s t] returns the union of [s] and [t] - the set containing
    all elements in either [s] and [t].  The returned set uses [t]'s
    comparison function.  The current implementation works better for
    small [s]. *)

(* Set.Make uses intersect *)
val intersect: 'a t -> 'a t -> 'a t
(** [intersect s t] returns a new set of those elements that are in
    both [s] and [t].  The returned set uses [s]'s comparison function. *)

val diff: 'a t -> 'a t -> 'a t
(** [diff s t] returns the set of all elements in [s] but not in
    [t]. The returned set uses [s]'s comparison function.*)

val sym_diff: 'a t -> 'a t -> 'a t
(** [sym_diff s t] returns the set of all elements in [s] or [t] but
    not both, also known as the symmetric difference.  This is the
    same as [diff (union s t) (inter s t)]. The returned set uses
    [s]'s comparison function.*)

val compare: 'a t -> 'a t -> int
(** Total ordering between sets. Can be used as the ordering function
    for doing sets of sets. *)

val equal: 'a t -> 'a t -> bool
(** [equal s1 s2] tests whether the sets [s1] and [s2] are
    equal, that is, contain equal elements. *)

val subset: 'a t -> 'a t -> bool
(** [subset a b] returns true if [a] is a subset of [b]. O(|a|). *)

val disjoint: 'a t -> 'a t -> bool
(** [disjoint s1 s2] tests whether the sets [s1] and [s2] contain no
    shared elements. (i.e. [inter s1 s2] is empty.) *)

val iter: ('a -> unit) -> 'a t -> unit
(** [iter f s] applies [f] in turn to all elements of [s].
    The elements of [s] are presented to [f] in increasing order
    with respect to the ordering over the type of the elements. *)

val at_rank_exn: int -> 'a t -> 'a
(** [at_rank_exn i s] returns element at rank [i] in [s], that is
    the [i]-th element in increasing order
    (the [0]-th element being the smallest element of [s]).
    @raise Not_found if [s = empty].
    @raise Invalid_argument error_message if [i < 0 || i >= cardinal s]
    @since 2.4 *)

val map: ('a -> 'b) -> 'a t -> 'b t
(** [map f x] creates a new set with elements [f a0],
    [f a1]... [f aN], where [a0], [a1], ..., [aN] are the
    elements of [x].

    This function places no restriction on [f]; it can map multiple
    input values to the same output value, in which case the
    resulting set will have smaller cardinality than the input.  [f]
    does not need to be order preserving, although if it is, then
    [Incubator.op_map] may be more efficient.
*)

val filter: ('a -> bool) -> 'a t -> 'a t
(** [filter p s] returns the set of all elements in [s]
    that satisfy predicate [p]. *)

(* as under-specified as 'map' *)
val filter_map: ('a -> 'b option) -> 'a t -> 'b t
(** [filter_map f m] combines the features of [filter] and
    [map].  It calls calls [f a0], [f a1], [f aN] where [a0,a1..an]
    are the elements of [m] and returns the set of pairs [bi]
    such as [f ai = Some bi] (when [f] returns [None], the
    corresponding element of [m] is discarded).

    The resulting map uses the polymorphic [compare] function to
    order elements.
*)

val fold: ('a -> 'b -> 'b) -> 'a t -> 'b -> 'b
(** [fold f s a] computes [(f xN ... (f x1 (f x0 a))...)],
    where [x0,x1..xN] are the elements of [s], in increasing order. *)

val exists: ('a -> bool) -> 'a t -> bool
(** [exists p s] checks if at least one element of
    the set satisfies the predicate [p]. *)

val for_all : ('a -> bool) -> 'a t -> bool
(** Returns whether the given predicate applies to all elements in the set *)

val partition : ('a -> bool) -> 'a t -> 'a t * 'a t
(** returns two disjoint subsets, those that satisfy the given
    predicate and those that don't *)

val split : 'a -> 'a t -> 'a t * bool * 'a t
(** [split x s] returns a triple [(l, present, r)], where
    [l] is the set of elements of [s] that are
    strictly less than [x];
    [r] is the set of elements of [s] that are
    strictly greater than [x];
    [present] is [false] if [s] contains no element equal to [x],
    or [true] if [s] contains an element equal to [x]. *)

val split_opt: 'a -> 'a t -> 'a t * 'a option * 'a t
(** [split_opt x s] returns a triple [(l, maybe_v, r)], where
      [l] is the set of elements of [s] that are
      strictly less than [x];
      [r] is the set of elements of [s] that are
      strictly greater than [x];
      [maybe_v] is [None] if [s] contains no element equal to [x],
      or [Some v] if [s] contains an element [v] that compares equal to [x].
    @since 2.2.0
*)

val split_lt: 'a -> 'a t -> 'a t * 'a t
(** [split_lt x s] returns a pair of sets [(l, r)], such that
    [l] is the subset of [s] with elements < [x];
    [r] is the subset of [s] with elements >= [x].
    @since 2.2.0 *)

val split_le: 'a -> 'a t -> 'a t * 'a t
(** [split_le x s] returns a pair of sets [(l, r)], such that
    [l] is the subset of [s] with elements <= [x];
    [r] is the subset of [s] with elements > [x].
    @since 2.2.0 *)

val cardinal: 'a t -> int
(** Return the number of elements of a set. *)

val elements: 'a t -> 'a list
(** Return the list of all elements of the given set.
    The returned list is sorted in increasing order with respect
    to the ordering of the given set. *)

val to_list: 'a t -> 'a list
(** Alias for [elements].
    @since 2.2.0 *)

val to_array: 'a t -> 'a array
(** Same as [to_list] but with an array instead of a list.
    @since 2.4 *)

val min_elt : 'a t -> 'a
(** returns the smallest element of the set.
    @raise Invalid_argument if given an empty set. *)

val pop_min: 'a t -> 'a * 'a t
(** Returns the smallest element of the given set
    along with the rest of the set.
    Semantically equivalent and faster than

    [let mini = min_elt s in (mini, remove mini s)]

    @raise Not_found if the set is empty.
    @since 2.4 *)

val pop_max: 'a t -> 'a * 'a t
(** Returns the biggest element of the given set
    along with the rest of the set.
    Semantically equivalent and faster than

    [let maxi = max_elt s in (maxi, remove maxi s)]

    @raise Not_found if the set is empty.
    @since 2.4 *)

val max_elt : 'a t -> 'a
(** returns the largest element of the set.
    @raise Invalid_argument if given an empty set.*)

val choose : 'a t -> 'a
(** returns an arbitrary (but deterministic) element of the given set.
    @raise Invalid_argument if given an empty set. *)

val pop : 'a t -> 'a * 'a t
(** returns one element of the set and the set without that element.
    @raise Not_found if given an empty set *)

val cartesian_product : 'a t -> 'b t -> ('a * 'b) t
(** cartesian product of the two sets
    @since 2.2.0 *)

val enum: 'a t -> 'a BatEnum.t
(** Return an enumeration of all elements of the given set.
    The returned enumeration is sorted in increasing order with respect
    to the ordering of this set.*)

val of_enum: 'a BatEnum.t -> 'a t

val backwards: 'a t -> 'a BatEnum.t
(** Return an enumeration of all elements of the given set.  The
    returned enumeration is sorted in decreasing order with respect to
    the ordering [Pervasives.compare]. *)


val of_list: 'a list -> 'a t
(** builds a set from the given list, using the default comparison
    function *)

val of_array: 'a array -> 'a t
(** builds a set from the given array, using the default comparison
    function *)

(** {6 Boilerplate code}*)


(** {7 Printing}*)

val print :  ?first:string -> ?last:string -> ?sep:string ->
  ('a BatInnerIO.output -> 'c -> unit) ->
  'a BatInnerIO.output -> 'c t -> unit

(** {7 Infix operators} *)

module Infix : sig
  val (<--) : 'a t -> 'a -> 'a t (** insertion *)
  val (<.) : 'a t -> 'a t -> bool  (** strict subset *)
  val (>.) : 'a t -> 'a t -> bool  (** strict superset *)
  val (<=.) : 'a t -> 'a t -> bool (** subset *)
  val (>=.) : 'a t -> 'a t -> bool (** superset *)
  val (-.) : 'a t -> 'a t -> 'a t     (** difference *)
  val (&&.) : 'a t -> 'a t -> 'a t   (** intersection *)
  val (||.) : 'a t -> 'a t -> 'a t   (** union *)
end

(** {6 Incubator} *)
module Incubator : sig

  val op_map : ('a -> 'b) -> 'a t -> 'b t
    (** Order Preserving map; as [map], but [f] must be order preserving;
        i.e. if [a < b] then [f a < f b].  This allows the tree structure
        to be maintained internally, resulting in O(n) work instead of O(n
        log n).

        @since 2.1
    *)

end


module PSet : sig
  (** {6 Polymorphic sets}

      The definitions below describe the polymorphic set interface.

      They are similar in functionality to the functorized
      {!BatSet.Make} module, but the compiler cannot ensure that sets
      using different element ordering have different types: the
      responsibility of not mixing non-sensical comparison functions
      together is to the programmer. If you ever need a custom
      comparison function, it is recommended to use the {!BatSet.Make}
      functor for additional safety.

      @author Nicolas Cannasse
      @author Markus Mottl
      @author David Rajchenbach-Teller
  *)

  type 'a t
  (** The type of sets. *)

  include BatEnum.Enumerable with type 'a enumerable = 'a t
  include BatInterfaces.Mappable with type 'a mappable = 'a t

  val empty: 'a t
  (** The empty set, using [compare] as comparison function *)

  val create : ('a -> 'a -> int) -> 'a t
  (** Creates a new empty set, using the provided function for key comparison.*)

  val is_empty: 'a t -> bool
  (** Test whether a set is empty or not. *)

  val singleton : ?cmp:('a -> 'a -> int) -> 'a -> 'a t
  (** Creates a new set with the single given element in it. *)

  val mem: 'a -> 'a t -> bool
  (** [mem x s] tests whether [x] belongs to the set [s]. *)

  val find : 'a -> 'a t -> 'a
  (** [find x s] returns the element in s that tests equal to [x] under its comparison function.
      @raise Not_found if no element is equal
  *)

  val add: 'a -> 'a t -> 'a t
  (** [add x s] returns a set containing all elements of [s],
      plus [x]. If [x] was already in [s], [s] is returned unchanged. *)

  val remove: 'a -> 'a t -> 'a t
  (** [remove x s] returns a set containing all elements of [s],
      except [x]. If [x] was not in [s], [s] is returned unchanged. *)

  val update: 'a -> 'a -> 'a t -> 'a t
  (** [update x y s] replace [x] by [y] in [s].
      [update] is faster when [x] compares equal to [y] according
      to the comparison function used by your set.
      @raise Not_found if [x] is not in [s].
      @since 2.4 *)

  val union: 'a t -> 'a t -> 'a t
  (** [union s t] returns the union of [s] and [t] - the set containing
      all elements in either [s] and [t].  The returned set uses [t]'s
      comparison function.  The current implementation works better for
      small [s]. *)

  (* Set.Make uses intersect *)
  val intersect: 'a t -> 'a t -> 'a t
  (** [intersect s t] returns a new set of those elements that are in
      both [s] and [t].  The returned set uses [s]'s comparison function. *)

  val diff: 'a t -> 'a t -> 'a t
  (** [diff s t] returns the set of all elements in [s] but not in
      [t]. The returned set uses [s]'s comparison function.*)

  val sym_diff: 'a t -> 'a t -> 'a t
  (** [sym_diff s t] returns the set of all elements in [s] or [t] but not both.
      This is the same as [diff (union s t) (inter s t)]. The returned set uses
      [s]'s comparison function.*)

  val compare: 'a t -> 'a t -> int
  (** Total ordering between sets. Can be used as the ordering function
      for doing sets of sets. *)

  val equal: 'a t -> 'a t -> bool
  (** [equal s1 s2] tests whether the sets [s1] and [s2] are
      equal, that is, contain equal elements. *)

  val subset: 'a t -> 'a t -> bool
  (** [subset a b] returns true if [a] is a subset of [b]. O(|a|). *)

  val disjoint: 'a t -> 'a t -> bool
  (** [disjoint s1 s2] tests whether the sets [s1] and [s2] contain no
      shared elements. (i.e. [inter s1 s2] is empty.) *)

  val iter: ('a -> unit) -> 'a t -> unit
  (** [iter f s] applies [f] in turn to all elements of [s].
      The elements of [s] are presented to [f] in increasing order
      with respect to the ordering over the type of the elements. *)

  val at_rank_exn: int -> 'a t -> 'a
  (** [at_rank_exn i s] returns element at rank [i] in [s], that is
      the [i]-th element in increasing order
      (the [0]-th element being the smallest element of [s]).
      @raise Not_found if [s = empty].
      @raise Invalid_argument error_message if [i < 0 || i >= cardinal s]
      @since 2.4 *)

  (* under-specified; either give a 'b comparison,
     or keep ('a -> 'a) (preferred choice) *)
  val map: ('a -> 'b) -> 'a t -> 'b t
  (** [map f x] creates a new set with elements [f a0],
      [f a1]... [f aN], where [a0], [a1], ..., [aN] are the
      values contained in [x]

      The resulting map uses the polymorphic [compare] function to
      order elements.
  *)

  val filter: ('a -> bool) -> 'a t -> 'a t
  (** [filter p s] returns the set of all elements in [s]
      that satisfy predicate [p]. *)

  (* as under-specified as 'map' *)
  val filter_map: ('a -> 'b option) -> 'a t -> 'b t
  (** [filter_map f m] combines the features of [filter] and
      [map].  It calls calls [f a0], [f a1], [f aN] where [a0,a1..an]
      are the elements of [m] and returns the set of pairs [bi]
      such as [f ai = Some bi] (when [f] returns [None], the
      corresponding element of [m] is discarded).

      The resulting map uses the polymorphic [compare] function to
      order elements.
  *)

  val fold: ('a -> 'b -> 'b) -> 'a t -> 'b -> 'b
  (** [fold f s a] computes [(f xN ... (f x1 (f x0 a))...)],
      where [x0,x1..xN] are the elements of [s], in increasing order. *)

  val exists: ('a -> bool) -> 'a t -> bool
  (** [exists p s] checks if at least one element of
      the set satisfies the predicate [p]. *)

  val for_all : ('a -> bool) -> 'a t -> bool
  (** Returns whether the given predicate applies to all elements in the set *)

  val partition : ('a -> bool) -> 'a t -> 'a t * 'a t
  (** returns two disjoint subsets, those that satisfy the given
      predicate and those that don't *)

  val split : 'a -> 'a t -> 'a t * bool * 'a t
  (** [split x s] returns a triple [(l, present, r)], where
      [l] is the set of elements of [s] that are
      strictly less than [x];
      [r] is the set of elements of [s] that are
      strictly greater than [x];
      [present] is [false] if [s] contains no element equal to [x],
      or [true] if [s] contains an element equal to [x]. *)

  val split_opt: 'a -> 'a t -> 'a t * 'a option * 'a t
  (** [split_opt x s] returns a triple [(l, maybe_v, r)], where
        [l] is the set of elements of [s] that are
        strictly less than [x];
        [r] is the set of elements of [s] that are
        strictly greater than [x];
        [maybe_v] is [None] if [s] contains no element equal to [x],
        or [Some v] if [s] contains an element [v] that compares equal to [x].
  *)

  val split_lt: 'a -> 'a t -> 'a t * 'a t
  (** [split_lt x s] returns a pair of sets [(l, r)], such that
      [l] is the subset of [s] with elements < [x];
      [r] is the subset of [s] with elements >= [x]. *)

  val split_le: 'a -> 'a t -> 'a t * 'a t
  (** [split_le x s] returns a pair of sets [(l, r)], such that
      [l] is the subset of [s] with elements <= [x];
      [r] is the subset of [s] with elements > [x]. *)

  val cardinal: 'a t -> int
  (** Return the number of elements of a set. *)

  val elements: 'a t -> 'a list
  (** Return the list of all elements of the given set.
      The returned list is sorted in increasing order with respect
      to the ordering of the given set. *)

  val to_list: 'a t -> 'a list
  (** Alias for [elements]. *)

  val to_array: 'a t -> 'a array
  (** Same as [to_list] but with an array instead of a list.
      @since 2.4 *)

  val min_elt : 'a t -> 'a
  (** returns the smallest element of the set.
      @raise Invalid_argument if given an empty set. *)

  val pop_min: 'a t -> 'a * 'a t
  (** Returns the smallest element of the given set
      along with the rest of the set.
      Semantically equivalent and faster than

      [let mini = min_elt s in (mini, remove mini s)]

      @raise Not_found if the set is empty.
      @since 2.4 *)

  val pop_max: 'a t -> 'a * 'a t
  (** Returns the biggest element of the given set
      along with the rest of the set.
      Semantically equivalent and faster than

      [let maxi = max_elt s in (maxi, remove maxi s)]

      @raise Not_found if the set is empty.
      @since 2.4 *)

  val max_elt : 'a t -> 'a
  (** returns the largest element of the set.
      @raise Invalid_argument if given an empty set.*)

  val choose : 'a t -> 'a
  (** returns an arbitrary (but deterministic) element of the given set.
      @raise Invalid_argument if given an empty set. *)

  val pop : 'a t -> 'a * 'a t
  (** returns one element of the set and the set without that element.
      @raise Not_found if given an empty set *)

  val enum: 'a t -> 'a BatEnum.t
  (** Return an enumeration of all elements of the given set.
      The returned enumeration is sorted in increasing order with respect
      to the ordering of this set.*)

  val of_enum: 'a BatEnum.t -> 'a t

  val of_enum_cmp: cmp:('a -> 'a -> int) -> 'a BatEnum.t -> 'a t

  val of_list: 'a list -> 'a t
  (** builds a set from the given list, using the default comparison
      function *)

  val of_array: 'a array -> 'a t
  (** builds a set from the given array, using the default comparison
      function *)

  (** {6 Boilerplate code}*)


  (** {7 Printing}*)

  val print :  ?first:string -> ?last:string -> ?sep:string ->
    ('a BatInnerIO.output -> 'c -> unit) ->
    'a BatInnerIO.output -> 'c t -> unit

  (** {7 Infix operators} *)

  module Infix : sig
    val (<--) : 'a t -> 'a -> 'a t (** insertion *)
    val (<.) : 'a t -> 'a t -> bool  (** strict subset *)
    val (>.) : 'a t -> 'a t -> bool  (** strict superset *)
    val (<=.) : 'a t -> 'a t -> bool (** subset *)
    val (>=.) : 'a t -> 'a t -> bool (** superset *)
    val (-.) : 'a t -> 'a t -> 'a t     (** difference *)
    val (&&.) : 'a t -> 'a t -> 'a t   (** intersection *)
    val (||.) : 'a t -> 'a t -> 'a t   (** union *)
  end

  (** get the comparison function used for a polymorphic map *)
  val get_cmp : 'a t -> ('a -> 'a -> int)

end