/usr/lib/ocaml/batteries/batComplex.mli is in libbatteries-ocaml-dev 2.6.0-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | (*
* BatComplex - Extended Complex
* Copyright (C) 2007 Bluestorm <bluestorm dot dylc on-the-server gmail dot com>
* 2008 David Teller
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version,
* with the special exception on linking described in file LICENSE.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*)
(** Additional and modified functions for complex numbers.*)
(** Complex numbers.
This module provides arithmetic operations on complex numbers.
Complex numbers are represented by their real and imaginary parts
(cartesian representation). Each part is represented by a
double-precision floating-point number (type {!float}).
@author Xavier Leroy (base module)
@author Gabriel Scherer
@author David Teller
*)
type t = Complex.t = { re : float; im : float; }
val zero: t
(** The complex number [0]. *)
val one: t
(** The complex number [1]. *)
val i: t
(** The complex number [i]. *)
val neg: t -> t
(** Unary negation. *)
val conj: t -> t
(** Conjugate: given the complex [x + i.y], returns [x - i.y]. *)
val add: t -> t -> t
(** Addition *)
val sub: t -> t -> t
(** Subtraction *)
val mul: t -> t -> t
(** Multiplication *)
val inv: t -> t
(** Multiplicative inverse ([1/z]). *)
val div: t -> t -> t
(** Division *)
val sqrt: t -> t
(** Square root. The result [x + i.y] is such that [x > 0] or [x =
0] and [y >= 0]. This function has a discontinuity along the
negative real axis. *)
val norm2: t -> float
(** Norm squared: given [x + i.y], returns [x^2 + y^2]. *)
val norm: t -> float
(** Norm: given [x + i.y], returns [sqrt(x^2 + y^2)]. *)
val arg: t -> float
(** Argument. The argument of a complex number is the angle
in the complex plane between the positive real axis and a line
passing through zero and the number. This angle ranges from
[-pi] to [pi]. This function has a discontinuity along the
negative real axis. *)
val polar: float -> float -> t
(** [polar norm arg] returns the complex having norm [norm]
and argument [arg]. *)
val exp: t -> t
(** Exponentiation. [exp z] returns [e] to the [z] power. *)
val log: t -> t
(** Natural logarithm (in base [e]). *)
val pow: t -> t -> t
(** Power function. [pow z1 z2] returns [z1] to the [z2] power. *)
val operations : t BatNumber.numeric
val inv : t -> t
(** [inv x] returns the value of [1/x]*)
val succ : t -> t
(** Add {!one} to this number.*)
val pred : t -> t
(** Remove {!one} from this number.*)
val abs : t -> t
(** [abs c] returns the module of this complex number,
i.e. [abs c = Float.sqrt((re c) *. (re c) +. (im c) *. (im c) )]*)
val modulo : t -> t -> t
val pow : t -> t -> t
val compare : t -> t -> int
val ord : t -> t -> BatOrd.order
val equal : t -> t -> bool
val of_int : int -> t
val to_int : t -> int
(** [to_int c] is the integer part of the real part of [c] *)
val of_string : string -> t
(** [of_string s] accepts strings with the following formats:
(<int>|<float>) (+|-) i ( * | . | ) (<int>|<float>)
where (a|b|c) is either a or b or c.
In addition the following degenerate formats are also accepted:
(+|-) i ( * | . | ) (<int>|<float>)
(<int>|<float>) (+|-) i
(<int>|<float>)
*)
val to_string : t -> string
val ( + ) : t -> t -> t
val ( - ) : t -> t -> t
val ( * ) : t -> t -> t
val ( / ) : t -> t -> t
val ( ** ) : t -> t -> t
(* Available only in `Compare` submodule
val ( <> ) : t -> t -> bool
val ( >= ) : t -> t -> bool
val ( <= ) : t -> t -> bool
val ( > ) : t -> t -> bool
val ( < ) : t -> t -> bool
val ( = ) : t -> t -> bool
*)
val ( -- ): t -> t -> t BatEnum.t
val ( --- ): t -> t -> t BatEnum.t
val of_float : float -> t
(** [Complex.of_float x] returns the complex number [x+0i] *)
val to_float : t -> float
(** [Complex.to_float (a+bi)] returns the float [a] *)
(** {6 Submodules grouping all infix operators} *)
module Infix : BatNumber.Infix with type bat__infix_t = t
module Compare : BatNumber.Compare with type bat__compare_t = t
(** {6 Boilerplate code}*)
(** {7 Printing}*)
val print: 'a BatInnerIO.output -> t -> unit
|