This file is indexed.

/usr/include/libalglib/optimization.h is in libalglib-dev 3.11.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
/*************************************************************************
ALGLIB 3.11.0 (source code generated 2017-05-11)
Copyright (c) Sergey Bochkanov (ALGLIB project).

>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the 
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses
>>> END OF LICENSE >>>
*************************************************************************/
#ifndef _optimization_pkg_h
#define _optimization_pkg_h
#include "ap.h"
#include "alglibinternal.h"
#include "alglibmisc.h"
#include "linalg.h"
#include "solvers.h"

/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (DATATYPES)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
typedef struct
{
    ae_int_t n;
    ae_int_t k;
    double alpha;
    double tau;
    double theta;
    ae_matrix a;
    ae_matrix q;
    ae_vector b;
    ae_vector r;
    ae_vector xc;
    ae_vector d;
    ae_vector activeset;
    ae_matrix tq2dense;
    ae_matrix tk2;
    ae_vector tq2diag;
    ae_vector tq1;
    ae_vector tk1;
    double tq0;
    double tk0;
    ae_vector txc;
    ae_vector tb;
    ae_int_t nfree;
    ae_int_t ecakind;
    ae_matrix ecadense;
    ae_matrix eq;
    ae_matrix eccm;
    ae_vector ecadiag;
    ae_vector eb;
    double ec;
    ae_vector tmp0;
    ae_vector tmp1;
    ae_vector tmpg;
    ae_matrix tmp2;
    ae_bool ismaintermchanged;
    ae_bool issecondarytermchanged;
    ae_bool islineartermchanged;
    ae_bool isactivesetchanged;
} convexquadraticmodel;
typedef struct
{
    ae_vector norms;
    ae_vector alpha;
    ae_vector rho;
    ae_matrix yk;
    ae_vector idx;
    ae_vector bufa;
    ae_vector bufb;
} precbuflbfgs;
typedef struct
{
    ae_int_t n;
    ae_int_t k;
    ae_vector d;
    ae_matrix v;
    ae_vector bufc;
    ae_matrix bufz;
    ae_matrix bufw;
    ae_vector tmp;
} precbuflowrank;
typedef struct
{
    ae_int_t ns;
    ae_int_t nd;
    ae_int_t nr;
    ae_matrix densea;
    ae_vector b;
    ae_vector nnc;
    double debugflops;
    ae_int_t debugmaxinnerits;
    ae_vector xn;
    ae_vector xp;
    ae_matrix tmpca;
    ae_matrix tmplq;
    ae_matrix trda;
    ae_vector trdd;
    ae_vector crb;
    ae_vector g;
    ae_vector d;
    ae_vector dx;
    ae_vector diagaa;
    ae_vector cb;
    ae_vector cx;
    ae_vector cborg;
    ae_vector tmpcholesky;
    ae_vector r;
    ae_vector regdiag;
    ae_vector tmp0;
    ae_vector tmp1;
    ae_vector tmp2;
    ae_vector rdtmprowmap;
} snnlssolver;
typedef struct
{
    ae_int_t n;
    ae_int_t algostate;
    ae_vector xc;
    ae_bool hasxc;
    ae_vector s;
    ae_vector h;
    ae_vector activeset;
    ae_bool basisisready;
    ae_matrix sbasis;
    ae_matrix pbasis;
    ae_matrix ibasis;
    ae_int_t basissize;
    ae_bool feasinitpt;
    ae_bool constraintschanged;
    ae_vector hasbndl;
    ae_vector hasbndu;
    ae_vector bndl;
    ae_vector bndu;
    ae_matrix cleic;
    ae_int_t nec;
    ae_int_t nic;
    ae_vector mtx;
    ae_vector mtas;
    ae_vector cdtmp;
    ae_vector corrtmp;
    ae_vector unitdiagonal;
    snnlssolver solver;
    ae_vector scntmp;
    ae_vector tmp0;
    ae_vector tmpfeas;
    ae_matrix tmpm0;
    ae_vector rctmps;
    ae_vector rctmpg;
    ae_vector rctmprightpart;
    ae_matrix rctmpdense0;
    ae_matrix rctmpdense1;
    ae_vector rctmpisequality;
    ae_vector rctmpconstraintidx;
    ae_vector rctmplambdas;
    ae_matrix tmpbasis;
} sactiveset;
typedef struct
{
    double epsg;
    double epsf;
    double epsx;
    ae_int_t maxouterits;
    ae_bool cgphase;
    ae_bool cnphase;
    ae_int_t cgminits;
    ae_int_t cgmaxits;
    ae_int_t cnmaxupdates;
    ae_int_t sparsesolver;
} qqpsettings;
typedef struct
{
    ae_int_t n;
    ae_int_t nmain;
    ae_int_t nslack;
    ae_int_t nec;
    ae_int_t nic;
    ae_int_t akind;
    ae_matrix densea;
    sparsematrix sparsea;
    ae_bool sparseupper;
    double absamax;
    double absasum;
    double absasum2;
    ae_vector b;
    ae_vector bndl;
    ae_vector bndu;
    ae_vector havebndl;
    ae_vector havebndu;
    ae_matrix cleic;
    ae_vector xs;
    ae_vector xf;
    ae_vector gc;
    ae_vector xp;
    ae_vector dc;
    ae_vector dp;
    ae_vector cgc;
    ae_vector cgp;
    sactiveset sas;
    ae_vector activated;
    ae_int_t nfree;
    ae_int_t cnmodelage;
    ae_matrix densez;
    sparsematrix sparsecca;
    ae_vector yidx;
    ae_vector regdiag;
    ae_vector regx0;
    ae_vector tmpcn;
    ae_vector tmpcni;
    ae_vector tmpcnb;
    ae_vector tmp0;
    ae_vector stpbuf;
    sparsebuffers sbuf;
    ae_int_t repinneriterationscount;
    ae_int_t repouteriterationscount;
    ae_int_t repncholesky;
    ae_int_t repncupdates;
} qqpbuffers;
typedef struct
{
    ae_int_t n;
    ae_int_t m;
    double epsg;
    double epsf;
    double epsx;
    ae_int_t maxits;
    ae_bool xrep;
    double stpmax;
    ae_vector s;
    double diffstep;
    ae_int_t nfev;
    ae_int_t mcstage;
    ae_int_t k;
    ae_int_t q;
    ae_int_t p;
    ae_vector rho;
    ae_matrix yk;
    ae_matrix sk;
    ae_vector xp;
    ae_vector theta;
    ae_vector d;
    double stp;
    ae_vector work;
    double fold;
    double trimthreshold;
    ae_int_t prectype;
    double gammak;
    ae_matrix denseh;
    ae_vector diagh;
    ae_vector precc;
    ae_vector precd;
    ae_matrix precw;
    ae_int_t preck;
    precbuflbfgs precbuf;
    precbuflowrank lowrankbuf;
    double fbase;
    double fm2;
    double fm1;
    double fp1;
    double fp2;
    ae_vector autobuf;
    ae_vector x;
    double f;
    ae_vector g;
    ae_bool needf;
    ae_bool needfg;
    ae_bool xupdated;
    ae_bool userterminationneeded;
    double teststep;
    rcommstate rstate;
    ae_int_t repiterationscount;
    ae_int_t repnfev;
    ae_int_t repvaridx;
    ae_int_t repterminationtype;
    linminstate lstate;
} minlbfgsstate;
typedef struct
{
    ae_int_t iterationscount;
    ae_int_t nfev;
    ae_int_t varidx;
    ae_int_t terminationtype;
} minlbfgsreport;
typedef struct
{
    double epsx;
    ae_int_t outerits;
    double rho;
} qpdenseaulsettings;
typedef struct
{
    ae_vector nulc;
    ae_matrix sclsfta;
    ae_vector sclsftb;
    ae_vector sclsfthasbndl;
    ae_vector sclsfthasbndu;
    ae_vector sclsftbndl;
    ae_vector sclsftbndu;
    ae_vector sclsftxc;
    ae_matrix sclsftcleic;
    ae_matrix exa;
    ae_vector exb;
    ae_vector exxc;
    ae_vector exxn;
    ae_vector exbndl;
    ae_vector exbndu;
    ae_vector exscale;
    ae_vector exxorigin;
    qqpsettings qqpsettingsuser;
    qqpbuffers qqpbuf;
    ae_vector nulcest;
    ae_vector tmp0;
    ae_matrix tmp2;
    ae_vector modelg;
    ae_vector d;
    ae_vector deltax;
    convexquadraticmodel dummycqm;
    sparsematrix dummysparse;
    ae_matrix qrkkt;
    ae_vector qrrightpart;
    ae_vector qrtau;
    ae_vector qrsv0;
    ae_vector qrsvx1;
    ae_int_t repinneriterationscount;
    ae_int_t repouteriterationscount;
    ae_int_t repncholesky;
    ae_int_t repnmv;
} qpdenseaulbuffers;
typedef struct
{
    double epsg;
    double epsf;
    double epsx;
    ae_int_t maxits;
} qpcholeskysettings;
typedef struct
{
    sactiveset sas;
    ae_vector pg;
    ae_vector gc;
    ae_vector xs;
    ae_vector xn;
    ae_vector workbndl;
    ae_vector workbndu;
    ae_vector havebndl;
    ae_vector havebndu;
    ae_matrix workcleic;
    ae_vector rctmpg;
    ae_vector tmp0;
    ae_vector tmp1;
    ae_vector tmpb;
    ae_int_t repinneriterationscount;
    ae_int_t repouteriterationscount;
    ae_int_t repncholesky;
} qpcholeskybuffers;
typedef struct
{
    ae_int_t n;
    double epsg;
    double epsf;
    double epsx;
    ae_int_t maxits;
    double stpmax;
    double suggestedstep;
    ae_bool xrep;
    ae_bool drep;
    ae_int_t cgtype;
    ae_int_t prectype;
    ae_vector diagh;
    ae_vector diaghl2;
    ae_matrix vcorr;
    ae_int_t vcnt;
    ae_vector s;
    double diffstep;
    ae_int_t nfev;
    ae_int_t mcstage;
    ae_int_t k;
    ae_vector xk;
    ae_vector dk;
    ae_vector xn;
    ae_vector dn;
    ae_vector d;
    double fold;
    double stp;
    double curstpmax;
    ae_vector yk;
    double lastgoodstep;
    double lastscaledstep;
    ae_int_t mcinfo;
    ae_bool innerresetneeded;
    ae_bool terminationneeded;
    double trimthreshold;
    ae_int_t rstimer;
    ae_vector x;
    double f;
    ae_vector g;
    ae_bool needf;
    ae_bool needfg;
    ae_bool xupdated;
    ae_bool algpowerup;
    ae_bool lsstart;
    ae_bool lsend;
    ae_bool userterminationneeded;
    double teststep;
    rcommstate rstate;
    ae_int_t repiterationscount;
    ae_int_t repnfev;
    ae_int_t repvaridx;
    ae_int_t repterminationtype;
    ae_int_t debugrestartscount;
    linminstate lstate;
    double fbase;
    double fm2;
    double fm1;
    double fp1;
    double fp2;
    double betahs;
    double betady;
    ae_vector work0;
    ae_vector work1;
} mincgstate;
typedef struct
{
    ae_int_t iterationscount;
    ae_int_t nfev;
    ae_int_t varidx;
    ae_int_t terminationtype;
} mincgreport;
typedef struct
{
    ae_int_t nmain;
    ae_int_t nslack;
    double epsg;
    double epsf;
    double epsx;
    ae_int_t maxits;
    ae_bool xrep;
    ae_bool drep;
    double stpmax;
    double diffstep;
    sactiveset sas;
    ae_vector s;
    ae_int_t prectype;
    ae_vector diagh;
    ae_vector x;
    double f;
    ae_vector g;
    ae_bool needf;
    ae_bool needfg;
    ae_bool xupdated;
    ae_bool lsstart;
    ae_bool steepestdescentstep;
    ae_bool boundedstep;
    ae_bool userterminationneeded;
    double teststep;
    rcommstate rstate;
    ae_vector ugc;
    ae_vector cgc;
    ae_vector xn;
    ae_vector ugn;
    ae_vector cgn;
    ae_vector xp;
    double fc;
    double fn;
    double fp;
    ae_vector d;
    ae_matrix cleic;
    ae_int_t nec;
    ae_int_t nic;
    double lastgoodstep;
    double lastscaledgoodstep;
    double maxscaledgrad;
    ae_vector hasbndl;
    ae_vector hasbndu;
    ae_vector bndl;
    ae_vector bndu;
    ae_int_t repinneriterationscount;
    ae_int_t repouteriterationscount;
    ae_int_t repnfev;
    ae_int_t repvaridx;
    ae_int_t repterminationtype;
    double repdebugeqerr;
    double repdebugfs;
    double repdebugff;
    double repdebugdx;
    ae_int_t repdebugfeasqpits;
    ae_int_t repdebugfeasgpaits;
    ae_vector xstart;
    snnlssolver solver;
    double fbase;
    double fm2;
    double fm1;
    double fp1;
    double fp2;
    double xm1;
    double xp1;
    double gm1;
    double gp1;
    ae_int_t cidx;
    double cval;
    ae_vector tmpprec;
    ae_vector tmp0;
    ae_int_t nfev;
    ae_int_t mcstage;
    double stp;
    double curstpmax;
    double activationstep;
    ae_vector work;
    linminstate lstate;
    double trimthreshold;
    ae_int_t nonmonotoniccnt;
    ae_matrix bufyk;
    ae_matrix bufsk;
    ae_vector bufrho;
    ae_vector buftheta;
    ae_int_t bufsize;
} minbleicstate;
typedef struct
{
    ae_int_t iterationscount;
    ae_int_t nfev;
    ae_int_t varidx;
    ae_int_t terminationtype;
    double debugeqerr;
    double debugfs;
    double debugff;
    double debugdx;
    ae_int_t debugfeasqpits;
    ae_int_t debugfeasgpaits;
    ae_int_t inneriterationscount;
    ae_int_t outeriterationscount;
} minbleicreport;
typedef struct
{
    double epsg;
    double epsf;
    double epsx;
    ae_int_t maxits;
} qpbleicsettings;
typedef struct
{
    minbleicstate solver;
    minbleicreport solverrep;
    ae_vector tmp0;
    ae_vector tmp1;
    ae_vector tmpi;
    ae_int_t repinneriterationscount;
    ae_int_t repouteriterationscount;
} qpbleicbuffers;
typedef struct
{
    ae_int_t n;
    qqpsettings qqpsettingsuser;
    qpbleicsettings qpbleicsettingsuser;
    qpdenseaulsettings qpdenseaulsettingsuser;
    ae_bool dbgskipconstraintnormalization;
    ae_int_t algokind;
    ae_int_t akind;
    convexquadraticmodel a;
    sparsematrix sparsea;
    ae_bool sparseaupper;
    double absamax;
    double absasum;
    double absasum2;
    ae_vector b;
    ae_vector bndl;
    ae_vector bndu;
    ae_vector s;
    ae_vector havebndl;
    ae_vector havebndu;
    ae_vector xorigin;
    ae_vector startx;
    ae_bool havex;
    ae_matrix cleic;
    ae_int_t nec;
    ae_int_t nic;
    sparsematrix scleic;
    ae_int_t snec;
    ae_int_t snic;
    ae_vector xs;
    ae_int_t repinneriterationscount;
    ae_int_t repouteriterationscount;
    ae_int_t repncholesky;
    ae_int_t repnmv;
    ae_int_t repterminationtype;
    ae_vector tmp0;
    ae_matrix ecleic;
    ae_matrix dummyr2;
    ae_bool qpbleicfirstcall;
    qpbleicbuffers qpbleicbuf;
    qqpbuffers qqpbuf;
    qpdenseaulbuffers qpdenseaulbuf;
    qpcholeskybuffers qpcholeskybuf;
} minqpstate;
typedef struct
{
    ae_int_t inneriterationscount;
    ae_int_t outeriterationscount;
    ae_int_t nmv;
    ae_int_t ncholesky;
    ae_int_t terminationtype;
} minqpreport;
typedef struct
{
    double stabilizingpoint;
    double initialinequalitymultiplier;
    ae_int_t solvertype;
    ae_int_t prectype;
    ae_int_t updatefreq;
    double rho;
    ae_int_t n;
    double epsg;
    double epsf;
    double epsx;
    ae_int_t maxits;
    ae_int_t aulitscnt;
    ae_bool xrep;
    double stpmax;
    double diffstep;
    double teststep;
    ae_vector s;
    ae_vector bndl;
    ae_vector bndu;
    ae_vector hasbndl;
    ae_vector hasbndu;
    ae_int_t nec;
    ae_int_t nic;
    ae_matrix cleic;
    ae_int_t ng;
    ae_int_t nh;
    ae_vector x;
    double f;
    ae_vector fi;
    ae_matrix j;
    ae_bool needfij;
    ae_bool needfi;
    ae_bool xupdated;
    rcommstate rstate;
    rcommstate rstateaul;
    ae_vector scaledbndl;
    ae_vector scaledbndu;
    ae_matrix scaledcleic;
    ae_vector xc;
    ae_vector xstart;
    ae_vector xbase;
    ae_vector fbase;
    ae_vector dfbase;
    ae_vector fm2;
    ae_vector fm1;
    ae_vector fp1;
    ae_vector fp2;
    ae_vector dfm1;
    ae_vector dfp1;
    ae_vector bufd;
    ae_vector bufc;
    ae_vector tmp0;
    ae_matrix bufw;
    ae_matrix bufz;
    ae_vector xk;
    ae_vector xk1;
    ae_vector gk;
    ae_vector gk1;
    double gammak;
    ae_bool xkpresent;
    minlbfgsstate auloptimizer;
    minlbfgsreport aulreport;
    ae_vector nubc;
    ae_vector nulc;
    ae_vector nunlc;
    ae_int_t repinneriterationscount;
    ae_int_t repouteriterationscount;
    ae_int_t repnfev;
    ae_int_t repvaridx;
    ae_int_t repfuncidx;
    ae_int_t repterminationtype;
    ae_int_t repdbgphase0its;
} minnlcstate;
typedef struct
{
    ae_int_t iterationscount;
    ae_int_t nfev;
    ae_int_t varidx;
    ae_int_t funcidx;
    ae_int_t terminationtype;
    ae_int_t dbgphase0its;
} minnlcreport;
typedef struct
{
    ae_int_t nmain;
    double epsg;
    double epsf;
    double epsx;
    ae_int_t maxits;
    ae_bool xrep;
    double stpmax;
    double diffstep;
    ae_vector s;
    ae_int_t prectype;
    ae_vector diagh;
    ae_vector x;
    double f;
    ae_vector g;
    ae_bool needf;
    ae_bool needfg;
    ae_bool xupdated;
    ae_bool userterminationneeded;
    double teststep;
    rcommstate rstate;
    ae_vector xc;
    ae_vector ugc;
    ae_vector cgc;
    ae_vector xn;
    ae_vector ugn;
    ae_vector cgn;
    ae_vector xp;
    double fc;
    double fn;
    double fp;
    ae_vector d;
    double lastscaledgoodstep;
    ae_vector hasbndl;
    ae_vector hasbndu;
    ae_vector bndl;
    ae_vector bndu;
    ae_int_t repiterationscount;
    ae_int_t repnfev;
    ae_int_t repvaridx;
    ae_int_t repterminationtype;
    ae_vector xstart;
    snnlssolver solver;
    double fbase;
    double fm2;
    double fm1;
    double fp1;
    double fp2;
    double xm1;
    double xp1;
    double gm1;
    double gp1;
    ae_vector tmpprec;
    ae_vector tmp0;
    ae_int_t nfev;
    ae_int_t mcstage;
    double stp;
    double curstpmax;
    ae_vector work;
    linminstate lstate;
    double trimthreshold;
    ae_int_t nonmonotoniccnt;
    ae_matrix bufyk;
    ae_matrix bufsk;
    ae_vector bufrho;
    ae_vector buftheta;
    ae_int_t bufsize;
} minbcstate;
typedef struct
{
    ae_int_t iterationscount;
    ae_int_t nfev;
    ae_int_t varidx;
    ae_int_t terminationtype;
} minbcreport;
typedef struct
{
    double fc;
    double fn;
    ae_vector xc;
    ae_vector xn;
    ae_vector x0;
    ae_vector gc;
    ae_vector d;
    ae_matrix uh;
    ae_matrix ch;
    ae_matrix rk;
    ae_vector invutc;
    ae_vector tmp0;
    ae_vector tmpidx;
    ae_vector tmpd;
    ae_vector tmpc;
    ae_vector tmplambdas;
    ae_matrix tmpc2;
    ae_vector tmpb;
    snnlssolver nnls;
} minnsqp;
typedef struct
{
    ae_int_t solvertype;
    ae_int_t n;
    double epsx;
    ae_int_t maxits;
    ae_bool xrep;
    double diffstep;
    ae_vector s;
    ae_vector bndl;
    ae_vector bndu;
    ae_vector hasbndl;
    ae_vector hasbndu;
    ae_int_t nec;
    ae_int_t nic;
    ae_matrix cleic;
    ae_int_t ng;
    ae_int_t nh;
    ae_vector x;
    double f;
    ae_vector fi;
    ae_matrix j;
    ae_bool needfij;
    ae_bool needfi;
    ae_bool xupdated;
    rcommstate rstate;
    rcommstate rstateags;
    hqrndstate agsrs;
    double agsradius;
    ae_int_t agssamplesize;
    double agsraddecay;
    double agsalphadecay;
    double agsdecrease;
    double agsinitstp;
    double agsstattold;
    double agsshortstpabs;
    double agsshortstprel;
    double agsshortf;
    ae_int_t agsshortlimit;
    double agsrhononlinear;
    ae_int_t agsminupdate;
    ae_int_t agsmaxraddecays;
    ae_int_t agsmaxbacktrack;
    ae_int_t agsmaxbacktracknonfull;
    double agspenaltylevel;
    double agspenaltyincrease;
    ae_vector xstart;
    ae_vector xc;
    ae_vector xn;
    ae_vector grs;
    ae_vector d;
    ae_vector colmax;
    ae_vector diagh;
    ae_vector signmin;
    ae_vector signmax;
    ae_bool userterminationneeded;
    ae_vector scaledbndl;
    ae_vector scaledbndu;
    ae_matrix scaledcleic;
    ae_vector rholinear;
    ae_matrix samplex;
    ae_matrix samplegm;
    ae_matrix samplegmbc;
    ae_vector samplef;
    ae_vector samplef0;
    minnsqp nsqp;
    ae_vector tmp0;
    ae_vector tmp1;
    ae_matrix tmp2;
    ae_vector tmp3;
    ae_vector xbase;
    ae_vector fp;
    ae_vector fm;
    ae_int_t repinneriterationscount;
    ae_int_t repouteriterationscount;
    ae_int_t repnfev;
    ae_int_t repvaridx;
    ae_int_t repfuncidx;
    ae_int_t repterminationtype;
    double replcerr;
    double repnlcerr;
    ae_int_t dbgncholesky;
} minnsstate;
typedef struct
{
    ae_int_t iterationscount;
    ae_int_t nfev;
    double cerr;
    double lcerr;
    double nlcerr;
    ae_int_t terminationtype;
    ae_int_t varidx;
    ae_int_t funcidx;
} minnsreport;
typedef struct
{
    ae_int_t n;
    double epsg;
    double epsf;
    double epsx;
    ae_int_t maxits;
    ae_bool xrep;
    double stpmax;
    ae_int_t cgtype;
    ae_int_t k;
    ae_int_t nfev;
    ae_int_t mcstage;
    ae_vector bndl;
    ae_vector bndu;
    ae_int_t curalgo;
    ae_int_t acount;
    double mu;
    double finit;
    double dginit;
    ae_vector ak;
    ae_vector xk;
    ae_vector dk;
    ae_vector an;
    ae_vector xn;
    ae_vector dn;
    ae_vector d;
    double fold;
    double stp;
    ae_vector work;
    ae_vector yk;
    ae_vector gc;
    double laststep;
    ae_vector x;
    double f;
    ae_vector g;
    ae_bool needfg;
    ae_bool xupdated;
    rcommstate rstate;
    ae_int_t repiterationscount;
    ae_int_t repnfev;
    ae_int_t repterminationtype;
    ae_int_t debugrestartscount;
    linminstate lstate;
    double betahs;
    double betady;
} minasastate;
typedef struct
{
    ae_int_t iterationscount;
    ae_int_t nfev;
    ae_int_t terminationtype;
    ae_int_t activeconstraints;
} minasareport;
typedef struct
{
    ae_int_t n;
    ae_int_t m;
    double stpmax;
    ae_int_t modelage;
    ae_int_t maxmodelage;
    ae_bool hasfi;
    double epsx;
    ae_vector x;
    double f;
    ae_vector fi;
    ae_bool needf;
    ae_bool needfi;
    double fbase;
    ae_vector modeldiag;
    ae_vector xbase;
    ae_vector fibase;
    ae_vector bndl;
    ae_vector bndu;
    ae_vector havebndl;
    ae_vector havebndu;
    ae_vector s;
    rcommstate rstate;
    ae_vector xdir;
    ae_vector choleskybuf;
    ae_vector tmp0;
    ae_vector tmpct;
    double actualdecrease;
    double predicteddecrease;
    minqpstate qpstate;
    minqpreport qprep;
    sparsematrix tmpsp;
} minlmstepfinder;
typedef struct
{
    ae_int_t n;
    ae_int_t m;
    double diffstep;
    double epsx;
    ae_int_t maxits;
    ae_bool xrep;
    double stpmax;
    ae_int_t maxmodelage;
    ae_bool makeadditers;
    ae_vector x;
    double f;
    ae_vector fi;
    ae_matrix j;
    ae_matrix h;
    ae_vector g;
    ae_bool needf;
    ae_bool needfg;
    ae_bool needfgh;
    ae_bool needfij;
    ae_bool needfi;
    ae_bool xupdated;
    ae_bool userterminationneeded;
    ae_int_t algomode;
    ae_bool hasf;
    ae_bool hasfi;
    ae_bool hasg;
    ae_vector xbase;
    double fbase;
    ae_vector fibase;
    ae_vector gbase;
    ae_matrix quadraticmodel;
    ae_vector bndl;
    ae_vector bndu;
    ae_vector havebndl;
    ae_vector havebndu;
    ae_vector s;
    ae_matrix cleic;
    ae_int_t nec;
    ae_int_t nic;
    double lambdav;
    double nu;
    ae_int_t modelage;
    ae_vector xnew;
    ae_vector xdir;
    ae_vector deltax;
    ae_vector deltaf;
    ae_bool deltaxready;
    ae_bool deltafready;
    double teststep;
    ae_int_t repiterationscount;
    ae_int_t repterminationtype;
    ae_int_t repfuncidx;
    ae_int_t repvaridx;
    ae_int_t repnfunc;
    ae_int_t repnjac;
    ae_int_t repngrad;
    ae_int_t repnhess;
    ae_int_t repncholesky;
    rcommstate rstate;
    ae_vector choleskybuf;
    ae_vector tmp0;
    double actualdecrease;
    double predicteddecrease;
    double xm1;
    double xp1;
    ae_vector fm1;
    ae_vector fp1;
    ae_vector fc1;
    ae_vector gm1;
    ae_vector gp1;
    ae_vector gc1;
    minlbfgsstate internalstate;
    minlbfgsreport internalrep;
    minqpstate qpstate;
    minqpreport qprep;
    minlmstepfinder finderstate;
} minlmstate;
typedef struct
{
    ae_int_t iterationscount;
    ae_int_t terminationtype;
    ae_int_t funcidx;
    ae_int_t varidx;
    ae_int_t nfunc;
    ae_int_t njac;
    ae_int_t ngrad;
    ae_int_t nhess;
    ae_int_t ncholesky;
} minlmreport;

}

/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS C++ INTERFACE
//
/////////////////////////////////////////////////////////////////////////
namespace alglib
{











/*************************************************************************

*************************************************************************/
class _minlbfgsstate_owner
{
public:
    _minlbfgsstate_owner();
    _minlbfgsstate_owner(const _minlbfgsstate_owner &rhs);
    _minlbfgsstate_owner& operator=(const _minlbfgsstate_owner &rhs);
    virtual ~_minlbfgsstate_owner();
    alglib_impl::minlbfgsstate* c_ptr();
    alglib_impl::minlbfgsstate* c_ptr() const;
protected:
    alglib_impl::minlbfgsstate *p_struct;
};
class minlbfgsstate : public _minlbfgsstate_owner
{
public:
    minlbfgsstate();
    minlbfgsstate(const minlbfgsstate &rhs);
    minlbfgsstate& operator=(const minlbfgsstate &rhs);
    virtual ~minlbfgsstate();
    ae_bool &needf;
    ae_bool &needfg;
    ae_bool &xupdated;
    double &f;
    real_1d_array g;
    real_1d_array x;

};


/*************************************************************************
This structure stores optimization report:
* IterationsCount           total number of inner iterations
* NFEV                      number of gradient evaluations
* TerminationType           termination type (see below)

TERMINATION CODES

TerminationType field contains completion code, which can be:
  -8    internal integrity control detected  infinite  or  NAN  values  in
        function/gradient. Abnormal termination signalled.
  -7    gradient verification failed.
        See MinLBFGSSetGradientCheck() for more information.
   1    relative function improvement is no more than EpsF.
   2    relative step is no more than EpsX.
   4    gradient norm is no more than EpsG
   5    MaxIts steps was taken
   7    stopping conditions are too stringent,
        further improvement is impossible,
        X contains best point found so far.
   8    terminated    by  user  who  called  minlbfgsrequesttermination().
        X contains point which was   "current accepted"  when  termination
        request was submitted.

Other fields of this structure are not documented and should not be used!
*************************************************************************/
class _minlbfgsreport_owner
{
public:
    _minlbfgsreport_owner();
    _minlbfgsreport_owner(const _minlbfgsreport_owner &rhs);
    _minlbfgsreport_owner& operator=(const _minlbfgsreport_owner &rhs);
    virtual ~_minlbfgsreport_owner();
    alglib_impl::minlbfgsreport* c_ptr();
    alglib_impl::minlbfgsreport* c_ptr() const;
protected:
    alglib_impl::minlbfgsreport *p_struct;
};
class minlbfgsreport : public _minlbfgsreport_owner
{
public:
    minlbfgsreport();
    minlbfgsreport(const minlbfgsreport &rhs);
    minlbfgsreport& operator=(const minlbfgsreport &rhs);
    virtual ~minlbfgsreport();
    ae_int_t &iterationscount;
    ae_int_t &nfev;
    ae_int_t &varidx;
    ae_int_t &terminationtype;

};





/*************************************************************************
This object stores state of the nonlinear CG optimizer.

You should use ALGLIB functions to work with this object.
*************************************************************************/
class _mincgstate_owner
{
public:
    _mincgstate_owner();
    _mincgstate_owner(const _mincgstate_owner &rhs);
    _mincgstate_owner& operator=(const _mincgstate_owner &rhs);
    virtual ~_mincgstate_owner();
    alglib_impl::mincgstate* c_ptr();
    alglib_impl::mincgstate* c_ptr() const;
protected:
    alglib_impl::mincgstate *p_struct;
};
class mincgstate : public _mincgstate_owner
{
public:
    mincgstate();
    mincgstate(const mincgstate &rhs);
    mincgstate& operator=(const mincgstate &rhs);
    virtual ~mincgstate();
    ae_bool &needf;
    ae_bool &needfg;
    ae_bool &xupdated;
    double &f;
    real_1d_array g;
    real_1d_array x;

};


/*************************************************************************
This structure stores optimization report:
* IterationsCount           total number of inner iterations
* NFEV                      number of gradient evaluations
* TerminationType           termination type (see below)

TERMINATION CODES

TerminationType field contains completion code, which can be:
  -8    internal integrity control detected  infinite  or  NAN  values  in
        function/gradient. Abnormal termination signalled.
  -7    gradient verification failed.
        See MinCGSetGradientCheck() for more information.
   1    relative function improvement is no more than EpsF.
   2    relative step is no more than EpsX.
   4    gradient norm is no more than EpsG
   5    MaxIts steps was taken
   7    stopping conditions are too stringent,
        further improvement is impossible,
        X contains best point found so far.
   8    terminated by user who called mincgrequesttermination(). X contains
        point which was "current accepted" when  termination  request  was
        submitted.

Other fields of this structure are not documented and should not be used!
*************************************************************************/
class _mincgreport_owner
{
public:
    _mincgreport_owner();
    _mincgreport_owner(const _mincgreport_owner &rhs);
    _mincgreport_owner& operator=(const _mincgreport_owner &rhs);
    virtual ~_mincgreport_owner();
    alglib_impl::mincgreport* c_ptr();
    alglib_impl::mincgreport* c_ptr() const;
protected:
    alglib_impl::mincgreport *p_struct;
};
class mincgreport : public _mincgreport_owner
{
public:
    mincgreport();
    mincgreport(const mincgreport &rhs);
    mincgreport& operator=(const mincgreport &rhs);
    virtual ~mincgreport();
    ae_int_t &iterationscount;
    ae_int_t &nfev;
    ae_int_t &varidx;
    ae_int_t &terminationtype;

};

/*************************************************************************
This object stores nonlinear optimizer state.
You should use functions provided by MinBLEIC subpackage to work with this
object
*************************************************************************/
class _minbleicstate_owner
{
public:
    _minbleicstate_owner();
    _minbleicstate_owner(const _minbleicstate_owner &rhs);
    _minbleicstate_owner& operator=(const _minbleicstate_owner &rhs);
    virtual ~_minbleicstate_owner();
    alglib_impl::minbleicstate* c_ptr();
    alglib_impl::minbleicstate* c_ptr() const;
protected:
    alglib_impl::minbleicstate *p_struct;
};
class minbleicstate : public _minbleicstate_owner
{
public:
    minbleicstate();
    minbleicstate(const minbleicstate &rhs);
    minbleicstate& operator=(const minbleicstate &rhs);
    virtual ~minbleicstate();
    ae_bool &needf;
    ae_bool &needfg;
    ae_bool &xupdated;
    double &f;
    real_1d_array g;
    real_1d_array x;

};


/*************************************************************************
This structure stores optimization report:
* IterationsCount           number of iterations
* NFEV                      number of gradient evaluations
* TerminationType           termination type (see below)

TERMINATION CODES

TerminationType field contains completion code, which can be:
  -8    internal integrity control detected  infinite  or  NAN  values  in
        function/gradient. Abnormal termination signalled.
  -7    gradient verification failed.
        See MinBLEICSetGradientCheck() for more information.
  -3    inconsistent constraints. Feasible point is
        either nonexistent or too hard to find. Try to
        restart optimizer with better initial approximation
   1    relative function improvement is no more than EpsF.
   2    relative step is no more than EpsX.
   4    gradient norm is no more than EpsG
   5    MaxIts steps was taken
   7    stopping conditions are too stringent,
        further improvement is impossible,
        X contains best point found so far.
   8    terminated by user who called minbleicrequesttermination(). X contains
        point which was "current accepted" when  termination  request  was
        submitted.

ADDITIONAL FIELDS

There are additional fields which can be used for debugging:
* DebugEqErr                error in the equality constraints (2-norm)
* DebugFS                   f, calculated at projection of initial point
                            to the feasible set
* DebugFF                   f, calculated at the final point
* DebugDX                   |X_start-X_final|
*************************************************************************/
class _minbleicreport_owner
{
public:
    _minbleicreport_owner();
    _minbleicreport_owner(const _minbleicreport_owner &rhs);
    _minbleicreport_owner& operator=(const _minbleicreport_owner &rhs);
    virtual ~_minbleicreport_owner();
    alglib_impl::minbleicreport* c_ptr();
    alglib_impl::minbleicreport* c_ptr() const;
protected:
    alglib_impl::minbleicreport *p_struct;
};
class minbleicreport : public _minbleicreport_owner
{
public:
    minbleicreport();
    minbleicreport(const minbleicreport &rhs);
    minbleicreport& operator=(const minbleicreport &rhs);
    virtual ~minbleicreport();
    ae_int_t &iterationscount;
    ae_int_t &nfev;
    ae_int_t &varidx;
    ae_int_t &terminationtype;
    double &debugeqerr;
    double &debugfs;
    double &debugff;
    double &debugdx;
    ae_int_t &debugfeasqpits;
    ae_int_t &debugfeasgpaits;
    ae_int_t &inneriterationscount;
    ae_int_t &outeriterationscount;

};



/*************************************************************************
This object stores nonlinear optimizer state.
You should use functions provided by MinQP subpackage to work with this
object
*************************************************************************/
class _minqpstate_owner
{
public:
    _minqpstate_owner();
    _minqpstate_owner(const _minqpstate_owner &rhs);
    _minqpstate_owner& operator=(const _minqpstate_owner &rhs);
    virtual ~_minqpstate_owner();
    alglib_impl::minqpstate* c_ptr();
    alglib_impl::minqpstate* c_ptr() const;
protected:
    alglib_impl::minqpstate *p_struct;
};
class minqpstate : public _minqpstate_owner
{
public:
    minqpstate();
    minqpstate(const minqpstate &rhs);
    minqpstate& operator=(const minqpstate &rhs);
    virtual ~minqpstate();

};


/*************************************************************************
This structure stores optimization report:
* InnerIterationsCount      number of inner iterations
* OuterIterationsCount      number of outer iterations
* NCholesky                 number of Cholesky decomposition
* NMV                       number of matrix-vector products
                            (only products calculated as part of iterative
                            process are counted)
* TerminationType           completion code (see below)

Completion codes:
* -5    inappropriate solver was used:
        * QuickQP solver for problem with general linear constraints (dense/sparse)
* -4    BLEIC-QP or QuickQP solver found unconstrained direction
        of negative curvature (function is unbounded from
        below  even  under  constraints),  no  meaningful
        minimum can be found.
* -3    inconsistent constraints (or, maybe, feasible point is
        too hard to find). If you are sure that constraints are feasible,
        try to restart optimizer with better initial approximation.
* -1    solver error
*  1..4 successful completion
*  5    MaxIts steps was taken
*  7    stopping conditions are too stringent,
        further improvement is impossible,
        X contains best point found so far.
*************************************************************************/
class _minqpreport_owner
{
public:
    _minqpreport_owner();
    _minqpreport_owner(const _minqpreport_owner &rhs);
    _minqpreport_owner& operator=(const _minqpreport_owner &rhs);
    virtual ~_minqpreport_owner();
    alglib_impl::minqpreport* c_ptr();
    alglib_impl::minqpreport* c_ptr() const;
protected:
    alglib_impl::minqpreport *p_struct;
};
class minqpreport : public _minqpreport_owner
{
public:
    minqpreport();
    minqpreport(const minqpreport &rhs);
    minqpreport& operator=(const minqpreport &rhs);
    virtual ~minqpreport();
    ae_int_t &inneriterationscount;
    ae_int_t &outeriterationscount;
    ae_int_t &nmv;
    ae_int_t &ncholesky;
    ae_int_t &terminationtype;

};

/*************************************************************************
This object stores nonlinear optimizer state.
You should use functions provided by MinNLC subpackage to work  with  this
object
*************************************************************************/
class _minnlcstate_owner
{
public:
    _minnlcstate_owner();
    _minnlcstate_owner(const _minnlcstate_owner &rhs);
    _minnlcstate_owner& operator=(const _minnlcstate_owner &rhs);
    virtual ~_minnlcstate_owner();
    alglib_impl::minnlcstate* c_ptr();
    alglib_impl::minnlcstate* c_ptr() const;
protected:
    alglib_impl::minnlcstate *p_struct;
};
class minnlcstate : public _minnlcstate_owner
{
public:
    minnlcstate();
    minnlcstate(const minnlcstate &rhs);
    minnlcstate& operator=(const minnlcstate &rhs);
    virtual ~minnlcstate();
    ae_bool &needfi;
    ae_bool &needfij;
    ae_bool &xupdated;
    double &f;
    real_1d_array fi;
    real_2d_array j;
    real_1d_array x;

};


/*************************************************************************
This structure stores optimization report:
* IterationsCount           total number of inner iterations
* NFEV                      number of gradient evaluations
* TerminationType           termination type (see below)

TERMINATION CODES

TerminationType field contains completion code, which can be:
  -8    internal integrity control detected  infinite  or  NAN  values  in
        function/gradient. Abnormal termination signalled.
  -7    gradient verification failed.
        See MinNLCSetGradientCheck() for more information.
   1    relative function improvement is no more than EpsF.
   2    relative step is no more than EpsX.
   4    gradient norm is no more than EpsG
   5    MaxIts steps was taken
   7    stopping conditions are too stringent,
        further improvement is impossible,
        X contains best point found so far.

Other fields of this structure are not documented and should not be used!
*************************************************************************/
class _minnlcreport_owner
{
public:
    _minnlcreport_owner();
    _minnlcreport_owner(const _minnlcreport_owner &rhs);
    _minnlcreport_owner& operator=(const _minnlcreport_owner &rhs);
    virtual ~_minnlcreport_owner();
    alglib_impl::minnlcreport* c_ptr();
    alglib_impl::minnlcreport* c_ptr() const;
protected:
    alglib_impl::minnlcreport *p_struct;
};
class minnlcreport : public _minnlcreport_owner
{
public:
    minnlcreport();
    minnlcreport(const minnlcreport &rhs);
    minnlcreport& operator=(const minnlcreport &rhs);
    virtual ~minnlcreport();
    ae_int_t &iterationscount;
    ae_int_t &nfev;
    ae_int_t &varidx;
    ae_int_t &funcidx;
    ae_int_t &terminationtype;
    ae_int_t &dbgphase0its;

};

/*************************************************************************
This object stores nonlinear optimizer state.
You should use functions provided by MinBC subpackage to work with this
object
*************************************************************************/
class _minbcstate_owner
{
public:
    _minbcstate_owner();
    _minbcstate_owner(const _minbcstate_owner &rhs);
    _minbcstate_owner& operator=(const _minbcstate_owner &rhs);
    virtual ~_minbcstate_owner();
    alglib_impl::minbcstate* c_ptr();
    alglib_impl::minbcstate* c_ptr() const;
protected:
    alglib_impl::minbcstate *p_struct;
};
class minbcstate : public _minbcstate_owner
{
public:
    minbcstate();
    minbcstate(const minbcstate &rhs);
    minbcstate& operator=(const minbcstate &rhs);
    virtual ~minbcstate();
    ae_bool &needf;
    ae_bool &needfg;
    ae_bool &xupdated;
    double &f;
    real_1d_array g;
    real_1d_array x;

};


/*************************************************************************
This structure stores optimization report:
* IterationsCount           number of iterations
* NFEV                      number of gradient evaluations
* TerminationType           termination type (see below)

TERMINATION CODES

TerminationType field contains completion code, which can be:
  -8    internal integrity control detected  infinite  or  NAN  values  in
        function/gradient. Abnormal termination signalled.
  -7    gradient verification failed.
        See MinBCSetGradientCheck() for more information.
  -3    inconsistent constraints.
   1    relative function improvement is no more than EpsF.
   2    relative step is no more than EpsX.
   4    gradient norm is no more than EpsG
   5    MaxIts steps was taken
   7    stopping conditions are too stringent,
        further improvement is impossible,
        X contains best point found so far.
   8    terminated by user who called minbcrequesttermination(). X contains
        point which was "current accepted" when  termination  request  was
        submitted.

ADDITIONAL FIELDS

There are additional fields which can be used for debugging:
* DebugEqErr                error in the equality constraints (2-norm)
* DebugFS                   f, calculated at projection of initial point
                            to the feasible set
* DebugFF                   f, calculated at the final point
* DebugDX                   |X_start-X_final|
*************************************************************************/
class _minbcreport_owner
{
public:
    _minbcreport_owner();
    _minbcreport_owner(const _minbcreport_owner &rhs);
    _minbcreport_owner& operator=(const _minbcreport_owner &rhs);
    virtual ~_minbcreport_owner();
    alglib_impl::minbcreport* c_ptr();
    alglib_impl::minbcreport* c_ptr() const;
protected:
    alglib_impl::minbcreport *p_struct;
};
class minbcreport : public _minbcreport_owner
{
public:
    minbcreport();
    minbcreport(const minbcreport &rhs);
    minbcreport& operator=(const minbcreport &rhs);
    virtual ~minbcreport();
    ae_int_t &iterationscount;
    ae_int_t &nfev;
    ae_int_t &varidx;
    ae_int_t &terminationtype;

};

/*************************************************************************
This object stores nonlinear optimizer state.
You should use functions provided by MinNS subpackage to work  with  this
object
*************************************************************************/
class _minnsstate_owner
{
public:
    _minnsstate_owner();
    _minnsstate_owner(const _minnsstate_owner &rhs);
    _minnsstate_owner& operator=(const _minnsstate_owner &rhs);
    virtual ~_minnsstate_owner();
    alglib_impl::minnsstate* c_ptr();
    alglib_impl::minnsstate* c_ptr() const;
protected:
    alglib_impl::minnsstate *p_struct;
};
class minnsstate : public _minnsstate_owner
{
public:
    minnsstate();
    minnsstate(const minnsstate &rhs);
    minnsstate& operator=(const minnsstate &rhs);
    virtual ~minnsstate();
    ae_bool &needfi;
    ae_bool &needfij;
    ae_bool &xupdated;
    double &f;
    real_1d_array fi;
    real_2d_array j;
    real_1d_array x;

};


/*************************************************************************
This structure stores optimization report:
* IterationsCount           total number of inner iterations
* NFEV                      number of gradient evaluations
* TerminationType           termination type (see below)
* CErr                      maximum violation of all types of constraints
* LCErr                     maximum violation of linear constraints
* NLCErr                    maximum violation of nonlinear constraints

TERMINATION CODES

TerminationType field contains completion code, which can be:
  -8    internal integrity control detected  infinite  or  NAN  values  in
        function/gradient. Abnormal termination signalled.
  -3    box constraints are inconsistent
  -1    inconsistent parameters were passed:
        * penalty parameter for minnssetalgoags() is zero,
          but we have nonlinear constraints set by minnssetnlc()
   2    sampling radius decreased below epsx
   5    MaxIts steps was taken
   7    stopping conditions are too stringent,
        further improvement is impossible,
        X contains best point found so far.
   8    User requested termination via MinNSRequestTermination()

Other fields of this structure are not documented and should not be used!
*************************************************************************/
class _minnsreport_owner
{
public:
    _minnsreport_owner();
    _minnsreport_owner(const _minnsreport_owner &rhs);
    _minnsreport_owner& operator=(const _minnsreport_owner &rhs);
    virtual ~_minnsreport_owner();
    alglib_impl::minnsreport* c_ptr();
    alglib_impl::minnsreport* c_ptr() const;
protected:
    alglib_impl::minnsreport *p_struct;
};
class minnsreport : public _minnsreport_owner
{
public:
    minnsreport();
    minnsreport(const minnsreport &rhs);
    minnsreport& operator=(const minnsreport &rhs);
    virtual ~minnsreport();
    ae_int_t &iterationscount;
    ae_int_t &nfev;
    double &cerr;
    double &lcerr;
    double &nlcerr;
    ae_int_t &terminationtype;
    ae_int_t &varidx;
    ae_int_t &funcidx;

};

/*************************************************************************

*************************************************************************/
class _minasastate_owner
{
public:
    _minasastate_owner();
    _minasastate_owner(const _minasastate_owner &rhs);
    _minasastate_owner& operator=(const _minasastate_owner &rhs);
    virtual ~_minasastate_owner();
    alglib_impl::minasastate* c_ptr();
    alglib_impl::minasastate* c_ptr() const;
protected:
    alglib_impl::minasastate *p_struct;
};
class minasastate : public _minasastate_owner
{
public:
    minasastate();
    minasastate(const minasastate &rhs);
    minasastate& operator=(const minasastate &rhs);
    virtual ~minasastate();
    ae_bool &needfg;
    ae_bool &xupdated;
    double &f;
    real_1d_array g;
    real_1d_array x;

};


/*************************************************************************

*************************************************************************/
class _minasareport_owner
{
public:
    _minasareport_owner();
    _minasareport_owner(const _minasareport_owner &rhs);
    _minasareport_owner& operator=(const _minasareport_owner &rhs);
    virtual ~_minasareport_owner();
    alglib_impl::minasareport* c_ptr();
    alglib_impl::minasareport* c_ptr() const;
protected:
    alglib_impl::minasareport *p_struct;
};
class minasareport : public _minasareport_owner
{
public:
    minasareport();
    minasareport(const minasareport &rhs);
    minasareport& operator=(const minasareport &rhs);
    virtual ~minasareport();
    ae_int_t &iterationscount;
    ae_int_t &nfev;
    ae_int_t &terminationtype;
    ae_int_t &activeconstraints;

};

/*************************************************************************
Levenberg-Marquardt optimizer.

This structure should be created using one of the MinLMCreate???()
functions. You should not access its fields directly; use ALGLIB functions
to work with it.
*************************************************************************/
class _minlmstate_owner
{
public:
    _minlmstate_owner();
    _minlmstate_owner(const _minlmstate_owner &rhs);
    _minlmstate_owner& operator=(const _minlmstate_owner &rhs);
    virtual ~_minlmstate_owner();
    alglib_impl::minlmstate* c_ptr();
    alglib_impl::minlmstate* c_ptr() const;
protected:
    alglib_impl::minlmstate *p_struct;
};
class minlmstate : public _minlmstate_owner
{
public:
    minlmstate();
    minlmstate(const minlmstate &rhs);
    minlmstate& operator=(const minlmstate &rhs);
    virtual ~minlmstate();
    ae_bool &needf;
    ae_bool &needfg;
    ae_bool &needfgh;
    ae_bool &needfi;
    ae_bool &needfij;
    ae_bool &xupdated;
    double &f;
    real_1d_array fi;
    real_1d_array g;
    real_2d_array h;
    real_2d_array j;
    real_1d_array x;

};


/*************************************************************************
Optimization report, filled by MinLMResults() function

FIELDS:
* TerminationType, completetion code:
    * -8    optimizer detected NAN/INF values either in the function itself,
            or in its Jacobian
    * -7    derivative correctness check failed;
            see rep.funcidx, rep.varidx for
            more information.
    * -5    inappropriate solver was used:
            * solver created with minlmcreatefgh() used  on  problem  with
              general linear constraints (set with minlmsetlc() call).
    * -3    constraints are inconsistent
    *  2    relative step is no more than EpsX.
    *  5    MaxIts steps was taken
    *  7    stopping conditions are too stringent,
            further improvement is impossible
    *  8    terminated   by  user  who  called  MinLMRequestTermination().
            X contains point which was "current accepted" when termination
            request was submitted.
* IterationsCount, contains iterations count
* NFunc, number of function calculations
* NJac, number of Jacobi matrix calculations
* NGrad, number of gradient calculations
* NHess, number of Hessian calculations
* NCholesky, number of Cholesky decomposition calculations
*************************************************************************/
class _minlmreport_owner
{
public:
    _minlmreport_owner();
    _minlmreport_owner(const _minlmreport_owner &rhs);
    _minlmreport_owner& operator=(const _minlmreport_owner &rhs);
    virtual ~_minlmreport_owner();
    alglib_impl::minlmreport* c_ptr();
    alglib_impl::minlmreport* c_ptr() const;
protected:
    alglib_impl::minlmreport *p_struct;
};
class minlmreport : public _minlmreport_owner
{
public:
    minlmreport();
    minlmreport(const minlmreport &rhs);
    minlmreport& operator=(const minlmreport &rhs);
    virtual ~minlmreport();
    ae_int_t &iterationscount;
    ae_int_t &terminationtype;
    ae_int_t &funcidx;
    ae_int_t &varidx;
    ae_int_t &nfunc;
    ae_int_t &njac;
    ae_int_t &ngrad;
    ae_int_t &nhess;
    ae_int_t &ncholesky;

};











/*************************************************************************
        LIMITED MEMORY BFGS METHOD FOR LARGE SCALE OPTIMIZATION

DESCRIPTION:
The subroutine minimizes function F(x) of N arguments by  using  a  quasi-
Newton method (LBFGS scheme) which is optimized to use  a  minimum  amount
of memory.
The subroutine generates the approximation of an inverse Hessian matrix by
using information about the last M steps of the algorithm  (instead of N).
It lessens a required amount of memory from a value  of  order  N^2  to  a
value of order 2*N*M.


REQUIREMENTS:
Algorithm will request following information during its operation:
* function value F and its gradient G (simultaneously) at given point X


USAGE:
1. User initializes algorithm state with MinLBFGSCreate() call
2. User tunes solver parameters with MinLBFGSSetCond() MinLBFGSSetStpMax()
   and other functions
3. User calls MinLBFGSOptimize() function which takes algorithm  state and
   pointer (delegate, etc.) to callback function which calculates F/G.
4. User calls MinLBFGSResults() to get solution
5. Optionally user may call MinLBFGSRestartFrom() to solve another problem
   with same N/M but another starting point and/or another function.
   MinLBFGSRestartFrom() allows to reuse already initialized structure.


INPUT PARAMETERS:
    N       -   problem dimension. N>0
    M       -   number of corrections in the BFGS scheme of Hessian
                approximation update. Recommended value:  3<=M<=7. The smaller
                value causes worse convergence, the bigger will  not  cause  a
                considerably better convergence, but will cause a fall in  the
                performance. M<=N.
    X       -   initial solution approximation, array[0..N-1].


OUTPUT PARAMETERS:
    State   -   structure which stores algorithm state


NOTES:
1. you may tune stopping conditions with MinLBFGSSetCond() function
2. if target function contains exp() or other fast growing functions,  and
   optimization algorithm makes too large steps which leads  to  overflow,
   use MinLBFGSSetStpMax() function to bound algorithm's  steps.  However,
   L-BFGS rarely needs such a tuning.


  -- ALGLIB --
     Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
void minlbfgscreate(const ae_int_t n, const ae_int_t m, const real_1d_array &x, minlbfgsstate &state);
void minlbfgscreate(const ae_int_t m, const real_1d_array &x, minlbfgsstate &state);


/*************************************************************************
The subroutine is finite difference variant of MinLBFGSCreate().  It  uses
finite differences in order to differentiate target function.

Description below contains information which is specific to  this function
only. We recommend to read comments on MinLBFGSCreate() in  order  to  get
more information about creation of LBFGS optimizer.

INPUT PARAMETERS:
    N       -   problem dimension, N>0:
                * if given, only leading N elements of X are used
                * if not given, automatically determined from size of X
    M       -   number of corrections in the BFGS scheme of Hessian
                approximation update. Recommended value:  3<=M<=7. The smaller
                value causes worse convergence, the bigger will  not  cause  a
                considerably better convergence, but will cause a fall in  the
                performance. M<=N.
    X       -   starting point, array[0..N-1].
    DiffStep-   differentiation step, >0

OUTPUT PARAMETERS:
    State   -   structure which stores algorithm state

NOTES:
1. algorithm uses 4-point central formula for differentiation.
2. differentiation step along I-th axis is equal to DiffStep*S[I] where
   S[] is scaling vector which can be set by MinLBFGSSetScale() call.
3. we recommend you to use moderate values of  differentiation  step.  Too
   large step will result in too large truncation  errors, while too small
   step will result in too large numerical  errors.  1.0E-6  can  be  good
   value to start with.
4. Numerical  differentiation  is   very   inefficient  -   one   gradient
   calculation needs 4*N function evaluations. This function will work for
   any N - either small (1...10), moderate (10...100) or  large  (100...).
   However, performance penalty will be too severe for any N's except  for
   small ones.
   We should also say that code which relies on numerical  differentiation
   is   less  robust  and  precise.  LBFGS  needs  exact  gradient values.
   Imprecise gradient may slow  down  convergence,  especially  on  highly
   nonlinear problems.
   Thus  we  recommend to use this function for fast prototyping on small-
   dimensional problems only, and to implement analytical gradient as soon
   as possible.

  -- ALGLIB --
     Copyright 16.05.2011 by Bochkanov Sergey
*************************************************************************/
void minlbfgscreatef(const ae_int_t n, const ae_int_t m, const real_1d_array &x, const double diffstep, minlbfgsstate &state);
void minlbfgscreatef(const ae_int_t m, const real_1d_array &x, const double diffstep, minlbfgsstate &state);


/*************************************************************************
This function sets stopping conditions for L-BFGS optimization algorithm.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    EpsG    -   >=0
                The  subroutine  finishes  its  work   if   the  condition
                |v|<EpsG is satisfied, where:
                * |.| means Euclidian norm
                * v - scaled gradient vector, v[i]=g[i]*s[i]
                * g - gradient
                * s - scaling coefficients set by MinLBFGSSetScale()
    EpsF    -   >=0
                The  subroutine  finishes  its work if on k+1-th iteration
                the  condition  |F(k+1)-F(k)|<=EpsF*max{|F(k)|,|F(k+1)|,1}
                is satisfied.
    EpsX    -   >=0
                The subroutine finishes its work if  on  k+1-th  iteration
                the condition |v|<=EpsX is fulfilled, where:
                * |.| means Euclidian norm
                * v - scaled step vector, v[i]=dx[i]/s[i]
                * dx - ste pvector, dx=X(k+1)-X(k)
                * s - scaling coefficients set by MinLBFGSSetScale()
    MaxIts  -   maximum number of iterations. If MaxIts=0, the  number  of
                iterations is unlimited.

Passing EpsG=0, EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to
automatic stopping criterion selection (small EpsX).

  -- ALGLIB --
     Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
void minlbfgssetcond(const minlbfgsstate &state, const double epsg, const double epsf, const double epsx, const ae_int_t maxits);


/*************************************************************************
This function turns on/off reporting.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    NeedXRep-   whether iteration reports are needed or not

If NeedXRep is True, algorithm will call rep() callback function if  it is
provided to MinLBFGSOptimize().


  -- ALGLIB --
     Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
void minlbfgssetxrep(const minlbfgsstate &state, const bool needxrep);


/*************************************************************************
This function sets maximum step length

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    StpMax  -   maximum step length, >=0. Set StpMax to 0.0 (default),  if
                you don't want to limit step length.

Use this subroutine when you optimize target function which contains exp()
or  other  fast  growing  functions,  and optimization algorithm makes too
large  steps  which  leads  to overflow. This function allows us to reject
steps  that  are  too  large  (and  therefore  expose  us  to the possible
overflow) without actually calculating function value at the x+stp*d.

  -- ALGLIB --
     Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
void minlbfgssetstpmax(const minlbfgsstate &state, const double stpmax);


/*************************************************************************
This function sets scaling coefficients for LBFGS optimizer.

ALGLIB optimizers use scaling matrices to test stopping  conditions  (step
size and gradient are scaled before comparison with tolerances).  Scale of
the I-th variable is a translation invariant measure of:
a) "how large" the variable is
b) how large the step should be to make significant changes in the function

Scaling is also used by finite difference variant of the optimizer  - step
along I-th axis is equal to DiffStep*S[I].

In  most  optimizers  (and  in  the  LBFGS  too)  scaling is NOT a form of
preconditioning. It just  affects  stopping  conditions.  You  should  set
preconditioner  by  separate  call  to  one  of  the  MinLBFGSSetPrec...()
functions.

There  is  special  preconditioning  mode, however,  which  uses   scaling
coefficients to form diagonal preconditioning matrix. You  can  turn  this
mode on, if you want.   But  you should understand that scaling is not the
same thing as preconditioning - these are two different, although  related
forms of tuning solver.

INPUT PARAMETERS:
    State   -   structure stores algorithm state
    S       -   array[N], non-zero scaling coefficients
                S[i] may be negative, sign doesn't matter.

  -- ALGLIB --
     Copyright 14.01.2011 by Bochkanov Sergey
*************************************************************************/
void minlbfgssetscale(const minlbfgsstate &state, const real_1d_array &s);


/*************************************************************************
Modification  of  the  preconditioner:  default  preconditioner    (simple
scaling, same for all elements of X) is used.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state

NOTE:  you  can  change  preconditioner  "on  the  fly",  during algorithm
iterations.

  -- ALGLIB --
     Copyright 13.10.2010 by Bochkanov Sergey
*************************************************************************/
void minlbfgssetprecdefault(const minlbfgsstate &state);


/*************************************************************************
Modification of the preconditioner: Cholesky factorization of  approximate
Hessian is used.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    P       -   triangular preconditioner, Cholesky factorization of
                the approximate Hessian. array[0..N-1,0..N-1],
                (if larger, only leading N elements are used).
    IsUpper -   whether upper or lower triangle of P is given
                (other triangle is not referenced)

After call to this function preconditioner is changed to P  (P  is  copied
into the internal buffer).

NOTE:  you  can  change  preconditioner  "on  the  fly",  during algorithm
iterations.

NOTE 2:  P  should  be nonsingular. Exception will be thrown otherwise.

  -- ALGLIB --
     Copyright 13.10.2010 by Bochkanov Sergey
*************************************************************************/
void minlbfgssetpreccholesky(const minlbfgsstate &state, const real_2d_array &p, const bool isupper);


/*************************************************************************
Modification  of  the  preconditioner:  diagonal of approximate Hessian is
used.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    D       -   diagonal of the approximate Hessian, array[0..N-1],
                (if larger, only leading N elements are used).

NOTE:  you  can  change  preconditioner  "on  the  fly",  during algorithm
iterations.

NOTE 2: D[i] should be positive. Exception will be thrown otherwise.

NOTE 3: you should pass diagonal of approximate Hessian - NOT ITS INVERSE.

  -- ALGLIB --
     Copyright 13.10.2010 by Bochkanov Sergey
*************************************************************************/
void minlbfgssetprecdiag(const minlbfgsstate &state, const real_1d_array &d);


/*************************************************************************
Modification of the preconditioner: scale-based diagonal preconditioning.

This preconditioning mode can be useful when you  don't  have  approximate
diagonal of Hessian, but you know that your  variables  are  badly  scaled
(for  example,  one  variable is in [1,10], and another in [1000,100000]),
and most part of the ill-conditioning comes from different scales of vars.

In this case simple  scale-based  preconditioner,  with H[i] = 1/(s[i]^2),
can greatly improve convergence.

IMPRTANT: you should set scale of your variables  with  MinLBFGSSetScale()
call  (before  or after MinLBFGSSetPrecScale() call). Without knowledge of
the scale of your variables scale-based preconditioner will be  just  unit
matrix.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state

  -- ALGLIB --
     Copyright 13.10.2010 by Bochkanov Sergey
*************************************************************************/
void minlbfgssetprecscale(const minlbfgsstate &state);


/*************************************************************************
This function provides reverse communication interface
Reverse communication interface is not documented or recommended to use.
See below for functions which provide better documented API
*************************************************************************/
bool minlbfgsiteration(const minlbfgsstate &state);


/*************************************************************************
This family of functions is used to launcn iterations of nonlinear optimizer

These functions accept following parameters:
    state   -   algorithm state
    func    -   callback which calculates function (or merit function)
                value func at given point x
    grad    -   callback which calculates function (or merit function)
                value func and gradient grad at given point x
    rep     -   optional callback which is called after each iteration
                can be NULL
    ptr     -   optional pointer which is passed to func/grad/hess/jac/rep
                can be NULL

NOTES:

1. This function has two different implementations: one which  uses  exact
   (analytical) user-supplied gradient,  and one which uses function value
   only  and  numerically  differentiates  function  in  order  to  obtain
   gradient.

   Depending  on  the  specific  function  used to create optimizer object
   (either MinLBFGSCreate() for analytical gradient  or  MinLBFGSCreateF()
   for numerical differentiation) you should choose appropriate variant of
   MinLBFGSOptimize() - one  which  accepts  function  AND gradient or one
   which accepts function ONLY.

   Be careful to choose variant of MinLBFGSOptimize() which corresponds to
   your optimization scheme! Table below lists different  combinations  of
   callback (function/gradient) passed to MinLBFGSOptimize()  and specific
   function used to create optimizer.


                     |         USER PASSED TO MinLBFGSOptimize()
   CREATED WITH      |  function only   |  function and gradient
   ------------------------------------------------------------
   MinLBFGSCreateF() |     work                FAIL
   MinLBFGSCreate()  |     FAIL                work

   Here "FAIL" denotes inappropriate combinations  of  optimizer  creation
   function  and  MinLBFGSOptimize()  version.   Attemps   to   use   such
   combination (for example, to create optimizer with MinLBFGSCreateF() and
   to pass gradient information to MinCGOptimize()) will lead to exception
   being thrown. Either  you  did  not pass gradient when it WAS needed or
   you passed gradient when it was NOT needed.

  -- ALGLIB --
     Copyright 20.03.2009 by Bochkanov Sergey

*************************************************************************/
void minlbfgsoptimize(minlbfgsstate &state,
    void (*func)(const real_1d_array &x, double &func, void *ptr),
    void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
    void *ptr = NULL);
void minlbfgsoptimize(minlbfgsstate &state,
    void (*grad)(const real_1d_array &x, double &func, real_1d_array &grad, void *ptr),
    void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
    void *ptr = NULL);


/*************************************************************************
L-BFGS algorithm results

INPUT PARAMETERS:
    State   -   algorithm state

OUTPUT PARAMETERS:
    X       -   array[0..N-1], solution
    Rep     -   optimization report:
                * Rep.TerminationType completetion code:
                    * -8    internal integrity control  detected  infinite
                            or NAN values in  function/gradient.  Abnormal
                            termination signalled.
                    * -7    gradient verification failed.
                            See MinLBFGSSetGradientCheck() for more information.
                    * -2    rounding errors prevent further improvement.
                            X contains best point found.
                    * -1    incorrect parameters were specified
                    *  1    relative function improvement is no more than
                            EpsF.
                    *  2    relative step is no more than EpsX.
                    *  4    gradient norm is no more than EpsG
                    *  5    MaxIts steps was taken
                    *  7    stopping conditions are too stringent,
                            further improvement is impossible
                    *  8    terminated by user who called minlbfgsrequesttermination().
                            X contains point which was "current accepted" when
                            termination request was submitted.
                * Rep.IterationsCount contains iterations count
                * NFEV countains number of function calculations

  -- ALGLIB --
     Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
void minlbfgsresults(const minlbfgsstate &state, real_1d_array &x, minlbfgsreport &rep);


/*************************************************************************
L-BFGS algorithm results

Buffered implementation of MinLBFGSResults which uses pre-allocated buffer
to store X[]. If buffer size is  too  small,  it  resizes  buffer.  It  is
intended to be used in the inner cycles of performance critical algorithms
where array reallocation penalty is too large to be ignored.

  -- ALGLIB --
     Copyright 20.08.2010 by Bochkanov Sergey
*************************************************************************/
void minlbfgsresultsbuf(const minlbfgsstate &state, real_1d_array &x, minlbfgsreport &rep);


/*************************************************************************
This  subroutine restarts LBFGS algorithm from new point. All optimization
parameters are left unchanged.

This  function  allows  to  solve multiple  optimization  problems  (which
must have same number of dimensions) without object reallocation penalty.

INPUT PARAMETERS:
    State   -   structure used to store algorithm state
    X       -   new starting point.

  -- ALGLIB --
     Copyright 30.07.2010 by Bochkanov Sergey
*************************************************************************/
void minlbfgsrestartfrom(const minlbfgsstate &state, const real_1d_array &x);


/*************************************************************************
This subroutine submits request for termination of running  optimizer.  It
should be called from user-supplied callback when user decides that it  is
time to "smoothly" terminate optimization process.  As  result,  optimizer
stops at point which was "current accepted" when termination  request  was
submitted and returns error code 8 (successful termination).

INPUT PARAMETERS:
    State   -   optimizer structure

NOTE: after  request  for  termination  optimizer  may   perform   several
      additional calls to user-supplied callbacks. It does  NOT  guarantee
      to stop immediately - it just guarantees that these additional calls
      will be discarded later.

NOTE: calling this function on optimizer which is NOT running will have no
      effect.

NOTE: multiple calls to this function are possible. First call is counted,
      subsequent calls are silently ignored.

  -- ALGLIB --
     Copyright 08.10.2014 by Bochkanov Sergey
*************************************************************************/
void minlbfgsrequesttermination(const minlbfgsstate &state);


/*************************************************************************
This  subroutine  turns  on  verification  of  the  user-supplied analytic
gradient:
* user calls this subroutine before optimization begins
* MinLBFGSOptimize() is called
* prior to  actual  optimization, for each component  of  parameters being
  optimized X[i] algorithm performs following steps:
  * two trial steps are made to X[i]-TestStep*S[i] and X[i]+TestStep*S[i],
    where X[i] is i-th component of the initial point and S[i] is a  scale
    of i-th parameter
  * if needed, steps are bounded with respect to constraints on X[]
  * F(X) is evaluated at these trial points
  * we perform one more evaluation in the middle point of the interval
  * we  build  cubic  model using function values and derivatives at trial
    points and we compare its prediction with actual value in  the  middle
    point
  * in case difference between prediction and actual value is higher  than
    some predetermined threshold, algorithm stops with completion code -7;
    Rep.VarIdx is set to index of the parameter with incorrect derivative.
* after verification is over, algorithm proceeds to the actual optimization.

NOTE 1: verification  needs  N (parameters count) gradient evaluations. It
        is very costly and you should use  it  only  for  low  dimensional
        problems,  when  you  want  to  be  sure  that  you've   correctly
        calculated  analytic  derivatives.  You  should  not use it in the
        production code (unless you want to check derivatives provided  by
        some third party).

NOTE 2: you  should  carefully  choose  TestStep. Value which is too large
        (so large that function behaviour is significantly non-cubic) will
        lead to false alarms. You may use  different  step  for  different
        parameters by means of setting scale with MinLBFGSSetScale().

NOTE 3: this function may lead to false positives. In case it reports that
        I-th  derivative was calculated incorrectly, you may decrease test
        step  and  try  one  more  time  - maybe your function changes too
        sharply  and  your  step  is  too  large for such rapidly chanding
        function.

INPUT PARAMETERS:
    State       -   structure used to store algorithm state
    TestStep    -   verification step:
                    * TestStep=0 turns verification off
                    * TestStep>0 activates verification

  -- ALGLIB --
     Copyright 24.05.2012 by Bochkanov Sergey
*************************************************************************/
void minlbfgssetgradientcheck(const minlbfgsstate &state, const double teststep);





/*************************************************************************
        NONLINEAR CONJUGATE GRADIENT METHOD

DESCRIPTION:
The subroutine minimizes function F(x) of N arguments by using one of  the
nonlinear conjugate gradient methods.

These CG methods are globally convergent (even on non-convex functions) as
long as grad(f) is Lipschitz continuous in  a  some  neighborhood  of  the
L = { x : f(x)<=f(x0) }.


REQUIREMENTS:
Algorithm will request following information during its operation:
* function value F and its gradient G (simultaneously) at given point X


USAGE:
1. User initializes algorithm state with MinCGCreate() call
2. User tunes solver parameters with MinCGSetCond(), MinCGSetStpMax() and
   other functions
3. User calls MinCGOptimize() function which takes algorithm  state   and
   pointer (delegate, etc.) to callback function which calculates F/G.
4. User calls MinCGResults() to get solution
5. Optionally, user may call MinCGRestartFrom() to solve another  problem
   with same N but another starting point and/or another function.
   MinCGRestartFrom() allows to reuse already initialized structure.


INPUT PARAMETERS:
    N       -   problem dimension, N>0:
                * if given, only leading N elements of X are used
                * if not given, automatically determined from size of X
    X       -   starting point, array[0..N-1].

OUTPUT PARAMETERS:
    State   -   structure which stores algorithm state

  -- ALGLIB --
     Copyright 25.03.2010 by Bochkanov Sergey
*************************************************************************/
void mincgcreate(const ae_int_t n, const real_1d_array &x, mincgstate &state);
void mincgcreate(const real_1d_array &x, mincgstate &state);


/*************************************************************************
The subroutine is finite difference variant of MinCGCreate(). It uses
finite differences in order to differentiate target function.

Description below contains information which is specific to this function
only. We recommend to read comments on MinCGCreate() in order to get more
information about creation of CG optimizer.

INPUT PARAMETERS:
    N       -   problem dimension, N>0:
                * if given, only leading N elements of X are used
                * if not given, automatically determined from size of X
    X       -   starting point, array[0..N-1].
    DiffStep-   differentiation step, >0

OUTPUT PARAMETERS:
    State   -   structure which stores algorithm state

NOTES:
1. algorithm uses 4-point central formula for differentiation.
2. differentiation step along I-th axis is equal to DiffStep*S[I] where
   S[] is scaling vector which can be set by MinCGSetScale() call.
3. we recommend you to use moderate values of  differentiation  step.  Too
   large step will result in too large truncation  errors, while too small
   step will result in too large numerical  errors.  1.0E-6  can  be  good
   value to start with.
4. Numerical  differentiation  is   very   inefficient  -   one   gradient
   calculation needs 4*N function evaluations. This function will work for
   any N - either small (1...10), moderate (10...100) or  large  (100...).
   However, performance penalty will be too severe for any N's except  for
   small ones.
   We should also say that code which relies on numerical  differentiation
   is  less  robust  and  precise.  L-BFGS  needs  exact  gradient values.
   Imprecise  gradient may slow down  convergence,  especially  on  highly
   nonlinear problems.
   Thus  we  recommend to use this function for fast prototyping on small-
   dimensional problems only, and to implement analytical gradient as soon
   as possible.

  -- ALGLIB --
     Copyright 16.05.2011 by Bochkanov Sergey
*************************************************************************/
void mincgcreatef(const ae_int_t n, const real_1d_array &x, const double diffstep, mincgstate &state);
void mincgcreatef(const real_1d_array &x, const double diffstep, mincgstate &state);


/*************************************************************************
This function sets stopping conditions for CG optimization algorithm.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    EpsG    -   >=0
                The  subroutine  finishes  its  work   if   the  condition
                |v|<EpsG is satisfied, where:
                * |.| means Euclidian norm
                * v - scaled gradient vector, v[i]=g[i]*s[i]
                * g - gradient
                * s - scaling coefficients set by MinCGSetScale()
    EpsF    -   >=0
                The  subroutine  finishes  its work if on k+1-th iteration
                the  condition  |F(k+1)-F(k)|<=EpsF*max{|F(k)|,|F(k+1)|,1}
                is satisfied.
    EpsX    -   >=0
                The subroutine finishes its work if  on  k+1-th  iteration
                the condition |v|<=EpsX is fulfilled, where:
                * |.| means Euclidian norm
                * v - scaled step vector, v[i]=dx[i]/s[i]
                * dx - ste pvector, dx=X(k+1)-X(k)
                * s - scaling coefficients set by MinCGSetScale()
    MaxIts  -   maximum number of iterations. If MaxIts=0, the  number  of
                iterations is unlimited.

Passing EpsG=0, EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to
automatic stopping criterion selection (small EpsX).

  -- ALGLIB --
     Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
void mincgsetcond(const mincgstate &state, const double epsg, const double epsf, const double epsx, const ae_int_t maxits);


/*************************************************************************
This function sets scaling coefficients for CG optimizer.

ALGLIB optimizers use scaling matrices to test stopping  conditions  (step
size and gradient are scaled before comparison with tolerances).  Scale of
the I-th variable is a translation invariant measure of:
a) "how large" the variable is
b) how large the step should be to make significant changes in the function

Scaling is also used by finite difference variant of CG optimizer  -  step
along I-th axis is equal to DiffStep*S[I].

In   most   optimizers  (and  in  the  CG  too)  scaling is NOT a form  of
preconditioning. It just  affects  stopping  conditions.  You  should  set
preconditioner by separate call to one of the MinCGSetPrec...() functions.

There  is  special  preconditioning  mode, however,  which  uses   scaling
coefficients to form diagonal preconditioning matrix. You  can  turn  this
mode on, if you want.   But  you should understand that scaling is not the
same thing as preconditioning - these are two different, although  related
forms of tuning solver.

INPUT PARAMETERS:
    State   -   structure stores algorithm state
    S       -   array[N], non-zero scaling coefficients
                S[i] may be negative, sign doesn't matter.

  -- ALGLIB --
     Copyright 14.01.2011 by Bochkanov Sergey
*************************************************************************/
void mincgsetscale(const mincgstate &state, const real_1d_array &s);


/*************************************************************************
This function turns on/off reporting.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    NeedXRep-   whether iteration reports are needed or not

If NeedXRep is True, algorithm will call rep() callback function if  it is
provided to MinCGOptimize().

  -- ALGLIB --
     Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
void mincgsetxrep(const mincgstate &state, const bool needxrep);


/*************************************************************************
This function sets CG algorithm.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    CGType  -   algorithm type:
                * -1    automatic selection of the best algorithm
                * 0     DY (Dai and Yuan) algorithm
                * 1     Hybrid DY-HS algorithm

  -- ALGLIB --
     Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
void mincgsetcgtype(const mincgstate &state, const ae_int_t cgtype);


/*************************************************************************
This function sets maximum step length

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    StpMax  -   maximum step length, >=0. Set StpMax to 0.0,  if you don't
                want to limit step length.

Use this subroutine when you optimize target function which contains exp()
or  other  fast  growing  functions,  and optimization algorithm makes too
large  steps  which  leads  to overflow. This function allows us to reject
steps  that  are  too  large  (and  therefore  expose  us  to the possible
overflow) without actually calculating function value at the x+stp*d.

  -- ALGLIB --
     Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
void mincgsetstpmax(const mincgstate &state, const double stpmax);


/*************************************************************************
This function allows to suggest initial step length to the CG algorithm.

Suggested  step  length  is used as starting point for the line search. It
can be useful when you have  badly  scaled  problem,  i.e.  when  ||grad||
(which is used as initial estimate for the first step) is many  orders  of
magnitude different from the desired step.

Line search  may  fail  on  such problems without good estimate of initial
step length. Imagine, for example, problem with ||grad||=10^50 and desired
step equal to 0.1 Line  search function will use 10^50  as  initial  step,
then  it  will  decrease step length by 2 (up to 20 attempts) and will get
10^44, which is still too large.

This function allows us to tell than line search should  be  started  from
some moderate step length, like 1.0, so algorithm will be able  to  detect
desired step length in a several searches.

Default behavior (when no step is suggested) is to use preconditioner,  if
it is available, to generate initial estimate of step length.

This function influences only first iteration of algorithm. It  should  be
called between MinCGCreate/MinCGRestartFrom() call and MinCGOptimize call.
Suggested step is ignored if you have preconditioner.

INPUT PARAMETERS:
    State   -   structure used to store algorithm state.
    Stp     -   initial estimate of the step length.
                Can be zero (no estimate).

  -- ALGLIB --
     Copyright 30.07.2010 by Bochkanov Sergey
*************************************************************************/
void mincgsuggeststep(const mincgstate &state, const double stp);


/*************************************************************************
Modification of the preconditioner: preconditioning is turned off.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state

NOTE:  you  can  change  preconditioner  "on  the  fly",  during algorithm
iterations.

  -- ALGLIB --
     Copyright 13.10.2010 by Bochkanov Sergey
*************************************************************************/
void mincgsetprecdefault(const mincgstate &state);


/*************************************************************************
Modification  of  the  preconditioner:  diagonal of approximate Hessian is
used.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    D       -   diagonal of the approximate Hessian, array[0..N-1],
                (if larger, only leading N elements are used).

NOTE:  you  can  change  preconditioner  "on  the  fly",  during algorithm
iterations.

NOTE 2: D[i] should be positive. Exception will be thrown otherwise.

NOTE 3: you should pass diagonal of approximate Hessian - NOT ITS INVERSE.

  -- ALGLIB --
     Copyright 13.10.2010 by Bochkanov Sergey
*************************************************************************/
void mincgsetprecdiag(const mincgstate &state, const real_1d_array &d);


/*************************************************************************
Modification of the preconditioner: scale-based diagonal preconditioning.

This preconditioning mode can be useful when you  don't  have  approximate
diagonal of Hessian, but you know that your  variables  are  badly  scaled
(for  example,  one  variable is in [1,10], and another in [1000,100000]),
and most part of the ill-conditioning comes from different scales of vars.

In this case simple  scale-based  preconditioner,  with H[i] = 1/(s[i]^2),
can greatly improve convergence.

IMPRTANT: you should set scale of your variables with MinCGSetScale() call
(before or after MinCGSetPrecScale() call). Without knowledge of the scale
of your variables scale-based preconditioner will be just unit matrix.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state

NOTE:  you  can  change  preconditioner  "on  the  fly",  during algorithm
iterations.

  -- ALGLIB --
     Copyright 13.10.2010 by Bochkanov Sergey
*************************************************************************/
void mincgsetprecscale(const mincgstate &state);


/*************************************************************************
This function provides reverse communication interface
Reverse communication interface is not documented or recommended to use.
See below for functions which provide better documented API
*************************************************************************/
bool mincgiteration(const mincgstate &state);


/*************************************************************************
This family of functions is used to launcn iterations of nonlinear optimizer

These functions accept following parameters:
    state   -   algorithm state
    func    -   callback which calculates function (or merit function)
                value func at given point x
    grad    -   callback which calculates function (or merit function)
                value func and gradient grad at given point x
    rep     -   optional callback which is called after each iteration
                can be NULL
    ptr     -   optional pointer which is passed to func/grad/hess/jac/rep
                can be NULL

NOTES:

1. This function has two different implementations: one which  uses  exact
   (analytical) user-supplied  gradient, and one which uses function value
   only  and  numerically  differentiates  function  in  order  to  obtain
   gradient.

   Depending  on  the  specific  function  used to create optimizer object
   (either MinCGCreate()  for analytical gradient  or  MinCGCreateF()  for
   numerical differentiation) you should  choose  appropriate  variant  of
   MinCGOptimize() - one which accepts function AND gradient or one  which
   accepts function ONLY.

   Be careful to choose variant of MinCGOptimize()  which  corresponds  to
   your optimization scheme! Table below lists different  combinations  of
   callback (function/gradient) passed  to  MinCGOptimize()  and  specific
   function used to create optimizer.


                  |         USER PASSED TO MinCGOptimize()
   CREATED WITH   |  function only   |  function and gradient
   ------------------------------------------------------------
   MinCGCreateF() |     work                FAIL
   MinCGCreate()  |     FAIL                work

   Here "FAIL" denotes inappropriate combinations  of  optimizer  creation
   function and MinCGOptimize() version. Attemps to use  such  combination
   (for  example,  to create optimizer with  MinCGCreateF()  and  to  pass
   gradient information to MinCGOptimize()) will lead to  exception  being
   thrown. Either  you  did  not  pass  gradient when it WAS needed or you
   passed gradient when it was NOT needed.

  -- ALGLIB --
     Copyright 20.04.2009 by Bochkanov Sergey

*************************************************************************/
void mincgoptimize(mincgstate &state,
    void (*func)(const real_1d_array &x, double &func, void *ptr),
    void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
    void *ptr = NULL);
void mincgoptimize(mincgstate &state,
    void (*grad)(const real_1d_array &x, double &func, real_1d_array &grad, void *ptr),
    void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
    void *ptr = NULL);


/*************************************************************************
Conjugate gradient results

INPUT PARAMETERS:
    State   -   algorithm state

OUTPUT PARAMETERS:
    X       -   array[0..N-1], solution
    Rep     -   optimization report:
                * Rep.TerminationType completetion code:
                    * -8    internal integrity control  detected  infinite
                            or NAN values in  function/gradient.  Abnormal
                            termination signalled.
                    * -7    gradient verification failed.
                            See MinCGSetGradientCheck() for more information.
                    *  1    relative function improvement is no more than
                            EpsF.
                    *  2    relative step is no more than EpsX.
                    *  4    gradient norm is no more than EpsG
                    *  5    MaxIts steps was taken
                    *  7    stopping conditions are too stringent,
                            further improvement is impossible,
                            we return best X found so far
                    *  8    terminated by user
                * Rep.IterationsCount contains iterations count
                * NFEV countains number of function calculations

  -- ALGLIB --
     Copyright 20.04.2009 by Bochkanov Sergey
*************************************************************************/
void mincgresults(const mincgstate &state, real_1d_array &x, mincgreport &rep);


/*************************************************************************
Conjugate gradient results

Buffered implementation of MinCGResults(), which uses pre-allocated buffer
to store X[]. If buffer size is  too  small,  it  resizes  buffer.  It  is
intended to be used in the inner cycles of performance critical algorithms
where array reallocation penalty is too large to be ignored.

  -- ALGLIB --
     Copyright 20.04.2009 by Bochkanov Sergey
*************************************************************************/
void mincgresultsbuf(const mincgstate &state, real_1d_array &x, mincgreport &rep);


/*************************************************************************
This  subroutine  restarts  CG  algorithm from new point. All optimization
parameters are left unchanged.

This  function  allows  to  solve multiple  optimization  problems  (which
must have same number of dimensions) without object reallocation penalty.

INPUT PARAMETERS:
    State   -   structure used to store algorithm state.
    X       -   new starting point.

  -- ALGLIB --
     Copyright 30.07.2010 by Bochkanov Sergey
*************************************************************************/
void mincgrestartfrom(const mincgstate &state, const real_1d_array &x);


/*************************************************************************
This subroutine submits request for termination of running  optimizer.  It
should be called from user-supplied callback when user decides that it  is
time to "smoothly" terminate optimization process.  As  result,  optimizer
stops at point which was "current accepted" when termination  request  was
submitted and returns error code 8 (successful termination).

INPUT PARAMETERS:
    State   -   optimizer structure

NOTE: after  request  for  termination  optimizer  may   perform   several
      additional calls to user-supplied callbacks. It does  NOT  guarantee
      to stop immediately - it just guarantees that these additional calls
      will be discarded later.

NOTE: calling this function on optimizer which is NOT running will have no
      effect.

NOTE: multiple calls to this function are possible. First call is counted,
      subsequent calls are silently ignored.

  -- ALGLIB --
     Copyright 08.10.2014 by Bochkanov Sergey
*************************************************************************/
void mincgrequesttermination(const mincgstate &state);


/*************************************************************************

This  subroutine  turns  on  verification  of  the  user-supplied analytic
gradient:
* user calls this subroutine before optimization begins
* MinCGOptimize() is called
* prior to  actual  optimization, for each component  of  parameters being
  optimized X[i] algorithm performs following steps:
  * two trial steps are made to X[i]-TestStep*S[i] and X[i]+TestStep*S[i],
    where X[i] is i-th component of the initial point and S[i] is a  scale
    of i-th parameter
  * F(X) is evaluated at these trial points
  * we perform one more evaluation in the middle point of the interval
  * we  build  cubic  model using function values and derivatives at trial
    points and we compare its prediction with actual value in  the  middle
    point
  * in case difference between prediction and actual value is higher  than
    some predetermined threshold, algorithm stops with completion code -7;
    Rep.VarIdx is set to index of the parameter with incorrect derivative.
* after verification is over, algorithm proceeds to the actual optimization.

NOTE 1: verification  needs  N (parameters count) gradient evaluations. It
        is very costly and you should use  it  only  for  low  dimensional
        problems,  when  you  want  to  be  sure  that  you've   correctly
        calculated  analytic  derivatives.  You  should  not use it in the
        production code (unless you want to check derivatives provided  by
        some third party).

NOTE 2: you  should  carefully  choose  TestStep. Value which is too large
        (so large that function behaviour is significantly non-cubic) will
        lead to false alarms. You may use  different  step  for  different
        parameters by means of setting scale with MinCGSetScale().

NOTE 3: this function may lead to false positives. In case it reports that
        I-th  derivative was calculated incorrectly, you may decrease test
        step  and  try  one  more  time  - maybe your function changes too
        sharply  and  your  step  is  too  large for such rapidly chanding
        function.

INPUT PARAMETERS:
    State       -   structure used to store algorithm state
    TestStep    -   verification step:
                    * TestStep=0 turns verification off
                    * TestStep>0 activates verification

  -- ALGLIB --
     Copyright 31.05.2012 by Bochkanov Sergey
*************************************************************************/
void mincgsetgradientcheck(const mincgstate &state, const double teststep);

/*************************************************************************
                     BOUND CONSTRAINED OPTIMIZATION
       WITH ADDITIONAL LINEAR EQUALITY AND INEQUALITY CONSTRAINTS

DESCRIPTION:
The  subroutine  minimizes  function   F(x)  of N arguments subject to any
combination of:
* bound constraints
* linear inequality constraints
* linear equality constraints

REQUIREMENTS:
* user must provide function value and gradient
* starting point X0 must be feasible or
  not too far away from the feasible set
* grad(f) must be Lipschitz continuous on a level set:
  L = { x : f(x)<=f(x0) }
* function must be defined everywhere on the feasible set F

USAGE:

Constrained optimization if far more complex than the unconstrained one.
Here we give very brief outline of the BLEIC optimizer. We strongly recommend
you to read examples in the ALGLIB Reference Manual and to read ALGLIB User Guide
on optimization, which is available at http://www.alglib.net/optimization/

1. User initializes algorithm state with MinBLEICCreate() call

2. USer adds boundary and/or linear constraints by calling
   MinBLEICSetBC() and MinBLEICSetLC() functions.

3. User sets stopping conditions with MinBLEICSetCond().

4. User calls MinBLEICOptimize() function which takes algorithm  state and
   pointer (delegate, etc.) to callback function which calculates F/G.

5. User calls MinBLEICResults() to get solution

6. Optionally user may call MinBLEICRestartFrom() to solve another problem
   with same N but another starting point.
   MinBLEICRestartFrom() allows to reuse already initialized structure.

NOTE: if you have box-only constraints (no  general  linear  constraints),
      then MinBC optimizer can be better option. It uses  special,  faster
      constraint activation method, which performs better on problems with
      multiple constraints active at the solution.

      On small-scale problems performance of MinBC is similar to  that  of
      MinBLEIC, but on large-scale ones (hundreds and thousands of  active
      constraints) it can be several times faster than MinBLEIC.

INPUT PARAMETERS:
    N       -   problem dimension, N>0:
                * if given, only leading N elements of X are used
                * if not given, automatically determined from size ofX
    X       -   starting point, array[N]:
                * it is better to set X to a feasible point
                * but X can be infeasible, in which case algorithm will try
                  to find feasible point first, using X as initial
                  approximation.

OUTPUT PARAMETERS:
    State   -   structure stores algorithm state

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minbleiccreate(const ae_int_t n, const real_1d_array &x, minbleicstate &state);
void minbleiccreate(const real_1d_array &x, minbleicstate &state);


/*************************************************************************
The subroutine is finite difference variant of MinBLEICCreate().  It  uses
finite differences in order to differentiate target function.

Description below contains information which is specific to  this function
only. We recommend to read comments on MinBLEICCreate() in  order  to  get
more information about creation of BLEIC optimizer.

INPUT PARAMETERS:
    N       -   problem dimension, N>0:
                * if given, only leading N elements of X are used
                * if not given, automatically determined from size of X
    X       -   starting point, array[0..N-1].
    DiffStep-   differentiation step, >0

OUTPUT PARAMETERS:
    State   -   structure which stores algorithm state

NOTES:
1. algorithm uses 4-point central formula for differentiation.
2. differentiation step along I-th axis is equal to DiffStep*S[I] where
   S[] is scaling vector which can be set by MinBLEICSetScale() call.
3. we recommend you to use moderate values of  differentiation  step.  Too
   large step will result in too large truncation  errors, while too small
   step will result in too large numerical  errors.  1.0E-6  can  be  good
   value to start with.
4. Numerical  differentiation  is   very   inefficient  -   one   gradient
   calculation needs 4*N function evaluations. This function will work for
   any N - either small (1...10), moderate (10...100) or  large  (100...).
   However, performance penalty will be too severe for any N's except  for
   small ones.
   We should also say that code which relies on numerical  differentiation
   is  less  robust and precise. CG needs exact gradient values. Imprecise
   gradient may slow  down  convergence, especially  on  highly  nonlinear
   problems.
   Thus  we  recommend to use this function for fast prototyping on small-
   dimensional problems only, and to implement analytical gradient as soon
   as possible.

  -- ALGLIB --
     Copyright 16.05.2011 by Bochkanov Sergey
*************************************************************************/
void minbleiccreatef(const ae_int_t n, const real_1d_array &x, const double diffstep, minbleicstate &state);
void minbleiccreatef(const real_1d_array &x, const double diffstep, minbleicstate &state);


/*************************************************************************
This function sets boundary constraints for BLEIC optimizer.

Boundary constraints are inactive by default (after initial creation).
They are preserved after algorithm restart with MinBLEICRestartFrom().

NOTE: if you have box-only constraints (no  general  linear  constraints),
      then MinBC optimizer can be better option. It uses  special,  faster
      constraint activation method, which performs better on problems with
      multiple constraints active at the solution.

      On small-scale problems performance of MinBC is similar to  that  of
      MinBLEIC, but on large-scale ones (hundreds and thousands of  active
      constraints) it can be several times faster than MinBLEIC.

INPUT PARAMETERS:
    State   -   structure stores algorithm state
    BndL    -   lower bounds, array[N].
                If some (all) variables are unbounded, you may specify
                very small number or -INF.
    BndU    -   upper bounds, array[N].
                If some (all) variables are unbounded, you may specify
                very large number or +INF.

NOTE 1: it is possible to specify BndL[i]=BndU[i]. In this case I-th
variable will be "frozen" at X[i]=BndL[i]=BndU[i].

NOTE 2: this solver has following useful properties:
* bound constraints are always satisfied exactly
* function is evaluated only INSIDE area specified by  bound  constraints,
  even  when  numerical  differentiation is used (algorithm adjusts  nodes
  according to boundary constraints)

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minbleicsetbc(const minbleicstate &state, const real_1d_array &bndl, const real_1d_array &bndu);


/*************************************************************************
This function sets linear constraints for BLEIC optimizer.

Linear constraints are inactive by default (after initial creation).
They are preserved after algorithm restart with MinBLEICRestartFrom().

INPUT PARAMETERS:
    State   -   structure previously allocated with MinBLEICCreate call.
    C       -   linear constraints, array[K,N+1].
                Each row of C represents one constraint, either equality
                or inequality (see below):
                * first N elements correspond to coefficients,
                * last element corresponds to the right part.
                All elements of C (including right part) must be finite.
    CT      -   type of constraints, array[K]:
                * if CT[i]>0, then I-th constraint is C[i,*]*x >= C[i,n+1]
                * if CT[i]=0, then I-th constraint is C[i,*]*x  = C[i,n+1]
                * if CT[i]<0, then I-th constraint is C[i,*]*x <= C[i,n+1]
    K       -   number of equality/inequality constraints, K>=0:
                * if given, only leading K elements of C/CT are used
                * if not given, automatically determined from sizes of C/CT

NOTE 1: linear (non-bound) constraints are satisfied only approximately:
* there always exists some minor violation (about Epsilon in magnitude)
  due to rounding errors
* numerical differentiation, if used, may  lead  to  function  evaluations
  outside  of the feasible  area,   because   algorithm  does  NOT  change
  numerical differentiation formula according to linear constraints.
If you want constraints to be  satisfied  exactly, try to reformulate your
problem  in  such  manner  that  all constraints will become boundary ones
(this kind of constraints is always satisfied exactly, both in  the  final
solution and in all intermediate points).

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minbleicsetlc(const minbleicstate &state, const real_2d_array &c, const integer_1d_array &ct, const ae_int_t k);
void minbleicsetlc(const minbleicstate &state, const real_2d_array &c, const integer_1d_array &ct);


/*************************************************************************
This function sets stopping conditions for the optimizer.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    EpsG    -   >=0
                The  subroutine  finishes  its  work   if   the  condition
                |v|<EpsG is satisfied, where:
                * |.| means Euclidian norm
                * v - scaled gradient vector, v[i]=g[i]*s[i]
                * g - gradient
                * s - scaling coefficients set by MinBLEICSetScale()
    EpsF    -   >=0
                The  subroutine  finishes  its work if on k+1-th iteration
                the  condition  |F(k+1)-F(k)|<=EpsF*max{|F(k)|,|F(k+1)|,1}
                is satisfied.
    EpsX    -   >=0
                The subroutine finishes its work if  on  k+1-th  iteration
                the condition |v|<=EpsX is fulfilled, where:
                * |.| means Euclidian norm
                * v - scaled step vector, v[i]=dx[i]/s[i]
                * dx - step vector, dx=X(k+1)-X(k)
                * s - scaling coefficients set by MinBLEICSetScale()
    MaxIts  -   maximum number of iterations. If MaxIts=0, the  number  of
                iterations is unlimited.

Passing EpsG=0, EpsF=0 and EpsX=0 and MaxIts=0 (simultaneously) will lead
to automatic stopping criterion selection.

NOTE: when SetCond() called with non-zero MaxIts, BLEIC solver may perform
      slightly more than MaxIts iterations. I.e., MaxIts  sets  non-strict
      limit on iterations count.

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minbleicsetcond(const minbleicstate &state, const double epsg, const double epsf, const double epsx, const ae_int_t maxits);


/*************************************************************************
This function sets scaling coefficients for BLEIC optimizer.

ALGLIB optimizers use scaling matrices to test stopping  conditions  (step
size and gradient are scaled before comparison with tolerances).  Scale of
the I-th variable is a translation invariant measure of:
a) "how large" the variable is
b) how large the step should be to make significant changes in the function

Scaling is also used by finite difference variant of the optimizer  - step
along I-th axis is equal to DiffStep*S[I].

In  most  optimizers  (and  in  the  BLEIC  too)  scaling is NOT a form of
preconditioning. It just  affects  stopping  conditions.  You  should  set
preconditioner  by  separate  call  to  one  of  the  MinBLEICSetPrec...()
functions.

There is a special  preconditioning  mode, however,  which  uses   scaling
coefficients to form diagonal preconditioning matrix. You  can  turn  this
mode on, if you want.   But  you should understand that scaling is not the
same thing as preconditioning - these are two different, although  related
forms of tuning solver.

INPUT PARAMETERS:
    State   -   structure stores algorithm state
    S       -   array[N], non-zero scaling coefficients
                S[i] may be negative, sign doesn't matter.

  -- ALGLIB --
     Copyright 14.01.2011 by Bochkanov Sergey
*************************************************************************/
void minbleicsetscale(const minbleicstate &state, const real_1d_array &s);


/*************************************************************************
Modification of the preconditioner: preconditioning is turned off.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state

  -- ALGLIB --
     Copyright 13.10.2010 by Bochkanov Sergey
*************************************************************************/
void minbleicsetprecdefault(const minbleicstate &state);


/*************************************************************************
Modification  of  the  preconditioner:  diagonal of approximate Hessian is
used.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    D       -   diagonal of the approximate Hessian, array[0..N-1],
                (if larger, only leading N elements are used).

NOTE 1: D[i] should be positive. Exception will be thrown otherwise.

NOTE 2: you should pass diagonal of approximate Hessian - NOT ITS INVERSE.

  -- ALGLIB --
     Copyright 13.10.2010 by Bochkanov Sergey
*************************************************************************/
void minbleicsetprecdiag(const minbleicstate &state, const real_1d_array &d);


/*************************************************************************
Modification of the preconditioner: scale-based diagonal preconditioning.

This preconditioning mode can be useful when you  don't  have  approximate
diagonal of Hessian, but you know that your  variables  are  badly  scaled
(for  example,  one  variable is in [1,10], and another in [1000,100000]),
and most part of the ill-conditioning comes from different scales of vars.

In this case simple  scale-based  preconditioner,  with H[i] = 1/(s[i]^2),
can greatly improve convergence.

IMPRTANT: you should set scale of your variables  with  MinBLEICSetScale()
call  (before  or after MinBLEICSetPrecScale() call). Without knowledge of
the scale of your variables scale-based preconditioner will be  just  unit
matrix.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state

  -- ALGLIB --
     Copyright 13.10.2010 by Bochkanov Sergey
*************************************************************************/
void minbleicsetprecscale(const minbleicstate &state);


/*************************************************************************
This function turns on/off reporting.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    NeedXRep-   whether iteration reports are needed or not

If NeedXRep is True, algorithm will call rep() callback function if  it is
provided to MinBLEICOptimize().

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minbleicsetxrep(const minbleicstate &state, const bool needxrep);


/*************************************************************************
This function sets maximum step length

IMPORTANT: this feature is hard to combine with preconditioning. You can't
set upper limit on step length, when you solve optimization  problem  with
linear (non-boundary) constraints AND preconditioner turned on.

When  non-boundary  constraints  are  present,  you  have to either a) use
preconditioner, or b) use upper limit on step length.  YOU CAN'T USE BOTH!
In this case algorithm will terminate with appropriate error code.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    StpMax  -   maximum step length, >=0. Set StpMax to 0.0,  if you don't
                want to limit step length.

Use this subroutine when you optimize target function which contains exp()
or  other  fast  growing  functions,  and optimization algorithm makes too
large  steps  which  lead   to overflow. This function allows us to reject
steps  that  are  too  large  (and  therefore  expose  us  to the possible
overflow) without actually calculating function value at the x+stp*d.

  -- ALGLIB --
     Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
void minbleicsetstpmax(const minbleicstate &state, const double stpmax);


/*************************************************************************
This function provides reverse communication interface
Reverse communication interface is not documented or recommended to use.
See below for functions which provide better documented API
*************************************************************************/
bool minbleiciteration(const minbleicstate &state);


/*************************************************************************
This family of functions is used to launcn iterations of nonlinear optimizer

These functions accept following parameters:
    state   -   algorithm state
    func    -   callback which calculates function (or merit function)
                value func at given point x
    grad    -   callback which calculates function (or merit function)
                value func and gradient grad at given point x
    rep     -   optional callback which is called after each iteration
                can be NULL
    ptr     -   optional pointer which is passed to func/grad/hess/jac/rep
                can be NULL

NOTES:

1. This function has two different implementations: one which  uses  exact
   (analytical) user-supplied gradient,  and one which uses function value
   only  and  numerically  differentiates  function  in  order  to  obtain
   gradient.

   Depending  on  the  specific  function  used to create optimizer object
   (either  MinBLEICCreate() for analytical gradient or  MinBLEICCreateF()
   for numerical differentiation) you should choose appropriate variant of
   MinBLEICOptimize() - one  which  accepts  function  AND gradient or one
   which accepts function ONLY.

   Be careful to choose variant of MinBLEICOptimize() which corresponds to
   your optimization scheme! Table below lists different  combinations  of
   callback (function/gradient) passed to MinBLEICOptimize()  and specific
   function used to create optimizer.


                     |         USER PASSED TO MinBLEICOptimize()
   CREATED WITH      |  function only   |  function and gradient
   ------------------------------------------------------------
   MinBLEICCreateF() |     work                FAIL
   MinBLEICCreate()  |     FAIL                work

   Here "FAIL" denotes inappropriate combinations  of  optimizer  creation
   function  and  MinBLEICOptimize()  version.   Attemps   to   use   such
   combination (for  example,  to  create optimizer with MinBLEICCreateF()
   and  to  pass  gradient  information  to  MinCGOptimize()) will lead to
   exception being thrown. Either  you  did  not pass gradient when it WAS
   needed or you passed gradient when it was NOT needed.

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey

*************************************************************************/
void minbleicoptimize(minbleicstate &state,
    void (*func)(const real_1d_array &x, double &func, void *ptr),
    void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
    void *ptr = NULL);
void minbleicoptimize(minbleicstate &state,
    void (*grad)(const real_1d_array &x, double &func, real_1d_array &grad, void *ptr),
    void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
    void *ptr = NULL);


/*************************************************************************
BLEIC results

INPUT PARAMETERS:
    State   -   algorithm state

OUTPUT PARAMETERS:
    X       -   array[0..N-1], solution
    Rep     -   optimization report. You should check Rep.TerminationType
                in  order  to  distinguish  successful  termination  from
                unsuccessful one:
                * -8    internal integrity control  detected  infinite or
                        NAN   values   in   function/gradient.   Abnormal
                        termination signalled.
                * -7   gradient verification failed.
                       See MinBLEICSetGradientCheck() for more information.
                * -3   inconsistent constraints. Feasible point is
                       either nonexistent or too hard to find. Try to
                       restart optimizer with better initial approximation
                *  1   relative function improvement is no more than EpsF.
                *  2   scaled step is no more than EpsX.
                *  4   scaled gradient norm is no more than EpsG.
                *  5   MaxIts steps was taken
                *  8   terminated by user who called minbleicrequesttermination().
                       X contains point which was "current accepted"  when
                       termination request was submitted.
                More information about fields of this  structure  can  be
                found in the comments on MinBLEICReport datatype.

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minbleicresults(const minbleicstate &state, real_1d_array &x, minbleicreport &rep);


/*************************************************************************
BLEIC results

Buffered implementation of MinBLEICResults() which uses pre-allocated buffer
to store X[]. If buffer size is  too  small,  it  resizes  buffer.  It  is
intended to be used in the inner cycles of performance critical algorithms
where array reallocation penalty is too large to be ignored.

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minbleicresultsbuf(const minbleicstate &state, real_1d_array &x, minbleicreport &rep);


/*************************************************************************
This subroutine restarts algorithm from new point.
All optimization parameters (including constraints) are left unchanged.

This  function  allows  to  solve multiple  optimization  problems  (which
must have  same number of dimensions) without object reallocation penalty.

INPUT PARAMETERS:
    State   -   structure previously allocated with MinBLEICCreate call.
    X       -   new starting point.

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minbleicrestartfrom(const minbleicstate &state, const real_1d_array &x);


/*************************************************************************
This subroutine submits request for termination of running  optimizer.  It
should be called from user-supplied callback when user decides that it  is
time to "smoothly" terminate optimization process.  As  result,  optimizer
stops at point which was "current accepted" when termination  request  was
submitted and returns error code 8 (successful termination).

INPUT PARAMETERS:
    State   -   optimizer structure

NOTE: after  request  for  termination  optimizer  may   perform   several
      additional calls to user-supplied callbacks. It does  NOT  guarantee
      to stop immediately - it just guarantees that these additional calls
      will be discarded later.

NOTE: calling this function on optimizer which is NOT running will have no
      effect.

NOTE: multiple calls to this function are possible. First call is counted,
      subsequent calls are silently ignored.

  -- ALGLIB --
     Copyright 08.10.2014 by Bochkanov Sergey
*************************************************************************/
void minbleicrequesttermination(const minbleicstate &state);


/*************************************************************************
This  subroutine  turns  on  verification  of  the  user-supplied analytic
gradient:
* user calls this subroutine before optimization begins
* MinBLEICOptimize() is called
* prior to  actual  optimization, for each component  of  parameters being
  optimized X[i] algorithm performs following steps:
  * two trial steps are made to X[i]-TestStep*S[i] and X[i]+TestStep*S[i],
    where X[i] is i-th component of the initial point and S[i] is a  scale
    of i-th parameter
  * if needed, steps are bounded with respect to constraints on X[]
  * F(X) is evaluated at these trial points
  * we perform one more evaluation in the middle point of the interval
  * we  build  cubic  model using function values and derivatives at trial
    points and we compare its prediction with actual value in  the  middle
    point
  * in case difference between prediction and actual value is higher  than
    some predetermined threshold, algorithm stops with completion code -7;
    Rep.VarIdx is set to index of the parameter with incorrect derivative.
* after verification is over, algorithm proceeds to the actual optimization.

NOTE 1: verification  needs  N (parameters count) gradient evaluations. It
        is very costly and you should use  it  only  for  low  dimensional
        problems,  when  you  want  to  be  sure  that  you've   correctly
        calculated  analytic  derivatives.  You  should  not use it in the
        production code (unless you want to check derivatives provided  by
        some third party).

NOTE 2: you  should  carefully  choose  TestStep. Value which is too large
        (so large that function behaviour is significantly non-cubic) will
        lead to false alarms. You may use  different  step  for  different
        parameters by means of setting scale with MinBLEICSetScale().

NOTE 3: this function may lead to false positives. In case it reports that
        I-th  derivative was calculated incorrectly, you may decrease test
        step  and  try  one  more  time  - maybe your function changes too
        sharply  and  your  step  is  too  large for such rapidly chanding
        function.

INPUT PARAMETERS:
    State       -   structure used to store algorithm state
    TestStep    -   verification step:
                    * TestStep=0 turns verification off
                    * TestStep>0 activates verification

  -- ALGLIB --
     Copyright 15.06.2012 by Bochkanov Sergey
*************************************************************************/
void minbleicsetgradientcheck(const minbleicstate &state, const double teststep);



/*************************************************************************
                    CONSTRAINED QUADRATIC PROGRAMMING

The subroutine creates QP optimizer. After initial creation,  it  contains
default optimization problem with zero quadratic and linear terms  and  no
constraints. You should set quadratic/linear terms with calls to functions
provided by MinQP subpackage.

You should also choose appropriate QP solver and set it  and  its stopping
criteria by means of MinQPSetAlgo??????() function. Then, you should start
solution process by means of MinQPOptimize() call. Solution itself can  be
obtained with MinQPResults() function.

Following solvers are recommended:
* QuickQP for dense problems with box-only constraints (or no constraints
  at all)
* QP-BLEIC for dense/sparse problems with moderate (up to 50) number of
  general linear constraints
* DENSE-AUL-QP for dense problems with any (small or large) number of
  general linear constraints

INPUT PARAMETERS:
    N       -   problem size

OUTPUT PARAMETERS:
    State   -   optimizer with zero quadratic/linear terms
                and no constraints

  -- ALGLIB --
     Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
void minqpcreate(const ae_int_t n, minqpstate &state);


/*************************************************************************
This function sets linear term for QP solver.

By default, linear term is zero.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    B       -   linear term, array[N].

  -- ALGLIB --
     Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
void minqpsetlinearterm(const minqpstate &state, const real_1d_array &b);


/*************************************************************************
This  function  sets  dense  quadratic  term  for  QP solver. By  default,
quadratic term is zero.

SUPPORT BY QP SOLVERS:

Dense quadratic term can be handled by following QP solvers:
* QuickQP
* BLEIC-QP
* Dense-AUL-QP

IMPORTANT:

This solver minimizes following  function:
    f(x) = 0.5*x'*A*x + b'*x.
Note that quadratic term has 0.5 before it. So if  you  want  to  minimize
    f(x) = x^2 + x
you should rewrite your problem as follows:
    f(x) = 0.5*(2*x^2) + x
and your matrix A will be equal to [[2.0]], not to [[1.0]]

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    A       -   matrix, array[N,N]
    IsUpper -   (optional) storage type:
                * if True, symmetric matrix  A  is  given  by  its  upper
                  triangle, and the lower triangle isn't used
                * if False, symmetric matrix  A  is  given  by  its lower
                  triangle, and the upper triangle isn't used
                * if not given, both lower and upper  triangles  must  be
                  filled.

  -- ALGLIB --
     Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
void minqpsetquadraticterm(const minqpstate &state, const real_2d_array &a, const bool isupper);
void minqpsetquadraticterm(const minqpstate &state, const real_2d_array &a);


/*************************************************************************
This  function  sets  sparse  quadratic  term  for  QP solver. By default,
quadratic  term  is  zero.  This  function  overrides  previous  calls  to
minqpsetquadraticterm() or minqpsetquadratictermsparse().

SUPPORT BY QP SOLVERS:

Sparse quadratic term can be handled by following QP solvers:
* QuickQP
* BLEIC-QP
* Dense-AUL-QP (internally converts sparse matrix to dense format)

IMPORTANT:

This solver minimizes following  function:
    f(x) = 0.5*x'*A*x + b'*x.
Note that quadratic term has 0.5 before it. So if  you  want  to  minimize
    f(x) = x^2 + x
you should rewrite your problem as follows:
    f(x) = 0.5*(2*x^2) + x
and your matrix A will be equal to [[2.0]], not to [[1.0]]

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    A       -   matrix, array[N,N]
    IsUpper -   (optional) storage type:
                * if True, symmetric matrix  A  is  given  by  its  upper
                  triangle, and the lower triangle isn't used
                * if False, symmetric matrix  A  is  given  by  its lower
                  triangle, and the upper triangle isn't used
                * if not given, both lower and upper  triangles  must  be
                  filled.

  -- ALGLIB --
     Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
void minqpsetquadratictermsparse(const minqpstate &state, const sparsematrix &a, const bool isupper);


/*************************************************************************
This function sets starting point for QP solver. It is useful to have
good initial approximation to the solution, because it will increase
speed of convergence and identification of active constraints.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    X       -   starting point, array[N].

  -- ALGLIB --
     Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
void minqpsetstartingpoint(const minqpstate &state, const real_1d_array &x);


/*************************************************************************
This  function sets origin for QP solver. By default, following QP program
is solved:

    min(0.5*x'*A*x+b'*x)

This function allows to solve different problem:

    min(0.5*(x-x_origin)'*A*(x-x_origin)+b'*(x-x_origin))

Specification of non-zero origin affects function being minimized, but not
constraints. Box and  linear  constraints  are  still  calculated  without
origin.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    XOrigin -   origin, array[N].

  -- ALGLIB --
     Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
void minqpsetorigin(const minqpstate &state, const real_1d_array &xorigin);


/*************************************************************************
This function sets scaling coefficients.

ALGLIB optimizers use scaling matrices to test stopping  conditions  (step
size and gradient are scaled before comparison  with  tolerances)  and  as
preconditioner.

Scale of the I-th variable is a translation invariant measure of:
a) "how large" the variable is
b) how large the step should be to make significant changes in the function

INPUT PARAMETERS:
    State   -   structure stores algorithm state
    S       -   array[N], non-zero scaling coefficients
                S[i] may be negative, sign doesn't matter.

  -- ALGLIB --
     Copyright 14.01.2011 by Bochkanov Sergey
*************************************************************************/
void minqpsetscale(const minqpstate &state, const real_1d_array &s);


/*************************************************************************
DEPRECATED   DEPRECATED   DEPRECATED   DEPRECATED   DEPRECATED  DEPRECATED


This function tells solver to use Cholesky-based algorithm. This algorithm
was deprecated in ALGLIB 3.9.0 because its performance is inferior to that
of BLEIC-QP or  QuickQP  on  high-dimensional  problems.  Furthermore,  it
supports only dense convex QP problems.

This solver is no longer active by default.

We recommend you to switch to AUL-QP, BLEIC-QP or QuickQP solver.


DEPRECATED   DEPRECATED   DEPRECATED   DEPRECATED   DEPRECATED  DEPRECATED

  -- ALGLIB --
     Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
void minqpsetalgocholesky(const minqpstate &state);


/*************************************************************************
This function tells solver to use BLEIC-based algorithm and sets  stopping
criteria for the algorithm.

ALGORITHM FEATURES:

* supports dense and sparse QP problems
* supports box and general linear equality/inequality constraints
* can solve all types of problems  (convex,  semidefinite,  nonconvex)  as
  long as they are bounded from below under constraints.
  Say, it is possible to solve "min{-x^2} subject to -1<=x<=+1".
  Of course, global  minimum  is found only  for  positive  definite   and
  semidefinite  problems.  As  for indefinite ones - only local minimum is
  found.

ALGORITHM OUTLINE:

* BLEIC-QP solver is just a driver function for MinBLEIC solver; it solves
  quadratic  programming   problem   as   general   linearly   constrained
  optimization problem, which is solved by means of BLEIC solver  (part of
  ALGLIB, active set method).

ALGORITHM LIMITATIONS:

* this algorithm is fast enough for large-scale problems with small amount
  of general linear constraints (say, up to 50),  but  it  is  inefficient
  for problems with several hundreds of  constraints.  Iteration  cost  is
  roughly quadratic w.r.t. constraint count.
  Furthermore, it can not efficiently handle sparse constraints (they  are
  converted to dense format prior to solution).
  Thus, if you have large and/or sparse constraint matrix  and  convex  QP
  problem, Dense-AUL-QP solver may be better solution.
* unlike QuickQP solver, this algorithm does not perform Newton steps  and
  does not use Level 3 BLAS. Being general-purpose active set  method,  it
  can activate constraints only one-by-one. Thus, its performance is lower
  than that of QuickQP.
* its precision is also a bit  inferior  to  that  of   QuickQP.  BLEIC-QP
  performs only LBFGS steps (no Newton steps), which are good at detecting
  neighborhood of the solution, buy needs many iterations to find solution
  with more than 6 digits of precision.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    EpsG    -   >=0
                The  subroutine  finishes  its  work   if   the  condition
                |v|<EpsG is satisfied, where:
                * |.| means Euclidian norm
                * v - scaled constrained gradient vector, v[i]=g[i]*s[i]
                * g - gradient
                * s - scaling coefficients set by MinQPSetScale()
    EpsF    -   >=0
                The  subroutine  finishes its work if exploratory steepest
                descent  step  on  k+1-th iteration  satisfies   following
                condition:  |F(k+1)-F(k)|<=EpsF*max{|F(k)|,|F(k+1)|,1}
    EpsX    -   >=0
                The  subroutine  finishes its work if exploratory steepest
                descent  step  on  k+1-th iteration  satisfies   following
                condition:
                * |.| means Euclidian norm
                * v - scaled step vector, v[i]=dx[i]/s[i]
                * dx - step vector, dx=X(k+1)-X(k)
                * s - scaling coefficients set by MinQPSetScale()
    MaxIts  -   maximum number of iterations. If MaxIts=0, the  number  of
                iterations is unlimited. NOTE: this  algorithm uses  LBFGS
                iterations,  which  are  relatively  cheap,  but   improve
                function value only a bit. So you will need many iterations
                to converge - from 0.1*N to 10*N, depending  on  problem's
                condition number.

IT IS VERY IMPORTANT TO CALL MinQPSetScale() WHEN YOU USE THIS  ALGORITHM
BECAUSE ITS STOPPING CRITERIA ARE SCALE-DEPENDENT!

Passing EpsG=0, EpsF=0 and EpsX=0 and MaxIts=0 (simultaneously) will lead
to automatic stopping criterion selection (presently it is  small    step
length, but it may change in the future versions of ALGLIB).

  -- ALGLIB --
     Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
void minqpsetalgobleic(const minqpstate &state, const double epsg, const double epsf, const double epsx, const ae_int_t maxits);


/*************************************************************************
This function tells QP solver to use Dense-AUL algorithm and sets stopping
criteria for the algorithm.

ALGORITHM FEATURES:

* supports dense and sparse QP problems; although it uses  dense  Cholesky
  to build preconditioner, it still works faster for sparse problems.
* supports  box  and  dense/sparse  general   linear   equality/inequality
  constraints
* convergence is theoretically proved for positive-definite  (convex)   QP
  problems. Semidefinite and non-convex problems can be solved as long  as
  they  are   bounded  from  below  under  constraints,  although  without
  theoretical guarantees.
* this solver is better than QP-BLEIC on problems  with  large  number  of
  general linear constraints.

ALGORITHM OUTLINE:

* this  algorithm   is   an   augmented   Lagrangian   method  with  dense
  preconditioner (hence  its  name).  It  is  similar  to  barrier/penalty
  methods, but much more precise and faster.
* it performs several outer iterations in order to refine  values  of  the
  Lagrange multipliers. Single outer  iteration  is  a  solution  of  some
  unconstrained optimization problem: first  it  performs  dense  Cholesky
  factorization of the Hessian in order to build preconditioner  (adaptive
  regularization is applied to enforce positive  definiteness),  and  then
  it uses L-BFGS optimizer to solve optimization problem.
* typically you need about 5-10 outer iterations to converge to solution

ALGORITHM LIMITATIONS:

* because dense Cholesky driver is used, this algorithm has O(N^2)  memory
  requirements and O(OuterIterations*N^3) minimum running time.  From  the
  practical  point  of  view,  it  limits  its  applicability  by  several
  thousands of variables.
  From  the  other  side,  variables  count  is  the most limiting factor,
  and dependence on constraint count is  much  more  lower. Assuming  that
  constraint matrix is sparse, it may handle tens of thousands  of general
  linear constraints.
* its precision is lower than that of BLEIC-QP and QuickQP. It is hard  to
  find solution with more than 6 digits of precision.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    EpsX    -   >=0, stopping criteria for inner optimizer.
                Inner  iterations  are  stopped  when  step  length  (with
                variable scaling being applied) is less than EpsX.
                See  minqpsetscale()  for  more  information  on  variable
                scaling.
    Rho     -   penalty coefficient, Rho>0:
                * large enough  that  algorithm  converges  with   desired
                  precision.
                * not TOO large to prevent ill-conditioning
                * recommended values are 100, 1000 or 10000
    ItsCnt  -   number of outer iterations:
                * recommended values: 10-15 (although  in  most  cases  it
                  converges within 5 iterations, you may need a  few  more
                  to be sure).
                * ItsCnt=0 means that small number of outer iterations  is
                  automatically chosen (10 iterations in current version).
                * ItsCnt=1 means that AUL algorithm performs just as usual
                  barrier method.
                * ItsCnt>1 means that  AUL  algorithm  performs  specified
                  number of outer iterations

IT IS VERY IMPORTANT TO CALL minqpsetscale() WHEN YOU USE THIS  ALGORITHM
BECAUSE ITS CONVERGENCE PROPERTIES AND STOPPING CRITERIA ARE SCALE-DEPENDENT!

NOTE: Passing  EpsX=0  will  lead  to  automatic  step  length  selection
      (specific step length chosen may change in the future  versions  of
      ALGLIB, so it is better to specify step length explicitly).

  -- ALGLIB --
     Copyright 20.08.2016 by Bochkanov Sergey
*************************************************************************/
void minqpsetalgodenseaul(const minqpstate &state, const double epsx, const double rho, const ae_int_t itscnt);


/*************************************************************************
This function tells solver to use QuickQP  algorithm:  special  extra-fast
algorithm for problems with box-only constrants. It may  solve  non-convex
problems as long as they are bounded from below under constraints.

ALGORITHM FEATURES:
* many times (from 5x to 50x!) faster than BLEIC-based QP solver; utilizes
  accelerated methods for activation of constraints.
* supports dense and sparse QP problems
* supports ONLY box constraints; general linear constraints are NOT
  supported by this solver
* can solve all types of problems  (convex,  semidefinite,  nonconvex)  as
  long as they are bounded from below under constraints.
  Say, it is possible to solve "min{-x^2} subject to -1<=x<=+1".
  In convex/semidefinite case global minimum  is  returned,  in  nonconvex
  case - algorithm returns one of the local minimums.

ALGORITHM OUTLINE:

* algorithm  performs  two kinds of iterations: constrained CG  iterations
  and constrained Newton iterations
* initially it performs small number of constrained CG  iterations,  which
  can efficiently activate/deactivate multiple constraints
* after CG phase algorithm tries to calculate Cholesky  decomposition  and
  to perform several constrained Newton steps. If  Cholesky  decomposition
  failed (matrix is indefinite even under constraints),  we  perform  more
  CG iterations until we converge to such set of constraints  that  system
  matrix becomes  positive  definite.  Constrained  Newton  steps  greatly
  increase convergence speed and precision.
* algorithm interleaves CG and Newton iterations which  allows  to  handle
  indefinite matrices (CG phase) and quickly converge after final  set  of
  constraints is found (Newton phase). Combination of CG and Newton phases
  is called "outer iteration".
* it is possible to turn off Newton  phase  (beneficial  for  semidefinite
  problems - Cholesky decomposition will fail too often)

ALGORITHM LIMITATIONS:

* algorithm does not support general  linear  constraints;  only  box ones
  are supported
* Cholesky decomposition for sparse problems  is  performed  with  Skyline
  Cholesky solver, which is intended for low-profile matrices. No profile-
  reducing reordering of variables is performed in this version of ALGLIB.
* problems with near-zero negative eigenvalues (or exacty zero  ones)  may
  experience about 2-3x performance penalty. The reason is  that  Cholesky
  decomposition can not be performed until we identify directions of  zero
  and negative curvature and activate corresponding boundary constraints -
  but we need a lot of trial and errors because these directions  are hard
  to notice in the matrix spectrum.
  In this case you may turn off Newton phase of algorithm.
  Large negative eigenvalues  are  not  an  issue,  so  highly  non-convex
  problems can be solved very efficiently.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    EpsG    -   >=0
                The  subroutine  finishes  its  work   if   the  condition
                |v|<EpsG is satisfied, where:
                * |.| means Euclidian norm
                * v - scaled constrained gradient vector, v[i]=g[i]*s[i]
                * g - gradient
                * s - scaling coefficients set by MinQPSetScale()
    EpsF    -   >=0
                The  subroutine  finishes its work if exploratory steepest
                descent  step  on  k+1-th iteration  satisfies   following
                condition:  |F(k+1)-F(k)|<=EpsF*max{|F(k)|,|F(k+1)|,1}
    EpsX    -   >=0
                The  subroutine  finishes its work if exploratory steepest
                descent  step  on  k+1-th iteration  satisfies   following
                condition:
                * |.| means Euclidian norm
                * v - scaled step vector, v[i]=dx[i]/s[i]
                * dx - step vector, dx=X(k+1)-X(k)
                * s - scaling coefficients set by MinQPSetScale()
    MaxOuterIts-maximum number of OUTER iterations.  One  outer  iteration
                includes some amount of CG iterations (from 5 to  ~N)  and
                one or several (usually small amount) Newton steps.  Thus,
                one outer iteration has high cost, but can greatly  reduce
                funcation value.
                Use 0 if you do not want to limit number of outer iterations.
    UseNewton-  use Newton phase or not:
                * Newton phase improves performance of  positive  definite
                  dense problems (about 2 times improvement can be observed)
                * can result in some performance penalty  on  semidefinite
                  or slightly negative definite  problems  -  each  Newton
                  phase will bring no improvement (Cholesky failure),  but
                  still will require computational time.
                * if you doubt, you can turn off this  phase  -  optimizer
                  will retain its most of its high speed.

IT IS VERY IMPORTANT TO CALL MinQPSetScale() WHEN YOU USE THIS  ALGORITHM
BECAUSE ITS STOPPING CRITERIA ARE SCALE-DEPENDENT!

Passing EpsG=0, EpsF=0 and EpsX=0 and MaxIts=0 (simultaneously) will lead
to automatic stopping criterion selection (presently it is  small    step
length, but it may change in the future versions of ALGLIB).

  -- ALGLIB --
     Copyright 22.05.2014 by Bochkanov Sergey
*************************************************************************/
void minqpsetalgoquickqp(const minqpstate &state, const double epsg, const double epsf, const double epsx, const ae_int_t maxouterits, const bool usenewton);


/*************************************************************************
This function sets box constraints for QP solver

Box constraints are inactive by default (after  initial  creation).  After
being  set,  they  are  preserved until explicitly turned off with another
SetBC() call.

All QP solvers may handle box constraints.

INPUT PARAMETERS:
    State   -   structure stores algorithm state
    BndL    -   lower bounds, array[N].
                If some (all) variables are unbounded, you may specify
                very small number or -INF (latter is recommended because
                it will allow solver to use better algorithm).
    BndU    -   upper bounds, array[N].
                If some (all) variables are unbounded, you may specify
                very large number or +INF (latter is recommended because
                it will allow solver to use better algorithm).

NOTE: it is possible to specify BndL[i]=BndU[i]. In this case I-th
variable will be "frozen" at X[i]=BndL[i]=BndU[i].

  -- ALGLIB --
     Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
void minqpsetbc(const minqpstate &state, const real_1d_array &bndl, const real_1d_array &bndu);


/*************************************************************************
This function sets dense linear constraints for QP optimizer.

This  function  overrides  results  of  previous  calls  to  minqpsetlc(),
minqpsetlcsparse() and minqpsetlcmixed().  After  call  to  this  function
sparse constraints are dropped, and you have only those constraints  which
were specified in the present call.

If you want  to  specify  mixed  (with  dense  and  sparse  terms)  linear
constraints, you should call minqpsetlcmixed().

SUPPORT BY QP SOLVERS:

Following QP solvers can handle dense linear constraints:
* BLEIC-QP          -   handles them  with  high  precision,  but  may  be
                        inefficient for problems with hundreds of constraints
* Dense-AUL-QP      -   handles them with moderate precision (approx. 10^-6),
                        may efficiently handle thousands of constraints.

Following QP solvers can NOT handle dense linear constraints:
* QuickQP           -   can not handle general linear constraints

INPUT PARAMETERS:
    State   -   structure previously allocated with MinQPCreate call.
    C       -   linear constraints, array[K,N+1].
                Each row of C represents one constraint, either equality
                or inequality (see below):
                * first N elements correspond to coefficients,
                * last element corresponds to the right part.
                All elements of C (including right part) must be finite.
    CT      -   type of constraints, array[K]:
                * if CT[i]>0, then I-th constraint is C[i,*]*x >= C[i,n+1]
                * if CT[i]=0, then I-th constraint is C[i,*]*x  = C[i,n+1]
                * if CT[i]<0, then I-th constraint is C[i,*]*x <= C[i,n+1]
    K       -   number of equality/inequality constraints, K>=0:
                * if given, only leading K elements of C/CT are used
                * if not given, automatically determined from sizes of C/CT

NOTE 1: linear (non-bound) constraints are satisfied only approximately  -
        there always exists some violation due  to  numerical  errors  and
        algorithmic limitations (BLEIC-QP solver is most  precise,  AUL-QP
        solver is less precise).

  -- ALGLIB --
     Copyright 19.06.2012 by Bochkanov Sergey
*************************************************************************/
void minqpsetlc(const minqpstate &state, const real_2d_array &c, const integer_1d_array &ct, const ae_int_t k);
void minqpsetlc(const minqpstate &state, const real_2d_array &c, const integer_1d_array &ct);


/*************************************************************************
This function sets sparse linear constraints for QP optimizer.

This  function  overrides  results  of  previous  calls  to  minqpsetlc(),
minqpsetlcsparse() and minqpsetlcmixed().  After  call  to  this  function
dense constraints are dropped, and you have only those  constraints  which
were specified in the present call.

If you want  to  specify  mixed  (with  dense  and  sparse  terms)  linear
constraints, you should call minqpsetlcmixed().

SUPPORT BY QP SOLVERS:

Following QP solvers can handle sparse linear constraints:
* BLEIC-QP          -   handles them  with  high  precision,  but can  not
                        utilize their sparsity - sparse constraint  matrix
                        is silently converted to dense  format.  Thus,  it
                        may be inefficient for problems with  hundreds  of
                        constraints.
* Dense-AUL-QP      -   although this solver uses dense linear algebra  to
                        calculate   Cholesky   preconditioner,   it    may
                        efficiently  handle  sparse  constraints.  It  may
                        solve problems  with  hundreds  and  thousands  of
                        constraints. The only drawback is  that  precision
                        of constraint handling is typically within 1E-4...
                        ..1E-6 range.

Following QP solvers can NOT handle sparse linear constraints:
* QuickQP           -   can not handle general linear constraints

INPUT PARAMETERS:
    State   -   structure previously allocated with MinQPCreate call.
    C       -   linear  constraints,  sparse  matrix  with  dimensions  at
                least [K,N+1]. If matrix has  larger  size,  only  leading
                Kx(N+1) rectangle is used.
                Each row of C represents one constraint, either equality
                or inequality (see below):
                * first N elements correspond to coefficients,
                * last element corresponds to the right part.
                All elements of C (including right part) must be finite.
    CT      -   type of constraints, array[K]:
                * if CT[i]>0, then I-th constraint is C[i,*]*x >= C[i,n+1]
                * if CT[i]=0, then I-th constraint is C[i,*]*x  = C[i,n+1]
                * if CT[i]<0, then I-th constraint is C[i,*]*x <= C[i,n+1]
    K       -   number of equality/inequality constraints, K>=0

NOTE 1: linear (non-bound) constraints are satisfied only approximately  -
        there always exists some violation due  to  numerical  errors  and
        algorithmic limitations (BLEIC-QP solver is most  precise,  AUL-QP
        solver is less precise).

  -- ALGLIB --
     Copyright 22.08.2016 by Bochkanov Sergey
*************************************************************************/
void minqpsetlcsparse(const minqpstate &state, const sparsematrix &c, const integer_1d_array &ct, const ae_int_t k);


/*************************************************************************
This function sets mixed linear constraints, which include a set of  dense
rows, and a set of sparse rows.

This  function  overrides  results  of  previous  calls  to  minqpsetlc(),
minqpsetlcsparse() and minqpsetlcmixed().

This function may be useful if constraint matrix includes large number  of
both types of rows - dense and sparse. If you have just a few sparse rows,
you  may  represent  them  in  dense  format  without loosing performance.
Similarly, if you have just a few dense rows, you may store them in sparse
format with almost same performance.

SUPPORT BY QP SOLVERS:

Following QP solvers can handle mixed dense/sparse linear constraints:
* BLEIC-QP          -   handles them  with  high  precision,  but can  not
                        utilize their sparsity - sparse constraint  matrix
                        is silently converted to dense  format.  Thus,  it
                        may be inefficient for problems with  hundreds  of
                        constraints.
* Dense-AUL-QP      -   although this solver uses dense linear algebra  to
                        calculate   Cholesky   preconditioner,   it    may
                        efficiently  handle  sparse  constraints.  It  may
                        solve problems  with  hundreds  and  thousands  of
                        constraints. The only drawback is  that  precision
                        of constraint handling is typically within 1E-4...
                        ..1E-6 range.

Following QP solvers can NOT handle mixed linear constraints:
* QuickQP           -   can not handle general linear constraints at all

INPUT PARAMETERS:
    State   -   structure previously allocated with MinQPCreate call.
    DenseC  -   dense linear constraints, array[K,N+1].
                Each row of DenseC represents one constraint, either equality
                or inequality (see below):
                * first N elements correspond to coefficients,
                * last element corresponds to the right part.
                All elements of DenseC (including right part) must be finite.
    DenseCT -   type of constraints, array[K]:
                * if DenseCT[i]>0, then I-th constraint is DenseC[i,*]*x >= DenseC[i,n+1]
                * if DenseCT[i]=0, then I-th constraint is DenseC[i,*]*x  = DenseC[i,n+1]
                * if DenseCT[i]<0, then I-th constraint is DenseC[i,*]*x <= DenseC[i,n+1]
    DenseK  -   number of equality/inequality constraints, DenseK>=0
    SparseC -   linear  constraints,  sparse  matrix  with  dimensions  at
                least [SparseK,N+1]. If matrix has  larger  size,  only  leading
                SPARSEKx(N+1) rectangle is used.
                Each row of C represents one constraint, either equality
                or inequality (see below):
                * first N elements correspond to coefficients,
                * last element corresponds to the right part.
                All elements of C (including right part) must be finite.
    SparseCT-   type of sparse constraints, array[K]:
                * if SparseCT[i]>0, then I-th constraint is SparseC[i,*]*x >= SparseC[i,n+1]
                * if SparseCT[i]=0, then I-th constraint is SparseC[i,*]*x  = SparseC[i,n+1]
                * if SparseCT[i]<0, then I-th constraint is SparseC[i,*]*x <= SparseC[i,n+1]
    SparseK -   number of sparse equality/inequality constraints, K>=0

NOTE 1: linear (non-bound) constraints are satisfied only approximately  -
        there always exists some violation due  to  numerical  errors  and
        algorithmic limitations (BLEIC-QP solver is most  precise,  AUL-QP
        solver is less precise).

  -- ALGLIB --
     Copyright 22.08.2016 by Bochkanov Sergey
*************************************************************************/
void minqpsetlcmixed(const minqpstate &state, const real_2d_array &densec, const integer_1d_array &densect, const ae_int_t densek, const sparsematrix &sparsec, const integer_1d_array &sparsect, const ae_int_t sparsek);


/*************************************************************************
This function solves quadratic programming problem.

Prior to calling this function you should choose solver by means of one of
the following functions:

* minqpsetalgoquickqp()     - for QuickQP solver
* minqpsetalgobleic()       - for BLEIC-QP solver
* minqpsetalgodenseaul()    - for Dense-AUL-QP solver

These functions also allow you to control stopping criteria of the solver.
If you did not set solver,  MinQP  subpackage  will  automatically  select
solver for your problem and will run it with default stopping criteria.

However, it is better to set explicitly solver and its stopping criteria.

INPUT PARAMETERS:
    State   -   algorithm state

You should use MinQPResults() function to access results after calls
to this function.

  -- ALGLIB --
     Copyright 11.01.2011 by Bochkanov Sergey.
     Special thanks to Elvira Illarionova  for  important  suggestions  on
     the linearly constrained QP algorithm.
*************************************************************************/
void minqpoptimize(const minqpstate &state);


/*************************************************************************
QP solver results

INPUT PARAMETERS:
    State   -   algorithm state

OUTPUT PARAMETERS:
    X       -   array[0..N-1], solution.
                This array is allocated and initialized only when
                Rep.TerminationType parameter is positive (success).
    Rep     -   optimization report. You should check Rep.TerminationType,
                which contains completion code, and you may check  another
                fields which contain another information  about  algorithm
                functioning.

                Failure codes returned by algorithm are:
                * -5    inappropriate solver was used:
                        * QuickQP solver for problem with  general  linear
                          constraints
                * -4    BLEIC-QP/QuickQP   solver    found   unconstrained
                        direction  of   negative  curvature  (function  is
                        unbounded from below even under constraints),   no
                        meaningful minimum can be found.
                * -3    inconsistent constraints (or maybe  feasible point
                        is too  hard  to  find).  If  you  are  sure  that
                        constraints are feasible, try to restart optimizer
                        with better initial approximation.

                Completion codes specific for Cholesky algorithm:
                *  4   successful completion

                Completion codes specific for BLEIC/QuickQP algorithms:
                *  1   relative function improvement is no more than EpsF.
                *  2   scaled step is no more than EpsX.
                *  4   scaled gradient norm is no more than EpsG.
                *  5   MaxIts steps was taken

  -- ALGLIB --
     Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
void minqpresults(const minqpstate &state, real_1d_array &x, minqpreport &rep);


/*************************************************************************
QP results

Buffered implementation of MinQPResults() which uses pre-allocated  buffer
to store X[]. If buffer size is  too  small,  it  resizes  buffer.  It  is
intended to be used in the inner cycles of performance critical algorithms
where array reallocation penalty is too large to be ignored.

  -- ALGLIB --
     Copyright 11.01.2011 by Bochkanov Sergey
*************************************************************************/
void minqpresultsbuf(const minqpstate &state, real_1d_array &x, minqpreport &rep);

/*************************************************************************
                  NONLINEARLY  CONSTRAINED  OPTIMIZATION
            WITH PRECONDITIONED AUGMENTED LAGRANGIAN ALGORITHM

DESCRIPTION:
The  subroutine  minimizes  function   F(x)  of N arguments subject to any
combination of:
* bound constraints
* linear inequality constraints
* linear equality constraints
* nonlinear equality constraints Gi(x)=0
* nonlinear inequality constraints Hi(x)<=0

REQUIREMENTS:
* user must provide function value and gradient for F(), H(), G()
* starting point X0 must be feasible or not too far away from the feasible
  set
* F(), G(), H() are twice continuously differentiable on the feasible  set
  and its neighborhood
* nonlinear constraints G() and H() must have non-zero gradient at  G(x)=0
  and at H(x)=0. Say, constraint like x^2>=1 is supported, but x^2>=0   is
  NOT supported.

USAGE:

Constrained optimization if far more complex than the  unconstrained  one.
Nonlinearly constrained optimization is one of the most esoteric numerical
procedures.

Here we give very brief outline  of  the  MinNLC  optimizer.  We  strongly
recommend you to study examples in the ALGLIB Reference Manual and to read
ALGLIB User Guide on optimization, which is available at
http://www.alglib.net/optimization/

1. User initializes algorithm state with MinNLCCreate() call  and  chooses
   what NLC solver to use. There is some solver which is used by  default,
   with default settings, but you should NOT rely on  default  choice.  It
   may change in future releases of ALGLIB without notice, and no one  can
   guarantee that new solver will be  able  to  solve  your  problem  with
   default settings.

   From the other side, if you choose solver explicitly, you can be pretty
   sure that it will work with new ALGLIB releases.

   In the current release following solvers can be used:
   * AUL solver (activated with MinNLCSetAlgoAUL() function)

2. User adds boundary and/or linear and/or nonlinear constraints by  means
   of calling one of the following functions:
   a) MinNLCSetBC() for boundary constraints
   b) MinNLCSetLC() for linear constraints
   c) MinNLCSetNLC() for nonlinear constraints
   You may combine (a), (b) and (c) in one optimization problem.

3. User sets scale of the variables with MinNLCSetScale() function. It  is
   VERY important to set  scale  of  the  variables,  because  nonlinearly
   constrained problems are hard to solve when variables are badly scaled.

4. User sets  stopping  conditions  with  MinNLCSetCond(). If  NLC  solver
   uses  inner/outer  iteration  layout,  this  function   sets   stopping
   conditions for INNER iterations.

5. User chooses one of the  preconditioning  methods.  Preconditioning  is
   very  important  for  efficient  handling  of boundary/linear/nonlinear
   constraints. Without preconditioning algorithm would require  thousands
   of iterations even for simple problems.  Several preconditioners can be
   used:
   a) inexact LBFGS-based, with O(N*K) evaluation time
   b) exact low rank one,  with O(N*K^2) evaluation time
   c) exact robust one,    with O(N^3+K*N^2) evaluation time
   where K is a total number of general linear and  nonlinear  constraints
   (box ones are not counted).
   Since version 3.11.0 ALGLIB uses exact robust preconditioner as default
   option, but in some cases exact low rank one may be better option.

6. Finally, user calls MinNLCOptimize()  function  which  takes  algorithm
   state and pointer (delegate, etc.) to callback function which calculates
   F/G/H.

7. User calls MinNLCResults() to get solution

8. Optionally user may call MinNLCRestartFrom() to solve  another  problem
   with same N but another starting point. MinNLCRestartFrom()  allows  to
   reuse already initialized structure.


INPUT PARAMETERS:
    N       -   problem dimension, N>0:
                * if given, only leading N elements of X are used
                * if not given, automatically determined from size ofX
    X       -   starting point, array[N]:
                * it is better to set X to a feasible point
                * but X can be infeasible, in which case algorithm will try
                  to find feasible point first, using X as initial
                  approximation.

OUTPUT PARAMETERS:
    State   -   structure stores algorithm state

  -- ALGLIB --
     Copyright 06.06.2014 by Bochkanov Sergey
*************************************************************************/
void minnlccreate(const ae_int_t n, const real_1d_array &x, minnlcstate &state);
void minnlccreate(const real_1d_array &x, minnlcstate &state);


/*************************************************************************
This subroutine is a finite  difference variant of MinNLCCreate(). It uses
finite differences in order to differentiate target function.

Description below contains information which is specific to this  function
only. We recommend to read comments on MinNLCCreate() in order to get more
information about creation of NLC optimizer.

INPUT PARAMETERS:
    N       -   problem dimension, N>0:
                * if given, only leading N elements of X are used
                * if not given, automatically determined from size ofX
    X       -   starting point, array[N]:
                * it is better to set X to a feasible point
                * but X can be infeasible, in which case algorithm will try
                  to find feasible point first, using X as initial
                  approximation.
    DiffStep-   differentiation step, >0

OUTPUT PARAMETERS:
    State   -   structure stores algorithm state

NOTES:
1. algorithm uses 4-point central formula for differentiation.
2. differentiation step along I-th axis is equal to DiffStep*S[I] where
   S[] is scaling vector which can be set by MinNLCSetScale() call.
3. we recommend you to use moderate values of  differentiation  step.  Too
   large step will result in too large TRUNCATION  errors, while too small
   step will result in too large NUMERICAL  errors.  1.0E-4  can  be  good
   value to start from.
4. Numerical  differentiation  is   very   inefficient  -   one   gradient
   calculation needs 4*N function evaluations. This function will work for
   any N - either small (1...10), moderate (10...100) or  large  (100...).
   However, performance penalty will be too severe for any N's except  for
   small ones.
   We should also say that code which relies on numerical  differentiation
   is  less   robust   and  precise.  Imprecise  gradient  may  slow  down
   convergence, especially on highly nonlinear problems.
   Thus  we  recommend to use this function for fast prototyping on small-
   dimensional problems only, and to implement analytical gradient as soon
   as possible.

  -- ALGLIB --
     Copyright 06.06.2014 by Bochkanov Sergey
*************************************************************************/
void minnlccreatef(const ae_int_t n, const real_1d_array &x, const double diffstep, minnlcstate &state);
void minnlccreatef(const real_1d_array &x, const double diffstep, minnlcstate &state);


/*************************************************************************
This function sets boundary constraints for NLC optimizer.

Boundary constraints are inactive by  default  (after  initial  creation).
They are preserved after algorithm restart with  MinNLCRestartFrom().

You may combine boundary constraints with  general  linear ones - and with
nonlinear ones! Boundary constraints are  handled  more  efficiently  than
other types.  Thus,  if  your  problem  has  mixed  constraints,  you  may
explicitly specify some of them as boundary and save some time/space.

INPUT PARAMETERS:
    State   -   structure stores algorithm state
    BndL    -   lower bounds, array[N].
                If some (all) variables are unbounded, you may specify
                very small number or -INF.
    BndU    -   upper bounds, array[N].
                If some (all) variables are unbounded, you may specify
                very large number or +INF.

NOTE 1:  it is possible to specify  BndL[i]=BndU[i].  In  this  case  I-th
variable will be "frozen" at X[i]=BndL[i]=BndU[i].

NOTE 2:  when you solve your problem  with  augmented  Lagrangian  solver,
         boundary constraints are  satisfied  only  approximately!  It  is
         possible   that  algorithm  will  evaluate  function  outside  of
         feasible area!

  -- ALGLIB --
     Copyright 06.06.2014 by Bochkanov Sergey
*************************************************************************/
void minnlcsetbc(const minnlcstate &state, const real_1d_array &bndl, const real_1d_array &bndu);


/*************************************************************************
This function sets linear constraints for MinNLC optimizer.

Linear constraints are inactive by default (after initial creation).  They
are preserved after algorithm restart with MinNLCRestartFrom().

You may combine linear constraints with boundary ones - and with nonlinear
ones! If your problem has mixed constraints, you  may  explicitly  specify
some of them as linear. It  may  help  optimizer   to   handle  them  more
efficiently.

INPUT PARAMETERS:
    State   -   structure previously allocated with MinNLCCreate call.
    C       -   linear constraints, array[K,N+1].
                Each row of C represents one constraint, either equality
                or inequality (see below):
                * first N elements correspond to coefficients,
                * last element corresponds to the right part.
                All elements of C (including right part) must be finite.
    CT      -   type of constraints, array[K]:
                * if CT[i]>0, then I-th constraint is C[i,*]*x >= C[i,n+1]
                * if CT[i]=0, then I-th constraint is C[i,*]*x  = C[i,n+1]
                * if CT[i]<0, then I-th constraint is C[i,*]*x <= C[i,n+1]
    K       -   number of equality/inequality constraints, K>=0:
                * if given, only leading K elements of C/CT are used
                * if not given, automatically determined from sizes of C/CT

NOTE 1: when you solve your problem  with  augmented  Lagrangian   solver,
        linear constraints are  satisfied  only   approximately!   It   is
        possible   that  algorithm  will  evaluate  function  outside   of
        feasible area!

  -- ALGLIB --
     Copyright 06.06.2014 by Bochkanov Sergey
*************************************************************************/
void minnlcsetlc(const minnlcstate &state, const real_2d_array &c, const integer_1d_array &ct, const ae_int_t k);
void minnlcsetlc(const minnlcstate &state, const real_2d_array &c, const integer_1d_array &ct);


/*************************************************************************
This function sets nonlinear constraints for MinNLC optimizer.

In fact, this function sets NUMBER of nonlinear  constraints.  Constraints
itself (constraint functions) are passed to MinNLCOptimize() method.  This
method requires user-defined vector function F[]  and  its  Jacobian  J[],
where:
* first component of F[] and first row  of  Jacobian  J[]  corresponds  to
  function being minimized
* next NLEC components of F[] (and rows  of  J)  correspond  to  nonlinear
  equality constraints G_i(x)=0
* next NLIC components of F[] (and rows  of  J)  correspond  to  nonlinear
  inequality constraints H_i(x)<=0

NOTE: you may combine nonlinear constraints with linear/boundary ones.  If
      your problem has mixed constraints, you  may explicitly specify some
      of them as linear ones. It may help optimizer to  handle  them  more
      efficiently.

INPUT PARAMETERS:
    State   -   structure previously allocated with MinNLCCreate call.
    NLEC    -   number of Non-Linear Equality Constraints (NLEC), >=0
    NLIC    -   number of Non-Linear Inquality Constraints (NLIC), >=0

NOTE 1: when you solve your problem  with  augmented  Lagrangian   solver,
        nonlinear constraints are satisfied only  approximately!   It   is
        possible   that  algorithm  will  evaluate  function  outside   of
        feasible area!

NOTE 2: algorithm scales variables  according  to   scale   specified   by
        MinNLCSetScale()  function,  so  it can handle problems with badly
        scaled variables (as long as we KNOW their scales).

        However,  there  is  no  way  to  automatically  scale   nonlinear
        constraints Gi(x) and Hi(x). Inappropriate scaling  of  Gi/Hi  may
        ruin convergence. Solving problem with  constraint  "1000*G0(x)=0"
        is NOT same as solving it with constraint "0.001*G0(x)=0".

        It  means  that  YOU  are  the  one who is responsible for correct
        scaling of nonlinear constraints Gi(x) and Hi(x). We recommend you
        to scale nonlinear constraints in such way that I-th component  of
        dG/dX (or dH/dx) has approximately unit  magnitude  (for  problems
        with unit scale)  or  has  magnitude approximately equal to 1/S[i]
        (where S is a scale set by MinNLCSetScale() function).


  -- ALGLIB --
     Copyright 06.06.2014 by Bochkanov Sergey
*************************************************************************/
void minnlcsetnlc(const minnlcstate &state, const ae_int_t nlec, const ae_int_t nlic);


/*************************************************************************
This function sets stopping conditions for inner iterations of  optimizer.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    EpsG    -   >=0
                The  subroutine  finishes  its  work   if   the  condition
                |v|<EpsG is satisfied, where:
                * |.| means Euclidian norm
                * v - scaled gradient vector, v[i]=g[i]*s[i]
                * g - gradient
                * s - scaling coefficients set by MinNLCSetScale()
    EpsF    -   >=0
                The  subroutine  finishes  its work if on k+1-th iteration
                the  condition  |F(k+1)-F(k)|<=EpsF*max{|F(k)|,|F(k+1)|,1}
                is satisfied.
    EpsX    -   >=0
                The subroutine finishes its work if  on  k+1-th  iteration
                the condition |v|<=EpsX is fulfilled, where:
                * |.| means Euclidian norm
                * v - scaled step vector, v[i]=dx[i]/s[i]
                * dx - step vector, dx=X(k+1)-X(k)
                * s - scaling coefficients set by MinNLCSetScale()
    MaxIts  -   maximum number of iterations. If MaxIts=0, the  number  of
                iterations is unlimited.

Passing EpsG=0, EpsF=0 and EpsX=0 and MaxIts=0 (simultaneously) will lead
to automatic stopping criterion selection.

  -- ALGLIB --
     Copyright 06.06.2014 by Bochkanov Sergey
*************************************************************************/
void minnlcsetcond(const minnlcstate &state, const double epsg, const double epsf, const double epsx, const ae_int_t maxits);


/*************************************************************************
This function sets scaling coefficients for NLC optimizer.

ALGLIB optimizers use scaling matrices to test stopping  conditions  (step
size and gradient are scaled before comparison with tolerances).  Scale of
the I-th variable is a translation invariant measure of:
a) "how large" the variable is
b) how large the step should be to make significant changes in the function

Scaling is also used by finite difference variant of the optimizer  - step
along I-th axis is equal to DiffStep*S[I].

INPUT PARAMETERS:
    State   -   structure stores algorithm state
    S       -   array[N], non-zero scaling coefficients
                S[i] may be negative, sign doesn't matter.

  -- ALGLIB --
     Copyright 06.06.2014 by Bochkanov Sergey
*************************************************************************/
void minnlcsetscale(const minnlcstate &state, const real_1d_array &s);


/*************************************************************************
This function sets preconditioner to "inexact LBFGS-based" mode.

Preconditioning is very important for convergence of  Augmented Lagrangian
algorithm because presence of penalty term makes problem  ill-conditioned.
Difference between  performance  of  preconditioned  and  unpreconditioned
methods can be as large as 100x!

MinNLC optimizer may use following preconditioners,  each  with   its  own
benefits and drawbacks:
    a) inexact LBFGS-based, with O(N*K) evaluation time
    b) exact low rank one,  with O(N*K^2) evaluation time
    c) exact robust one,    with O(N^3+K*N^2) evaluation time
where K is a total number of general linear and nonlinear constraints (box
ones are not counted).

Inexact  LBFGS-based  preconditioner  uses L-BFGS  formula  combined  with
orthogonality assumption to perform very fast updates. For a N-dimensional
problem with K general linear or nonlinear constraints (boundary ones  are
not counted) it has O(N*K) cost per iteration.  This   preconditioner  has
best  quality  (less  iterations)  when   general   linear  and  nonlinear
constraints are orthogonal to each other (orthogonality  with  respect  to
boundary constraints is not required). Number of iterations increases when
constraints  are  non-orthogonal, because algorithm assumes orthogonality,
but still it is better than no preconditioner at all.

INPUT PARAMETERS:
    State   -   structure stores algorithm state

  -- ALGLIB --
     Copyright 26.09.2014 by Bochkanov Sergey
*************************************************************************/
void minnlcsetprecinexact(const minnlcstate &state);


/*************************************************************************
This function sets preconditioner to "exact low rank" mode.

Preconditioning is very important for convergence of  Augmented Lagrangian
algorithm because presence of penalty term makes problem  ill-conditioned.
Difference between  performance  of  preconditioned  and  unpreconditioned
methods can be as large as 100x!

MinNLC optimizer may use following preconditioners,  each  with   its  own
benefits and drawbacks:
    a) inexact LBFGS-based, with O(N*K) evaluation time
    b) exact low rank one,  with O(N*K^2) evaluation time
    c) exact robust one,    with O(N^3+K*N^2) evaluation time
where K is a total number of general linear and nonlinear constraints (box
ones are not counted).

It also provides special unpreconditioned mode of operation which  can  be
used for test purposes. Comments below discuss low rank preconditioner.

Exact low-rank preconditioner  uses  Woodbury  matrix  identity  to  build
quadratic model of the penalized function. It has following features:
* no special assumptions about orthogonality of constraints
* preconditioner evaluation is optimized for K<<N. Its cost  is  O(N*K^2),
  so it may become prohibitively slow for K>=N.
* finally, stability of the process is guaranteed only for K<<N.  Woodbury
  update often fail for K>=N due to degeneracy of  intermediate  matrices.
  That's why we recommend to use "exact robust"  preconditioner  for  such
  cases.

RECOMMENDATIONS

We  recommend  to  choose  between  "exact  low  rank"  and "exact robust"
preconditioners, with "low rank" version being chosen  when  you  know  in
advance that total count of non-box constraints won't exceed N, and "robust"
version being chosen when you need bulletproof solution.

INPUT PARAMETERS:
    State   -   structure stores algorithm state
    UpdateFreq- update frequency. Preconditioner is  rebuilt  after  every
                UpdateFreq iterations. Recommended value: 10 or higher.
                Zero value means that good default value will be used.

  -- ALGLIB --
     Copyright 26.09.2014 by Bochkanov Sergey
*************************************************************************/
void minnlcsetprecexactlowrank(const minnlcstate &state, const ae_int_t updatefreq);


/*************************************************************************
This function sets preconditioner to "exact robust" mode.

Preconditioning is very important for convergence of  Augmented Lagrangian
algorithm because presence of penalty term makes problem  ill-conditioned.
Difference between  performance  of  preconditioned  and  unpreconditioned
methods can be as large as 100x!

MinNLC optimizer may use following preconditioners,  each  with   its  own
benefits and drawbacks:
    a) inexact LBFGS-based, with O(N*K) evaluation time
    b) exact low rank one,  with O(N*K^2) evaluation time
    c) exact robust one,    with O(N^3+K*N^2) evaluation time
where K is a total number of general linear and nonlinear constraints (box
ones are not counted).

It also provides special unpreconditioned mode of operation which  can  be
used for test purposes. Comments below discuss robust preconditioner.

Exact  robust  preconditioner   uses   Cholesky  decomposition  to  invert
approximate Hessian matrix H=D+W'*C*W (where D stands for  diagonal  terms
of Hessian, combined result of initial scaling matrix and penalty from box
constraints; W stands for general linear constraints and linearization  of
nonlinear ones; C stands for diagonal matrix of penalty coefficients).

This preconditioner has following features:
* no special assumptions about constraint structure
* preconditioner is optimized  for  stability;  unlike  "exact  low  rank"
  version which fails for K>=N, this one works well for any value of K.
* the only drawback is that is takes O(N^3+K*N^2) time  to  build  it.  No
  economical  Woodbury update is applied even when it  makes  sense,  thus
  there  are  exist situations (K<<N) when "exact low rank" preconditioner
  outperforms this one.

RECOMMENDATIONS

We  recommend  to  choose  between  "exact  low  rank"  and "exact robust"
preconditioners, with "low rank" version being chosen  when  you  know  in
advance that total count of non-box constraints won't exceed N, and "robust"
version being chosen when you need bulletproof solution.

INPUT PARAMETERS:
    State   -   structure stores algorithm state
    UpdateFreq- update frequency. Preconditioner is  rebuilt  after  every
                UpdateFreq iterations. Recommended value: 10 or higher.
                Zero value means that good default value will be used.

  -- ALGLIB --
     Copyright 26.09.2014 by Bochkanov Sergey
*************************************************************************/
void minnlcsetprecexactrobust(const minnlcstate &state, const ae_int_t updatefreq);


/*************************************************************************
This function sets preconditioner to "turned off" mode.

Preconditioning is very important for convergence of  Augmented Lagrangian
algorithm because presence of penalty term makes problem  ill-conditioned.
Difference between  performance  of  preconditioned  and  unpreconditioned
methods can be as large as 100x!

MinNLC optimizer may  utilize  two  preconditioners,  each  with  its  own
benefits and drawbacks: a) inexact LBFGS-based, and b) exact low rank one.
It also provides special unpreconditioned mode of operation which  can  be
used for test purposes.

This function activates this test mode. Do not use it in  production  code
to solve real-life problems.

INPUT PARAMETERS:
    State   -   structure stores algorithm state

  -- ALGLIB --
     Copyright 26.09.2014 by Bochkanov Sergey
*************************************************************************/
void minnlcsetprecnone(const minnlcstate &state);


/*************************************************************************
This function sets maximum step length (after scaling of step vector  with
respect to variable scales specified by minnlcsetscale() call).

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    StpMax  -   maximum step length, >=0. Set StpMax to 0.0 (default),  if
                you don't want to limit step length.

Use this subroutine when you optimize target function which contains exp()
or  other  fast  growing  functions,  and optimization algorithm makes too
large  steps  which  leads  to overflow. This function allows us to reject
steps  that  are  too  large  (and  therefore  expose  us  to the possible
overflow) without actually calculating function value at the x+stp*d.

  -- ALGLIB --
     Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
void minnlcsetstpmax(const minnlcstate &state, const double stpmax);


/*************************************************************************
This  function  tells MinNLC unit to use  Augmented  Lagrangian  algorithm
for nonlinearly constrained  optimization.  This  algorithm  is  a  slight
modification of one described in "A Modified Barrier-Augmented  Lagrangian
Method for  Constrained  Minimization  (1999)"  by  D.GOLDFARB,  R.POLYAK,
K. SCHEINBERG, I.YUZEFOVICH.

Augmented Lagrangian algorithm works by converting problem  of  minimizing
F(x) subject to equality/inequality constraints   to unconstrained problem
of the form

    min[ f(x) +
        + Rho*PENALTY_EQ(x)   + SHIFT_EQ(x,Nu1) +
        + Rho*PENALTY_INEQ(x) + SHIFT_INEQ(x,Nu2) ]

where:
* Rho is a fixed penalization coefficient
* PENALTY_EQ(x) is a penalty term, which is used to APPROXIMATELY  enforce
  equality constraints
* SHIFT_EQ(x) is a special "shift"  term  which  is  used  to  "fine-tune"
  equality constraints, greatly increasing precision
* PENALTY_INEQ(x) is a penalty term which is used to approximately enforce
  inequality constraints
* SHIFT_INEQ(x) is a special "shift"  term  which  is  used to "fine-tune"
  inequality constraints, greatly increasing precision
* Nu1/Nu2 are vectors of Lagrange coefficients which are fine-tuned during
  outer iterations of algorithm

This  version  of  AUL  algorithm  uses   preconditioner,  which   greatly
accelerates convergence. Because this  algorithm  is  similar  to  penalty
methods,  it  may  perform  steps  into  infeasible  area.  All  kinds  of
constraints (boundary, linear and nonlinear ones) may   be   violated   in
intermediate points - and in the solution.  However,  properly  configured
AUL method is significantly better at handling  constraints  than  barrier
and/or penalty methods.

The very basic outline of algorithm is given below:
1) first outer iteration is performed with "default"  values  of  Lagrange
   multipliers Nu1/Nu2. Solution quality is low (candidate  point  can  be
   too  far  away  from  true  solution; large violation of constraints is
   possible) and is comparable with that of penalty methods.
2) subsequent outer iterations  refine  Lagrange  multipliers  and improve
   quality of the solution.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    Rho     -   penalty coefficient, Rho>0:
                * large enough  that  algorithm  converges  with   desired
                  precision. Minimum value is 10*max(S'*diag(H)*S),  where
                  S is a scale matrix (set by MinNLCSetScale) and H  is  a
                  Hessian of the function being minimized. If you can  not
                  easily estimate Hessian norm,  see  our  recommendations
                  below.
                * not TOO large to prevent ill-conditioning
                * for unit-scale problems (variables and Hessian have unit
                  magnitude), Rho=100 or Rho=1000 can be used.
                * it is important to note that Rho is internally multiplied
                  by scaling matrix, i.e. optimum value of Rho depends  on
                  scale of variables specified  by  MinNLCSetScale().
    ItsCnt  -   number of outer iterations:
                * ItsCnt=0 means that small number of outer iterations  is
                  automatically chosen (10 iterations in current version).
                * ItsCnt=1 means that AUL algorithm performs just as usual
                  barrier method.
                * ItsCnt>1 means that  AUL  algorithm  performs  specified
                  number of outer iterations

HOW TO CHOOSE PARAMETERS

Nonlinear optimization is a tricky area and Augmented Lagrangian algorithm
is sometimes hard to tune. Good values of  Rho  and  ItsCnt  are  problem-
specific.  In  order  to  help  you   we   prepared   following   set   of
recommendations:

* for  unit-scale  problems  (variables  and Hessian have unit magnitude),
  Rho=100 or Rho=1000 can be used.

* start from  some  small  value of Rho and solve problem  with  just  one
  outer iteration (ItcCnt=1). In this case algorithm behaves like  penalty
  method. Increase Rho in 2x or 10x steps until you  see  that  one  outer
  iteration returns point which is "rough approximation to solution".

  It is very important to have Rho so  large  that  penalty  term  becomes
  constraining i.e. modified function becomes highly convex in constrained
  directions.

  From the other side, too large Rho may prevent you  from  converging  to
  the solution. You can diagnose it by studying number of inner iterations
  performed by algorithm: too few (5-10 on  1000-dimensional  problem)  or
  too many (orders of magnitude more than  dimensionality)  usually  means
  that Rho is too large.

* with just one outer iteration you  usually  have  low-quality  solution.
  Some constraints can be violated with very  large  margin,  while  other
  ones (which are NOT violated in the true solution) can push final  point
  too far in the inner area of the feasible set.

  For example, if you have constraint x0>=0 and true solution  x0=1,  then
  merely a presence of "x0>=0" will introduce a bias towards larger values
  of x0. Say, algorithm may stop at x0=1.5 instead of 1.0.

* after you found good Rho, you may increase number of  outer  iterations.
  ItsCnt=10 is a good value. Subsequent outer iteration will refine values
  of  Lagrange  multipliers.  Constraints  which  were  violated  will  be
  enforced, inactive constraints will be dropped (corresponding multipliers
  will be decreased). Ideally, you  should  see  10-1000x  improvement  in
  constraint handling (constraint violation is reduced).

* if  you  see  that  algorithm  converges  to  vicinity  of solution, but
  additional outer iterations do not refine solution,  it  may  mean  that
  algorithm is unstable - it wanders around true  solution,  but  can  not
  approach it. Sometimes algorithm may be stabilized by increasing Rho one
  more time, making it 5x or 10x larger.

SCALING OF CONSTRAINTS [IMPORTANT]

AUL optimizer scales   variables   according   to   scale   specified   by
MinNLCSetScale() function, so it can handle  problems  with  badly  scaled
variables (as long as we KNOW their scales).   However,  because  function
being optimized is a mix  of  original  function and  constraint-dependent
penalty  functions, it  is   important  to   rescale  both  variables  AND
constraints.

Say,  if  you  minimize f(x)=x^2 subject to 1000000*x>=0,  then  you  have
constraint whose scale is different from that of target  function (another
example is 0.000001*x>=0). It is also possible to have constraints   whose
scales  are   misaligned:   1000000*x0>=0, 0.000001*x1<=0.   Inappropriate
scaling may ruin convergence because minimizing x^2 subject to x>=0 is NOT
same as minimizing it subject to 1000000*x>=0.

Because we  know  coefficients  of  boundary/linear  constraints,  we  can
automatically rescale and normalize them. However,  there  is  no  way  to
automatically rescale nonlinear constraints Gi(x) and  Hi(x)  -  they  are
black boxes.

It means that YOU are the one who is  responsible  for  correct scaling of
nonlinear constraints  Gi(x)  and  Hi(x).  We  recommend  you  to  rescale
nonlinear constraints in such way that I-th component of dG/dX (or  dH/dx)
has magnitude approximately equal to 1/S[i] (where S  is  a  scale  set by
MinNLCSetScale() function).

WHAT IF IT DOES NOT CONVERGE?

It is possible that AUL algorithm fails to converge to precise  values  of
Lagrange multipliers. It stops somewhere around true solution, but candidate
point is still too far from solution, and some constraints  are  violated.
Such kind of failure is specific for Lagrangian algorithms -  technically,
they stop at some point, but this point is not constrained solution.

There are exist several reasons why algorithm may fail to converge:
a) too loose stopping criteria for inner iteration
b) degenerate, redundant constraints
c) target function has unconstrained extremum exactly at the  boundary  of
   some constraint
d) numerical noise in the target function

In all these cases algorithm is unstable - each outer iteration results in
large and almost random step which improves handling of some  constraints,
but violates other ones (ideally  outer iterations should form a  sequence
of progressively decreasing steps towards solution).

First reason possible is  that  too  loose  stopping  criteria  for  inner
iteration were specified. Augmented Lagrangian algorithm solves a sequence
of intermediate problems, and requries each of them to be solved with high
precision. Insufficient precision results in incorrect update of  Lagrange
multipliers.

Another reason is that you may have specified degenerate constraints: say,
some constraint was repeated twice. In most cases AUL algorithm gracefully
handles such situations, but sometimes it may spend too much time figuring
out subtle degeneracies in constraint matrix.

Third reason is tricky and hard to diagnose. Consider situation  when  you
minimize  f=x^2  subject to constraint x>=0.  Unconstrained   extremum  is
located  exactly  at  the  boundary  of  constrained  area.  In  this case
algorithm will tend to oscillate between negative  and  positive  x.  Each
time it stops at x<0 it "reinforces" constraint x>=0, and each time it  is
bounced to x>0 it "relaxes" constraint (and is  attracted  to  x<0).

Such situation  sometimes  happens  in  problems  with  hidden  symetries.
Algorithm  is  got  caught  in  a  loop with  Lagrange  multipliers  being
continuously increased/decreased. Luckily, such loop forms after at  least
three iterations, so this problem can be solved by  DECREASING  number  of
outer iterations down to 1-2 and increasing  penalty  coefficient  Rho  as
much as possible.

Final reason is numerical noise. AUL algorithm is robust against  moderate
noise (more robust than, say, active set methods),  but  large  noise  may
destabilize algorithm.

  -- ALGLIB --
     Copyright 06.06.2014 by Bochkanov Sergey
*************************************************************************/
void minnlcsetalgoaul(const minnlcstate &state, const double rho, const ae_int_t itscnt);


/*************************************************************************
This function turns on/off reporting.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    NeedXRep-   whether iteration reports are needed or not

If NeedXRep is True, algorithm will call rep() callback function if  it is
provided to MinNLCOptimize().

NOTE: algorithm passes two parameters to rep() callback  -  current  point
      and penalized function value at current point. Important -  function
      value which is returned is NOT function being minimized. It  is  sum
      of the value of the function being minimized - and penalty term.

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minnlcsetxrep(const minnlcstate &state, const bool needxrep);


/*************************************************************************
This function provides reverse communication interface
Reverse communication interface is not documented or recommended to use.
See below for functions which provide better documented API
*************************************************************************/
bool minnlciteration(const minnlcstate &state);


/*************************************************************************
This family of functions is used to launcn iterations of nonlinear optimizer

These functions accept following parameters:
    state   -   algorithm state
    fvec    -   callback which calculates function vector fi[]
                at given point x
    jac     -   callback which calculates function vector fi[]
                and Jacobian jac at given point x
    rep     -   optional callback which is called after each iteration
                can be NULL
    ptr     -   optional pointer which is passed to func/grad/hess/jac/rep
                can be NULL


NOTES:

1. This function has two different implementations: one which  uses  exact
   (analytical) user-supplied Jacobian, and one which uses  only  function
   vector and numerically  differentiates  function  in  order  to  obtain
   gradient.

   Depending  on  the  specific  function  used to create optimizer object
   you should choose appropriate variant of MinNLCOptimize() -  one  which
   accepts function AND Jacobian or one which accepts ONLY function.

   Be careful to choose variant of MinNLCOptimize()  which  corresponds to
   your optimization scheme! Table below lists different  combinations  of
   callback (function/gradient) passed to MinNLCOptimize()   and  specific
   function used to create optimizer.


                     |         USER PASSED TO MinNLCOptimize()
   CREATED WITH      |  function only   |  function and gradient
   ------------------------------------------------------------
   MinNLCCreateF()   |     works               FAILS
   MinNLCCreate()    |     FAILS               works

   Here "FAILS" denotes inappropriate combinations  of  optimizer creation
   function  and  MinNLCOptimize()  version.   Attemps   to    use    such
   combination will lead to exception. Either  you  did  not pass gradient
   when it WAS needed or you passed gradient when it was NOT needed.

  -- ALGLIB --
     Copyright 06.06.2014 by Bochkanov Sergey

*************************************************************************/
void minnlcoptimize(minnlcstate &state,
    void (*fvec)(const real_1d_array &x, real_1d_array &fi, void *ptr),
    void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
    void *ptr = NULL);
void minnlcoptimize(minnlcstate &state,
    void  (*jac)(const real_1d_array &x, real_1d_array &fi, real_2d_array &jac, void *ptr),
    void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
    void *ptr = NULL);


/*************************************************************************
MinNLC results

INPUT PARAMETERS:
    State   -   algorithm state

OUTPUT PARAMETERS:
    X       -   array[0..N-1], solution
    Rep     -   optimization report. You should check Rep.TerminationType
                in  order  to  distinguish  successful  termination  from
                unsuccessful one:
                * -8    internal integrity control  detected  infinite or
                        NAN   values   in   function/gradient.   Abnormal
                        termination signalled.
                * -7   gradient verification failed.
                       See MinNLCSetGradientCheck() for more information.
                *  1   relative function improvement is no more than EpsF.
                *  2   scaled step is no more than EpsX.
                *  4   scaled gradient norm is no more than EpsG.
                *  5   MaxIts steps was taken
                More information about fields of this  structure  can  be
                found in the comments on MinNLCReport datatype.

  -- ALGLIB --
     Copyright 06.06.2014 by Bochkanov Sergey
*************************************************************************/
void minnlcresults(const minnlcstate &state, real_1d_array &x, minnlcreport &rep);


/*************************************************************************
NLC results

Buffered implementation of MinNLCResults() which uses pre-allocated buffer
to store X[]. If buffer size is  too  small,  it  resizes  buffer.  It  is
intended to be used in the inner cycles of performance critical algorithms
where array reallocation penalty is too large to be ignored.

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minnlcresultsbuf(const minnlcstate &state, real_1d_array &x, minnlcreport &rep);


/*************************************************************************
This subroutine restarts algorithm from new point.
All optimization parameters (including constraints) are left unchanged.

This  function  allows  to  solve multiple  optimization  problems  (which
must have  same number of dimensions) without object reallocation penalty.

INPUT PARAMETERS:
    State   -   structure previously allocated with MinNLCCreate call.
    X       -   new starting point.

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minnlcrestartfrom(const minnlcstate &state, const real_1d_array &x);


/*************************************************************************
This  subroutine  turns  on  verification  of  the  user-supplied analytic
gradient:
* user calls this subroutine before optimization begins
* MinNLCOptimize() is called
* prior to  actual  optimization, for each component  of  parameters being
  optimized X[i] algorithm performs following steps:
  * two trial steps are made to X[i]-TestStep*S[i] and X[i]+TestStep*S[i],
    where X[i] is i-th component of the initial point and S[i] is a  scale
    of i-th parameter
  * F(X) is evaluated at these trial points
  * we perform one more evaluation in the middle point of the interval
  * we  build  cubic  model using function values and derivatives at trial
    points and we compare its prediction with actual value in  the  middle
    point
  * in case difference between prediction and actual value is higher  than
    some predetermined threshold, algorithm stops with completion code -7;
    Rep.VarIdx is set to index of the parameter with incorrect derivative,
    and Rep.FuncIdx is set to index of the function.
* after verification is over, algorithm proceeds to the actual optimization.

NOTE 1: verification  needs  N (parameters count) gradient evaluations. It
        is very costly and you should use  it  only  for  low  dimensional
        problems,  when  you  want  to  be  sure  that  you've   correctly
        calculated  analytic  derivatives.  You  should  not use it in the
        production code (unless you want to check derivatives provided  by
        some third party).

NOTE 2: you  should  carefully  choose  TestStep. Value which is too large
        (so large that function behaviour is significantly non-cubic) will
        lead to false alarms. You may use  different  step  for  different
        parameters by means of setting scale with MinNLCSetScale().

NOTE 3: this function may lead to false positives. In case it reports that
        I-th  derivative was calculated incorrectly, you may decrease test
        step  and  try  one  more  time  - maybe your function changes too
        sharply  and  your  step  is  too  large for such rapidly chanding
        function.

INPUT PARAMETERS:
    State       -   structure used to store algorithm state
    TestStep    -   verification step:
                    * TestStep=0 turns verification off
                    * TestStep>0 activates verification

  -- ALGLIB --
     Copyright 15.06.2014 by Bochkanov Sergey
*************************************************************************/
void minnlcsetgradientcheck(const minnlcstate &state, const double teststep);

/*************************************************************************
                     BOX CONSTRAINED OPTIMIZATION
          WITH FAST ACTIVATION OF MULTIPLE BOX CONSTRAINTS

DESCRIPTION:
The  subroutine  minimizes  function   F(x) of N arguments subject  to box
constraints (with some of box constraints actually being equality ones).

This optimizer uses algorithm similar to that of MinBLEIC (optimizer  with
general linear constraints), but presence of box-only  constraints  allows
us to use faster constraint activation strategies. On large-scale problems,
with multiple constraints active at the solution, this  optimizer  can  be
several times faster than BLEIC.

REQUIREMENTS:
* user must provide function value and gradient
* starting point X0 must be feasible or
  not too far away from the feasible set
* grad(f) must be Lipschitz continuous on a level set:
  L = { x : f(x)<=f(x0) }
* function must be defined everywhere on the feasible set F

USAGE:

Constrained optimization if far more complex than the unconstrained one.
Here we give very brief outline of the BC optimizer. We strongly recommend
you to read examples in the ALGLIB Reference Manual and to read ALGLIB User Guide
on optimization, which is available at http://www.alglib.net/optimization/

1. User initializes algorithm state with MinBCCreate() call

2. USer adds box constraints by calling MinBCSetBC() function.

3. User sets stopping conditions with MinBCSetCond().

4. User calls MinBCOptimize() function which takes algorithm  state and
   pointer (delegate, etc.) to callback function which calculates F/G.

5. User calls MinBCResults() to get solution

6. Optionally user may call MinBCRestartFrom() to solve another problem
   with same N but another starting point.
   MinBCRestartFrom() allows to reuse already initialized structure.


INPUT PARAMETERS:
    N       -   problem dimension, N>0:
                * if given, only leading N elements of X are used
                * if not given, automatically determined from size ofX
    X       -   starting point, array[N]:
                * it is better to set X to a feasible point
                * but X can be infeasible, in which case algorithm will try
                  to find feasible point first, using X as initial
                  approximation.

OUTPUT PARAMETERS:
    State   -   structure stores algorithm state

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minbccreate(const ae_int_t n, const real_1d_array &x, minbcstate &state);
void minbccreate(const real_1d_array &x, minbcstate &state);


/*************************************************************************
The subroutine is finite difference variant of MinBCCreate().  It  uses
finite differences in order to differentiate target function.

Description below contains information which is specific to  this function
only. We recommend to read comments on MinBCCreate() in  order  to  get
more information about creation of BC optimizer.

INPUT PARAMETERS:
    N       -   problem dimension, N>0:
                * if given, only leading N elements of X are used
                * if not given, automatically determined from size of X
    X       -   starting point, array[0..N-1].
    DiffStep-   differentiation step, >0

OUTPUT PARAMETERS:
    State   -   structure which stores algorithm state

NOTES:
1. algorithm uses 4-point central formula for differentiation.
2. differentiation step along I-th axis is equal to DiffStep*S[I] where
   S[] is scaling vector which can be set by MinBCSetScale() call.
3. we recommend you to use moderate values of  differentiation  step.  Too
   large step will result in too large truncation  errors, while too small
   step will result in too large numerical  errors.  1.0E-6  can  be  good
   value to start with.
4. Numerical  differentiation  is   very   inefficient  -   one   gradient
   calculation needs 4*N function evaluations. This function will work for
   any N - either small (1...10), moderate (10...100) or  large  (100...).
   However, performance penalty will be too severe for any N's except  for
   small ones.
   We should also say that code which relies on numerical  differentiation
   is  less  robust and precise. CG needs exact gradient values. Imprecise
   gradient may slow  down  convergence, especially  on  highly  nonlinear
   problems.
   Thus  we  recommend to use this function for fast prototyping on small-
   dimensional problems only, and to implement analytical gradient as soon
   as possible.

  -- ALGLIB --
     Copyright 16.05.2011 by Bochkanov Sergey
*************************************************************************/
void minbccreatef(const ae_int_t n, const real_1d_array &x, const double diffstep, minbcstate &state);
void minbccreatef(const real_1d_array &x, const double diffstep, minbcstate &state);


/*************************************************************************
This function sets boundary constraints for BC optimizer.

Boundary constraints are inactive by default (after initial creation).
They are preserved after algorithm restart with MinBCRestartFrom().

INPUT PARAMETERS:
    State   -   structure stores algorithm state
    BndL    -   lower bounds, array[N].
                If some (all) variables are unbounded, you may specify
                very small number or -INF.
    BndU    -   upper bounds, array[N].
                If some (all) variables are unbounded, you may specify
                very large number or +INF.

NOTE 1: it is possible to specify BndL[i]=BndU[i]. In this case I-th
variable will be "frozen" at X[i]=BndL[i]=BndU[i].

NOTE 2: this solver has following useful properties:
* bound constraints are always satisfied exactly
* function is evaluated only INSIDE area specified by  bound  constraints,
  even  when  numerical  differentiation is used (algorithm adjusts  nodes
  according to boundary constraints)

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minbcsetbc(const minbcstate &state, const real_1d_array &bndl, const real_1d_array &bndu);


/*************************************************************************
This function sets stopping conditions for the optimizer.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    EpsG    -   >=0
                The  subroutine  finishes  its  work   if   the  condition
                |v|<EpsG is satisfied, where:
                * |.| means Euclidian norm
                * v - scaled gradient vector, v[i]=g[i]*s[i]
                * g - gradient
                * s - scaling coefficients set by MinBCSetScale()
    EpsF    -   >=0
                The  subroutine  finishes  its work if on k+1-th iteration
                the  condition  |F(k+1)-F(k)|<=EpsF*max{|F(k)|,|F(k+1)|,1}
                is satisfied.
    EpsX    -   >=0
                The subroutine finishes its work if  on  k+1-th  iteration
                the condition |v|<=EpsX is fulfilled, where:
                * |.| means Euclidian norm
                * v - scaled step vector, v[i]=dx[i]/s[i]
                * dx - step vector, dx=X(k+1)-X(k)
                * s - scaling coefficients set by MinBCSetScale()
    MaxIts  -   maximum number of iterations. If MaxIts=0, the  number  of
                iterations is unlimited.

Passing EpsG=0, EpsF=0 and EpsX=0 and MaxIts=0 (simultaneously) will lead
to automatic stopping criterion selection.

NOTE: when SetCond() called with non-zero MaxIts, BC solver may perform
      slightly more than MaxIts iterations. I.e., MaxIts  sets  non-strict
      limit on iterations count.

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minbcsetcond(const minbcstate &state, const double epsg, const double epsf, const double epsx, const ae_int_t maxits);


/*************************************************************************
This function sets scaling coefficients for BC optimizer.

ALGLIB optimizers use scaling matrices to test stopping  conditions  (step
size and gradient are scaled before comparison with tolerances).  Scale of
the I-th variable is a translation invariant measure of:
a) "how large" the variable is
b) how large the step should be to make significant changes in the function

Scaling is also used by finite difference variant of the optimizer  - step
along I-th axis is equal to DiffStep*S[I].

In  most  optimizers  (and  in  the  BC  too)  scaling is NOT a form of
preconditioning. It just  affects  stopping  conditions.  You  should  set
preconditioner  by  separate  call  to  one  of  the  MinBCSetPrec...()
functions.

There is a special  preconditioning  mode, however,  which  uses   scaling
coefficients to form diagonal preconditioning matrix. You  can  turn  this
mode on, if you want.   But  you should understand that scaling is not the
same thing as preconditioning - these are two different, although  related
forms of tuning solver.

INPUT PARAMETERS:
    State   -   structure stores algorithm state
    S       -   array[N], non-zero scaling coefficients
                S[i] may be negative, sign doesn't matter.

  -- ALGLIB --
     Copyright 14.01.2011 by Bochkanov Sergey
*************************************************************************/
void minbcsetscale(const minbcstate &state, const real_1d_array &s);


/*************************************************************************
Modification of the preconditioner: preconditioning is turned off.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state

  -- ALGLIB --
     Copyright 13.10.2010 by Bochkanov Sergey
*************************************************************************/
void minbcsetprecdefault(const minbcstate &state);


/*************************************************************************
Modification  of  the  preconditioner:  diagonal of approximate Hessian is
used.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    D       -   diagonal of the approximate Hessian, array[0..N-1],
                (if larger, only leading N elements are used).

NOTE 1: D[i] should be positive. Exception will be thrown otherwise.

NOTE 2: you should pass diagonal of approximate Hessian - NOT ITS INVERSE.

  -- ALGLIB --
     Copyright 13.10.2010 by Bochkanov Sergey
*************************************************************************/
void minbcsetprecdiag(const minbcstate &state, const real_1d_array &d);


/*************************************************************************
Modification of the preconditioner: scale-based diagonal preconditioning.

This preconditioning mode can be useful when you  don't  have  approximate
diagonal of Hessian, but you know that your  variables  are  badly  scaled
(for  example,  one  variable is in [1,10], and another in [1000,100000]),
and most part of the ill-conditioning comes from different scales of vars.

In this case simple  scale-based  preconditioner,  with H[i] = 1/(s[i]^2),
can greatly improve convergence.

IMPRTANT: you should set scale of your variables  with  MinBCSetScale()
call  (before  or after MinBCSetPrecScale() call). Without knowledge of
the scale of your variables scale-based preconditioner will be  just  unit
matrix.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state

  -- ALGLIB --
     Copyright 13.10.2010 by Bochkanov Sergey
*************************************************************************/
void minbcsetprecscale(const minbcstate &state);


/*************************************************************************
This function turns on/off reporting.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    NeedXRep-   whether iteration reports are needed or not

If NeedXRep is True, algorithm will call rep() callback function if  it is
provided to MinBCOptimize().

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minbcsetxrep(const minbcstate &state, const bool needxrep);


/*************************************************************************
This function sets maximum step length

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    StpMax  -   maximum step length, >=0. Set StpMax to 0.0,  if you don't
                want to limit step length.

Use this subroutine when you optimize target function which contains exp()
or  other  fast  growing  functions,  and optimization algorithm makes too
large  steps  which  lead   to overflow. This function allows us to reject
steps  that  are  too  large  (and  therefore  expose  us  to the possible
overflow) without actually calculating function value at the x+stp*d.

  -- ALGLIB --
     Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
void minbcsetstpmax(const minbcstate &state, const double stpmax);


/*************************************************************************
This function provides reverse communication interface
Reverse communication interface is not documented or recommended to use.
See below for functions which provide better documented API
*************************************************************************/
bool minbciteration(const minbcstate &state);


/*************************************************************************
This family of functions is used to launcn iterations of nonlinear optimizer

These functions accept following parameters:
    state   -   algorithm state
    func    -   callback which calculates function (or merit function)
                value func at given point x
    grad    -   callback which calculates function (or merit function)
                value func and gradient grad at given point x
    rep     -   optional callback which is called after each iteration
                can be NULL
    ptr     -   optional pointer which is passed to func/grad/hess/jac/rep
                can be NULL

NOTES:

1. This function has two different implementations: one which  uses  exact
   (analytical) user-supplied gradient,  and one which uses function value
   only  and  numerically  differentiates  function  in  order  to  obtain
   gradient.

   Depending  on  the  specific  function  used to create optimizer object
   (either  MinBCCreate() for analytical gradient or  MinBCCreateF()
   for numerical differentiation) you should choose appropriate variant of
   MinBCOptimize() - one  which  accepts  function  AND gradient or one
   which accepts function ONLY.

   Be careful to choose variant of MinBCOptimize() which corresponds to
   your optimization scheme! Table below lists different  combinations  of
   callback (function/gradient) passed to MinBCOptimize()  and specific
   function used to create optimizer.


                     |         USER PASSED TO MinBCOptimize()
   CREATED WITH      |  function only   |  function and gradient
   ------------------------------------------------------------
   MinBCCreateF()    |     works               FAILS
   MinBCCreate()     |     FAILS               works

   Here "FAIL" denotes inappropriate combinations  of  optimizer  creation
   function  and  MinBCOptimize()  version.   Attemps   to   use   such
   combination (for  example,  to  create optimizer with MinBCCreateF()
   and  to  pass  gradient  information  to  MinCGOptimize()) will lead to
   exception being thrown. Either  you  did  not pass gradient when it WAS
   needed or you passed gradient when it was NOT needed.

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey

*************************************************************************/
void minbcoptimize(minbcstate &state,
    void (*func)(const real_1d_array &x, double &func, void *ptr),
    void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
    void *ptr = NULL);
void minbcoptimize(minbcstate &state,
    void (*grad)(const real_1d_array &x, double &func, real_1d_array &grad, void *ptr),
    void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
    void *ptr = NULL);


/*************************************************************************
BC results

INPUT PARAMETERS:
    State   -   algorithm state

OUTPUT PARAMETERS:
    X       -   array[0..N-1], solution
    Rep     -   optimization report. You should check Rep.TerminationType
                in  order  to  distinguish  successful  termination  from
                unsuccessful one:
                * -8    internal integrity control  detected  infinite or
                        NAN   values   in   function/gradient.   Abnormal
                        termination signalled.
                * -7   gradient verification failed.
                       See MinBCSetGradientCheck() for more information.
                * -3   inconsistent constraints.
                *  1   relative function improvement is no more than EpsF.
                *  2   scaled step is no more than EpsX.
                *  4   scaled gradient norm is no more than EpsG.
                *  5   MaxIts steps was taken
                *  8   terminated by user who called minbcrequesttermination().
                       X contains point which was "current accepted"  when
                       termination request was submitted.
                More information about fields of this  structure  can  be
                found in the comments on MinBCReport datatype.

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minbcresults(const minbcstate &state, real_1d_array &x, minbcreport &rep);


/*************************************************************************
BC results

Buffered implementation of MinBCResults() which uses pre-allocated buffer
to store X[]. If buffer size is  too  small,  it  resizes  buffer.  It  is
intended to be used in the inner cycles of performance critical algorithms
where array reallocation penalty is too large to be ignored.

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minbcresultsbuf(const minbcstate &state, real_1d_array &x, minbcreport &rep);


/*************************************************************************
This subroutine restarts algorithm from new point.
All optimization parameters (including constraints) are left unchanged.

This  function  allows  to  solve multiple  optimization  problems  (which
must have  same number of dimensions) without object reallocation penalty.

INPUT PARAMETERS:
    State   -   structure previously allocated with MinBCCreate call.
    X       -   new starting point.

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minbcrestartfrom(const minbcstate &state, const real_1d_array &x);


/*************************************************************************
This subroutine submits request for termination of running  optimizer.  It
should be called from user-supplied callback when user decides that it  is
time to "smoothly" terminate optimization process.  As  result,  optimizer
stops at point which was "current accepted" when termination  request  was
submitted and returns error code 8 (successful termination).

INPUT PARAMETERS:
    State   -   optimizer structure

NOTE: after  request  for  termination  optimizer  may   perform   several
      additional calls to user-supplied callbacks. It does  NOT  guarantee
      to stop immediately - it just guarantees that these additional calls
      will be discarded later.

NOTE: calling this function on optimizer which is NOT running will have no
      effect.

NOTE: multiple calls to this function are possible. First call is counted,
      subsequent calls are silently ignored.

  -- ALGLIB --
     Copyright 08.10.2014 by Bochkanov Sergey
*************************************************************************/
void minbcrequesttermination(const minbcstate &state);


/*************************************************************************
This  subroutine  turns  on  verification  of  the  user-supplied analytic
gradient:
* user calls this subroutine before optimization begins
* MinBCOptimize() is called
* prior to  actual  optimization, for each component  of  parameters being
  optimized X[i] algorithm performs following steps:
  * two trial steps are made to X[i]-TestStep*S[i] and X[i]+TestStep*S[i],
    where X[i] is i-th component of the initial point and S[i] is a  scale
    of i-th parameter
  * if needed, steps are bounded with respect to constraints on X[]
  * F(X) is evaluated at these trial points
  * we perform one more evaluation in the middle point of the interval
  * we  build  cubic  model using function values and derivatives at trial
    points and we compare its prediction with actual value in  the  middle
    point
  * in case difference between prediction and actual value is higher  than
    some predetermined threshold, algorithm stops with completion code -7;
    Rep.VarIdx is set to index of the parameter with incorrect derivative.
* after verification is over, algorithm proceeds to the actual optimization.

NOTE 1: verification  needs  N (parameters count) gradient evaluations. It
        is very costly and you should use  it  only  for  low  dimensional
        problems,  when  you  want  to  be  sure  that  you've   correctly
        calculated  analytic  derivatives.  You  should  not use it in the
        production code (unless you want to check derivatives provided  by
        some third party).

NOTE 2: you  should  carefully  choose  TestStep. Value which is too large
        (so large that function behaviour is significantly non-cubic) will
        lead to false alarms. You may use  different  step  for  different
        parameters by means of setting scale with MinBCSetScale().

NOTE 3: this function may lead to false positives. In case it reports that
        I-th  derivative was calculated incorrectly, you may decrease test
        step  and  try  one  more  time  - maybe your function changes too
        sharply  and  your  step  is  too  large for such rapidly chanding
        function.

INPUT PARAMETERS:
    State       -   structure used to store algorithm state
    TestStep    -   verification step:
                    * TestStep=0 turns verification off
                    * TestStep>0 activates verification

  -- ALGLIB --
     Copyright 15.06.2012 by Bochkanov Sergey
*************************************************************************/
void minbcsetgradientcheck(const minbcstate &state, const double teststep);

/*************************************************************************
                  NONSMOOTH NONCONVEX OPTIMIZATION
            SUBJECT TO BOX/LINEAR/NONLINEAR-NONSMOOTH CONSTRAINTS

DESCRIPTION:

The  subroutine  minimizes  function   F(x)  of N arguments subject to any
combination of:
* bound constraints
* linear inequality constraints
* linear equality constraints
* nonlinear equality constraints Gi(x)=0
* nonlinear inequality constraints Hi(x)<=0

IMPORTANT: see MinNSSetAlgoAGS for important  information  on  performance
           restrictions of AGS solver.

REQUIREMENTS:
* starting point X0 must be feasible or not too far away from the feasible
  set
* F(), G(), H() are continuous, locally Lipschitz  and  continuously  (but
  not necessarily twice) differentiable in an open dense  subset  of  R^N.
  Functions F(), G() and H() may be nonsmooth and non-convex.
  Informally speaking, it means  that  functions  are  composed  of  large
  differentiable "patches" with nonsmoothness having  place  only  at  the
  boundaries between these "patches".
  Most real-life nonsmooth  functions  satisfy  these  requirements.  Say,
  anything which involves finite number of abs(), min() and max() is  very
  likely to pass the test.
  Say, it is possible to optimize anything of the following:
  * f=abs(x0)+2*abs(x1)
  * f=max(x0,x1)
  * f=sin(max(x0,x1)+abs(x2))
* for nonlinearly constrained problems: F()  must  be  bounded from  below
  without nonlinear constraints (this requirement is due to the fact that,
  contrary to box and linear constraints, nonlinear ones  require  special
  handling).
* user must provide function value and gradient for F(), H(), G()  at  all
  points where function/gradient can be calculated. If optimizer  requires
  value exactly at the boundary between "patches" (say, at x=0 for f=abs(x)),
  where gradient is not defined, user may resolve tie arbitrarily (in  our
  case - return +1 or -1 at its discretion).
* NS solver supports numerical differentiation, i.e. it may  differentiate
  your function for you,  but  it  results  in  2N  increase  of  function
  evaluations. Not recommended unless you solve really small problems. See
  minnscreatef() for more information on this functionality.

USAGE:

1. User initializes algorithm state with MinNSCreate() call  and   chooses
   what NLC solver to use. There is some solver which is used by  default,
   with default settings, but you should NOT rely on  default  choice.  It
   may change in future releases of ALGLIB without notice, and no one  can
   guarantee that new solver will be  able  to  solve  your  problem  with
   default settings.

   From the other side, if you choose solver explicitly, you can be pretty
   sure that it will work with new ALGLIB releases.

   In the current release following solvers can be used:
   * AGS solver (activated with MinNSSetAlgoAGS() function)

2. User adds boundary and/or linear and/or nonlinear constraints by  means
   of calling one of the following functions:
   a) MinNSSetBC() for boundary constraints
   b) MinNSSetLC() for linear constraints
   c) MinNSSetNLC() for nonlinear constraints
   You may combine (a), (b) and (c) in one optimization problem.

3. User sets scale of the variables with MinNSSetScale() function. It   is
   VERY important to set  scale  of  the  variables,  because  nonlinearly
   constrained problems are hard to solve when variables are badly scaled.

4. User sets stopping conditions with MinNSSetCond().

5. Finally, user calls MinNSOptimize()  function  which  takes   algorithm
   state and pointer (delegate, etc) to callback function which calculates
   F/G/H.

7. User calls MinNSResults() to get solution

8. Optionally user may call MinNSRestartFrom() to solve   another  problem
   with same N but another starting point. MinNSRestartFrom()  allows   to
   reuse already initialized structure.


INPUT PARAMETERS:
    N       -   problem dimension, N>0:
                * if given, only leading N elements of X are used
                * if not given, automatically determined from size of X
    X       -   starting point, array[N]:
                * it is better to set X to a feasible point
                * but X can be infeasible, in which case algorithm will try
                  to find feasible point first, using X as initial
                  approximation.

OUTPUT PARAMETERS:
    State   -   structure stores algorithm state

NOTE: minnscreatef() function may be used if  you  do  not  have  analytic
      gradient.   This   function  creates  solver  which  uses  numerical
      differentiation with user-specified step.

  -- ALGLIB --
     Copyright 18.05.2015 by Bochkanov Sergey
*************************************************************************/
void minnscreate(const ae_int_t n, const real_1d_array &x, minnsstate &state);
void minnscreate(const real_1d_array &x, minnsstate &state);


/*************************************************************************
Version of minnscreatef() which uses numerical differentiation. I.e.,  you
do not have to calculate derivatives yourself. However, this version needs
2N times more function evaluations.

2-point differentiation formula is  used,  because  more  precise  4-point
formula is unstable when used on non-smooth functions.

INPUT PARAMETERS:
    N       -   problem dimension, N>0:
                * if given, only leading N elements of X are used
                * if not given, automatically determined from size of X
    X       -   starting point, array[N]:
                * it is better to set X to a feasible point
                * but X can be infeasible, in which case algorithm will try
                  to find feasible point first, using X as initial
                  approximation.
    DiffStep-   differentiation  step,  DiffStep>0.   Algorithm   performs
                numerical differentiation  with  step  for  I-th  variable
                being equal to DiffStep*S[I] (here S[] is a  scale vector,
                set by minnssetscale() function).
                Do not use  too  small  steps,  because  it  may  lead  to
                catastrophic cancellation during intermediate calculations.

OUTPUT PARAMETERS:
    State   -   structure stores algorithm state

  -- ALGLIB --
     Copyright 18.05.2015 by Bochkanov Sergey
*************************************************************************/
void minnscreatef(const ae_int_t n, const real_1d_array &x, const double diffstep, minnsstate &state);
void minnscreatef(const real_1d_array &x, const double diffstep, minnsstate &state);


/*************************************************************************
This function sets boundary constraints.

Boundary constraints are inactive by default (after initial creation).
They are preserved after algorithm restart with minnsrestartfrom().

INPUT PARAMETERS:
    State   -   structure stores algorithm state
    BndL    -   lower bounds, array[N].
                If some (all) variables are unbounded, you may specify
                very small number or -INF.
    BndU    -   upper bounds, array[N].
                If some (all) variables are unbounded, you may specify
                very large number or +INF.

NOTE 1: it is possible to specify BndL[i]=BndU[i]. In this case I-th
variable will be "frozen" at X[i]=BndL[i]=BndU[i].

NOTE 2: AGS solver has following useful properties:
* bound constraints are always satisfied exactly
* function is evaluated only INSIDE area specified by  bound  constraints,
  even  when  numerical  differentiation is used (algorithm adjusts  nodes
  according to boundary constraints)

  -- ALGLIB --
     Copyright 18.05.2015 by Bochkanov Sergey
*************************************************************************/
void minnssetbc(const minnsstate &state, const real_1d_array &bndl, const real_1d_array &bndu);


/*************************************************************************
This function sets linear constraints.

Linear constraints are inactive by default (after initial creation).
They are preserved after algorithm restart with minnsrestartfrom().

INPUT PARAMETERS:
    State   -   structure previously allocated with minnscreate() call.
    C       -   linear constraints, array[K,N+1].
                Each row of C represents one constraint, either equality
                or inequality (see below):
                * first N elements correspond to coefficients,
                * last element corresponds to the right part.
                All elements of C (including right part) must be finite.
    CT      -   type of constraints, array[K]:
                * if CT[i]>0, then I-th constraint is C[i,*]*x >= C[i,n+1]
                * if CT[i]=0, then I-th constraint is C[i,*]*x  = C[i,n+1]
                * if CT[i]<0, then I-th constraint is C[i,*]*x <= C[i,n+1]
    K       -   number of equality/inequality constraints, K>=0:
                * if given, only leading K elements of C/CT are used
                * if not given, automatically determined from sizes of C/CT

NOTE: linear (non-bound) constraints are satisfied only approximately:

* there always exists some minor violation (about current sampling  radius
  in magnitude during optimization, about EpsX in the solution) due to use
  of penalty method to handle constraints.
* numerical differentiation, if used, may  lead  to  function  evaluations
  outside  of the feasible  area,   because   algorithm  does  NOT  change
  numerical differentiation formula according to linear constraints.

If you want constraints to be  satisfied  exactly, try to reformulate your
problem  in  such  manner  that  all constraints will become boundary ones
(this kind of constraints is always satisfied exactly, both in  the  final
solution and in all intermediate points).

  -- ALGLIB --
     Copyright 18.05.2015 by Bochkanov Sergey
*************************************************************************/
void minnssetlc(const minnsstate &state, const real_2d_array &c, const integer_1d_array &ct, const ae_int_t k);
void minnssetlc(const minnsstate &state, const real_2d_array &c, const integer_1d_array &ct);


/*************************************************************************
This function sets nonlinear constraints.

In fact, this function sets NUMBER of nonlinear  constraints.  Constraints
itself (constraint functions) are passed to minnsoptimize() method.   This
method requires user-defined vector function F[]  and  its  Jacobian  J[],
where:
* first component of F[] and first row  of  Jacobian  J[]  correspond   to
  function being minimized
* next NLEC components of F[] (and rows  of  J)  correspond  to  nonlinear
  equality constraints G_i(x)=0
* next NLIC components of F[] (and rows  of  J)  correspond  to  nonlinear
  inequality constraints H_i(x)<=0

NOTE: you may combine nonlinear constraints with linear/boundary ones.  If
      your problem has mixed constraints, you  may explicitly specify some
      of them as linear ones. It may help optimizer to  handle  them  more
      efficiently.

INPUT PARAMETERS:
    State   -   structure previously allocated with minnscreate() call.
    NLEC    -   number of Non-Linear Equality Constraints (NLEC), >=0
    NLIC    -   number of Non-Linear Inquality Constraints (NLIC), >=0

NOTE 1: nonlinear constraints are satisfied only  approximately!   It   is
        possible   that  algorithm  will  evaluate  function  outside   of
        the feasible area!

NOTE 2: algorithm scales variables  according  to   scale   specified   by
        minnssetscale()  function,  so  it can handle problems with  badly
        scaled variables (as long as we KNOW their scales).

        However,  there  is  no  way  to  automatically  scale   nonlinear
        constraints Gi(x) and Hi(x). Inappropriate scaling  of  Gi/Hi  may
        ruin convergence. Solving problem with  constraint  "1000*G0(x)=0"
        is NOT same as solving it with constraint "0.001*G0(x)=0".

        It  means  that  YOU  are  the  one who is responsible for correct
        scaling of nonlinear constraints Gi(x) and Hi(x). We recommend you
        to scale nonlinear constraints in such way that I-th component  of
        dG/dX (or dH/dx) has approximately unit  magnitude  (for  problems
        with unit scale)  or  has  magnitude approximately equal to 1/S[i]
        (where S is a scale set by minnssetscale() function).

NOTE 3: nonlinear constraints are always hard to handle,  no  matter  what
        algorithm you try to use. Even basic box/linear constraints modify
        function  curvature   by  adding   valleys  and  ridges.  However,
        nonlinear constraints add valleys which are very  hard  to  follow
        due to their "curved" nature.

        It means that optimization with single nonlinear constraint may be
        significantly slower than optimization with multiple linear  ones.
        It is normal situation, and we recommend you to  carefully  choose
        Rho parameter of minnssetalgoags(), because too  large  value  may
        slow down convergence.


  -- ALGLIB --
     Copyright 18.05.2015 by Bochkanov Sergey
*************************************************************************/
void minnssetnlc(const minnsstate &state, const ae_int_t nlec, const ae_int_t nlic);


/*************************************************************************
This function sets stopping conditions for iterations of optimizer.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    EpsX    -   >=0
                The AGS solver finishes its work if  on  k+1-th  iteration
                sampling radius decreases below EpsX.
    MaxIts  -   maximum number of iterations. If MaxIts=0, the  number  of
                iterations is unlimited.

Passing EpsX=0  and  MaxIts=0  (simultaneously)  will  lead  to  automatic
stopping criterion selection. We do not recommend you to rely  on  default
choice in production code.

  -- ALGLIB --
     Copyright 18.05.2015 by Bochkanov Sergey
*************************************************************************/
void minnssetcond(const minnsstate &state, const double epsx, const ae_int_t maxits);


/*************************************************************************
This function sets scaling coefficients for NLC optimizer.

ALGLIB optimizers use scaling matrices to test stopping  conditions  (step
size and gradient are scaled before comparison with tolerances).  Scale of
the I-th variable is a translation invariant measure of:
a) "how large" the variable is
b) how large the step should be to make significant changes in the function

Scaling is also used by finite difference variant of the optimizer  - step
along I-th axis is equal to DiffStep*S[I].

INPUT PARAMETERS:
    State   -   structure stores algorithm state
    S       -   array[N], non-zero scaling coefficients
                S[i] may be negative, sign doesn't matter.

  -- ALGLIB --
     Copyright 18.05.2015 by Bochkanov Sergey
*************************************************************************/
void minnssetscale(const minnsstate &state, const real_1d_array &s);


/*************************************************************************
This function tells MinNS unit to use  AGS  (adaptive  gradient  sampling)
algorithm for nonsmooth constrained  optimization.  This  algorithm  is  a
slight modification of one described in  "An  Adaptive  Gradient  Sampling
Algorithm for Nonsmooth Optimization" by Frank E. Curtisy and Xiaocun Quez.

This optimizer has following benefits and drawbacks:
+ robustness; it can be used with nonsmooth and nonconvex functions.
+ relatively easy tuning; most of the metaparameters are easy to select.
- it has convergence of steepest descent, slower than CG/LBFGS.
- each iteration involves evaluation of ~2N gradient values  and  solution
  of 2Nx2N quadratic programming problem, which  limits  applicability  of
  algorithm by small-scale problems (up to 50-100).

IMPORTANT: this  algorithm  has  convergence  guarantees,   i.e.  it  will
           steadily move towards some stationary point of the function.

           However, "stationary point" does not  always  mean  "solution".
           Nonsmooth problems often have "flat spots",  i.e.  areas  where
           function do not change at all. Such "flat spots" are stationary
           points by definition, and algorithm may be caught here.

           Nonsmooth CONVEX tasks are not prone to  this  problem. Say, if
           your function has form f()=MAX(f0,f1,...), and f_i are  convex,
           then f() is convex too and you have guaranteed  convergence  to
           solution.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    Radius  -   initial sampling radius, >=0.

                Internally multiplied  by  vector of  per-variable  scales
                specified by minnssetscale()).

                You should select relatively large sampling radius, roughly
                proportional to scaled length of the first  steps  of  the
                algorithm. Something close to 0.1 in magnitude  should  be
                good for most problems.

                AGS solver can automatically decrease radius, so too large
                radius is  not a problem (assuming that you  won't  choose
                so large radius that algorithm  will  sample  function  in
                too far away points, where gradient value is irrelevant).

                Too small radius won't cause algorithm to fail, but it may
                slow down algorithm (it may  have  to  perform  too  short
                steps).
    Penalty -   penalty coefficient for nonlinear constraints:
                * for problem with nonlinear constraints  should  be  some
                  problem-specific  positive   value,  large  enough  that
                  penalty term changes shape of the function.
                  Starting  from  some  problem-specific   value   penalty
                  coefficient becomes  large  enough  to  exactly  enforce
                  nonlinear constraints;  larger  values  do  not  improve
                  precision.
                  Increasing it too much may slow down convergence, so you
                  should choose it carefully.
                * can be zero for problems WITHOUT  nonlinear  constraints
                  (i.e. for unconstrained ones or ones with  just  box  or
                  linear constraints)
                * if you specify zero value for problem with at least  one
                  nonlinear  constraint,  algorithm  will  terminate  with
                  error code -1.

ALGORITHM OUTLINE

The very basic outline of unconstrained AGS algorithm is given below:

0. If sampling radius is below EpsX  or  we  performed  more  then  MaxIts
   iterations - STOP.
1. sample O(N) gradient values at random locations  around  current point;
   informally speaking, this sample is an implicit piecewise  linear model
   of the function, although algorithm formulation does  not  mention that
   explicitly
2. solve quadratic programming problem in order to find descent direction
3. if QP solver tells us that we  are  near  solution,  decrease  sampling
   radius and move to (0)
4. perform backtracking line search
5. after moving to new point, goto (0)

As for the constraints:
* box constraints are handled exactly  by  modification  of  the  function
  being minimized
* linear/nonlinear constraints are handled by adding L1  penalty.  Because
  our solver can handle nonsmoothness, we can  use  L1  penalty  function,
  which is an exact one  (i.e.  exact  solution  is  returned  under  such
  penalty).
* penalty coefficient for  linear  constraints  is  chosen  automatically;
  however, penalty coefficient for nonlinear constraints must be specified
  by user.

  -- ALGLIB --
     Copyright 18.05.2015 by Bochkanov Sergey
*************************************************************************/
void minnssetalgoags(const minnsstate &state, const double radius, const double penalty);


/*************************************************************************
This function turns on/off reporting.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    NeedXRep-   whether iteration reports are needed or not

If NeedXRep is True, algorithm will call rep() callback function if  it is
provided to minnsoptimize().

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minnssetxrep(const minnsstate &state, const bool needxrep);


/*************************************************************************
This subroutine submits request for termination of running  optimizer.  It
should be called from user-supplied callback when user decides that it  is
time to "smoothly" terminate optimization process.  As  result,  optimizer
stops at point which was "current accepted" when termination  request  was
submitted and returns error code 8 (successful termination).

INPUT PARAMETERS:
    State   -   optimizer structure

NOTE: after  request  for  termination  optimizer  may   perform   several
      additional calls to user-supplied callbacks. It does  NOT  guarantee
      to stop immediately - it just guarantees that these additional calls
      will be discarded later.

NOTE: calling this function on optimizer which is NOT running will have no
      effect.

NOTE: multiple calls to this function are possible. First call is counted,
      subsequent calls are silently ignored.

  -- ALGLIB --
     Copyright 18.05.2015 by Bochkanov Sergey
*************************************************************************/
void minnsrequesttermination(const minnsstate &state);


/*************************************************************************
This function provides reverse communication interface
Reverse communication interface is not documented or recommended to use.
See below for functions which provide better documented API
*************************************************************************/
bool minnsiteration(const minnsstate &state);


/*************************************************************************
This family of functions is used to launcn iterations of nonlinear optimizer

These functions accept following parameters:
    state   -   algorithm state
    fvec    -   callback which calculates function vector fi[]
                at given point x
    jac     -   callback which calculates function vector fi[]
                and Jacobian jac at given point x
    rep     -   optional callback which is called after each iteration
                can be NULL
    ptr     -   optional pointer which is passed to func/grad/hess/jac/rep
                can be NULL


NOTES:

1. This function has two different implementations: one which  uses  exact
   (analytical) user-supplied Jacobian, and one which uses  only  function
   vector and numerically  differentiates  function  in  order  to  obtain
   gradient.

   Depending  on  the  specific  function  used to create optimizer object
   you should choose appropriate variant of  minnsoptimize() -  one  which
   accepts function AND Jacobian or one which accepts ONLY function.

   Be careful to choose variant of minnsoptimize()  which  corresponds  to
   your optimization scheme! Table below lists different  combinations  of
   callback (function/gradient) passed to minnsoptimize()    and  specific
   function used to create optimizer.


                     |         USER PASSED TO minnsoptimize()
   CREATED WITH      |  function only   |  function and gradient
   ------------------------------------------------------------
   minnscreatef()    |     works               FAILS
   minnscreate()     |     FAILS               works

   Here "FAILS" denotes inappropriate combinations  of  optimizer creation
   function  and  minnsoptimize()  version.   Attemps   to    use     such
   combination will lead to exception. Either  you  did  not pass gradient
   when it WAS needed or you passed gradient when it was NOT needed.

  -- ALGLIB --
     Copyright 18.05.2015 by Bochkanov Sergey

*************************************************************************/
void minnsoptimize(minnsstate &state,
    void (*fvec)(const real_1d_array &x, real_1d_array &fi, void *ptr),
    void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
    void *ptr = NULL);
void minnsoptimize(minnsstate &state,
    void  (*jac)(const real_1d_array &x, real_1d_array &fi, real_2d_array &jac, void *ptr),
    void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
    void *ptr = NULL);


/*************************************************************************
MinNS results

INPUT PARAMETERS:
    State   -   algorithm state

OUTPUT PARAMETERS:
    X       -   array[0..N-1], solution
    Rep     -   optimization report. You should check Rep.TerminationType
                in  order  to  distinguish  successful  termination  from
                unsuccessful one:
                * -8   internal integrity control  detected  infinite  or
                       NAN   values   in   function/gradient.    Abnormal
                       termination signalled.
                * -3   box constraints are inconsistent
                * -1   inconsistent parameters were passed:
                       * penalty parameter for minnssetalgoags() is zero,
                         but we have nonlinear constraints set by minnssetnlc()
                *  2   sampling radius decreased below epsx
                *  7    stopping conditions are too stringent,
                        further improvement is impossible,
                        X contains best point found so far.
                *  8    User requested termination via minnsrequesttermination()

  -- ALGLIB --
     Copyright 18.05.2015 by Bochkanov Sergey
*************************************************************************/
void minnsresults(const minnsstate &state, real_1d_array &x, minnsreport &rep);


/*************************************************************************

Buffered implementation of minnsresults() which uses pre-allocated  buffer
to store X[]. If buffer size is  too  small,  it  resizes  buffer.  It  is
intended to be used in the inner cycles of performance critical algorithms
where array reallocation penalty is too large to be ignored.

  -- ALGLIB --
     Copyright 18.05.2015 by Bochkanov Sergey
*************************************************************************/
void minnsresultsbuf(const minnsstate &state, real_1d_array &x, minnsreport &rep);


/*************************************************************************
This subroutine restarts algorithm from new point.
All optimization parameters (including constraints) are left unchanged.

This  function  allows  to  solve multiple  optimization  problems  (which
must have  same number of dimensions) without object reallocation penalty.

INPUT PARAMETERS:
    State   -   structure previously allocated with minnscreate() call.
    X       -   new starting point.

  -- ALGLIB --
     Copyright 18.05.2015 by Bochkanov Sergey
*************************************************************************/
void minnsrestartfrom(const minnsstate &state, const real_1d_array &x);

/*************************************************************************
Obsolete function, use MinLBFGSSetPrecDefault() instead.

  -- ALGLIB --
     Copyright 13.10.2010 by Bochkanov Sergey
*************************************************************************/
void minlbfgssetdefaultpreconditioner(const minlbfgsstate &state);


/*************************************************************************
Obsolete function, use MinLBFGSSetCholeskyPreconditioner() instead.

  -- ALGLIB --
     Copyright 13.10.2010 by Bochkanov Sergey
*************************************************************************/
void minlbfgssetcholeskypreconditioner(const minlbfgsstate &state, const real_2d_array &p, const bool isupper);


/*************************************************************************
This is obsolete function which was used by previous version of the  BLEIC
optimizer. It does nothing in the current version of BLEIC.

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minbleicsetbarrierwidth(const minbleicstate &state, const double mu);


/*************************************************************************
This is obsolete function which was used by previous version of the  BLEIC
optimizer. It does nothing in the current version of BLEIC.

  -- ALGLIB --
     Copyright 28.11.2010 by Bochkanov Sergey
*************************************************************************/
void minbleicsetbarrierdecay(const minbleicstate &state, const double mudecay);


/*************************************************************************
Obsolete optimization algorithm.
Was replaced by MinBLEIC subpackage.

  -- ALGLIB --
     Copyright 25.03.2010 by Bochkanov Sergey
*************************************************************************/
void minasacreate(const ae_int_t n, const real_1d_array &x, const real_1d_array &bndl, const real_1d_array &bndu, minasastate &state);
void minasacreate(const real_1d_array &x, const real_1d_array &bndl, const real_1d_array &bndu, minasastate &state);


/*************************************************************************
Obsolete optimization algorithm.
Was replaced by MinBLEIC subpackage.

  -- ALGLIB --
     Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
void minasasetcond(const minasastate &state, const double epsg, const double epsf, const double epsx, const ae_int_t maxits);


/*************************************************************************
Obsolete optimization algorithm.
Was replaced by MinBLEIC subpackage.

  -- ALGLIB --
     Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
void minasasetxrep(const minasastate &state, const bool needxrep);


/*************************************************************************
Obsolete optimization algorithm.
Was replaced by MinBLEIC subpackage.

  -- ALGLIB --
     Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
void minasasetalgorithm(const minasastate &state, const ae_int_t algotype);


/*************************************************************************
Obsolete optimization algorithm.
Was replaced by MinBLEIC subpackage.

  -- ALGLIB --
     Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
void minasasetstpmax(const minasastate &state, const double stpmax);


/*************************************************************************
This function provides reverse communication interface
Reverse communication interface is not documented or recommended to use.
See below for functions which provide better documented API
*************************************************************************/
bool minasaiteration(const minasastate &state);


/*************************************************************************
This family of functions is used to launcn iterations of nonlinear optimizer

These functions accept following parameters:
    state   -   algorithm state
    grad    -   callback which calculates function (or merit function)
                value func and gradient grad at given point x
    rep     -   optional callback which is called after each iteration
                can be NULL
    ptr     -   optional pointer which is passed to func/grad/hess/jac/rep
                can be NULL


  -- ALGLIB --
     Copyright 20.03.2009 by Bochkanov Sergey

*************************************************************************/
void minasaoptimize(minasastate &state,
    void (*grad)(const real_1d_array &x, double &func, real_1d_array &grad, void *ptr),
    void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
    void *ptr = NULL);


/*************************************************************************
Obsolete optimization algorithm.
Was replaced by MinBLEIC subpackage.

  -- ALGLIB --
     Copyright 20.03.2009 by Bochkanov Sergey
*************************************************************************/
void minasaresults(const minasastate &state, real_1d_array &x, minasareport &rep);


/*************************************************************************
Obsolete optimization algorithm.
Was replaced by MinBLEIC subpackage.

  -- ALGLIB --
     Copyright 20.03.2009 by Bochkanov Sergey
*************************************************************************/
void minasaresultsbuf(const minasastate &state, real_1d_array &x, minasareport &rep);


/*************************************************************************
Obsolete optimization algorithm.
Was replaced by MinBLEIC subpackage.

  -- ALGLIB --
     Copyright 30.07.2010 by Bochkanov Sergey
*************************************************************************/
void minasarestartfrom(const minasastate &state, const real_1d_array &x, const real_1d_array &bndl, const real_1d_array &bndu);

/*************************************************************************
                IMPROVED LEVENBERG-MARQUARDT METHOD FOR
                 NON-LINEAR LEAST SQUARES OPTIMIZATION

DESCRIPTION:
This function is used to find minimum of function which is represented  as
sum of squares:
    F(x) = f[0]^2(x[0],...,x[n-1]) + ... + f[m-1]^2(x[0],...,x[n-1])
using value of function vector f[] and Jacobian of f[].


REQUIREMENTS:
This algorithm will request following information during its operation:

* function vector f[] at given point X
* function vector f[] and Jacobian of f[] (simultaneously) at given point

There are several overloaded versions of  MinLMOptimize()  function  which
correspond  to  different LM-like optimization algorithms provided by this
unit. You should choose version which accepts fvec()  and jac() callbacks.
First  one  is used to calculate f[] at given point, second one calculates
f[] and Jacobian df[i]/dx[j].

You can try to initialize MinLMState structure with VJ  function and  then
use incorrect version  of  MinLMOptimize()  (for  example,  version  which
works  with  general  form function and does not provide Jacobian), but it
will  lead  to  exception  being  thrown  after first attempt to calculate
Jacobian.


USAGE:
1. User initializes algorithm state with MinLMCreateVJ() call
2. User tunes solver parameters with MinLMSetCond(),  MinLMSetStpMax() and
   other functions
3. User calls MinLMOptimize() function which  takes algorithm  state   and
   callback functions.
4. User calls MinLMResults() to get solution
5. Optionally, user may call MinLMRestartFrom() to solve  another  problem
   with same N/M but another starting point and/or another function.
   MinLMRestartFrom() allows to reuse already initialized structure.


INPUT PARAMETERS:
    N       -   dimension, N>1
                * if given, only leading N elements of X are used
                * if not given, automatically determined from size of X
    M       -   number of functions f[i]
    X       -   initial solution, array[0..N-1]

OUTPUT PARAMETERS:
    State   -   structure which stores algorithm state

NOTES:
1. you may tune stopping conditions with MinLMSetCond() function
2. if target function contains exp() or other fast growing functions,  and
   optimization algorithm makes too large steps which leads  to  overflow,
   use MinLMSetStpMax() function to bound algorithm's steps.

  -- ALGLIB --
     Copyright 30.03.2009 by Bochkanov Sergey
*************************************************************************/
void minlmcreatevj(const ae_int_t n, const ae_int_t m, const real_1d_array &x, minlmstate &state);
void minlmcreatevj(const ae_int_t m, const real_1d_array &x, minlmstate &state);


/*************************************************************************
                IMPROVED LEVENBERG-MARQUARDT METHOD FOR
                 NON-LINEAR LEAST SQUARES OPTIMIZATION

DESCRIPTION:
This function is used to find minimum of function which is represented  as
sum of squares:
    F(x) = f[0]^2(x[0],...,x[n-1]) + ... + f[m-1]^2(x[0],...,x[n-1])
using value of function vector f[] only. Finite differences  are  used  to
calculate Jacobian.


REQUIREMENTS:
This algorithm will request following information during its operation:
* function vector f[] at given point X

There are several overloaded versions of  MinLMOptimize()  function  which
correspond  to  different LM-like optimization algorithms provided by this
unit. You should choose version which accepts fvec() callback.

You can try to initialize MinLMState structure with VJ  function and  then
use incorrect version  of  MinLMOptimize()  (for  example,  version  which
works with general form function and does not accept function vector), but
it will  lead  to  exception being thrown after first attempt to calculate
Jacobian.


USAGE:
1. User initializes algorithm state with MinLMCreateV() call
2. User tunes solver parameters with MinLMSetCond(),  MinLMSetStpMax() and
   other functions
3. User calls MinLMOptimize() function which  takes algorithm  state   and
   callback functions.
4. User calls MinLMResults() to get solution
5. Optionally, user may call MinLMRestartFrom() to solve  another  problem
   with same N/M but another starting point and/or another function.
   MinLMRestartFrom() allows to reuse already initialized structure.


INPUT PARAMETERS:
    N       -   dimension, N>1
                * if given, only leading N elements of X are used
                * if not given, automatically determined from size of X
    M       -   number of functions f[i]
    X       -   initial solution, array[0..N-1]
    DiffStep-   differentiation step, >0

OUTPUT PARAMETERS:
    State   -   structure which stores algorithm state

See also MinLMIteration, MinLMResults.

NOTES:
1. you may tune stopping conditions with MinLMSetCond() function
2. if target function contains exp() or other fast growing functions,  and
   optimization algorithm makes too large steps which leads  to  overflow,
   use MinLMSetStpMax() function to bound algorithm's steps.

  -- ALGLIB --
     Copyright 30.03.2009 by Bochkanov Sergey
*************************************************************************/
void minlmcreatev(const ae_int_t n, const ae_int_t m, const real_1d_array &x, const double diffstep, minlmstate &state);
void minlmcreatev(const ae_int_t m, const real_1d_array &x, const double diffstep, minlmstate &state);


/*************************************************************************
    LEVENBERG-MARQUARDT-LIKE METHOD FOR NON-LINEAR OPTIMIZATION

DESCRIPTION:
This  function  is  used  to  find  minimum  of general form (not "sum-of-
-squares") function
    F = F(x[0], ..., x[n-1])
using  its  gradient  and  Hessian.  Levenberg-Marquardt modification with
L-BFGS pre-optimization and internal pre-conditioned  L-BFGS  optimization
after each Levenberg-Marquardt step is used.


REQUIREMENTS:
This algorithm will request following information during its operation:

* function value F at given point X
* F and gradient G (simultaneously) at given point X
* F, G and Hessian H (simultaneously) at given point X

There are several overloaded versions of  MinLMOptimize()  function  which
correspond  to  different LM-like optimization algorithms provided by this
unit. You should choose version which accepts func(),  grad()  and  hess()
function pointers. First pointer is used to calculate F  at  given  point,
second  one  calculates  F(x)  and  grad F(x),  third one calculates F(x),
grad F(x), hess F(x).

You can try to initialize MinLMState structure with FGH-function and  then
use incorrect version of MinLMOptimize() (for example, version which  does
not provide Hessian matrix), but it will lead to  exception  being  thrown
after first attempt to calculate Hessian.


USAGE:
1. User initializes algorithm state with MinLMCreateFGH() call
2. User tunes solver parameters with MinLMSetCond(),  MinLMSetStpMax() and
   other functions
3. User calls MinLMOptimize() function which  takes algorithm  state   and
   pointers (delegates, etc.) to callback functions.
4. User calls MinLMResults() to get solution
5. Optionally, user may call MinLMRestartFrom() to solve  another  problem
   with same N but another starting point and/or another function.
   MinLMRestartFrom() allows to reuse already initialized structure.


INPUT PARAMETERS:
    N       -   dimension, N>1
                * if given, only leading N elements of X are used
                * if not given, automatically determined from size of X
    X       -   initial solution, array[0..N-1]

OUTPUT PARAMETERS:
    State   -   structure which stores algorithm state

NOTES:
1. you may tune stopping conditions with MinLMSetCond() function
2. if target function contains exp() or other fast growing functions,  and
   optimization algorithm makes too large steps which leads  to  overflow,
   use MinLMSetStpMax() function to bound algorithm's steps.

  -- ALGLIB --
     Copyright 30.03.2009 by Bochkanov Sergey
*************************************************************************/
void minlmcreatefgh(const ae_int_t n, const real_1d_array &x, minlmstate &state);
void minlmcreatefgh(const real_1d_array &x, minlmstate &state);


/*************************************************************************
This function sets stopping conditions for Levenberg-Marquardt optimization
algorithm.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    EpsX    -   >=0
                The subroutine finishes its work if  on  k+1-th  iteration
                the condition |v|<=EpsX is fulfilled, where:
                * |.| means Euclidian norm
                * v - scaled step vector, v[i]=dx[i]/s[i]
                * dx - ste pvector, dx=X(k+1)-X(k)
                * s - scaling coefficients set by MinLMSetScale()
                Recommended values: 1E-9 ... 1E-12.
    MaxIts  -   maximum number of iterations. If MaxIts=0, the  number  of
                iterations   is    unlimited.   Only   Levenberg-Marquardt
                iterations  are  counted  (L-BFGS/CG  iterations  are  NOT
                counted because their cost is very low compared to that of
                LM).

Passing  EpsX=0  and  MaxIts=0  (simultaneously)  will  lead  to automatic
stopping criterion selection (small EpsX).

NOTE: it is not recommended to set large EpsX (say, 0.001). Because LM  is
      a second-order method, it performs very precise steps anyway.

  -- ALGLIB --
     Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
void minlmsetcond(const minlmstate &state, const double epsx, const ae_int_t maxits);


/*************************************************************************
This function turns on/off reporting.

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    NeedXRep-   whether iteration reports are needed or not

If NeedXRep is True, algorithm will call rep() callback function if  it is
provided to MinLMOptimize(). Both Levenberg-Marquardt and internal  L-BFGS
iterations are reported.

  -- ALGLIB --
     Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
void minlmsetxrep(const minlmstate &state, const bool needxrep);


/*************************************************************************
This function sets maximum step length

INPUT PARAMETERS:
    State   -   structure which stores algorithm state
    StpMax  -   maximum step length, >=0. Set StpMax to 0.0,  if you don't
                want to limit step length.

Use this subroutine when you optimize target function which contains exp()
or  other  fast  growing  functions,  and optimization algorithm makes too
large  steps  which  leads  to overflow. This function allows us to reject
steps  that  are  too  large  (and  therefore  expose  us  to the possible
overflow) without actually calculating function value at the x+stp*d.

NOTE: non-zero StpMax leads to moderate  performance  degradation  because
intermediate  step  of  preconditioned L-BFGS optimization is incompatible
with limits on step size.

  -- ALGLIB --
     Copyright 02.04.2010 by Bochkanov Sergey
*************************************************************************/
void minlmsetstpmax(const minlmstate &state, const double stpmax);


/*************************************************************************
This function sets scaling coefficients for LM optimizer.

ALGLIB optimizers use scaling matrices to test stopping  conditions  (step
size and gradient are scaled before comparison with tolerances).  Scale of
the I-th variable is a translation invariant measure of:
a) "how large" the variable is
b) how large the step should be to make significant changes in the function

Generally, scale is NOT considered to be a form of preconditioner.  But LM
optimizer is unique in that it uses scaling matrix both  in  the  stopping
condition tests and as Marquardt damping factor.

Proper scaling is very important for the algorithm performance. It is less
important for the quality of results, but still has some influence (it  is
easier  to  converge  when  variables  are  properly  scaled, so premature
stopping is possible when very badly scalled variables are  combined  with
relaxed stopping conditions).

INPUT PARAMETERS:
    State   -   structure stores algorithm state
    S       -   array[N], non-zero scaling coefficients
                S[i] may be negative, sign doesn't matter.

  -- ALGLIB --
     Copyright 14.01.2011 by Bochkanov Sergey
*************************************************************************/
void minlmsetscale(const minlmstate &state, const real_1d_array &s);


/*************************************************************************
This function sets boundary constraints for LM optimizer

Boundary constraints are inactive by default (after initial creation).
They are preserved until explicitly turned off with another SetBC() call.

INPUT PARAMETERS:
    State   -   structure stores algorithm state
    BndL    -   lower bounds, array[N].
                If some (all) variables are unbounded, you may specify
                very small number or -INF (latter is recommended because
                it will allow solver to use better algorithm).
    BndU    -   upper bounds, array[N].
                If some (all) variables are unbounded, you may specify
                very large number or +INF (latter is recommended because
                it will allow solver to use better algorithm).

NOTE 1: it is possible to specify BndL[i]=BndU[i]. In this case I-th
variable will be "frozen" at X[i]=BndL[i]=BndU[i].

NOTE 2: this solver has following useful properties:
* bound constraints are always satisfied exactly
* function is evaluated only INSIDE area specified by bound constraints
  or at its boundary

  -- ALGLIB --
     Copyright 14.01.2011 by Bochkanov Sergey
*************************************************************************/
void minlmsetbc(const minlmstate &state, const real_1d_array &bndl, const real_1d_array &bndu);


/*************************************************************************
This function sets general linear constraints for LM optimizer

Linear constraints are inactive by default (after initial creation).  They
are preserved until explicitly turned off with another minlmsetlc() call.

INPUT PARAMETERS:
    State   -   structure stores algorithm state
    C       -   linear constraints, array[K,N+1].
                Each row of C represents one constraint, either equality
                or inequality (see below):
                * first N elements correspond to coefficients,
                * last element corresponds to the right part.
                All elements of C (including right part) must be finite.
    CT      -   type of constraints, array[K]:
                * if CT[i]>0, then I-th constraint is C[i,*]*x >= C[i,n+1]
                * if CT[i]=0, then I-th constraint is C[i,*]*x  = C[i,n+1]
                * if CT[i]<0, then I-th constraint is C[i,*]*x <= C[i,n+1]
    K       -   number of equality/inequality constraints, K>=0:
                * if given, only leading K elements of C/CT are used
                * if not given, automatically determined from sizes of C/CT

IMPORTANT: if you have linear constraints, it is strongly  recommended  to
           set scale of variables with minlmsetscale(). QP solver which is
           used to calculate linearly constrained steps heavily relies  on
           good scaling of input problems.

IMPORTANT: solvers created with minlmcreatefgh()  do  not  support  linear
           constraints.

NOTE: linear  (non-bound)  constraints are satisfied only approximately  -
      there  always  exists some violation due  to  numerical  errors  and
      algorithmic limitations.

NOTE: general linear constraints  add  significant  overhead  to  solution
      process. Although solver performs roughly same amount of  iterations
      (when compared  with  similar  box-only  constrained  problem), each
      iteration   now    involves  solution  of  linearly  constrained  QP
      subproblem, which requires ~3-5 times more Cholesky  decompositions.
      Thus, if you can reformulate your problem in such way  this  it  has
      only box constraints, it may be beneficial to do so.

  -- ALGLIB --
     Copyright 14.01.2011 by Bochkanov Sergey
*************************************************************************/
void minlmsetlc(const minlmstate &state, const real_2d_array &c, const integer_1d_array &ct, const ae_int_t k);
void minlmsetlc(const minlmstate &state, const real_2d_array &c, const integer_1d_array &ct);


/*************************************************************************
This function is used to change acceleration settings

You can choose between three acceleration strategies:
* AccType=0, no acceleration.
* AccType=1, secant updates are used to update quadratic model after  each
  iteration. After fixed number of iterations (or after  model  breakdown)
  we  recalculate  quadratic  model  using  analytic  Jacobian  or  finite
  differences. Number of secant-based iterations depends  on  optimization
  settings: about 3 iterations - when we have analytic Jacobian, up to 2*N
  iterations - when we use finite differences to calculate Jacobian.

AccType=1 is recommended when Jacobian  calculation  cost is prohibitively
high (several Mx1 function vector calculations  followed  by  several  NxN
Cholesky factorizations are faster than calculation of one M*N  Jacobian).
It should also be used when we have no Jacobian, because finite difference
approximation takes too much time to compute.

Table below list  optimization  protocols  (XYZ  protocol  corresponds  to
MinLMCreateXYZ) and acceleration types they support (and use by  default).

ACCELERATION TYPES SUPPORTED BY OPTIMIZATION PROTOCOLS:

protocol    0   1   comment
V           +   +
VJ          +   +
FGH         +

DEFAULT VALUES:

protocol    0   1   comment
V               x   without acceleration it is so slooooooooow
VJ          x
FGH         x

NOTE: this  function should be called before optimization. Attempt to call
it during algorithm iterations may result in unexpected behavior.

NOTE: attempt to call this function with unsupported protocol/acceleration
combination will result in exception being thrown.

  -- ALGLIB --
     Copyright 14.10.2010 by Bochkanov Sergey
*************************************************************************/
void minlmsetacctype(const minlmstate &state, const ae_int_t acctype);


/*************************************************************************
This function provides reverse communication interface
Reverse communication interface is not documented or recommended to use.
See below for functions which provide better documented API
*************************************************************************/
bool minlmiteration(const minlmstate &state);


/*************************************************************************
This family of functions is used to launcn iterations of nonlinear optimizer

These functions accept following parameters:
    state   -   algorithm state
    func    -   callback which calculates function (or merit function)
                value func at given point x
    grad    -   callback which calculates function (or merit function)
                value func and gradient grad at given point x
    hess    -   callback which calculates function (or merit function)
                value func, gradient grad and Hessian hess at given point x
    fvec    -   callback which calculates function vector fi[]
                at given point x
    jac     -   callback which calculates function vector fi[]
                and Jacobian jac at given point x
    rep     -   optional callback which is called after each iteration
                can be NULL
    ptr     -   optional pointer which is passed to func/grad/hess/jac/rep
                can be NULL

NOTES:

1. Depending on function used to create state  structure,  this  algorithm
   may accept Jacobian and/or Hessian and/or gradient.  According  to  the
   said above, there ase several versions of this function,  which  accept
   different sets of callbacks.

   This flexibility opens way to subtle errors - you may create state with
   MinLMCreateFGH() (optimization using Hessian), but call function  which
   does not accept Hessian. So when algorithm will request Hessian,  there
   will be no callback to call. In this case exception will be thrown.

   Be careful to avoid such errors because there is no way to find them at
   compile time - you can see them at runtime only.

  -- ALGLIB --
     Copyright 10.03.2009 by Bochkanov Sergey

*************************************************************************/
void minlmoptimize(minlmstate &state,
    void (*fvec)(const real_1d_array &x, real_1d_array &fi, void *ptr),
    void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
    void *ptr = NULL);
void minlmoptimize(minlmstate &state,
    void (*fvec)(const real_1d_array &x, real_1d_array &fi, void *ptr),
    void  (*jac)(const real_1d_array &x, real_1d_array &fi, real_2d_array &jac, void *ptr),
    void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
    void *ptr = NULL);
void minlmoptimize(minlmstate &state,
    void (*func)(const real_1d_array &x, double &func, void *ptr),
    void (*grad)(const real_1d_array &x, double &func, real_1d_array &grad, void *ptr),
    void (*hess)(const real_1d_array &x, double &func, real_1d_array &grad, real_2d_array &hess, void *ptr),
    void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
    void *ptr = NULL);
void minlmoptimize(minlmstate &state,
    void (*func)(const real_1d_array &x, double &func, void *ptr),
    void  (*jac)(const real_1d_array &x, real_1d_array &fi, real_2d_array &jac, void *ptr),
    void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
    void *ptr = NULL);
void minlmoptimize(minlmstate &state,
    void (*func)(const real_1d_array &x, double &func, void *ptr),
    void (*grad)(const real_1d_array &x, double &func, real_1d_array &grad, void *ptr),
    void  (*jac)(const real_1d_array &x, real_1d_array &fi, real_2d_array &jac, void *ptr),
    void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
    void *ptr = NULL);


/*************************************************************************
Levenberg-Marquardt algorithm results

INPUT PARAMETERS:
    State   -   algorithm state

OUTPUT PARAMETERS:
    X       -   array[0..N-1], solution
    Rep     -   optimization  report;  includes  termination   codes   and
                additional information. Termination codes are listed below,
                see comments for this structure for more info.
                Termination code is stored in rep.terminationtype field:
                * -8    optimizer detected NAN/INF values either in the
                        function itself, or in its Jacobian
                * -7    derivative correctness check failed;
                        see rep.funcidx, rep.varidx for
                        more information.
                * -3    constraints are inconsistent
                *  2    relative step is no more than EpsX.
                *  5    MaxIts steps was taken
                *  7    stopping conditions are too stringent,
                        further improvement is impossible
                *  8    terminated by user who called minlmrequesttermination().
                        X contains point which was "current accepted" when
                        termination request was submitted.

  -- ALGLIB --
     Copyright 10.03.2009 by Bochkanov Sergey
*************************************************************************/
void minlmresults(const minlmstate &state, real_1d_array &x, minlmreport &rep);


/*************************************************************************
Levenberg-Marquardt algorithm results

Buffered implementation of MinLMResults(), which uses pre-allocated buffer
to store X[]. If buffer size is  too  small,  it  resizes  buffer.  It  is
intended to be used in the inner cycles of performance critical algorithms
where array reallocation penalty is too large to be ignored.

  -- ALGLIB --
     Copyright 10.03.2009 by Bochkanov Sergey
*************************************************************************/
void minlmresultsbuf(const minlmstate &state, real_1d_array &x, minlmreport &rep);


/*************************************************************************
This  subroutine  restarts  LM  algorithm from new point. All optimization
parameters are left unchanged.

This  function  allows  to  solve multiple  optimization  problems  (which
must have same number of dimensions) without object reallocation penalty.

INPUT PARAMETERS:
    State   -   structure used for reverse communication previously
                allocated with MinLMCreateXXX call.
    X       -   new starting point.

  -- ALGLIB --
     Copyright 30.07.2010 by Bochkanov Sergey
*************************************************************************/
void minlmrestartfrom(const minlmstate &state, const real_1d_array &x);


/*************************************************************************
This subroutine submits request for termination of running  optimizer.  It
should be called from user-supplied callback when user decides that it  is
time to "smoothly" terminate optimization process.  As  result,  optimizer
stops at point which was "current accepted" when termination  request  was
submitted and returns error code 8 (successful termination).

INPUT PARAMETERS:
    State   -   optimizer structure

NOTE: after  request  for  termination  optimizer  may   perform   several
      additional calls to user-supplied callbacks. It does  NOT  guarantee
      to stop immediately - it just guarantees that these additional calls
      will be discarded later.

NOTE: calling this function on optimizer which is NOT running will have no
      effect.

NOTE: multiple calls to this function are possible. First call is counted,
      subsequent calls are silently ignored.

  -- ALGLIB --
     Copyright 08.10.2014 by Bochkanov Sergey
*************************************************************************/
void minlmrequesttermination(const minlmstate &state);


/*************************************************************************
This is obsolete function.

Since ALGLIB 3.3 it is equivalent to MinLMCreateVJ().

  -- ALGLIB --
     Copyright 30.03.2009 by Bochkanov Sergey
*************************************************************************/
void minlmcreatevgj(const ae_int_t n, const ae_int_t m, const real_1d_array &x, minlmstate &state);
void minlmcreatevgj(const ae_int_t m, const real_1d_array &x, minlmstate &state);


/*************************************************************************
This is obsolete function.

Since ALGLIB 3.3 it is equivalent to MinLMCreateFJ().

  -- ALGLIB --
     Copyright 30.03.2009 by Bochkanov Sergey
*************************************************************************/
void minlmcreatefgj(const ae_int_t n, const ae_int_t m, const real_1d_array &x, minlmstate &state);
void minlmcreatefgj(const ae_int_t m, const real_1d_array &x, minlmstate &state);


/*************************************************************************
This function is considered obsolete since ALGLIB 3.1.0 and is present for
backward  compatibility  only.  We  recommend  to use MinLMCreateVJ, which
provides similar, but more consistent and feature-rich interface.

  -- ALGLIB --
     Copyright 30.03.2009 by Bochkanov Sergey
*************************************************************************/
void minlmcreatefj(const ae_int_t n, const ae_int_t m, const real_1d_array &x, minlmstate &state);
void minlmcreatefj(const ae_int_t m, const real_1d_array &x, minlmstate &state);


/*************************************************************************
This  subroutine  turns  on  verification  of  the  user-supplied analytic
gradient:
* user calls this subroutine before optimization begins
* MinLMOptimize() is called
* prior to actual optimization, for  each  function Fi and each  component
  of parameters  being  optimized X[j] algorithm performs following steps:
  * two trial steps are made to X[j]-TestStep*S[j] and X[j]+TestStep*S[j],
    where X[j] is j-th parameter and S[j] is a scale of j-th parameter
  * if needed, steps are bounded with respect to constraints on X[]
  * Fi(X) is evaluated at these trial points
  * we perform one more evaluation in the middle point of the interval
  * we  build  cubic  model using function values and derivatives at trial
    points and we compare its prediction with actual value in  the  middle
    point
  * in case difference between prediction and actual value is higher  than
    some predetermined threshold, algorithm stops with completion code -7;
    Rep.VarIdx is set to index of the parameter with incorrect derivative,
    Rep.FuncIdx is set to index of the function.
* after verification is over, algorithm proceeds to the actual optimization.

NOTE 1: verification  needs  N (parameters count) Jacobian evaluations. It
        is  very  costly  and  you  should use it only for low dimensional
        problems,  when  you  want  to  be  sure  that  you've   correctly
        calculated  analytic  derivatives.  You should not  use  it in the
        production code  (unless  you  want  to check derivatives provided
        by some third party).

NOTE 2: you  should  carefully  choose  TestStep. Value which is too large
        (so large that function behaviour is significantly non-cubic) will
        lead to false alarms. You may use  different  step  for  different
        parameters by means of setting scale with MinLMSetScale().

NOTE 3: this function may lead to false positives. In case it reports that
        I-th  derivative was calculated incorrectly, you may decrease test
        step  and  try  one  more  time  - maybe your function changes too
        sharply  and  your  step  is  too  large for such rapidly chanding
        function.

INPUT PARAMETERS:
    State       -   structure used to store algorithm state
    TestStep    -   verification step:
                    * TestStep=0 turns verification off
                    * TestStep>0 activates verification

  -- ALGLIB --
     Copyright 15.06.2012 by Bochkanov Sergey
*************************************************************************/
void minlmsetgradientcheck(const minlmstate &state, const double teststep);
}

/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (FUNCTIONS)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
void cqminit(ae_int_t n, convexquadraticmodel* s, ae_state *_state);
void cqmseta(convexquadraticmodel* s,
     /* Real    */ ae_matrix* a,
     ae_bool isupper,
     double alpha,
     ae_state *_state);
void cqmgeta(convexquadraticmodel* s,
     /* Real    */ ae_matrix* a,
     ae_state *_state);
void cqmrewritedensediagonal(convexquadraticmodel* s,
     /* Real    */ ae_vector* z,
     ae_state *_state);
void cqmsetd(convexquadraticmodel* s,
     /* Real    */ ae_vector* d,
     double tau,
     ae_state *_state);
void cqmdropa(convexquadraticmodel* s, ae_state *_state);
void cqmsetb(convexquadraticmodel* s,
     /* Real    */ ae_vector* b,
     ae_state *_state);
void cqmsetq(convexquadraticmodel* s,
     /* Real    */ ae_matrix* q,
     /* Real    */ ae_vector* r,
     ae_int_t k,
     double theta,
     ae_state *_state);
void cqmsetactiveset(convexquadraticmodel* s,
     /* Real    */ ae_vector* x,
     /* Boolean */ ae_vector* activeset,
     ae_state *_state);
double cqmeval(convexquadraticmodel* s,
     /* Real    */ ae_vector* x,
     ae_state *_state);
void cqmevalx(convexquadraticmodel* s,
     /* Real    */ ae_vector* x,
     double* r,
     double* noise,
     ae_state *_state);
void cqmgradunconstrained(convexquadraticmodel* s,
     /* Real    */ ae_vector* x,
     /* Real    */ ae_vector* g,
     ae_state *_state);
double cqmxtadx2(convexquadraticmodel* s,
     /* Real    */ ae_vector* x,
     ae_state *_state);
void cqmadx(convexquadraticmodel* s,
     /* Real    */ ae_vector* x,
     /* Real    */ ae_vector* y,
     ae_state *_state);
ae_bool cqmconstrainedoptimum(convexquadraticmodel* s,
     /* Real    */ ae_vector* x,
     ae_state *_state);
void cqmscalevector(convexquadraticmodel* s,
     /* Real    */ ae_vector* x,
     ae_state *_state);
double cqmdebugconstrainedevalt(convexquadraticmodel* s,
     /* Real    */ ae_vector* x,
     ae_state *_state);
double cqmdebugconstrainedevale(convexquadraticmodel* s,
     /* Real    */ ae_vector* x,
     ae_state *_state);
void _convexquadraticmodel_init(void* _p, ae_state *_state);
void _convexquadraticmodel_init_copy(void* _dst, void* _src, ae_state *_state);
void _convexquadraticmodel_clear(void* _p);
void _convexquadraticmodel_destroy(void* _p);
void trimprepare(double f, double* threshold, ae_state *_state);
void trimfunction(double* f,
     /* Real    */ ae_vector* g,
     ae_int_t n,
     double threshold,
     ae_state *_state);
ae_bool enforceboundaryconstraints(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* bl,
     /* Boolean */ ae_vector* havebl,
     /* Real    */ ae_vector* bu,
     /* Boolean */ ae_vector* havebu,
     ae_int_t nmain,
     ae_int_t nslack,
     ae_state *_state);
void projectgradientintobc(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* g,
     /* Real    */ ae_vector* bl,
     /* Boolean */ ae_vector* havebl,
     /* Real    */ ae_vector* bu,
     /* Boolean */ ae_vector* havebu,
     ae_int_t nmain,
     ae_int_t nslack,
     ae_state *_state);
void calculatestepbound(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* d,
     double alpha,
     /* Real    */ ae_vector* bndl,
     /* Boolean */ ae_vector* havebndl,
     /* Real    */ ae_vector* bndu,
     /* Boolean */ ae_vector* havebndu,
     ae_int_t nmain,
     ae_int_t nslack,
     ae_int_t* variabletofreeze,
     double* valuetofreeze,
     double* maxsteplen,
     ae_state *_state);
ae_int_t postprocessboundedstep(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* xprev,
     /* Real    */ ae_vector* bndl,
     /* Boolean */ ae_vector* havebndl,
     /* Real    */ ae_vector* bndu,
     /* Boolean */ ae_vector* havebndu,
     ae_int_t nmain,
     ae_int_t nslack,
     ae_int_t variabletofreeze,
     double valuetofreeze,
     double steptaken,
     double maxsteplen,
     ae_state *_state);
void filterdirection(/* Real    */ ae_vector* d,
     /* Real    */ ae_vector* x,
     /* Real    */ ae_vector* bndl,
     /* Boolean */ ae_vector* havebndl,
     /* Real    */ ae_vector* bndu,
     /* Boolean */ ae_vector* havebndu,
     /* Real    */ ae_vector* s,
     ae_int_t nmain,
     ae_int_t nslack,
     double droptol,
     ae_state *_state);
ae_int_t numberofchangedconstraints(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* xprev,
     /* Real    */ ae_vector* bndl,
     /* Boolean */ ae_vector* havebndl,
     /* Real    */ ae_vector* bndu,
     /* Boolean */ ae_vector* havebndu,
     ae_int_t nmain,
     ae_int_t nslack,
     ae_state *_state);
ae_bool findfeasiblepoint(/* Real    */ ae_vector* x,
     /* Real    */ ae_vector* bndl,
     /* Boolean */ ae_vector* havebndl,
     /* Real    */ ae_vector* bndu,
     /* Boolean */ ae_vector* havebndu,
     ae_int_t nmain,
     ae_int_t nslack,
     /* Real    */ ae_matrix* ce,
     ae_int_t k,
     double epsi,
     ae_int_t* qpits,
     ae_int_t* gpaits,
     ae_state *_state);
ae_bool derivativecheck(double f0,
     double df0,
     double f1,
     double df1,
     double f,
     double df,
     double width,
     ae_state *_state);
void estimateparabolicmodel(double absasum,
     double absasum2,
     double mx,
     double mb,
     double md,
     double d1,
     double d2,
     ae_int_t* d1est,
     ae_int_t* d2est,
     ae_state *_state);
void inexactlbfgspreconditioner(/* Real    */ ae_vector* s,
     ae_int_t n,
     /* Real    */ ae_vector* d,
     /* Real    */ ae_vector* c,
     /* Real    */ ae_matrix* w,
     ae_int_t k,
     precbuflbfgs* buf,
     ae_state *_state);
void preparelowrankpreconditioner(/* Real    */ ae_vector* d,
     /* Real    */ ae_vector* c,
     /* Real    */ ae_matrix* w,
     ae_int_t n,
     ae_int_t k,
     precbuflowrank* buf,
     ae_state *_state);
void applylowrankpreconditioner(/* Real    */ ae_vector* s,
     precbuflowrank* buf,
     ae_state *_state);
void _precbuflbfgs_init(void* _p, ae_state *_state);
void _precbuflbfgs_init_copy(void* _dst, void* _src, ae_state *_state);
void _precbuflbfgs_clear(void* _p);
void _precbuflbfgs_destroy(void* _p);
void _precbuflowrank_init(void* _p, ae_state *_state);
void _precbuflowrank_init_copy(void* _dst, void* _src, ae_state *_state);
void _precbuflowrank_clear(void* _p);
void _precbuflowrank_destroy(void* _p);
void snnlsinit(ae_int_t nsmax,
     ae_int_t ndmax,
     ae_int_t nrmax,
     snnlssolver* s,
     ae_state *_state);
void snnlssetproblem(snnlssolver* s,
     /* Real    */ ae_matrix* a,
     /* Real    */ ae_vector* b,
     ae_int_t ns,
     ae_int_t nd,
     ae_int_t nr,
     ae_state *_state);
void snnlsdropnnc(snnlssolver* s, ae_int_t idx, ae_state *_state);
void snnlssolve(snnlssolver* s,
     /* Real    */ ae_vector* x,
     ae_state *_state);
void _snnlssolver_init(void* _p, ae_state *_state);
void _snnlssolver_init_copy(void* _dst, void* _src, ae_state *_state);
void _snnlssolver_clear(void* _p);
void _snnlssolver_destroy(void* _p);
void sasinit(ae_int_t n, sactiveset* s, ae_state *_state);
void sassetscale(sactiveset* state,
     /* Real    */ ae_vector* s,
     ae_state *_state);
void sassetprecdiag(sactiveset* state,
     /* Real    */ ae_vector* d,
     ae_state *_state);
void sassetbc(sactiveset* state,
     /* Real    */ ae_vector* bndl,
     /* Real    */ ae_vector* bndu,
     ae_state *_state);
void sassetlc(sactiveset* state,
     /* Real    */ ae_matrix* c,
     /* Integer */ ae_vector* ct,
     ae_int_t k,
     ae_state *_state);
void sassetlcx(sactiveset* state,
     /* Real    */ ae_matrix* cleic,
     ae_int_t nec,
     ae_int_t nic,
     ae_state *_state);
ae_bool sasstartoptimization(sactiveset* state,
     /* Real    */ ae_vector* x,
     ae_state *_state);
void sasexploredirection(sactiveset* state,
     /* Real    */ ae_vector* d,
     double* stpmax,
     ae_int_t* cidx,
     double* vval,
     ae_state *_state);
ae_int_t sasmoveto(sactiveset* state,
     /* Real    */ ae_vector* xn,
     ae_bool needact,
     ae_int_t cidx,
     double cval,
     ae_state *_state);
void sasimmediateactivation(sactiveset* state,
     ae_int_t cidx,
     double cval,
     ae_state *_state);
void sasconstraineddescent(sactiveset* state,
     /* Real    */ ae_vector* g,
     /* Real    */ ae_vector* d,
     ae_state *_state);
void sasconstraineddescentprec(sactiveset* state,
     /* Real    */ ae_vector* g,
     /* Real    */ ae_vector* d,
     ae_state *_state);
void sasconstraineddirection(sactiveset* state,
     /* Real    */ ae_vector* d,
     ae_state *_state);
void sasconstraineddirectionprec(sactiveset* state,
     /* Real    */ ae_vector* d,
     ae_state *_state);
void sascorrection(sactiveset* state,
     /* Real    */ ae_vector* x,
     double* penalty,
     ae_state *_state);
double sasactivelcpenalty1(sactiveset* state,
     /* Real    */ ae_vector* x,
     ae_state *_state);
double sasscaledconstrainednorm(sactiveset* state,
     /* Real    */ ae_vector* d,
     ae_state *_state);
void sasstopoptimization(sactiveset* state, ae_state *_state);
void sasreactivateconstraints(sactiveset* state,
     /* Real    */ ae_vector* gc,
     ae_state *_state);
void sasreactivateconstraintsprec(sactiveset* state,
     /* Real    */ ae_vector* gc,
     ae_state *_state);
void sasrebuildbasis(sactiveset* state, ae_state *_state);
void _sactiveset_init(void* _p, ae_state *_state);
void _sactiveset_init_copy(void* _dst, void* _src, ae_state *_state);
void _sactiveset_clear(void* _p);
void _sactiveset_destroy(void* _p);
void qqploaddefaults(ae_int_t nmain, qqpsettings* s, ae_state *_state);
void qqpcopysettings(qqpsettings* src, qqpsettings* dst, ae_state *_state);
void qqpoptimize(convexquadraticmodel* cqmac,
     sparsematrix* sparseac,
     /* Real    */ ae_matrix* denseac,
     ae_int_t akind,
     ae_bool isupper,
     /* Real    */ ae_vector* bc,
     /* Real    */ ae_vector* bndlc,
     /* Real    */ ae_vector* bnduc,
     /* Real    */ ae_vector* sc,
     /* Real    */ ae_vector* xoriginc,
     ae_int_t nc,
     /* Real    */ ae_matrix* cleicc,
     ae_int_t nec,
     ae_int_t nic,
     qqpsettings* settings,
     qqpbuffers* sstate,
     /* Real    */ ae_vector* xs,
     ae_int_t* terminationtype,
     ae_state *_state);
void _qqpsettings_init(void* _p, ae_state *_state);
void _qqpsettings_init_copy(void* _dst, void* _src, ae_state *_state);
void _qqpsettings_clear(void* _p);
void _qqpsettings_destroy(void* _p);
void _qqpbuffers_init(void* _p, ae_state *_state);
void _qqpbuffers_init_copy(void* _dst, void* _src, ae_state *_state);
void _qqpbuffers_clear(void* _p);
void _qqpbuffers_destroy(void* _p);
void minlbfgscreate(ae_int_t n,
     ae_int_t m,
     /* Real    */ ae_vector* x,
     minlbfgsstate* state,
     ae_state *_state);
void minlbfgscreatef(ae_int_t n,
     ae_int_t m,
     /* Real    */ ae_vector* x,
     double diffstep,
     minlbfgsstate* state,
     ae_state *_state);
void minlbfgssetcond(minlbfgsstate* state,
     double epsg,
     double epsf,
     double epsx,
     ae_int_t maxits,
     ae_state *_state);
void minlbfgssetxrep(minlbfgsstate* state,
     ae_bool needxrep,
     ae_state *_state);
void minlbfgssetstpmax(minlbfgsstate* state,
     double stpmax,
     ae_state *_state);
void minlbfgssetscale(minlbfgsstate* state,
     /* Real    */ ae_vector* s,
     ae_state *_state);
void minlbfgscreatex(ae_int_t n,
     ae_int_t m,
     /* Real    */ ae_vector* x,
     ae_int_t flags,
     double diffstep,
     minlbfgsstate* state,
     ae_state *_state);
void minlbfgssetprecdefault(minlbfgsstate* state, ae_state *_state);
void minlbfgssetpreccholesky(minlbfgsstate* state,
     /* Real    */ ae_matrix* p,
     ae_bool isupper,
     ae_state *_state);
void minlbfgssetprecdiag(minlbfgsstate* state,
     /* Real    */ ae_vector* d,
     ae_state *_state);
void minlbfgssetprecscale(minlbfgsstate* state, ae_state *_state);
void minlbfgssetprecrankklbfgsfast(minlbfgsstate* state,
     /* Real    */ ae_vector* d,
     /* Real    */ ae_vector* c,
     /* Real    */ ae_matrix* w,
     ae_int_t cnt,
     ae_state *_state);
void minlbfgssetpreclowrankexact(minlbfgsstate* state,
     /* Real    */ ae_vector* d,
     /* Real    */ ae_vector* c,
     /* Real    */ ae_matrix* w,
     ae_int_t cnt,
     ae_state *_state);
ae_bool minlbfgsiteration(minlbfgsstate* state, ae_state *_state);
void minlbfgsresults(minlbfgsstate* state,
     /* Real    */ ae_vector* x,
     minlbfgsreport* rep,
     ae_state *_state);
void minlbfgsresultsbuf(minlbfgsstate* state,
     /* Real    */ ae_vector* x,
     minlbfgsreport* rep,
     ae_state *_state);
void minlbfgsrestartfrom(minlbfgsstate* state,
     /* Real    */ ae_vector* x,
     ae_state *_state);
void minlbfgsrequesttermination(minlbfgsstate* state, ae_state *_state);
void minlbfgssetgradientcheck(minlbfgsstate* state,
     double teststep,
     ae_state *_state);
void _minlbfgsstate_init(void* _p, ae_state *_state);
void _minlbfgsstate_init_copy(void* _dst, void* _src, ae_state *_state);
void _minlbfgsstate_clear(void* _p);
void _minlbfgsstate_destroy(void* _p);
void _minlbfgsreport_init(void* _p, ae_state *_state);
void _minlbfgsreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _minlbfgsreport_clear(void* _p);
void _minlbfgsreport_destroy(void* _p);
void qpdenseaulloaddefaults(ae_int_t nmain,
     qpdenseaulsettings* s,
     ae_state *_state);
void qpdenseauloptimize(convexquadraticmodel* a,
     sparsematrix* sparsea,
     ae_int_t akind,
     ae_bool sparseaupper,
     /* Real    */ ae_vector* b,
     /* Real    */ ae_vector* bndl,
     /* Real    */ ae_vector* bndu,
     /* Real    */ ae_vector* s,
     /* Real    */ ae_vector* xorigin,
     ae_int_t nn,
     /* Real    */ ae_matrix* cleic,
     ae_int_t dnec,
     ae_int_t dnic,
     sparsematrix* scleic,
     ae_int_t snec,
     ae_int_t snic,
     ae_bool renormlc,
     qpdenseaulsettings* settings,
     qpdenseaulbuffers* state,
     /* Real    */ ae_vector* xs,
     ae_int_t* terminationtype,
     ae_state *_state);
void _qpdenseaulsettings_init(void* _p, ae_state *_state);
void _qpdenseaulsettings_init_copy(void* _dst, void* _src, ae_state *_state);
void _qpdenseaulsettings_clear(void* _p);
void _qpdenseaulsettings_destroy(void* _p);
void _qpdenseaulbuffers_init(void* _p, ae_state *_state);
void _qpdenseaulbuffers_init_copy(void* _dst, void* _src, ae_state *_state);
void _qpdenseaulbuffers_clear(void* _p);
void _qpdenseaulbuffers_destroy(void* _p);
void qpcholeskyloaddefaults(ae_int_t nmain,
     qpcholeskysettings* s,
     ae_state *_state);
void qpcholeskycopysettings(qpcholeskysettings* src,
     qpcholeskysettings* dst,
     ae_state *_state);
void qpcholeskyoptimize(convexquadraticmodel* a,
     double anorm,
     /* Real    */ ae_vector* b,
     /* Real    */ ae_vector* bndl,
     /* Real    */ ae_vector* bndu,
     /* Real    */ ae_vector* s,
     /* Real    */ ae_vector* xorigin,
     ae_int_t n,
     /* Real    */ ae_matrix* cleic,
     ae_int_t nec,
     ae_int_t nic,
     qpcholeskybuffers* sstate,
     /* Real    */ ae_vector* xsc,
     ae_int_t* terminationtype,
     ae_state *_state);
void _qpcholeskysettings_init(void* _p, ae_state *_state);
void _qpcholeskysettings_init_copy(void* _dst, void* _src, ae_state *_state);
void _qpcholeskysettings_clear(void* _p);
void _qpcholeskysettings_destroy(void* _p);
void _qpcholeskybuffers_init(void* _p, ae_state *_state);
void _qpcholeskybuffers_init_copy(void* _dst, void* _src, ae_state *_state);
void _qpcholeskybuffers_clear(void* _p);
void _qpcholeskybuffers_destroy(void* _p);
void mincgcreate(ae_int_t n,
     /* Real    */ ae_vector* x,
     mincgstate* state,
     ae_state *_state);
void mincgcreatef(ae_int_t n,
     /* Real    */ ae_vector* x,
     double diffstep,
     mincgstate* state,
     ae_state *_state);
void mincgsetcond(mincgstate* state,
     double epsg,
     double epsf,
     double epsx,
     ae_int_t maxits,
     ae_state *_state);
void mincgsetscale(mincgstate* state,
     /* Real    */ ae_vector* s,
     ae_state *_state);
void mincgsetxrep(mincgstate* state, ae_bool needxrep, ae_state *_state);
void mincgsetdrep(mincgstate* state, ae_bool needdrep, ae_state *_state);
void mincgsetcgtype(mincgstate* state, ae_int_t cgtype, ae_state *_state);
void mincgsetstpmax(mincgstate* state, double stpmax, ae_state *_state);
void mincgsuggeststep(mincgstate* state, double stp, ae_state *_state);
double mincglastgoodstep(mincgstate* state, ae_state *_state);
void mincgsetprecdefault(mincgstate* state, ae_state *_state);
void mincgsetprecdiag(mincgstate* state,
     /* Real    */ ae_vector* d,
     ae_state *_state);
void mincgsetprecscale(mincgstate* state, ae_state *_state);
ae_bool mincgiteration(mincgstate* state, ae_state *_state);
void mincgresults(mincgstate* state,
     /* Real    */ ae_vector* x,
     mincgreport* rep,
     ae_state *_state);
void mincgresultsbuf(mincgstate* state,
     /* Real    */ ae_vector* x,
     mincgreport* rep,
     ae_state *_state);
void mincgrestartfrom(mincgstate* state,
     /* Real    */ ae_vector* x,
     ae_state *_state);
void mincgrequesttermination(mincgstate* state, ae_state *_state);
void mincgsetprecdiagfast(mincgstate* state,
     /* Real    */ ae_vector* d,
     ae_state *_state);
void mincgsetpreclowrankfast(mincgstate* state,
     /* Real    */ ae_vector* d1,
     /* Real    */ ae_vector* c,
     /* Real    */ ae_matrix* v,
     ae_int_t vcnt,
     ae_state *_state);
void mincgsetprecvarpart(mincgstate* state,
     /* Real    */ ae_vector* d2,
     ae_state *_state);
void mincgsetgradientcheck(mincgstate* state,
     double teststep,
     ae_state *_state);
void _mincgstate_init(void* _p, ae_state *_state);
void _mincgstate_init_copy(void* _dst, void* _src, ae_state *_state);
void _mincgstate_clear(void* _p);
void _mincgstate_destroy(void* _p);
void _mincgreport_init(void* _p, ae_state *_state);
void _mincgreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _mincgreport_clear(void* _p);
void _mincgreport_destroy(void* _p);
void minbleiccreate(ae_int_t n,
     /* Real    */ ae_vector* x,
     minbleicstate* state,
     ae_state *_state);
void minbleiccreatef(ae_int_t n,
     /* Real    */ ae_vector* x,
     double diffstep,
     minbleicstate* state,
     ae_state *_state);
void minbleicsetbc(minbleicstate* state,
     /* Real    */ ae_vector* bndl,
     /* Real    */ ae_vector* bndu,
     ae_state *_state);
void minbleicsetlc(minbleicstate* state,
     /* Real    */ ae_matrix* c,
     /* Integer */ ae_vector* ct,
     ae_int_t k,
     ae_state *_state);
void minbleicsetcond(minbleicstate* state,
     double epsg,
     double epsf,
     double epsx,
     ae_int_t maxits,
     ae_state *_state);
void minbleicsetscale(minbleicstate* state,
     /* Real    */ ae_vector* s,
     ae_state *_state);
void minbleicsetprecdefault(minbleicstate* state, ae_state *_state);
void minbleicsetprecdiag(minbleicstate* state,
     /* Real    */ ae_vector* d,
     ae_state *_state);
void minbleicsetprecscale(minbleicstate* state, ae_state *_state);
void minbleicsetxrep(minbleicstate* state,
     ae_bool needxrep,
     ae_state *_state);
void minbleicsetdrep(minbleicstate* state,
     ae_bool needdrep,
     ae_state *_state);
void minbleicsetstpmax(minbleicstate* state,
     double stpmax,
     ae_state *_state);
ae_bool minbleiciteration(minbleicstate* state, ae_state *_state);
void minbleicresults(minbleicstate* state,
     /* Real    */ ae_vector* x,
     minbleicreport* rep,
     ae_state *_state);
void minbleicresultsbuf(minbleicstate* state,
     /* Real    */ ae_vector* x,
     minbleicreport* rep,
     ae_state *_state);
void minbleicrestartfrom(minbleicstate* state,
     /* Real    */ ae_vector* x,
     ae_state *_state);
void minbleicrequesttermination(minbleicstate* state, ae_state *_state);
void minbleicemergencytermination(minbleicstate* state, ae_state *_state);
void minbleicsetgradientcheck(minbleicstate* state,
     double teststep,
     ae_state *_state);
void _minbleicstate_init(void* _p, ae_state *_state);
void _minbleicstate_init_copy(void* _dst, void* _src, ae_state *_state);
void _minbleicstate_clear(void* _p);
void _minbleicstate_destroy(void* _p);
void _minbleicreport_init(void* _p, ae_state *_state);
void _minbleicreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _minbleicreport_clear(void* _p);
void _minbleicreport_destroy(void* _p);
void qpbleicloaddefaults(ae_int_t nmain,
     qpbleicsettings* s,
     ae_state *_state);
void qpbleiccopysettings(qpbleicsettings* src,
     qpbleicsettings* dst,
     ae_state *_state);
void qpbleicoptimize(convexquadraticmodel* a,
     sparsematrix* sparsea,
     ae_int_t akind,
     ae_bool sparseaupper,
     double absasum,
     double absasum2,
     /* Real    */ ae_vector* b,
     /* Real    */ ae_vector* bndl,
     /* Real    */ ae_vector* bndu,
     /* Real    */ ae_vector* s,
     /* Real    */ ae_vector* xorigin,
     ae_int_t n,
     /* Real    */ ae_matrix* cleic,
     ae_int_t nec,
     ae_int_t nic,
     qpbleicsettings* settings,
     qpbleicbuffers* sstate,
     ae_bool* firstcall,
     /* Real    */ ae_vector* xs,
     ae_int_t* terminationtype,
     ae_state *_state);
void _qpbleicsettings_init(void* _p, ae_state *_state);
void _qpbleicsettings_init_copy(void* _dst, void* _src, ae_state *_state);
void _qpbleicsettings_clear(void* _p);
void _qpbleicsettings_destroy(void* _p);
void _qpbleicbuffers_init(void* _p, ae_state *_state);
void _qpbleicbuffers_init_copy(void* _dst, void* _src, ae_state *_state);
void _qpbleicbuffers_clear(void* _p);
void _qpbleicbuffers_destroy(void* _p);
void minqpcreate(ae_int_t n, minqpstate* state, ae_state *_state);
void minqpsetlinearterm(minqpstate* state,
     /* Real    */ ae_vector* b,
     ae_state *_state);
void minqpsetquadraticterm(minqpstate* state,
     /* Real    */ ae_matrix* a,
     ae_bool isupper,
     ae_state *_state);
void minqpsetquadratictermsparse(minqpstate* state,
     sparsematrix* a,
     ae_bool isupper,
     ae_state *_state);
void minqpsetstartingpoint(minqpstate* state,
     /* Real    */ ae_vector* x,
     ae_state *_state);
void minqpsetorigin(minqpstate* state,
     /* Real    */ ae_vector* xorigin,
     ae_state *_state);
void minqpsetscale(minqpstate* state,
     /* Real    */ ae_vector* s,
     ae_state *_state);
void minqpsetalgocholesky(minqpstate* state, ae_state *_state);
void minqpsetalgobleic(minqpstate* state,
     double epsg,
     double epsf,
     double epsx,
     ae_int_t maxits,
     ae_state *_state);
void minqpsetalgodenseaul(minqpstate* state,
     double epsx,
     double rho,
     ae_int_t itscnt,
     ae_state *_state);
void minqpsetalgoquickqp(minqpstate* state,
     double epsg,
     double epsf,
     double epsx,
     ae_int_t maxouterits,
     ae_bool usenewton,
     ae_state *_state);
void minqpsetbc(minqpstate* state,
     /* Real    */ ae_vector* bndl,
     /* Real    */ ae_vector* bndu,
     ae_state *_state);
void minqpsetlc(minqpstate* state,
     /* Real    */ ae_matrix* c,
     /* Integer */ ae_vector* ct,
     ae_int_t k,
     ae_state *_state);
void minqpsetlcsparse(minqpstate* state,
     sparsematrix* c,
     /* Integer */ ae_vector* ct,
     ae_int_t k,
     ae_state *_state);
void minqpsetlcmixed(minqpstate* state,
     /* Real    */ ae_matrix* densec,
     /* Integer */ ae_vector* densect,
     ae_int_t densek,
     sparsematrix* sparsec,
     /* Integer */ ae_vector* sparsect,
     ae_int_t sparsek,
     ae_state *_state);
void minqpoptimize(minqpstate* state, ae_state *_state);
void minqpresults(minqpstate* state,
     /* Real    */ ae_vector* x,
     minqpreport* rep,
     ae_state *_state);
void minqpresultsbuf(minqpstate* state,
     /* Real    */ ae_vector* x,
     minqpreport* rep,
     ae_state *_state);
void minqpsetlineartermfast(minqpstate* state,
     /* Real    */ ae_vector* b,
     ae_state *_state);
void minqpsetquadratictermfast(minqpstate* state,
     /* Real    */ ae_matrix* a,
     ae_bool isupper,
     double s,
     ae_state *_state);
void minqprewritediagonal(minqpstate* state,
     /* Real    */ ae_vector* s,
     ae_state *_state);
void minqpsetstartingpointfast(minqpstate* state,
     /* Real    */ ae_vector* x,
     ae_state *_state);
void minqpsetoriginfast(minqpstate* state,
     /* Real    */ ae_vector* xorigin,
     ae_state *_state);
void _minqpstate_init(void* _p, ae_state *_state);
void _minqpstate_init_copy(void* _dst, void* _src, ae_state *_state);
void _minqpstate_clear(void* _p);
void _minqpstate_destroy(void* _p);
void _minqpreport_init(void* _p, ae_state *_state);
void _minqpreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _minqpreport_clear(void* _p);
void _minqpreport_destroy(void* _p);
void minnlccreate(ae_int_t n,
     /* Real    */ ae_vector* x,
     minnlcstate* state,
     ae_state *_state);
void minnlccreatef(ae_int_t n,
     /* Real    */ ae_vector* x,
     double diffstep,
     minnlcstate* state,
     ae_state *_state);
void minnlcsetbc(minnlcstate* state,
     /* Real    */ ae_vector* bndl,
     /* Real    */ ae_vector* bndu,
     ae_state *_state);
void minnlcsetlc(minnlcstate* state,
     /* Real    */ ae_matrix* c,
     /* Integer */ ae_vector* ct,
     ae_int_t k,
     ae_state *_state);
void minnlcsetnlc(minnlcstate* state,
     ae_int_t nlec,
     ae_int_t nlic,
     ae_state *_state);
void minnlcsetcond(minnlcstate* state,
     double epsg,
     double epsf,
     double epsx,
     ae_int_t maxits,
     ae_state *_state);
void minnlcsetscale(minnlcstate* state,
     /* Real    */ ae_vector* s,
     ae_state *_state);
void minnlcsetprecinexact(minnlcstate* state, ae_state *_state);
void minnlcsetprecexactlowrank(minnlcstate* state,
     ae_int_t updatefreq,
     ae_state *_state);
void minnlcsetprecexactrobust(minnlcstate* state,
     ae_int_t updatefreq,
     ae_state *_state);
void minnlcsetprecnone(minnlcstate* state, ae_state *_state);
void minnlcsetstpmax(minnlcstate* state, double stpmax, ae_state *_state);
void minnlcsetalgoaul(minnlcstate* state,
     double rho,
     ae_int_t itscnt,
     ae_state *_state);
void minnlcsetxrep(minnlcstate* state, ae_bool needxrep, ae_state *_state);
ae_bool minnlciteration(minnlcstate* state, ae_state *_state);
void minnlcresults(minnlcstate* state,
     /* Real    */ ae_vector* x,
     minnlcreport* rep,
     ae_state *_state);
void minnlcresultsbuf(minnlcstate* state,
     /* Real    */ ae_vector* x,
     minnlcreport* rep,
     ae_state *_state);
void minnlcrestartfrom(minnlcstate* state,
     /* Real    */ ae_vector* x,
     ae_state *_state);
void minnlcsetgradientcheck(minnlcstate* state,
     double teststep,
     ae_state *_state);
void minnlcequalitypenaltyfunction(double alpha,
     double* f,
     double* df,
     double* d2f,
     ae_state *_state);
void minnlcinequalitypenaltyfunction(double alpha,
     double stabilizingpoint,
     double* f,
     double* df,
     double* d2f,
     ae_state *_state);
void minnlcinequalityshiftfunction(double alpha,
     double* f,
     double* df,
     double* d2f,
     ae_state *_state);
void _minnlcstate_init(void* _p, ae_state *_state);
void _minnlcstate_init_copy(void* _dst, void* _src, ae_state *_state);
void _minnlcstate_clear(void* _p);
void _minnlcstate_destroy(void* _p);
void _minnlcreport_init(void* _p, ae_state *_state);
void _minnlcreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _minnlcreport_clear(void* _p);
void _minnlcreport_destroy(void* _p);
void minbccreate(ae_int_t n,
     /* Real    */ ae_vector* x,
     minbcstate* state,
     ae_state *_state);
void minbccreatef(ae_int_t n,
     /* Real    */ ae_vector* x,
     double diffstep,
     minbcstate* state,
     ae_state *_state);
void minbcsetbc(minbcstate* state,
     /* Real    */ ae_vector* bndl,
     /* Real    */ ae_vector* bndu,
     ae_state *_state);
void minbcsetcond(minbcstate* state,
     double epsg,
     double epsf,
     double epsx,
     ae_int_t maxits,
     ae_state *_state);
void minbcsetscale(minbcstate* state,
     /* Real    */ ae_vector* s,
     ae_state *_state);
void minbcsetprecdefault(minbcstate* state, ae_state *_state);
void minbcsetprecdiag(minbcstate* state,
     /* Real    */ ae_vector* d,
     ae_state *_state);
void minbcsetprecscale(minbcstate* state, ae_state *_state);
void minbcsetxrep(minbcstate* state, ae_bool needxrep, ae_state *_state);
void minbcsetstpmax(minbcstate* state, double stpmax, ae_state *_state);
ae_bool minbciteration(minbcstate* state, ae_state *_state);
void minbcresults(minbcstate* state,
     /* Real    */ ae_vector* x,
     minbcreport* rep,
     ae_state *_state);
void minbcresultsbuf(minbcstate* state,
     /* Real    */ ae_vector* x,
     minbcreport* rep,
     ae_state *_state);
void minbcrestartfrom(minbcstate* state,
     /* Real    */ ae_vector* x,
     ae_state *_state);
void minbcrequesttermination(minbcstate* state, ae_state *_state);
void minbcsetgradientcheck(minbcstate* state,
     double teststep,
     ae_state *_state);
void _minbcstate_init(void* _p, ae_state *_state);
void _minbcstate_init_copy(void* _dst, void* _src, ae_state *_state);
void _minbcstate_clear(void* _p);
void _minbcstate_destroy(void* _p);
void _minbcreport_init(void* _p, ae_state *_state);
void _minbcreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _minbcreport_clear(void* _p);
void _minbcreport_destroy(void* _p);
void minnscreate(ae_int_t n,
     /* Real    */ ae_vector* x,
     minnsstate* state,
     ae_state *_state);
void minnscreatef(ae_int_t n,
     /* Real    */ ae_vector* x,
     double diffstep,
     minnsstate* state,
     ae_state *_state);
void minnssetbc(minnsstate* state,
     /* Real    */ ae_vector* bndl,
     /* Real    */ ae_vector* bndu,
     ae_state *_state);
void minnssetlc(minnsstate* state,
     /* Real    */ ae_matrix* c,
     /* Integer */ ae_vector* ct,
     ae_int_t k,
     ae_state *_state);
void minnssetnlc(minnsstate* state,
     ae_int_t nlec,
     ae_int_t nlic,
     ae_state *_state);
void minnssetcond(minnsstate* state,
     double epsx,
     ae_int_t maxits,
     ae_state *_state);
void minnssetscale(minnsstate* state,
     /* Real    */ ae_vector* s,
     ae_state *_state);
void minnssetalgoags(minnsstate* state,
     double radius,
     double penalty,
     ae_state *_state);
void minnssetxrep(minnsstate* state, ae_bool needxrep, ae_state *_state);
void minnsrequesttermination(minnsstate* state, ae_state *_state);
ae_bool minnsiteration(minnsstate* state, ae_state *_state);
void minnsresults(minnsstate* state,
     /* Real    */ ae_vector* x,
     minnsreport* rep,
     ae_state *_state);
void minnsresultsbuf(minnsstate* state,
     /* Real    */ ae_vector* x,
     minnsreport* rep,
     ae_state *_state);
void minnsrestartfrom(minnsstate* state,
     /* Real    */ ae_vector* x,
     ae_state *_state);
void _minnsqp_init(void* _p, ae_state *_state);
void _minnsqp_init_copy(void* _dst, void* _src, ae_state *_state);
void _minnsqp_clear(void* _p);
void _minnsqp_destroy(void* _p);
void _minnsstate_init(void* _p, ae_state *_state);
void _minnsstate_init_copy(void* _dst, void* _src, ae_state *_state);
void _minnsstate_clear(void* _p);
void _minnsstate_destroy(void* _p);
void _minnsreport_init(void* _p, ae_state *_state);
void _minnsreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _minnsreport_clear(void* _p);
void _minnsreport_destroy(void* _p);
void minlbfgssetdefaultpreconditioner(minlbfgsstate* state,
     ae_state *_state);
void minlbfgssetcholeskypreconditioner(minlbfgsstate* state,
     /* Real    */ ae_matrix* p,
     ae_bool isupper,
     ae_state *_state);
void minbleicsetbarrierwidth(minbleicstate* state,
     double mu,
     ae_state *_state);
void minbleicsetbarrierdecay(minbleicstate* state,
     double mudecay,
     ae_state *_state);
void minasacreate(ae_int_t n,
     /* Real    */ ae_vector* x,
     /* Real    */ ae_vector* bndl,
     /* Real    */ ae_vector* bndu,
     minasastate* state,
     ae_state *_state);
void minasasetcond(minasastate* state,
     double epsg,
     double epsf,
     double epsx,
     ae_int_t maxits,
     ae_state *_state);
void minasasetxrep(minasastate* state, ae_bool needxrep, ae_state *_state);
void minasasetalgorithm(minasastate* state,
     ae_int_t algotype,
     ae_state *_state);
void minasasetstpmax(minasastate* state, double stpmax, ae_state *_state);
ae_bool minasaiteration(minasastate* state, ae_state *_state);
void minasaresults(minasastate* state,
     /* Real    */ ae_vector* x,
     minasareport* rep,
     ae_state *_state);
void minasaresultsbuf(minasastate* state,
     /* Real    */ ae_vector* x,
     minasareport* rep,
     ae_state *_state);
void minasarestartfrom(minasastate* state,
     /* Real    */ ae_vector* x,
     /* Real    */ ae_vector* bndl,
     /* Real    */ ae_vector* bndu,
     ae_state *_state);
void _minasastate_init(void* _p, ae_state *_state);
void _minasastate_init_copy(void* _dst, void* _src, ae_state *_state);
void _minasastate_clear(void* _p);
void _minasastate_destroy(void* _p);
void _minasareport_init(void* _p, ae_state *_state);
void _minasareport_init_copy(void* _dst, void* _src, ae_state *_state);
void _minasareport_clear(void* _p);
void _minasareport_destroy(void* _p);
void minlmcreatevj(ae_int_t n,
     ae_int_t m,
     /* Real    */ ae_vector* x,
     minlmstate* state,
     ae_state *_state);
void minlmcreatev(ae_int_t n,
     ae_int_t m,
     /* Real    */ ae_vector* x,
     double diffstep,
     minlmstate* state,
     ae_state *_state);
void minlmcreatefgh(ae_int_t n,
     /* Real    */ ae_vector* x,
     minlmstate* state,
     ae_state *_state);
void minlmsetcond(minlmstate* state,
     double epsx,
     ae_int_t maxits,
     ae_state *_state);
void minlmsetxrep(minlmstate* state, ae_bool needxrep, ae_state *_state);
void minlmsetstpmax(minlmstate* state, double stpmax, ae_state *_state);
void minlmsetscale(minlmstate* state,
     /* Real    */ ae_vector* s,
     ae_state *_state);
void minlmsetbc(minlmstate* state,
     /* Real    */ ae_vector* bndl,
     /* Real    */ ae_vector* bndu,
     ae_state *_state);
void minlmsetlc(minlmstate* state,
     /* Real    */ ae_matrix* c,
     /* Integer */ ae_vector* ct,
     ae_int_t k,
     ae_state *_state);
void minlmsetacctype(minlmstate* state,
     ae_int_t acctype,
     ae_state *_state);
ae_bool minlmiteration(minlmstate* state, ae_state *_state);
void minlmresults(minlmstate* state,
     /* Real    */ ae_vector* x,
     minlmreport* rep,
     ae_state *_state);
void minlmresultsbuf(minlmstate* state,
     /* Real    */ ae_vector* x,
     minlmreport* rep,
     ae_state *_state);
void minlmrestartfrom(minlmstate* state,
     /* Real    */ ae_vector* x,
     ae_state *_state);
void minlmrequesttermination(minlmstate* state, ae_state *_state);
void minlmcreatevgj(ae_int_t n,
     ae_int_t m,
     /* Real    */ ae_vector* x,
     minlmstate* state,
     ae_state *_state);
void minlmcreatefgj(ae_int_t n,
     ae_int_t m,
     /* Real    */ ae_vector* x,
     minlmstate* state,
     ae_state *_state);
void minlmcreatefj(ae_int_t n,
     ae_int_t m,
     /* Real    */ ae_vector* x,
     minlmstate* state,
     ae_state *_state);
void minlmsetgradientcheck(minlmstate* state,
     double teststep,
     ae_state *_state);
void _minlmstepfinder_init(void* _p, ae_state *_state);
void _minlmstepfinder_init_copy(void* _dst, void* _src, ae_state *_state);
void _minlmstepfinder_clear(void* _p);
void _minlmstepfinder_destroy(void* _p);
void _minlmstate_init(void* _p, ae_state *_state);
void _minlmstate_init_copy(void* _dst, void* _src, ae_state *_state);
void _minlmstate_clear(void* _p);
void _minlmstate_destroy(void* _p);
void _minlmreport_init(void* _p, ae_state *_state);
void _minlmreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _minlmreport_clear(void* _p);
void _minlmreport_destroy(void* _p);

}
#endif