/usr/include/libalglib/dataanalysis.h is in libalglib-dev 3.11.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 | /*************************************************************************
ALGLIB 3.11.0 (source code generated 2017-05-11)
Copyright (c) Sergey Bochkanov (ALGLIB project).
>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses
>>> END OF LICENSE >>>
*************************************************************************/
#ifndef _dataanalysis_pkg_h
#define _dataanalysis_pkg_h
#include "ap.h"
#include "alglibinternal.h"
#include "linalg.h"
#include "alglibmisc.h"
#include "statistics.h"
#include "specialfunctions.h"
#include "solvers.h"
#include "optimization.h"
/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (DATATYPES)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
typedef struct
{
double relclserror;
double avgce;
double rmserror;
double avgerror;
double avgrelerror;
} cvreport;
typedef struct
{
double relclserror;
double avgce;
double rmserror;
double avgerror;
double avgrelerror;
} modelerrors;
typedef struct
{
double f;
ae_vector g;
} smlpgrad;
typedef struct
{
ae_int_t hlnetworktype;
ae_int_t hlnormtype;
ae_vector hllayersizes;
ae_vector hlconnections;
ae_vector hlneurons;
ae_vector structinfo;
ae_vector weights;
ae_vector columnmeans;
ae_vector columnsigmas;
ae_vector neurons;
ae_vector dfdnet;
ae_vector derror;
ae_vector x;
ae_vector y;
ae_matrix xy;
ae_vector xyrow;
ae_vector nwbuf;
ae_vector integerbuf;
modelerrors err;
ae_vector rndbuf;
ae_shared_pool buf;
ae_shared_pool gradbuf;
ae_matrix dummydxy;
sparsematrix dummysxy;
ae_vector dummyidx;
ae_shared_pool dummypool;
} multilayerperceptron;
typedef struct
{
ae_vector w;
} linearmodel;
typedef struct
{
ae_matrix c;
double rmserror;
double avgerror;
double avgrelerror;
double cvrmserror;
double cvavgerror;
double cvavgrelerror;
ae_int_t ncvdefects;
ae_vector cvdefects;
} lrreport;
typedef struct
{
ae_vector w;
} logitmodel;
typedef struct
{
ae_bool brackt;
ae_bool stage1;
ae_int_t infoc;
double dg;
double dgm;
double dginit;
double dgtest;
double dgx;
double dgxm;
double dgy;
double dgym;
double finit;
double ftest1;
double fm;
double fx;
double fxm;
double fy;
double fym;
double stx;
double sty;
double stmin;
double stmax;
double width;
double width1;
double xtrapf;
} logitmcstate;
typedef struct
{
ae_int_t ngrad;
ae_int_t nhess;
} mnlreport;
typedef struct
{
ae_int_t n;
ae_vector states;
ae_int_t npairs;
ae_matrix data;
ae_matrix ec;
ae_matrix bndl;
ae_matrix bndu;
ae_matrix c;
ae_vector ct;
ae_int_t ccnt;
ae_vector pw;
ae_matrix priorp;
double regterm;
minbleicstate bs;
ae_int_t repinneriterationscount;
ae_int_t repouteriterationscount;
ae_int_t repnfev;
ae_int_t repterminationtype;
minbleicreport br;
ae_vector tmpp;
ae_vector effectivew;
ae_vector effectivebndl;
ae_vector effectivebndu;
ae_matrix effectivec;
ae_vector effectivect;
ae_vector h;
ae_matrix p;
} mcpdstate;
typedef struct
{
ae_int_t inneriterationscount;
ae_int_t outeriterationscount;
ae_int_t nfev;
ae_int_t terminationtype;
} mcpdreport;
typedef struct
{
ae_int_t ensemblesize;
ae_vector weights;
ae_vector columnmeans;
ae_vector columnsigmas;
multilayerperceptron network;
ae_vector y;
} mlpensemble;
typedef struct
{
double relclserror;
double avgce;
double rmserror;
double avgerror;
double avgrelerror;
ae_int_t ngrad;
ae_int_t nhess;
ae_int_t ncholesky;
} mlpreport;
typedef struct
{
double relclserror;
double avgce;
double rmserror;
double avgerror;
double avgrelerror;
} mlpcvreport;
typedef struct
{
ae_vector bestparameters;
double bestrmserror;
ae_bool randomizenetwork;
multilayerperceptron network;
minlbfgsstate optimizer;
minlbfgsreport optimizerrep;
ae_vector wbuf0;
ae_vector wbuf1;
ae_vector allminibatches;
ae_vector currentminibatch;
rcommstate rstate;
ae_int_t algoused;
ae_int_t minibatchsize;
hqrndstate generator;
} smlptrnsession;
typedef struct
{
ae_vector trnsubset;
ae_vector valsubset;
ae_shared_pool mlpsessions;
mlpreport mlprep;
multilayerperceptron network;
} mlpetrnsession;
typedef struct
{
ae_int_t nin;
ae_int_t nout;
ae_bool rcpar;
ae_int_t lbfgsfactor;
double decay;
double wstep;
ae_int_t maxits;
ae_int_t datatype;
ae_int_t npoints;
ae_matrix densexy;
sparsematrix sparsexy;
smlptrnsession session;
ae_int_t ngradbatch;
ae_vector subset;
ae_int_t subsetsize;
ae_vector valsubset;
ae_int_t valsubsetsize;
ae_int_t algokind;
ae_int_t minibatchsize;
} mlptrainer;
typedef struct
{
multilayerperceptron network;
mlpreport rep;
ae_vector subset;
ae_int_t subsetsize;
ae_vector xyrow;
ae_vector y;
ae_int_t ngrad;
ae_shared_pool trnpool;
} mlpparallelizationcv;
typedef struct
{
ae_matrix ct;
ae_matrix ctbest;
ae_vector xycbest;
ae_vector xycprev;
ae_vector d2;
ae_vector csizes;
apbuffers initbuf;
ae_shared_pool updatepool;
} kmeansbuffers;
typedef struct
{
ae_int_t npoints;
ae_int_t nfeatures;
ae_int_t disttype;
ae_matrix xy;
ae_matrix d;
ae_int_t ahcalgo;
ae_int_t kmeansrestarts;
ae_int_t kmeansmaxits;
ae_int_t kmeansinitalgo;
ae_bool kmeansdbgnoits;
ae_matrix tmpd;
apbuffers distbuf;
kmeansbuffers kmeanstmp;
} clusterizerstate;
typedef struct
{
ae_int_t terminationtype;
ae_int_t npoints;
ae_vector p;
ae_matrix z;
ae_matrix pz;
ae_matrix pm;
ae_vector mergedist;
} ahcreport;
typedef struct
{
ae_int_t npoints;
ae_int_t nfeatures;
ae_int_t terminationtype;
ae_int_t iterationscount;
double energy;
ae_int_t k;
ae_matrix c;
ae_vector cidx;
} kmeansreport;
typedef struct
{
ae_int_t nvars;
ae_int_t nclasses;
ae_int_t ntrees;
ae_int_t bufsize;
ae_vector trees;
} decisionforest;
typedef struct
{
double relclserror;
double avgce;
double rmserror;
double avgerror;
double avgrelerror;
double oobrelclserror;
double oobavgce;
double oobrmserror;
double oobavgerror;
double oobavgrelerror;
} dfreport;
typedef struct
{
ae_vector treebuf;
ae_vector idxbuf;
ae_vector tmpbufr;
ae_vector tmpbufr2;
ae_vector tmpbufi;
ae_vector classibuf;
ae_vector sortrbuf;
ae_vector sortrbuf2;
ae_vector sortibuf;
ae_vector varpool;
ae_vector evsbin;
ae_vector evssplits;
} dfinternalbuffers;
}
/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS C++ INTERFACE
//
/////////////////////////////////////////////////////////////////////////
namespace alglib
{
/*************************************************************************
Model's errors:
* RelCLSError - fraction of misclassified cases.
* AvgCE - acerage cross-entropy
* RMSError - root-mean-square error
* AvgError - average error
* AvgRelError - average relative error
NOTE 1: RelCLSError/AvgCE are zero on regression problems.
NOTE 2: on classification problems RMSError/AvgError/AvgRelError contain
errors in prediction of posterior probabilities
*************************************************************************/
class _modelerrors_owner
{
public:
_modelerrors_owner();
_modelerrors_owner(const _modelerrors_owner &rhs);
_modelerrors_owner& operator=(const _modelerrors_owner &rhs);
virtual ~_modelerrors_owner();
alglib_impl::modelerrors* c_ptr();
alglib_impl::modelerrors* c_ptr() const;
protected:
alglib_impl::modelerrors *p_struct;
};
class modelerrors : public _modelerrors_owner
{
public:
modelerrors();
modelerrors(const modelerrors &rhs);
modelerrors& operator=(const modelerrors &rhs);
virtual ~modelerrors();
double &relclserror;
double &avgce;
double &rmserror;
double &avgerror;
double &avgrelerror;
};
/*************************************************************************
*************************************************************************/
class _multilayerperceptron_owner
{
public:
_multilayerperceptron_owner();
_multilayerperceptron_owner(const _multilayerperceptron_owner &rhs);
_multilayerperceptron_owner& operator=(const _multilayerperceptron_owner &rhs);
virtual ~_multilayerperceptron_owner();
alglib_impl::multilayerperceptron* c_ptr();
alglib_impl::multilayerperceptron* c_ptr() const;
protected:
alglib_impl::multilayerperceptron *p_struct;
};
class multilayerperceptron : public _multilayerperceptron_owner
{
public:
multilayerperceptron();
multilayerperceptron(const multilayerperceptron &rhs);
multilayerperceptron& operator=(const multilayerperceptron &rhs);
virtual ~multilayerperceptron();
};
/*************************************************************************
*************************************************************************/
class _linearmodel_owner
{
public:
_linearmodel_owner();
_linearmodel_owner(const _linearmodel_owner &rhs);
_linearmodel_owner& operator=(const _linearmodel_owner &rhs);
virtual ~_linearmodel_owner();
alglib_impl::linearmodel* c_ptr();
alglib_impl::linearmodel* c_ptr() const;
protected:
alglib_impl::linearmodel *p_struct;
};
class linearmodel : public _linearmodel_owner
{
public:
linearmodel();
linearmodel(const linearmodel &rhs);
linearmodel& operator=(const linearmodel &rhs);
virtual ~linearmodel();
};
/*************************************************************************
LRReport structure contains additional information about linear model:
* C - covariation matrix, array[0..NVars,0..NVars].
C[i,j] = Cov(A[i],A[j])
* RMSError - root mean square error on a training set
* AvgError - average error on a training set
* AvgRelError - average relative error on a training set (excluding
observations with zero function value).
* CVRMSError - leave-one-out cross-validation estimate of
generalization error. Calculated using fast algorithm
with O(NVars*NPoints) complexity.
* CVAvgError - cross-validation estimate of average error
* CVAvgRelError - cross-validation estimate of average relative error
All other fields of the structure are intended for internal use and should
not be used outside ALGLIB.
*************************************************************************/
class _lrreport_owner
{
public:
_lrreport_owner();
_lrreport_owner(const _lrreport_owner &rhs);
_lrreport_owner& operator=(const _lrreport_owner &rhs);
virtual ~_lrreport_owner();
alglib_impl::lrreport* c_ptr();
alglib_impl::lrreport* c_ptr() const;
protected:
alglib_impl::lrreport *p_struct;
};
class lrreport : public _lrreport_owner
{
public:
lrreport();
lrreport(const lrreport &rhs);
lrreport& operator=(const lrreport &rhs);
virtual ~lrreport();
real_2d_array c;
double &rmserror;
double &avgerror;
double &avgrelerror;
double &cvrmserror;
double &cvavgerror;
double &cvavgrelerror;
ae_int_t &ncvdefects;
integer_1d_array cvdefects;
};
/*************************************************************************
*************************************************************************/
class _logitmodel_owner
{
public:
_logitmodel_owner();
_logitmodel_owner(const _logitmodel_owner &rhs);
_logitmodel_owner& operator=(const _logitmodel_owner &rhs);
virtual ~_logitmodel_owner();
alglib_impl::logitmodel* c_ptr();
alglib_impl::logitmodel* c_ptr() const;
protected:
alglib_impl::logitmodel *p_struct;
};
class logitmodel : public _logitmodel_owner
{
public:
logitmodel();
logitmodel(const logitmodel &rhs);
logitmodel& operator=(const logitmodel &rhs);
virtual ~logitmodel();
};
/*************************************************************************
MNLReport structure contains information about training process:
* NGrad - number of gradient calculations
* NHess - number of Hessian calculations
*************************************************************************/
class _mnlreport_owner
{
public:
_mnlreport_owner();
_mnlreport_owner(const _mnlreport_owner &rhs);
_mnlreport_owner& operator=(const _mnlreport_owner &rhs);
virtual ~_mnlreport_owner();
alglib_impl::mnlreport* c_ptr();
alglib_impl::mnlreport* c_ptr() const;
protected:
alglib_impl::mnlreport *p_struct;
};
class mnlreport : public _mnlreport_owner
{
public:
mnlreport();
mnlreport(const mnlreport &rhs);
mnlreport& operator=(const mnlreport &rhs);
virtual ~mnlreport();
ae_int_t &ngrad;
ae_int_t &nhess;
};
/*************************************************************************
This structure is a MCPD (Markov Chains for Population Data) solver.
You should use ALGLIB functions in order to work with this object.
-- ALGLIB --
Copyright 23.05.2010 by Bochkanov Sergey
*************************************************************************/
class _mcpdstate_owner
{
public:
_mcpdstate_owner();
_mcpdstate_owner(const _mcpdstate_owner &rhs);
_mcpdstate_owner& operator=(const _mcpdstate_owner &rhs);
virtual ~_mcpdstate_owner();
alglib_impl::mcpdstate* c_ptr();
alglib_impl::mcpdstate* c_ptr() const;
protected:
alglib_impl::mcpdstate *p_struct;
};
class mcpdstate : public _mcpdstate_owner
{
public:
mcpdstate();
mcpdstate(const mcpdstate &rhs);
mcpdstate& operator=(const mcpdstate &rhs);
virtual ~mcpdstate();
};
/*************************************************************************
This structure is a MCPD training report:
InnerIterationsCount - number of inner iterations of the
underlying optimization algorithm
OuterIterationsCount - number of outer iterations of the
underlying optimization algorithm
NFEV - number of merit function evaluations
TerminationType - termination type
(same as for MinBLEIC optimizer, positive
values denote success, negative ones -
failure)
-- ALGLIB --
Copyright 23.05.2010 by Bochkanov Sergey
*************************************************************************/
class _mcpdreport_owner
{
public:
_mcpdreport_owner();
_mcpdreport_owner(const _mcpdreport_owner &rhs);
_mcpdreport_owner& operator=(const _mcpdreport_owner &rhs);
virtual ~_mcpdreport_owner();
alglib_impl::mcpdreport* c_ptr();
alglib_impl::mcpdreport* c_ptr() const;
protected:
alglib_impl::mcpdreport *p_struct;
};
class mcpdreport : public _mcpdreport_owner
{
public:
mcpdreport();
mcpdreport(const mcpdreport &rhs);
mcpdreport& operator=(const mcpdreport &rhs);
virtual ~mcpdreport();
ae_int_t &inneriterationscount;
ae_int_t &outeriterationscount;
ae_int_t &nfev;
ae_int_t &terminationtype;
};
/*************************************************************************
Neural networks ensemble
*************************************************************************/
class _mlpensemble_owner
{
public:
_mlpensemble_owner();
_mlpensemble_owner(const _mlpensemble_owner &rhs);
_mlpensemble_owner& operator=(const _mlpensemble_owner &rhs);
virtual ~_mlpensemble_owner();
alglib_impl::mlpensemble* c_ptr();
alglib_impl::mlpensemble* c_ptr() const;
protected:
alglib_impl::mlpensemble *p_struct;
};
class mlpensemble : public _mlpensemble_owner
{
public:
mlpensemble();
mlpensemble(const mlpensemble &rhs);
mlpensemble& operator=(const mlpensemble &rhs);
virtual ~mlpensemble();
};
/*************************************************************************
Training report:
* RelCLSError - fraction of misclassified cases.
* AvgCE - acerage cross-entropy
* RMSError - root-mean-square error
* AvgError - average error
* AvgRelError - average relative error
* NGrad - number of gradient calculations
* NHess - number of Hessian calculations
* NCholesky - number of Cholesky decompositions
NOTE 1: RelCLSError/AvgCE are zero on regression problems.
NOTE 2: on classification problems RMSError/AvgError/AvgRelError contain
errors in prediction of posterior probabilities
*************************************************************************/
class _mlpreport_owner
{
public:
_mlpreport_owner();
_mlpreport_owner(const _mlpreport_owner &rhs);
_mlpreport_owner& operator=(const _mlpreport_owner &rhs);
virtual ~_mlpreport_owner();
alglib_impl::mlpreport* c_ptr();
alglib_impl::mlpreport* c_ptr() const;
protected:
alglib_impl::mlpreport *p_struct;
};
class mlpreport : public _mlpreport_owner
{
public:
mlpreport();
mlpreport(const mlpreport &rhs);
mlpreport& operator=(const mlpreport &rhs);
virtual ~mlpreport();
double &relclserror;
double &avgce;
double &rmserror;
double &avgerror;
double &avgrelerror;
ae_int_t &ngrad;
ae_int_t &nhess;
ae_int_t &ncholesky;
};
/*************************************************************************
Cross-validation estimates of generalization error
*************************************************************************/
class _mlpcvreport_owner
{
public:
_mlpcvreport_owner();
_mlpcvreport_owner(const _mlpcvreport_owner &rhs);
_mlpcvreport_owner& operator=(const _mlpcvreport_owner &rhs);
virtual ~_mlpcvreport_owner();
alglib_impl::mlpcvreport* c_ptr();
alglib_impl::mlpcvreport* c_ptr() const;
protected:
alglib_impl::mlpcvreport *p_struct;
};
class mlpcvreport : public _mlpcvreport_owner
{
public:
mlpcvreport();
mlpcvreport(const mlpcvreport &rhs);
mlpcvreport& operator=(const mlpcvreport &rhs);
virtual ~mlpcvreport();
double &relclserror;
double &avgce;
double &rmserror;
double &avgerror;
double &avgrelerror;
};
/*************************************************************************
Trainer object for neural network.
You should not try to access fields of this object directly - use ALGLIB
functions to work with this object.
*************************************************************************/
class _mlptrainer_owner
{
public:
_mlptrainer_owner();
_mlptrainer_owner(const _mlptrainer_owner &rhs);
_mlptrainer_owner& operator=(const _mlptrainer_owner &rhs);
virtual ~_mlptrainer_owner();
alglib_impl::mlptrainer* c_ptr();
alglib_impl::mlptrainer* c_ptr() const;
protected:
alglib_impl::mlptrainer *p_struct;
};
class mlptrainer : public _mlptrainer_owner
{
public:
mlptrainer();
mlptrainer(const mlptrainer &rhs);
mlptrainer& operator=(const mlptrainer &rhs);
virtual ~mlptrainer();
};
/*************************************************************************
This structure is a clusterization engine.
You should not try to access its fields directly.
Use ALGLIB functions in order to work with this object.
-- ALGLIB --
Copyright 10.07.2012 by Bochkanov Sergey
*************************************************************************/
class _clusterizerstate_owner
{
public:
_clusterizerstate_owner();
_clusterizerstate_owner(const _clusterizerstate_owner &rhs);
_clusterizerstate_owner& operator=(const _clusterizerstate_owner &rhs);
virtual ~_clusterizerstate_owner();
alglib_impl::clusterizerstate* c_ptr();
alglib_impl::clusterizerstate* c_ptr() const;
protected:
alglib_impl::clusterizerstate *p_struct;
};
class clusterizerstate : public _clusterizerstate_owner
{
public:
clusterizerstate();
clusterizerstate(const clusterizerstate &rhs);
clusterizerstate& operator=(const clusterizerstate &rhs);
virtual ~clusterizerstate();
};
/*************************************************************************
This structure is used to store results of the agglomerative hierarchical
clustering (AHC).
Following information is returned:
* TerminationType - completion code:
* 1 for successful completion of algorithm
* -5 inappropriate combination of clustering algorithm and distance
function was used. As for now, it is possible only when Ward's
method is called for dataset with non-Euclidean distance function.
In case negative completion code is returned, other fields of report
structure are invalid and should not be used.
* NPoints contains number of points in the original dataset
* Z contains information about merges performed (see below). Z contains
indexes from the original (unsorted) dataset and it can be used when you
need to know what points were merged. However, it is not convenient when
you want to build a dendrograd (see below).
* if you want to build dendrogram, you can use Z, but it is not good
option, because Z contains indexes from unsorted dataset. Dendrogram
built from such dataset is likely to have intersections. So, you have to
reorder you points before building dendrogram.
Permutation which reorders point is returned in P. Another representation
of merges, which is more convenient for dendorgram construction, is
returned in PM.
* more information on format of Z, P and PM can be found below and in the
examples from ALGLIB Reference Manual.
FORMAL DESCRIPTION OF FIELDS:
NPoints number of points
Z array[NPoints-1,2], contains indexes of clusters
linked in pairs to form clustering tree. I-th row
corresponds to I-th merge:
* Z[I,0] - index of the first cluster to merge
* Z[I,1] - index of the second cluster to merge
* Z[I,0]<Z[I,1]
* clusters are numbered from 0 to 2*NPoints-2, with
indexes from 0 to NPoints-1 corresponding to points
of the original dataset, and indexes from NPoints to
2*NPoints-2 correspond to clusters generated by
subsequent merges (I-th row of Z creates cluster
with index NPoints+I).
IMPORTANT: indexes in Z[] are indexes in the ORIGINAL,
unsorted dataset. In addition to Z algorithm outputs
permutation which rearranges points in such way that
subsequent merges are performed on adjacent points
(such order is needed if you want to build dendrogram).
However, indexes in Z are related to original,
unrearranged sequence of points.
P array[NPoints], permutation which reorders points for
dendrogram construction. P[i] contains index of the
position where we should move I-th point of the
original dataset in order to apply merges PZ/PM.
PZ same as Z, but for permutation of points given by P.
The only thing which changed are indexes of the
original points; indexes of clusters remained same.
MergeDist array[NPoints-1], contains distances between clusters
being merged (MergeDist[i] correspond to merge stored
in Z[i,...]):
* CLINK, SLINK and average linkage algorithms report
"raw", unmodified distance metric.
* Ward's method reports weighted intra-cluster
variance, which is equal to ||Ca-Cb||^2 * Sa*Sb/(Sa+Sb).
Here A and B are clusters being merged, Ca is a
center of A, Cb is a center of B, Sa is a size of A,
Sb is a size of B.
PM array[NPoints-1,6], another representation of merges,
which is suited for dendrogram construction. It deals
with rearranged points (permutation P is applied) and
represents merges in a form which different from one
used by Z.
For each I from 0 to NPoints-2, I-th row of PM represents
merge performed on two clusters C0 and C1. Here:
* C0 contains points with indexes PM[I,0]...PM[I,1]
* C1 contains points with indexes PM[I,2]...PM[I,3]
* indexes stored in PM are given for dataset sorted
according to permutation P
* PM[I,1]=PM[I,2]-1 (only adjacent clusters are merged)
* PM[I,0]<=PM[I,1], PM[I,2]<=PM[I,3], i.e. both
clusters contain at least one point
* heights of "subdendrograms" corresponding to C0/C1
are stored in PM[I,4] and PM[I,5]. Subdendrograms
corresponding to single-point clusters have
height=0. Dendrogram of the merge result has height
H=max(H0,H1)+1.
NOTE: there is one-to-one correspondence between merges described by Z and
PM. I-th row of Z describes same merge of clusters as I-th row of PM,
with "left" cluster from Z corresponding to the "left" one from PM.
-- ALGLIB --
Copyright 10.07.2012 by Bochkanov Sergey
*************************************************************************/
class _ahcreport_owner
{
public:
_ahcreport_owner();
_ahcreport_owner(const _ahcreport_owner &rhs);
_ahcreport_owner& operator=(const _ahcreport_owner &rhs);
virtual ~_ahcreport_owner();
alglib_impl::ahcreport* c_ptr();
alglib_impl::ahcreport* c_ptr() const;
protected:
alglib_impl::ahcreport *p_struct;
};
class ahcreport : public _ahcreport_owner
{
public:
ahcreport();
ahcreport(const ahcreport &rhs);
ahcreport& operator=(const ahcreport &rhs);
virtual ~ahcreport();
ae_int_t &terminationtype;
ae_int_t &npoints;
integer_1d_array p;
integer_2d_array z;
integer_2d_array pz;
integer_2d_array pm;
real_1d_array mergedist;
};
/*************************************************************************
This structure is used to store results of the k-means clustering
algorithm.
Following information is always returned:
* NPoints contains number of points in the original dataset
* TerminationType contains completion code, negative on failure, positive
on success
* K contains number of clusters
For positive TerminationType we return:
* NFeatures contains number of variables in the original dataset
* C, which contains centers found by algorithm
* CIdx, which maps points of the original dataset to clusters
FORMAL DESCRIPTION OF FIELDS:
NPoints number of points, >=0
NFeatures number of variables, >=1
TerminationType completion code:
* -5 if distance type is anything different from
Euclidean metric
* -3 for degenerate dataset: a) less than K distinct
points, b) K=0 for non-empty dataset.
* +1 for successful completion
K number of clusters
C array[K,NFeatures], rows of the array store centers
CIdx array[NPoints], which contains cluster indexes
IterationsCount actual number of iterations performed by clusterizer.
If algorithm performed more than one random restart,
total number of iterations is returned.
Energy merit function, "energy", sum of squared deviations
from cluster centers
-- ALGLIB --
Copyright 27.11.2012 by Bochkanov Sergey
*************************************************************************/
class _kmeansreport_owner
{
public:
_kmeansreport_owner();
_kmeansreport_owner(const _kmeansreport_owner &rhs);
_kmeansreport_owner& operator=(const _kmeansreport_owner &rhs);
virtual ~_kmeansreport_owner();
alglib_impl::kmeansreport* c_ptr();
alglib_impl::kmeansreport* c_ptr() const;
protected:
alglib_impl::kmeansreport *p_struct;
};
class kmeansreport : public _kmeansreport_owner
{
public:
kmeansreport();
kmeansreport(const kmeansreport &rhs);
kmeansreport& operator=(const kmeansreport &rhs);
virtual ~kmeansreport();
ae_int_t &npoints;
ae_int_t &nfeatures;
ae_int_t &terminationtype;
ae_int_t &iterationscount;
double &energy;
ae_int_t &k;
real_2d_array c;
integer_1d_array cidx;
};
/*************************************************************************
*************************************************************************/
class _decisionforest_owner
{
public:
_decisionforest_owner();
_decisionforest_owner(const _decisionforest_owner &rhs);
_decisionforest_owner& operator=(const _decisionforest_owner &rhs);
virtual ~_decisionforest_owner();
alglib_impl::decisionforest* c_ptr();
alglib_impl::decisionforest* c_ptr() const;
protected:
alglib_impl::decisionforest *p_struct;
};
class decisionforest : public _decisionforest_owner
{
public:
decisionforest();
decisionforest(const decisionforest &rhs);
decisionforest& operator=(const decisionforest &rhs);
virtual ~decisionforest();
};
/*************************************************************************
*************************************************************************/
class _dfreport_owner
{
public:
_dfreport_owner();
_dfreport_owner(const _dfreport_owner &rhs);
_dfreport_owner& operator=(const _dfreport_owner &rhs);
virtual ~_dfreport_owner();
alglib_impl::dfreport* c_ptr();
alglib_impl::dfreport* c_ptr() const;
protected:
alglib_impl::dfreport *p_struct;
};
class dfreport : public _dfreport_owner
{
public:
dfreport();
dfreport(const dfreport &rhs);
dfreport& operator=(const dfreport &rhs);
virtual ~dfreport();
double &relclserror;
double &avgce;
double &rmserror;
double &avgerror;
double &avgrelerror;
double &oobrelclserror;
double &oobavgce;
double &oobrmserror;
double &oobavgerror;
double &oobavgrelerror;
};
/*************************************************************************
Principal components analysis
This function builds orthogonal basis where first axis corresponds to
direction with maximum variance, second axis maximizes variance in the
subspace orthogonal to first axis and so on.
This function builds FULL basis, i.e. returns N vectors corresponding to
ALL directions, no matter how informative. If you need just a few (say,
10 or 50) of the most important directions, you may find it faster to use
one of the reduced versions:
* pcatruncatedsubspace() - for subspace iteration based method
It should be noted that, unlike LDA, PCA does not use class labels.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * multithreading support
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
!
! Multithreading typically gives sublinear (wrt to cores count) speedup,
! because only some parts of the algorithm can be parallelized.
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison. Best results are achieved for high-dimensional problems
! (NVars is at least 256).
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS:
X - dataset, array[0..NPoints-1,0..NVars-1].
matrix contains ONLY INDEPENDENT VARIABLES.
NPoints - dataset size, NPoints>=0
NVars - number of independent variables, NVars>=1
OUTPUT PARAMETERS:
Info - return code:
* -4, if SVD subroutine haven't converged
* -1, if wrong parameters has been passed (NPoints<0,
NVars<1)
* 1, if task is solved
S2 - array[0..NVars-1]. variance values corresponding
to basis vectors.
V - array[0..NVars-1,0..NVars-1]
matrix, whose columns store basis vectors.
-- ALGLIB --
Copyright 25.08.2008 by Bochkanov Sergey
*************************************************************************/
void pcabuildbasis(const real_2d_array &x, const ae_int_t npoints, const ae_int_t nvars, ae_int_t &info, real_1d_array &s2, real_2d_array &v);
void smp_pcabuildbasis(const real_2d_array &x, const ae_int_t npoints, const ae_int_t nvars, ae_int_t &info, real_1d_array &s2, real_2d_array &v);
/*************************************************************************
Principal components analysis
This function performs truncated PCA, i.e. returns just a few most important
directions.
Internally it uses iterative eigensolver which is very efficient when only
a minor fraction of full basis is required. Thus, if you need full basis,
it is better to use pcabuildbasis() function.
It should be noted that, unlike LDA, PCA does not use class labels.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * multithreading support
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
!
! For a situation when you need just a few eigenvectors (~1-10),
! multithreading typically gives sublinear (wrt to cores count) speedup.
! For larger problems it may give you nearly linear increase in
! performance.
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison. Best results are achieved for high-dimensional problems
! (NVars is at least 256).
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS:
X - dataset, array[0..NPoints-1,0..NVars-1].
matrix contains ONLY INDEPENDENT VARIABLES.
NPoints - dataset size, NPoints>=0
NVars - number of independent variables, NVars>=1
NNeeded - number of requested directions, in [1,NVars] range;
this function is efficient only for NNeeded<<NVars.
Eps - desired precision of vectors returned; underlying
solver will stop iterations as soon as absolute error
in corresponding singular values reduces to roughly
eps*MAX(lambda[]), with lambda[] being array of eigen
values.
Zero value means that algorithm performs number of
iterations specified by maxits parameter, without
paying attention to precision.
MaxIts - number of iterations performed by subspace iteration
method. Zero value means that no limit on iteration
count is placed (eps-based stopping condition is used).
OUTPUT PARAMETERS:
S2 - array[NNeeded]. Variance values corresponding
to basis vectors.
V - array[NVars,NNeeded]
matrix, whose columns store basis vectors.
NOTE: passing eps=0 and maxits=0 results in small eps being selected as
stopping condition. Exact value of automatically selected eps is version-
-dependent.
-- ALGLIB --
Copyright 10.01.2017 by Bochkanov Sergey
*************************************************************************/
void pcatruncatedsubspace(const real_2d_array &x, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nneeded, const double eps, const ae_int_t maxits, real_1d_array &s2, real_2d_array &v);
void smp_pcatruncatedsubspace(const real_2d_array &x, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nneeded, const double eps, const ae_int_t maxits, real_1d_array &s2, real_2d_array &v);
/*************************************************************************
Optimal binary classification
Algorithms finds optimal (=with minimal cross-entropy) binary partition.
Internal subroutine.
INPUT PARAMETERS:
A - array[0..N-1], variable
C - array[0..N-1], class numbers (0 or 1).
N - array size
OUTPUT PARAMETERS:
Info - completetion code:
* -3, all values of A[] are same (partition is impossible)
* -2, one of C[] is incorrect (<0, >1)
* -1, incorrect pararemets were passed (N<=0).
* 1, OK
Threshold- partiton boundary. Left part contains values which are
strictly less than Threshold. Right part contains values
which are greater than or equal to Threshold.
PAL, PBL- probabilities P(0|v<Threshold) and P(1|v<Threshold)
PAR, PBR- probabilities P(0|v>=Threshold) and P(1|v>=Threshold)
CVE - cross-validation estimate of cross-entropy
-- ALGLIB --
Copyright 22.05.2008 by Bochkanov Sergey
*************************************************************************/
void dsoptimalsplit2(const real_1d_array &a, const integer_1d_array &c, const ae_int_t n, ae_int_t &info, double &threshold, double &pal, double &pbl, double &par, double &pbr, double &cve);
/*************************************************************************
Optimal partition, internal subroutine. Fast version.
Accepts:
A array[0..N-1] array of attributes array[0..N-1]
C array[0..N-1] array of class labels
TiesBuf array[0..N] temporaries (ties)
CntBuf array[0..2*NC-1] temporaries (counts)
Alpha centering factor (0<=alpha<=1, recommended value - 0.05)
BufR array[0..N-1] temporaries
BufI array[0..N-1] temporaries
Output:
Info error code (">0"=OK, "<0"=bad)
RMS training set RMS error
CVRMS leave-one-out RMS error
Note:
content of all arrays is changed by subroutine;
it doesn't allocate temporaries.
-- ALGLIB --
Copyright 11.12.2008 by Bochkanov Sergey
*************************************************************************/
void dsoptimalsplit2fast(real_1d_array &a, integer_1d_array &c, integer_1d_array &tiesbuf, integer_1d_array &cntbuf, real_1d_array &bufr, integer_1d_array &bufi, const ae_int_t n, const ae_int_t nc, const double alpha, ae_int_t &info, double &threshold, double &rms, double &cvrms);
/*************************************************************************
This function serializes data structure to string.
Important properties of s_out:
* it contains alphanumeric characters, dots, underscores, minus signs
* these symbols are grouped into words, which are separated by spaces
and Windows-style (CR+LF) newlines
* although serializer uses spaces and CR+LF as separators, you can
replace any separator character by arbitrary combination of spaces,
tabs, Windows or Unix newlines. It allows flexible reformatting of
the string in case you want to include it into text or XML file.
But you should not insert separators into the middle of the "words"
nor you should change case of letters.
* s_out can be freely moved between 32-bit and 64-bit systems, little
and big endian machines, and so on. You can serialize structure on
32-bit machine and unserialize it on 64-bit one (or vice versa), or
serialize it on SPARC and unserialize on x86. You can also
serialize it in C++ version of ALGLIB and unserialize in C# one,
and vice versa.
*************************************************************************/
void mlpserialize(multilayerperceptron &obj, std::string &s_out);
/*************************************************************************
This function unserializes data structure from string.
*************************************************************************/
void mlpunserialize(const std::string &s_in, multilayerperceptron &obj);
/*************************************************************************
This function serializes data structure to C++ stream.
Data stream generated by this function is same as string representation
generated by string version of serializer - alphanumeric characters,
dots, underscores, minus signs, which are grouped into words separated by
spaces and CR+LF.
We recommend you to read comments on string version of serializer to find
out more about serialization of AlGLIB objects.
*************************************************************************/
void mlpserialize(multilayerperceptron &obj, std::ostream &s_out);
/*************************************************************************
This function unserializes data structure from stream.
*************************************************************************/
void mlpunserialize(const std::istream &s_in, multilayerperceptron &obj);
/*************************************************************************
Creates neural network with NIn inputs, NOut outputs, without hidden
layers, with linear output layer. Network weights are filled with small
random values.
-- ALGLIB --
Copyright 04.11.2007 by Bochkanov Sergey
*************************************************************************/
void mlpcreate0(const ae_int_t nin, const ae_int_t nout, multilayerperceptron &network);
/*************************************************************************
Same as MLPCreate0, but with one hidden layer (NHid neurons) with
non-linear activation function. Output layer is linear.
-- ALGLIB --
Copyright 04.11.2007 by Bochkanov Sergey
*************************************************************************/
void mlpcreate1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, multilayerperceptron &network);
/*************************************************************************
Same as MLPCreate0, but with two hidden layers (NHid1 and NHid2 neurons)
with non-linear activation function. Output layer is linear.
$ALL
-- ALGLIB --
Copyright 04.11.2007 by Bochkanov Sergey
*************************************************************************/
void mlpcreate2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, multilayerperceptron &network);
/*************************************************************************
Creates neural network with NIn inputs, NOut outputs, without hidden
layers with non-linear output layer. Network weights are filled with small
random values.
Activation function of the output layer takes values:
(B, +INF), if D>=0
or
(-INF, B), if D<0.
-- ALGLIB --
Copyright 30.03.2008 by Bochkanov Sergey
*************************************************************************/
void mlpcreateb0(const ae_int_t nin, const ae_int_t nout, const double b, const double d, multilayerperceptron &network);
/*************************************************************************
Same as MLPCreateB0 but with non-linear hidden layer.
-- ALGLIB --
Copyright 30.03.2008 by Bochkanov Sergey
*************************************************************************/
void mlpcreateb1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, const double b, const double d, multilayerperceptron &network);
/*************************************************************************
Same as MLPCreateB0 but with two non-linear hidden layers.
-- ALGLIB --
Copyright 30.03.2008 by Bochkanov Sergey
*************************************************************************/
void mlpcreateb2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, const double b, const double d, multilayerperceptron &network);
/*************************************************************************
Creates neural network with NIn inputs, NOut outputs, without hidden
layers with non-linear output layer. Network weights are filled with small
random values. Activation function of the output layer takes values [A,B].
-- ALGLIB --
Copyright 30.03.2008 by Bochkanov Sergey
*************************************************************************/
void mlpcreater0(const ae_int_t nin, const ae_int_t nout, const double a, const double b, multilayerperceptron &network);
/*************************************************************************
Same as MLPCreateR0, but with non-linear hidden layer.
-- ALGLIB --
Copyright 30.03.2008 by Bochkanov Sergey
*************************************************************************/
void mlpcreater1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, const double a, const double b, multilayerperceptron &network);
/*************************************************************************
Same as MLPCreateR0, but with two non-linear hidden layers.
-- ALGLIB --
Copyright 30.03.2008 by Bochkanov Sergey
*************************************************************************/
void mlpcreater2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, const double a, const double b, multilayerperceptron &network);
/*************************************************************************
Creates classifier network with NIn inputs and NOut possible classes.
Network contains no hidden layers and linear output layer with SOFTMAX-
normalization (so outputs sums up to 1.0 and converge to posterior
probabilities).
-- ALGLIB --
Copyright 04.11.2007 by Bochkanov Sergey
*************************************************************************/
void mlpcreatec0(const ae_int_t nin, const ae_int_t nout, multilayerperceptron &network);
/*************************************************************************
Same as MLPCreateC0, but with one non-linear hidden layer.
-- ALGLIB --
Copyright 04.11.2007 by Bochkanov Sergey
*************************************************************************/
void mlpcreatec1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, multilayerperceptron &network);
/*************************************************************************
Same as MLPCreateC0, but with two non-linear hidden layers.
-- ALGLIB --
Copyright 04.11.2007 by Bochkanov Sergey
*************************************************************************/
void mlpcreatec2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, multilayerperceptron &network);
/*************************************************************************
Copying of neural network
INPUT PARAMETERS:
Network1 - original
OUTPUT PARAMETERS:
Network2 - copy
-- ALGLIB --
Copyright 04.11.2007 by Bochkanov Sergey
*************************************************************************/
void mlpcopy(const multilayerperceptron &network1, multilayerperceptron &network2);
/*************************************************************************
This function copies tunable parameters (weights/means/sigmas) from one
network to another with same architecture. It performs some rudimentary
checks that architectures are same, and throws exception if check fails.
It is intended for fast copying of states between two network which are
known to have same geometry.
INPUT PARAMETERS:
Network1 - source, must be correctly initialized
Network2 - target, must have same architecture
OUTPUT PARAMETERS:
Network2 - network state is copied from source to target
-- ALGLIB --
Copyright 20.06.2013 by Bochkanov Sergey
*************************************************************************/
void mlpcopytunableparameters(const multilayerperceptron &network1, const multilayerperceptron &network2);
/*************************************************************************
Randomization of neural network weights
-- ALGLIB --
Copyright 06.11.2007 by Bochkanov Sergey
*************************************************************************/
void mlprandomize(const multilayerperceptron &network);
/*************************************************************************
Randomization of neural network weights and standartisator
-- ALGLIB --
Copyright 10.03.2008 by Bochkanov Sergey
*************************************************************************/
void mlprandomizefull(const multilayerperceptron &network);
/*************************************************************************
Internal subroutine.
-- ALGLIB --
Copyright 30.03.2008 by Bochkanov Sergey
*************************************************************************/
void mlpinitpreprocessor(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize);
/*************************************************************************
Returns information about initialized network: number of inputs, outputs,
weights.
-- ALGLIB --
Copyright 04.11.2007 by Bochkanov Sergey
*************************************************************************/
void mlpproperties(const multilayerperceptron &network, ae_int_t &nin, ae_int_t &nout, ae_int_t &wcount);
/*************************************************************************
Returns number of inputs.
-- ALGLIB --
Copyright 19.10.2011 by Bochkanov Sergey
*************************************************************************/
ae_int_t mlpgetinputscount(const multilayerperceptron &network);
/*************************************************************************
Returns number of outputs.
-- ALGLIB --
Copyright 19.10.2011 by Bochkanov Sergey
*************************************************************************/
ae_int_t mlpgetoutputscount(const multilayerperceptron &network);
/*************************************************************************
Returns number of weights.
-- ALGLIB --
Copyright 19.10.2011 by Bochkanov Sergey
*************************************************************************/
ae_int_t mlpgetweightscount(const multilayerperceptron &network);
/*************************************************************************
Tells whether network is SOFTMAX-normalized (i.e. classifier) or not.
-- ALGLIB --
Copyright 04.11.2007 by Bochkanov Sergey
*************************************************************************/
bool mlpissoftmax(const multilayerperceptron &network);
/*************************************************************************
This function returns total number of layers (including input, hidden and
output layers).
-- ALGLIB --
Copyright 25.03.2011 by Bochkanov Sergey
*************************************************************************/
ae_int_t mlpgetlayerscount(const multilayerperceptron &network);
/*************************************************************************
This function returns size of K-th layer.
K=0 corresponds to input layer, K=CNT-1 corresponds to output layer.
Size of the output layer is always equal to the number of outputs, although
when we have softmax-normalized network, last neuron doesn't have any
connections - it is just zero.
-- ALGLIB --
Copyright 25.03.2011 by Bochkanov Sergey
*************************************************************************/
ae_int_t mlpgetlayersize(const multilayerperceptron &network, const ae_int_t k);
/*************************************************************************
This function returns offset/scaling coefficients for I-th input of the
network.
INPUT PARAMETERS:
Network - network
I - input index
OUTPUT PARAMETERS:
Mean - mean term
Sigma - sigma term, guaranteed to be nonzero.
I-th input is passed through linear transformation
IN[i] = (IN[i]-Mean)/Sigma
before feeding to the network
-- ALGLIB --
Copyright 25.03.2011 by Bochkanov Sergey
*************************************************************************/
void mlpgetinputscaling(const multilayerperceptron &network, const ae_int_t i, double &mean, double &sigma);
/*************************************************************************
This function returns offset/scaling coefficients for I-th output of the
network.
INPUT PARAMETERS:
Network - network
I - input index
OUTPUT PARAMETERS:
Mean - mean term
Sigma - sigma term, guaranteed to be nonzero.
I-th output is passed through linear transformation
OUT[i] = OUT[i]*Sigma+Mean
before returning it to user. In case we have SOFTMAX-normalized network,
we return (Mean,Sigma)=(0.0,1.0).
-- ALGLIB --
Copyright 25.03.2011 by Bochkanov Sergey
*************************************************************************/
void mlpgetoutputscaling(const multilayerperceptron &network, const ae_int_t i, double &mean, double &sigma);
/*************************************************************************
This function returns information about Ith neuron of Kth layer
INPUT PARAMETERS:
Network - network
K - layer index
I - neuron index (within layer)
OUTPUT PARAMETERS:
FKind - activation function type (used by MLPActivationFunction())
this value is zero for input or linear neurons
Threshold - also called offset, bias
zero for input neurons
NOTE: this function throws exception if layer or neuron with given index
do not exists.
-- ALGLIB --
Copyright 25.03.2011 by Bochkanov Sergey
*************************************************************************/
void mlpgetneuroninfo(const multilayerperceptron &network, const ae_int_t k, const ae_int_t i, ae_int_t &fkind, double &threshold);
/*************************************************************************
This function returns information about connection from I0-th neuron of
K0-th layer to I1-th neuron of K1-th layer.
INPUT PARAMETERS:
Network - network
K0 - layer index
I0 - neuron index (within layer)
K1 - layer index
I1 - neuron index (within layer)
RESULT:
connection weight (zero for non-existent connections)
This function:
1. throws exception if layer or neuron with given index do not exists.
2. returns zero if neurons exist, but there is no connection between them
-- ALGLIB --
Copyright 25.03.2011 by Bochkanov Sergey
*************************************************************************/
double mlpgetweight(const multilayerperceptron &network, const ae_int_t k0, const ae_int_t i0, const ae_int_t k1, const ae_int_t i1);
/*************************************************************************
This function sets offset/scaling coefficients for I-th input of the
network.
INPUT PARAMETERS:
Network - network
I - input index
Mean - mean term
Sigma - sigma term (if zero, will be replaced by 1.0)
NTE: I-th input is passed through linear transformation
IN[i] = (IN[i]-Mean)/Sigma
before feeding to the network. This function sets Mean and Sigma.
-- ALGLIB --
Copyright 25.03.2011 by Bochkanov Sergey
*************************************************************************/
void mlpsetinputscaling(const multilayerperceptron &network, const ae_int_t i, const double mean, const double sigma);
/*************************************************************************
This function sets offset/scaling coefficients for I-th output of the
network.
INPUT PARAMETERS:
Network - network
I - input index
Mean - mean term
Sigma - sigma term (if zero, will be replaced by 1.0)
OUTPUT PARAMETERS:
NOTE: I-th output is passed through linear transformation
OUT[i] = OUT[i]*Sigma+Mean
before returning it to user. This function sets Sigma/Mean. In case we
have SOFTMAX-normalized network, you can not set (Sigma,Mean) to anything
other than(0.0,1.0) - this function will throw exception.
-- ALGLIB --
Copyright 25.03.2011 by Bochkanov Sergey
*************************************************************************/
void mlpsetoutputscaling(const multilayerperceptron &network, const ae_int_t i, const double mean, const double sigma);
/*************************************************************************
This function modifies information about Ith neuron of Kth layer
INPUT PARAMETERS:
Network - network
K - layer index
I - neuron index (within layer)
FKind - activation function type (used by MLPActivationFunction())
this value must be zero for input neurons
(you can not set activation function for input neurons)
Threshold - also called offset, bias
this value must be zero for input neurons
(you can not set threshold for input neurons)
NOTES:
1. this function throws exception if layer or neuron with given index do
not exists.
2. this function also throws exception when you try to set non-linear
activation function for input neurons (any kind of network) or for output
neurons of classifier network.
3. this function throws exception when you try to set non-zero threshold for
input neurons (any kind of network).
-- ALGLIB --
Copyright 25.03.2011 by Bochkanov Sergey
*************************************************************************/
void mlpsetneuroninfo(const multilayerperceptron &network, const ae_int_t k, const ae_int_t i, const ae_int_t fkind, const double threshold);
/*************************************************************************
This function modifies information about connection from I0-th neuron of
K0-th layer to I1-th neuron of K1-th layer.
INPUT PARAMETERS:
Network - network
K0 - layer index
I0 - neuron index (within layer)
K1 - layer index
I1 - neuron index (within layer)
W - connection weight (must be zero for non-existent
connections)
This function:
1. throws exception if layer or neuron with given index do not exists.
2. throws exception if you try to set non-zero weight for non-existent
connection
-- ALGLIB --
Copyright 25.03.2011 by Bochkanov Sergey
*************************************************************************/
void mlpsetweight(const multilayerperceptron &network, const ae_int_t k0, const ae_int_t i0, const ae_int_t k1, const ae_int_t i1, const double w);
/*************************************************************************
Neural network activation function
INPUT PARAMETERS:
NET - neuron input
K - function index (zero for linear function)
OUTPUT PARAMETERS:
F - function
DF - its derivative
D2F - its second derivative
-- ALGLIB --
Copyright 04.11.2007 by Bochkanov Sergey
*************************************************************************/
void mlpactivationfunction(const double net, const ae_int_t k, double &f, double &df, double &d2f);
/*************************************************************************
Procesing
INPUT PARAMETERS:
Network - neural network
X - input vector, array[0..NIn-1].
OUTPUT PARAMETERS:
Y - result. Regression estimate when solving regression task,
vector of posterior probabilities for classification task.
See also MLPProcessI
-- ALGLIB --
Copyright 04.11.2007 by Bochkanov Sergey
*************************************************************************/
void mlpprocess(const multilayerperceptron &network, const real_1d_array &x, real_1d_array &y);
/*************************************************************************
'interactive' variant of MLPProcess for languages like Python which
support constructs like "Y = MLPProcess(NN,X)" and interactive mode of the
interpreter
This function allocates new array on each call, so it is significantly
slower than its 'non-interactive' counterpart, but it is more convenient
when you call it from command line.
-- ALGLIB --
Copyright 21.09.2010 by Bochkanov Sergey
*************************************************************************/
void mlpprocessi(const multilayerperceptron &network, const real_1d_array &x, real_1d_array &y);
/*************************************************************************
Error of the neural network on dataset.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x, depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - neural network;
XY - training set, see below for information on the
training set format;
NPoints - points count.
RESULT:
sum-of-squares error, SUM(sqr(y[i]-desired_y[i])/2)
DATASET FORMAT:
This function uses two different dataset formats - one for regression
networks, another one for classification networks.
For regression networks with NIn inputs and NOut outputs following dataset
format is used:
* dataset is given by NPoints*(NIn+NOut) matrix
* each row corresponds to one example
* first NIn columns are inputs, next NOut columns are outputs
For classification networks with NIn inputs and NClasses clases following
dataset format is used:
* dataset is given by NPoints*(NIn+1) matrix
* each row corresponds to one example
* first NIn columns are inputs, last column stores class number (from 0 to
NClasses-1).
-- ALGLIB --
Copyright 04.11.2007 by Bochkanov Sergey
*************************************************************************/
double mlperror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
double smp_mlperror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
Error of the neural network on dataset given by sparse matrix.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x, depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - neural network
XY - training set, see below for information on the
training set format. This function checks correctness
of the dataset (no NANs/INFs, class numbers are
correct) and throws exception when incorrect dataset
is passed. Sparse matrix must use CRS format for
storage.
NPoints - points count, >=0
RESULT:
sum-of-squares error, SUM(sqr(y[i]-desired_y[i])/2)
DATASET FORMAT:
This function uses two different dataset formats - one for regression
networks, another one for classification networks.
For regression networks with NIn inputs and NOut outputs following dataset
format is used:
* dataset is given by NPoints*(NIn+NOut) matrix
* each row corresponds to one example
* first NIn columns are inputs, next NOut columns are outputs
For classification networks with NIn inputs and NClasses clases following
dataset format is used:
* dataset is given by NPoints*(NIn+1) matrix
* each row corresponds to one example
* first NIn columns are inputs, last column stores class number (from 0 to
NClasses-1).
-- ALGLIB --
Copyright 23.07.2012 by Bochkanov Sergey
*************************************************************************/
double mlperrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
double smp_mlperrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
/*************************************************************************
Natural error function for neural network, internal subroutine.
NOTE: this function is single-threaded. Unlike other error function, it
receives no speed-up from being executed in SMP mode.
-- ALGLIB --
Copyright 04.11.2007 by Bochkanov Sergey
*************************************************************************/
double mlperrorn(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize);
/*************************************************************************
Classification error of the neural network on dataset.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - neural network;
XY - training set, see below for information on the
training set format;
NPoints - points count.
RESULT:
classification error (number of misclassified cases)
DATASET FORMAT:
This function uses two different dataset formats - one for regression
networks, another one for classification networks.
For regression networks with NIn inputs and NOut outputs following dataset
format is used:
* dataset is given by NPoints*(NIn+NOut) matrix
* each row corresponds to one example
* first NIn columns are inputs, next NOut columns are outputs
For classification networks with NIn inputs and NClasses clases following
dataset format is used:
* dataset is given by NPoints*(NIn+1) matrix
* each row corresponds to one example
* first NIn columns are inputs, last column stores class number (from 0 to
NClasses-1).
-- ALGLIB --
Copyright 04.11.2007 by Bochkanov Sergey
*************************************************************************/
ae_int_t mlpclserror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
ae_int_t smp_mlpclserror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
Relative classification error on the test set.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - neural network;
XY - training set, see below for information on the
training set format;
NPoints - points count.
RESULT:
Percent of incorrectly classified cases. Works both for classifier
networks and general purpose networks used as classifiers.
DATASET FORMAT:
This function uses two different dataset formats - one for regression
networks, another one for classification networks.
For regression networks with NIn inputs and NOut outputs following dataset
format is used:
* dataset is given by NPoints*(NIn+NOut) matrix
* each row corresponds to one example
* first NIn columns are inputs, next NOut columns are outputs
For classification networks with NIn inputs and NClasses clases following
dataset format is used:
* dataset is given by NPoints*(NIn+1) matrix
* each row corresponds to one example
* first NIn columns are inputs, last column stores class number (from 0 to
NClasses-1).
-- ALGLIB --
Copyright 25.12.2008 by Bochkanov Sergey
*************************************************************************/
double mlprelclserror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
double smp_mlprelclserror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
Relative classification error on the test set given by sparse matrix.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - neural network;
XY - training set, see below for information on the
training set format. Sparse matrix must use CRS format
for storage.
NPoints - points count, >=0.
RESULT:
Percent of incorrectly classified cases. Works both for classifier
networks and general purpose networks used as classifiers.
DATASET FORMAT:
This function uses two different dataset formats - one for regression
networks, another one for classification networks.
For regression networks with NIn inputs and NOut outputs following dataset
format is used:
* dataset is given by NPoints*(NIn+NOut) matrix
* each row corresponds to one example
* first NIn columns are inputs, next NOut columns are outputs
For classification networks with NIn inputs and NClasses clases following
dataset format is used:
* dataset is given by NPoints*(NIn+1) matrix
* each row corresponds to one example
* first NIn columns are inputs, last column stores class number (from 0 to
NClasses-1).
-- ALGLIB --
Copyright 09.08.2012 by Bochkanov Sergey
*************************************************************************/
double mlprelclserrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
double smp_mlprelclserrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
/*************************************************************************
Average cross-entropy (in bits per element) on the test set.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - neural network;
XY - training set, see below for information on the
training set format;
NPoints - points count.
RESULT:
CrossEntropy/(NPoints*LN(2)).
Zero if network solves regression task.
DATASET FORMAT:
This function uses two different dataset formats - one for regression
networks, another one for classification networks.
For regression networks with NIn inputs and NOut outputs following dataset
format is used:
* dataset is given by NPoints*(NIn+NOut) matrix
* each row corresponds to one example
* first NIn columns are inputs, next NOut columns are outputs
For classification networks with NIn inputs and NClasses clases following
dataset format is used:
* dataset is given by NPoints*(NIn+1) matrix
* each row corresponds to one example
* first NIn columns are inputs, last column stores class number (from 0 to
NClasses-1).
-- ALGLIB --
Copyright 08.01.2009 by Bochkanov Sergey
*************************************************************************/
double mlpavgce(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
double smp_mlpavgce(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
Average cross-entropy (in bits per element) on the test set given by
sparse matrix.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - neural network;
XY - training set, see below for information on the
training set format. This function checks correctness
of the dataset (no NANs/INFs, class numbers are
correct) and throws exception when incorrect dataset
is passed. Sparse matrix must use CRS format for
storage.
NPoints - points count, >=0.
RESULT:
CrossEntropy/(NPoints*LN(2)).
Zero if network solves regression task.
DATASET FORMAT:
This function uses two different dataset formats - one for regression
networks, another one for classification networks.
For regression networks with NIn inputs and NOut outputs following dataset
format is used:
* dataset is given by NPoints*(NIn+NOut) matrix
* each row corresponds to one example
* first NIn columns are inputs, next NOut columns are outputs
For classification networks with NIn inputs and NClasses clases following
dataset format is used:
* dataset is given by NPoints*(NIn+1) matrix
* each row corresponds to one example
* first NIn columns are inputs, last column stores class number (from 0 to
NClasses-1).
-- ALGLIB --
Copyright 9.08.2012 by Bochkanov Sergey
*************************************************************************/
double mlpavgcesparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
double smp_mlpavgcesparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
/*************************************************************************
RMS error on the test set given.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - neural network;
XY - training set, see below for information on the
training set format;
NPoints - points count.
RESULT:
Root mean square error. Its meaning for regression task is obvious. As for
classification task, RMS error means error when estimating posterior
probabilities.
DATASET FORMAT:
This function uses two different dataset formats - one for regression
networks, another one for classification networks.
For regression networks with NIn inputs and NOut outputs following dataset
format is used:
* dataset is given by NPoints*(NIn+NOut) matrix
* each row corresponds to one example
* first NIn columns are inputs, next NOut columns are outputs
For classification networks with NIn inputs and NClasses clases following
dataset format is used:
* dataset is given by NPoints*(NIn+1) matrix
* each row corresponds to one example
* first NIn columns are inputs, last column stores class number (from 0 to
NClasses-1).
-- ALGLIB --
Copyright 04.11.2007 by Bochkanov Sergey
*************************************************************************/
double mlprmserror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
double smp_mlprmserror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
RMS error on the test set given by sparse matrix.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - neural network;
XY - training set, see below for information on the
training set format. This function checks correctness
of the dataset (no NANs/INFs, class numbers are
correct) and throws exception when incorrect dataset
is passed. Sparse matrix must use CRS format for
storage.
NPoints - points count, >=0.
RESULT:
Root mean square error. Its meaning for regression task is obvious. As for
classification task, RMS error means error when estimating posterior
probabilities.
DATASET FORMAT:
This function uses two different dataset formats - one for regression
networks, another one for classification networks.
For regression networks with NIn inputs and NOut outputs following dataset
format is used:
* dataset is given by NPoints*(NIn+NOut) matrix
* each row corresponds to one example
* first NIn columns are inputs, next NOut columns are outputs
For classification networks with NIn inputs and NClasses clases following
dataset format is used:
* dataset is given by NPoints*(NIn+1) matrix
* each row corresponds to one example
* first NIn columns are inputs, last column stores class number (from 0 to
NClasses-1).
-- ALGLIB --
Copyright 09.08.2012 by Bochkanov Sergey
*************************************************************************/
double mlprmserrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
double smp_mlprmserrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
/*************************************************************************
Average absolute error on the test set.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - neural network;
XY - training set, see below for information on the
training set format;
NPoints - points count.
RESULT:
Its meaning for regression task is obvious. As for classification task, it
means average error when estimating posterior probabilities.
DATASET FORMAT:
This function uses two different dataset formats - one for regression
networks, another one for classification networks.
For regression networks with NIn inputs and NOut outputs following dataset
format is used:
* dataset is given by NPoints*(NIn+NOut) matrix
* each row corresponds to one example
* first NIn columns are inputs, next NOut columns are outputs
For classification networks with NIn inputs and NClasses clases following
dataset format is used:
* dataset is given by NPoints*(NIn+1) matrix
* each row corresponds to one example
* first NIn columns are inputs, last column stores class number (from 0 to
NClasses-1).
-- ALGLIB --
Copyright 11.03.2008 by Bochkanov Sergey
*************************************************************************/
double mlpavgerror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
double smp_mlpavgerror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
Average absolute error on the test set given by sparse matrix.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - neural network;
XY - training set, see below for information on the
training set format. This function checks correctness
of the dataset (no NANs/INFs, class numbers are
correct) and throws exception when incorrect dataset
is passed. Sparse matrix must use CRS format for
storage.
NPoints - points count, >=0.
RESULT:
Its meaning for regression task is obvious. As for classification task, it
means average error when estimating posterior probabilities.
DATASET FORMAT:
This function uses two different dataset formats - one for regression
networks, another one for classification networks.
For regression networks with NIn inputs and NOut outputs following dataset
format is used:
* dataset is given by NPoints*(NIn+NOut) matrix
* each row corresponds to one example
* first NIn columns are inputs, next NOut columns are outputs
For classification networks with NIn inputs and NClasses clases following
dataset format is used:
* dataset is given by NPoints*(NIn+1) matrix
* each row corresponds to one example
* first NIn columns are inputs, last column stores class number (from 0 to
NClasses-1).
-- ALGLIB --
Copyright 09.08.2012 by Bochkanov Sergey
*************************************************************************/
double mlpavgerrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
double smp_mlpavgerrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
/*************************************************************************
Average relative error on the test set.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - neural network;
XY - training set, see below for information on the
training set format;
NPoints - points count.
RESULT:
Its meaning for regression task is obvious. As for classification task, it
means average relative error when estimating posterior probability of
belonging to the correct class.
DATASET FORMAT:
This function uses two different dataset formats - one for regression
networks, another one for classification networks.
For regression networks with NIn inputs and NOut outputs following dataset
format is used:
* dataset is given by NPoints*(NIn+NOut) matrix
* each row corresponds to one example
* first NIn columns are inputs, next NOut columns are outputs
For classification networks with NIn inputs and NClasses clases following
dataset format is used:
* dataset is given by NPoints*(NIn+1) matrix
* each row corresponds to one example
* first NIn columns are inputs, last column stores class number (from 0 to
NClasses-1).
-- ALGLIB --
Copyright 11.03.2008 by Bochkanov Sergey
*************************************************************************/
double mlpavgrelerror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
double smp_mlpavgrelerror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
Average relative error on the test set given by sparse matrix.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - neural network;
XY - training set, see below for information on the
training set format. This function checks correctness
of the dataset (no NANs/INFs, class numbers are
correct) and throws exception when incorrect dataset
is passed. Sparse matrix must use CRS format for
storage.
NPoints - points count, >=0.
RESULT:
Its meaning for regression task is obvious. As for classification task, it
means average relative error when estimating posterior probability of
belonging to the correct class.
DATASET FORMAT:
This function uses two different dataset formats - one for regression
networks, another one for classification networks.
For regression networks with NIn inputs and NOut outputs following dataset
format is used:
* dataset is given by NPoints*(NIn+NOut) matrix
* each row corresponds to one example
* first NIn columns are inputs, next NOut columns are outputs
For classification networks with NIn inputs and NClasses clases following
dataset format is used:
* dataset is given by NPoints*(NIn+1) matrix
* each row corresponds to one example
* first NIn columns are inputs, last column stores class number (from 0 to
NClasses-1).
-- ALGLIB --
Copyright 09.08.2012 by Bochkanov Sergey
*************************************************************************/
double mlpavgrelerrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
double smp_mlpavgrelerrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
/*************************************************************************
Gradient calculation
INPUT PARAMETERS:
Network - network initialized with one of the network creation funcs
X - input vector, length of array must be at least NIn
DesiredY- desired outputs, length of array must be at least NOut
Grad - possibly preallocated array. If size of array is smaller
than WCount, it will be reallocated. It is recommended to
reuse previously allocated array to reduce allocation
overhead.
OUTPUT PARAMETERS:
E - error function, SUM(sqr(y[i]-desiredy[i])/2,i)
Grad - gradient of E with respect to weights of network, array[WCount]
-- ALGLIB --
Copyright 04.11.2007 by Bochkanov Sergey
*************************************************************************/
void mlpgrad(const multilayerperceptron &network, const real_1d_array &x, const real_1d_array &desiredy, double &e, real_1d_array &grad);
/*************************************************************************
Gradient calculation (natural error function is used)
INPUT PARAMETERS:
Network - network initialized with one of the network creation funcs
X - input vector, length of array must be at least NIn
DesiredY- desired outputs, length of array must be at least NOut
Grad - possibly preallocated array. If size of array is smaller
than WCount, it will be reallocated. It is recommended to
reuse previously allocated array to reduce allocation
overhead.
OUTPUT PARAMETERS:
E - error function, sum-of-squares for regression networks,
cross-entropy for classification networks.
Grad - gradient of E with respect to weights of network, array[WCount]
-- ALGLIB --
Copyright 04.11.2007 by Bochkanov Sergey
*************************************************************************/
void mlpgradn(const multilayerperceptron &network, const real_1d_array &x, const real_1d_array &desiredy, double &e, real_1d_array &grad);
/*************************************************************************
Batch gradient calculation for a set of inputs/outputs
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - network initialized with one of the network creation funcs
XY - original dataset in dense format; one sample = one row:
* first NIn columns contain inputs,
* for regression problem, next NOut columns store
desired outputs.
* for classification problem, next column (just one!)
stores class number.
SSize - number of elements in XY
Grad - possibly preallocated array. If size of array is smaller
than WCount, it will be reallocated. It is recommended to
reuse previously allocated array to reduce allocation
overhead.
OUTPUT PARAMETERS:
E - error function, SUM(sqr(y[i]-desiredy[i])/2,i)
Grad - gradient of E with respect to weights of network, array[WCount]
-- ALGLIB --
Copyright 04.11.2007 by Bochkanov Sergey
*************************************************************************/
void mlpgradbatch(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize, double &e, real_1d_array &grad);
void smp_mlpgradbatch(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize, double &e, real_1d_array &grad);
/*************************************************************************
Batch gradient calculation for a set of inputs/outputs given by sparse
matrices
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - network initialized with one of the network creation funcs
XY - original dataset in sparse format; one sample = one row:
* MATRIX MUST BE STORED IN CRS FORMAT
* first NIn columns contain inputs.
* for regression problem, next NOut columns store
desired outputs.
* for classification problem, next column (just one!)
stores class number.
SSize - number of elements in XY
Grad - possibly preallocated array. If size of array is smaller
than WCount, it will be reallocated. It is recommended to
reuse previously allocated array to reduce allocation
overhead.
OUTPUT PARAMETERS:
E - error function, SUM(sqr(y[i]-desiredy[i])/2,i)
Grad - gradient of E with respect to weights of network, array[WCount]
-- ALGLIB --
Copyright 26.07.2012 by Bochkanov Sergey
*************************************************************************/
void mlpgradbatchsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t ssize, double &e, real_1d_array &grad);
void smp_mlpgradbatchsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t ssize, double &e, real_1d_array &grad);
/*************************************************************************
Batch gradient calculation for a subset of dataset
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - network initialized with one of the network creation funcs
XY - original dataset in dense format; one sample = one row:
* first NIn columns contain inputs,
* for regression problem, next NOut columns store
desired outputs.
* for classification problem, next column (just one!)
stores class number.
SetSize - real size of XY, SetSize>=0;
Idx - subset of SubsetSize elements, array[SubsetSize]:
* Idx[I] stores row index in the original dataset which is
given by XY. Gradient is calculated with respect to rows
whose indexes are stored in Idx[].
* Idx[] must store correct indexes; this function throws
an exception in case incorrect index (less than 0 or
larger than rows(XY)) is given
* Idx[] may store indexes in any order and even with
repetitions.
SubsetSize- number of elements in Idx[] array:
* positive value means that subset given by Idx[] is processed
* zero value results in zero gradient
* negative value means that full dataset is processed
Grad - possibly preallocated array. If size of array is smaller
than WCount, it will be reallocated. It is recommended to
reuse previously allocated array to reduce allocation
overhead.
OUTPUT PARAMETERS:
E - error function, SUM(sqr(y[i]-desiredy[i])/2,i)
Grad - gradient of E with respect to weights of network,
array[WCount]
-- ALGLIB --
Copyright 26.07.2012 by Bochkanov Sergey
*************************************************************************/
void mlpgradbatchsubset(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t setsize, const integer_1d_array &idx, const ae_int_t subsetsize, double &e, real_1d_array &grad);
void smp_mlpgradbatchsubset(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t setsize, const integer_1d_array &idx, const ae_int_t subsetsize, double &e, real_1d_array &grad);
/*************************************************************************
Batch gradient calculation for a set of inputs/outputs for a subset of
dataset given by set of indexes.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - network initialized with one of the network creation funcs
XY - original dataset in sparse format; one sample = one row:
* MATRIX MUST BE STORED IN CRS FORMAT
* first NIn columns contain inputs,
* for regression problem, next NOut columns store
desired outputs.
* for classification problem, next column (just one!)
stores class number.
SetSize - real size of XY, SetSize>=0;
Idx - subset of SubsetSize elements, array[SubsetSize]:
* Idx[I] stores row index in the original dataset which is
given by XY. Gradient is calculated with respect to rows
whose indexes are stored in Idx[].
* Idx[] must store correct indexes; this function throws
an exception in case incorrect index (less than 0 or
larger than rows(XY)) is given
* Idx[] may store indexes in any order and even with
repetitions.
SubsetSize- number of elements in Idx[] array:
* positive value means that subset given by Idx[] is processed
* zero value results in zero gradient
* negative value means that full dataset is processed
Grad - possibly preallocated array. If size of array is smaller
than WCount, it will be reallocated. It is recommended to
reuse previously allocated array to reduce allocation
overhead.
OUTPUT PARAMETERS:
E - error function, SUM(sqr(y[i]-desiredy[i])/2,i)
Grad - gradient of E with respect to weights of network,
array[WCount]
NOTE: when SubsetSize<0 is used full dataset by call MLPGradBatchSparse
function.
-- ALGLIB --
Copyright 26.07.2012 by Bochkanov Sergey
*************************************************************************/
void mlpgradbatchsparsesubset(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t setsize, const integer_1d_array &idx, const ae_int_t subsetsize, double &e, real_1d_array &grad);
void smp_mlpgradbatchsparsesubset(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t setsize, const integer_1d_array &idx, const ae_int_t subsetsize, double &e, real_1d_array &grad);
/*************************************************************************
Batch gradient calculation for a set of inputs/outputs
(natural error function is used)
INPUT PARAMETERS:
Network - network initialized with one of the network creation funcs
XY - set of inputs/outputs; one sample = one row;
first NIn columns contain inputs,
next NOut columns - desired outputs.
SSize - number of elements in XY
Grad - possibly preallocated array. If size of array is smaller
than WCount, it will be reallocated. It is recommended to
reuse previously allocated array to reduce allocation
overhead.
OUTPUT PARAMETERS:
E - error function, sum-of-squares for regression networks,
cross-entropy for classification networks.
Grad - gradient of E with respect to weights of network, array[WCount]
-- ALGLIB --
Copyright 04.11.2007 by Bochkanov Sergey
*************************************************************************/
void mlpgradnbatch(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize, double &e, real_1d_array &grad);
/*************************************************************************
Batch Hessian calculation (natural error function) using R-algorithm.
Internal subroutine.
-- ALGLIB --
Copyright 26.01.2008 by Bochkanov Sergey.
Hessian calculation based on R-algorithm described in
"Fast Exact Multiplication by the Hessian",
B. A. Pearlmutter,
Neural Computation, 1994.
*************************************************************************/
void mlphessiannbatch(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize, double &e, real_1d_array &grad, real_2d_array &h);
/*************************************************************************
Batch Hessian calculation using R-algorithm.
Internal subroutine.
-- ALGLIB --
Copyright 26.01.2008 by Bochkanov Sergey.
Hessian calculation based on R-algorithm described in
"Fast Exact Multiplication by the Hessian",
B. A. Pearlmutter,
Neural Computation, 1994.
*************************************************************************/
void mlphessianbatch(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize, double &e, real_1d_array &grad, real_2d_array &h);
/*************************************************************************
Calculation of all types of errors on subset of dataset.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - network initialized with one of the network creation funcs
XY - original dataset; one sample = one row;
first NIn columns contain inputs,
next NOut columns - desired outputs.
SetSize - real size of XY, SetSize>=0;
Subset - subset of SubsetSize elements, array[SubsetSize];
SubsetSize- number of elements in Subset[] array:
* if SubsetSize>0, rows of XY with indices Subset[0]...
...Subset[SubsetSize-1] are processed
* if SubsetSize=0, zeros are returned
* if SubsetSize<0, entire dataset is processed; Subset[]
array is ignored in this case.
OUTPUT PARAMETERS:
Rep - it contains all type of errors.
-- ALGLIB --
Copyright 04.09.2012 by Bochkanov Sergey
*************************************************************************/
void mlpallerrorssubset(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize, modelerrors &rep);
void smp_mlpallerrorssubset(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize, modelerrors &rep);
/*************************************************************************
Calculation of all types of errors on subset of dataset.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - network initialized with one of the network creation funcs
XY - original dataset given by sparse matrix;
one sample = one row;
first NIn columns contain inputs,
next NOut columns - desired outputs.
SetSize - real size of XY, SetSize>=0;
Subset - subset of SubsetSize elements, array[SubsetSize];
SubsetSize- number of elements in Subset[] array:
* if SubsetSize>0, rows of XY with indices Subset[0]...
...Subset[SubsetSize-1] are processed
* if SubsetSize=0, zeros are returned
* if SubsetSize<0, entire dataset is processed; Subset[]
array is ignored in this case.
OUTPUT PARAMETERS:
Rep - it contains all type of errors.
-- ALGLIB --
Copyright 04.09.2012 by Bochkanov Sergey
*************************************************************************/
void mlpallerrorssparsesubset(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize, modelerrors &rep);
void smp_mlpallerrorssparsesubset(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize, modelerrors &rep);
/*************************************************************************
Error of the neural network on subset of dataset.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - neural network;
XY - training set, see below for information on the
training set format;
SetSize - real size of XY, SetSize>=0;
Subset - subset of SubsetSize elements, array[SubsetSize];
SubsetSize- number of elements in Subset[] array:
* if SubsetSize>0, rows of XY with indices Subset[0]...
...Subset[SubsetSize-1] are processed
* if SubsetSize=0, zeros are returned
* if SubsetSize<0, entire dataset is processed; Subset[]
array is ignored in this case.
RESULT:
sum-of-squares error, SUM(sqr(y[i]-desired_y[i])/2)
DATASET FORMAT:
This function uses two different dataset formats - one for regression
networks, another one for classification networks.
For regression networks with NIn inputs and NOut outputs following dataset
format is used:
* dataset is given by NPoints*(NIn+NOut) matrix
* each row corresponds to one example
* first NIn columns are inputs, next NOut columns are outputs
For classification networks with NIn inputs and NClasses clases following
dataset format is used:
* dataset is given by NPoints*(NIn+1) matrix
* each row corresponds to one example
* first NIn columns are inputs, last column stores class number (from 0 to
NClasses-1).
-- ALGLIB --
Copyright 04.09.2012 by Bochkanov Sergey
*************************************************************************/
double mlperrorsubset(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize);
double smp_mlperrorsubset(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize);
/*************************************************************************
Error of the neural network on subset of sparse dataset.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support
!
! First improvement gives close-to-linear speedup on multicore systems.
! Second improvement gives constant speedup (2-3x depending on your CPU)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
Network - neural network;
XY - training set, see below for information on the
training set format. This function checks correctness
of the dataset (no NANs/INFs, class numbers are
correct) and throws exception when incorrect dataset
is passed. Sparse matrix must use CRS format for
storage.
SetSize - real size of XY, SetSize>=0;
it is used when SubsetSize<0;
Subset - subset of SubsetSize elements, array[SubsetSize];
SubsetSize- number of elements in Subset[] array:
* if SubsetSize>0, rows of XY with indices Subset[0]...
...Subset[SubsetSize-1] are processed
* if SubsetSize=0, zeros are returned
* if SubsetSize<0, entire dataset is processed; Subset[]
array is ignored in this case.
RESULT:
sum-of-squares error, SUM(sqr(y[i]-desired_y[i])/2)
DATASET FORMAT:
This function uses two different dataset formats - one for regression
networks, another one for classification networks.
For regression networks with NIn inputs and NOut outputs following dataset
format is used:
* dataset is given by NPoints*(NIn+NOut) matrix
* each row corresponds to one example
* first NIn columns are inputs, next NOut columns are outputs
For classification networks with NIn inputs and NClasses clases following
dataset format is used:
* dataset is given by NPoints*(NIn+1) matrix
* each row corresponds to one example
* first NIn columns are inputs, last column stores class number (from 0 to
NClasses-1).
-- ALGLIB --
Copyright 04.09.2012 by Bochkanov Sergey
*************************************************************************/
double mlperrorsparsesubset(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize);
double smp_mlperrorsparsesubset(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize);
/*************************************************************************
Multiclass Fisher LDA
Subroutine finds coefficients of linear combination which optimally separates
training set on classes.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multithreading support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison. Best results are achieved for high-dimensional problems
! (NVars is at least 256).
!
! Multithreading is used to accelerate initial phase of LDA, which
! includes calculation of products of large matrices. Again, for best
! efficiency problem must be high-dimensional.
!
! Generally, commercial ALGLIB is several times faster than open-source
! generic C edition, and many times faster than open-source C# edition.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS:
XY - training set, array[0..NPoints-1,0..NVars].
First NVars columns store values of independent
variables, next column stores number of class (from 0
to NClasses-1) which dataset element belongs to. Fractional
values are rounded to nearest integer.
NPoints - training set size, NPoints>=0
NVars - number of independent variables, NVars>=1
NClasses - number of classes, NClasses>=2
OUTPUT PARAMETERS:
Info - return code:
* -4, if internal EVD subroutine hasn't converged
* -2, if there is a point with class number
outside of [0..NClasses-1].
* -1, if incorrect parameters was passed (NPoints<0,
NVars<1, NClasses<2)
* 1, if task has been solved
* 2, if there was a multicollinearity in training set,
but task has been solved.
W - linear combination coefficients, array[0..NVars-1]
-- ALGLIB --
Copyright 31.05.2008 by Bochkanov Sergey
*************************************************************************/
void fisherlda(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nclasses, ae_int_t &info, real_1d_array &w);
/*************************************************************************
N-dimensional multiclass Fisher LDA
Subroutine finds coefficients of linear combinations which optimally separates
training set on classes. It returns N-dimensional basis whose vector are sorted
by quality of training set separation (in descending order).
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multithreading support
!
! Intel MKL gives approximately constant (with respect to number of
! worker threads) acceleration factor which depends on CPU being used,
! problem size and "baseline" ALGLIB edition which is used for
! comparison. Best results are achieved for high-dimensional problems
! (NVars is at least 256).
!
! Multithreading is used to accelerate initial phase of LDA, which
! includes calculation of products of large matrices. Again, for best
! efficiency problem must be high-dimensional.
!
! Generally, commercial ALGLIB is several times faster than open-source
! generic C edition, and many times faster than open-source C# edition.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS:
XY - training set, array[0..NPoints-1,0..NVars].
First NVars columns store values of independent
variables, next column stores number of class (from 0
to NClasses-1) which dataset element belongs to. Fractional
values are rounded to nearest integer.
NPoints - training set size, NPoints>=0
NVars - number of independent variables, NVars>=1
NClasses - number of classes, NClasses>=2
OUTPUT PARAMETERS:
Info - return code:
* -4, if internal EVD subroutine hasn't converged
* -2, if there is a point with class number
outside of [0..NClasses-1].
* -1, if incorrect parameters was passed (NPoints<0,
NVars<1, NClasses<2)
* 1, if task has been solved
* 2, if there was a multicollinearity in training set,
but task has been solved.
W - basis, array[0..NVars-1,0..NVars-1]
columns of matrix stores basis vectors, sorted by
quality of training set separation (in descending order)
-- ALGLIB --
Copyright 31.05.2008 by Bochkanov Sergey
*************************************************************************/
void fisherldan(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nclasses, ae_int_t &info, real_2d_array &w);
void smp_fisherldan(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nclasses, ae_int_t &info, real_2d_array &w);
/*************************************************************************
Linear regression
Subroutine builds model:
Y = A(0)*X[0] + ... + A(N-1)*X[N-1] + A(N)
and model found in ALGLIB format, covariation matrix, training set errors
(rms, average, average relative) and leave-one-out cross-validation
estimate of the generalization error. CV estimate calculated using fast
algorithm with O(NPoints*NVars) complexity.
When covariation matrix is calculated standard deviations of function
values are assumed to be equal to RMS error on the training set.
INPUT PARAMETERS:
XY - training set, array [0..NPoints-1,0..NVars]:
* NVars columns - independent variables
* last column - dependent variable
NPoints - training set size, NPoints>NVars+1
NVars - number of independent variables
OUTPUT PARAMETERS:
Info - return code:
* -255, in case of unknown internal error
* -4, if internal SVD subroutine haven't converged
* -1, if incorrect parameters was passed (NPoints<NVars+2, NVars<1).
* 1, if subroutine successfully finished
LM - linear model in the ALGLIB format. Use subroutines of
this unit to work with the model.
AR - additional results
-- ALGLIB --
Copyright 02.08.2008 by Bochkanov Sergey
*************************************************************************/
void lrbuild(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, ae_int_t &info, linearmodel &lm, lrreport &ar);
/*************************************************************************
Linear regression
Variant of LRBuild which uses vector of standatd deviations (errors in
function values).
INPUT PARAMETERS:
XY - training set, array [0..NPoints-1,0..NVars]:
* NVars columns - independent variables
* last column - dependent variable
S - standard deviations (errors in function values)
array[0..NPoints-1], S[i]>0.
NPoints - training set size, NPoints>NVars+1
NVars - number of independent variables
OUTPUT PARAMETERS:
Info - return code:
* -255, in case of unknown internal error
* -4, if internal SVD subroutine haven't converged
* -1, if incorrect parameters was passed (NPoints<NVars+2, NVars<1).
* -2, if S[I]<=0
* 1, if subroutine successfully finished
LM - linear model in the ALGLIB format. Use subroutines of
this unit to work with the model.
AR - additional results
-- ALGLIB --
Copyright 02.08.2008 by Bochkanov Sergey
*************************************************************************/
void lrbuilds(const real_2d_array &xy, const real_1d_array &s, const ae_int_t npoints, const ae_int_t nvars, ae_int_t &info, linearmodel &lm, lrreport &ar);
/*************************************************************************
Like LRBuildS, but builds model
Y = A(0)*X[0] + ... + A(N-1)*X[N-1]
i.e. with zero constant term.
-- ALGLIB --
Copyright 30.10.2008 by Bochkanov Sergey
*************************************************************************/
void lrbuildzs(const real_2d_array &xy, const real_1d_array &s, const ae_int_t npoints, const ae_int_t nvars, ae_int_t &info, linearmodel &lm, lrreport &ar);
/*************************************************************************
Like LRBuild but builds model
Y = A(0)*X[0] + ... + A(N-1)*X[N-1]
i.e. with zero constant term.
-- ALGLIB --
Copyright 30.10.2008 by Bochkanov Sergey
*************************************************************************/
void lrbuildz(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, ae_int_t &info, linearmodel &lm, lrreport &ar);
/*************************************************************************
Unpacks coefficients of linear model.
INPUT PARAMETERS:
LM - linear model in ALGLIB format
OUTPUT PARAMETERS:
V - coefficients, array[0..NVars]
constant term (intercept) is stored in the V[NVars].
NVars - number of independent variables (one less than number
of coefficients)
-- ALGLIB --
Copyright 30.08.2008 by Bochkanov Sergey
*************************************************************************/
void lrunpack(const linearmodel &lm, real_1d_array &v, ae_int_t &nvars);
/*************************************************************************
"Packs" coefficients and creates linear model in ALGLIB format (LRUnpack
reversed).
INPUT PARAMETERS:
V - coefficients, array[0..NVars]
NVars - number of independent variables
OUTPUT PAREMETERS:
LM - linear model.
-- ALGLIB --
Copyright 30.08.2008 by Bochkanov Sergey
*************************************************************************/
void lrpack(const real_1d_array &v, const ae_int_t nvars, linearmodel &lm);
/*************************************************************************
Procesing
INPUT PARAMETERS:
LM - linear model
X - input vector, array[0..NVars-1].
Result:
value of linear model regression estimate
-- ALGLIB --
Copyright 03.09.2008 by Bochkanov Sergey
*************************************************************************/
double lrprocess(const linearmodel &lm, const real_1d_array &x);
/*************************************************************************
RMS error on the test set
INPUT PARAMETERS:
LM - linear model
XY - test set
NPoints - test set size
RESULT:
root mean square error.
-- ALGLIB --
Copyright 30.08.2008 by Bochkanov Sergey
*************************************************************************/
double lrrmserror(const linearmodel &lm, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
Average error on the test set
INPUT PARAMETERS:
LM - linear model
XY - test set
NPoints - test set size
RESULT:
average error.
-- ALGLIB --
Copyright 30.08.2008 by Bochkanov Sergey
*************************************************************************/
double lravgerror(const linearmodel &lm, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
RMS error on the test set
INPUT PARAMETERS:
LM - linear model
XY - test set
NPoints - test set size
RESULT:
average relative error.
-- ALGLIB --
Copyright 30.08.2008 by Bochkanov Sergey
*************************************************************************/
double lravgrelerror(const linearmodel &lm, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
Filters: simple moving averages (unsymmetric).
This filter replaces array by results of SMA(K) filter. SMA(K) is defined
as filter which averages at most K previous points (previous - not points
AROUND central point) - or less, in case of the first K-1 points.
INPUT PARAMETERS:
X - array[N], array to process. It can be larger than N,
in this case only first N points are processed.
N - points count, N>=0
K - K>=1 (K can be larger than N , such cases will be
correctly handled). Window width. K=1 corresponds to
identity transformation (nothing changes).
OUTPUT PARAMETERS:
X - array, whose first N elements were processed with SMA(K)
NOTE 1: this function uses efficient in-place algorithm which does not
allocate temporary arrays.
NOTE 2: this algorithm makes only one pass through array and uses running
sum to speed-up calculation of the averages. Additional measures
are taken to ensure that running sum on a long sequence of zero
elements will be correctly reset to zero even in the presence of
round-off error.
NOTE 3: this is unsymmetric version of the algorithm, which does NOT
averages points after the current one. Only X[i], X[i-1], ... are
used when calculating new value of X[i]. We should also note that
this algorithm uses BOTH previous points and current one, i.e.
new value of X[i] depends on BOTH previous point and X[i] itself.
-- ALGLIB --
Copyright 25.10.2011 by Bochkanov Sergey
*************************************************************************/
void filtersma(real_1d_array &x, const ae_int_t n, const ae_int_t k);
void filtersma(real_1d_array &x, const ae_int_t k);
/*************************************************************************
Filters: exponential moving averages.
This filter replaces array by results of EMA(alpha) filter. EMA(alpha) is
defined as filter which replaces X[] by S[]:
S[0] = X[0]
S[t] = alpha*X[t] + (1-alpha)*S[t-1]
INPUT PARAMETERS:
X - array[N], array to process. It can be larger than N,
in this case only first N points are processed.
N - points count, N>=0
alpha - 0<alpha<=1, smoothing parameter.
OUTPUT PARAMETERS:
X - array, whose first N elements were processed
with EMA(alpha)
NOTE 1: this function uses efficient in-place algorithm which does not
allocate temporary arrays.
NOTE 2: this algorithm uses BOTH previous points and current one, i.e.
new value of X[i] depends on BOTH previous point and X[i] itself.
NOTE 3: technical analytis users quite often work with EMA coefficient
expressed in DAYS instead of fractions. If you want to calculate
EMA(N), where N is a number of days, you can use alpha=2/(N+1).
-- ALGLIB --
Copyright 25.10.2011 by Bochkanov Sergey
*************************************************************************/
void filterema(real_1d_array &x, const ae_int_t n, const double alpha);
void filterema(real_1d_array &x, const double alpha);
/*************************************************************************
Filters: linear regression moving averages.
This filter replaces array by results of LRMA(K) filter.
LRMA(K) is defined as filter which, for each data point, builds linear
regression model using K prevous points (point itself is included in
these K points) and calculates value of this linear model at the point in
question.
INPUT PARAMETERS:
X - array[N], array to process. It can be larger than N,
in this case only first N points are processed.
N - points count, N>=0
K - K>=1 (K can be larger than N , such cases will be
correctly handled). Window width. K=1 corresponds to
identity transformation (nothing changes).
OUTPUT PARAMETERS:
X - array, whose first N elements were processed with SMA(K)
NOTE 1: this function uses efficient in-place algorithm which does not
allocate temporary arrays.
NOTE 2: this algorithm makes only one pass through array and uses running
sum to speed-up calculation of the averages. Additional measures
are taken to ensure that running sum on a long sequence of zero
elements will be correctly reset to zero even in the presence of
round-off error.
NOTE 3: this is unsymmetric version of the algorithm, which does NOT
averages points after the current one. Only X[i], X[i-1], ... are
used when calculating new value of X[i]. We should also note that
this algorithm uses BOTH previous points and current one, i.e.
new value of X[i] depends on BOTH previous point and X[i] itself.
-- ALGLIB --
Copyright 25.10.2011 by Bochkanov Sergey
*************************************************************************/
void filterlrma(real_1d_array &x, const ae_int_t n, const ae_int_t k);
void filterlrma(real_1d_array &x, const ae_int_t k);
/*************************************************************************
This subroutine trains logit model.
INPUT PARAMETERS:
XY - training set, array[0..NPoints-1,0..NVars]
First NVars columns store values of independent
variables, next column stores number of class (from 0
to NClasses-1) which dataset element belongs to. Fractional
values are rounded to nearest integer.
NPoints - training set size, NPoints>=1
NVars - number of independent variables, NVars>=1
NClasses - number of classes, NClasses>=2
OUTPUT PARAMETERS:
Info - return code:
* -2, if there is a point with class number
outside of [0..NClasses-1].
* -1, if incorrect parameters was passed
(NPoints<NVars+2, NVars<1, NClasses<2).
* 1, if task has been solved
LM - model built
Rep - training report
-- ALGLIB --
Copyright 10.09.2008 by Bochkanov Sergey
*************************************************************************/
void mnltrainh(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nclasses, ae_int_t &info, logitmodel &lm, mnlreport &rep);
/*************************************************************************
Procesing
INPUT PARAMETERS:
LM - logit model, passed by non-constant reference
(some fields of structure are used as temporaries
when calculating model output).
X - input vector, array[0..NVars-1].
Y - (possibly) preallocated buffer; if size of Y is less than
NClasses, it will be reallocated.If it is large enough, it
is NOT reallocated, so we can save some time on reallocation.
OUTPUT PARAMETERS:
Y - result, array[0..NClasses-1]
Vector of posterior probabilities for classification task.
-- ALGLIB --
Copyright 10.09.2008 by Bochkanov Sergey
*************************************************************************/
void mnlprocess(const logitmodel &lm, const real_1d_array &x, real_1d_array &y);
/*************************************************************************
'interactive' variant of MNLProcess for languages like Python which
support constructs like "Y = MNLProcess(LM,X)" and interactive mode of the
interpreter
This function allocates new array on each call, so it is significantly
slower than its 'non-interactive' counterpart, but it is more convenient
when you call it from command line.
-- ALGLIB --
Copyright 10.09.2008 by Bochkanov Sergey
*************************************************************************/
void mnlprocessi(const logitmodel &lm, const real_1d_array &x, real_1d_array &y);
/*************************************************************************
Unpacks coefficients of logit model. Logit model have form:
P(class=i) = S(i) / (S(0) + S(1) + ... +S(M-1))
S(i) = Exp(A[i,0]*X[0] + ... + A[i,N-1]*X[N-1] + A[i,N]), when i<M-1
S(M-1) = 1
INPUT PARAMETERS:
LM - logit model in ALGLIB format
OUTPUT PARAMETERS:
V - coefficients, array[0..NClasses-2,0..NVars]
NVars - number of independent variables
NClasses - number of classes
-- ALGLIB --
Copyright 10.09.2008 by Bochkanov Sergey
*************************************************************************/
void mnlunpack(const logitmodel &lm, real_2d_array &a, ae_int_t &nvars, ae_int_t &nclasses);
/*************************************************************************
"Packs" coefficients and creates logit model in ALGLIB format (MNLUnpack
reversed).
INPUT PARAMETERS:
A - model (see MNLUnpack)
NVars - number of independent variables
NClasses - number of classes
OUTPUT PARAMETERS:
LM - logit model.
-- ALGLIB --
Copyright 10.09.2008 by Bochkanov Sergey
*************************************************************************/
void mnlpack(const real_2d_array &a, const ae_int_t nvars, const ae_int_t nclasses, logitmodel &lm);
/*************************************************************************
Average cross-entropy (in bits per element) on the test set
INPUT PARAMETERS:
LM - logit model
XY - test set
NPoints - test set size
RESULT:
CrossEntropy/(NPoints*ln(2)).
-- ALGLIB --
Copyright 10.09.2008 by Bochkanov Sergey
*************************************************************************/
double mnlavgce(const logitmodel &lm, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
Relative classification error on the test set
INPUT PARAMETERS:
LM - logit model
XY - test set
NPoints - test set size
RESULT:
percent of incorrectly classified cases.
-- ALGLIB --
Copyright 10.09.2008 by Bochkanov Sergey
*************************************************************************/
double mnlrelclserror(const logitmodel &lm, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
RMS error on the test set
INPUT PARAMETERS:
LM - logit model
XY - test set
NPoints - test set size
RESULT:
root mean square error (error when estimating posterior probabilities).
-- ALGLIB --
Copyright 30.08.2008 by Bochkanov Sergey
*************************************************************************/
double mnlrmserror(const logitmodel &lm, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
Average error on the test set
INPUT PARAMETERS:
LM - logit model
XY - test set
NPoints - test set size
RESULT:
average error (error when estimating posterior probabilities).
-- ALGLIB --
Copyright 30.08.2008 by Bochkanov Sergey
*************************************************************************/
double mnlavgerror(const logitmodel &lm, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
Average relative error on the test set
INPUT PARAMETERS:
LM - logit model
XY - test set
NPoints - test set size
RESULT:
average relative error (error when estimating posterior probabilities).
-- ALGLIB --
Copyright 30.08.2008 by Bochkanov Sergey
*************************************************************************/
double mnlavgrelerror(const logitmodel &lm, const real_2d_array &xy, const ae_int_t ssize);
/*************************************************************************
Classification error on test set = MNLRelClsError*NPoints
-- ALGLIB --
Copyright 10.09.2008 by Bochkanov Sergey
*************************************************************************/
ae_int_t mnlclserror(const logitmodel &lm, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
DESCRIPTION:
This function creates MCPD (Markov Chains for Population Data) solver.
This solver can be used to find transition matrix P for N-dimensional
prediction problem where transition from X[i] to X[i+1] is modelled as
X[i+1] = P*X[i]
where X[i] and X[i+1] are N-dimensional population vectors (components of
each X are non-negative), and P is a N*N transition matrix (elements of P
are non-negative, each column sums to 1.0).
Such models arise when when:
* there is some population of individuals
* individuals can have different states
* individuals can transit from one state to another
* population size is constant, i.e. there is no new individuals and no one
leaves population
* you want to model transitions of individuals from one state into another
USAGE:
Here we give very brief outline of the MCPD. We strongly recommend you to
read examples in the ALGLIB Reference Manual and to read ALGLIB User Guide
on data analysis which is available at http://www.alglib.net/dataanalysis/
1. User initializes algorithm state with MCPDCreate() call
2. User adds one or more tracks - sequences of states which describe
evolution of a system being modelled from different starting conditions
3. User may add optional boundary, equality and/or linear constraints on
the coefficients of P by calling one of the following functions:
* MCPDSetEC() to set equality constraints
* MCPDSetBC() to set bound constraints
* MCPDSetLC() to set linear constraints
4. Optionally, user may set custom weights for prediction errors (by
default, algorithm assigns non-equal, automatically chosen weights for
errors in the prediction of different components of X). It can be done
with a call of MCPDSetPredictionWeights() function.
5. User calls MCPDSolve() function which takes algorithm state and
pointer (delegate, etc.) to callback function which calculates F/G.
6. User calls MCPDResults() to get solution
INPUT PARAMETERS:
N - problem dimension, N>=1
OUTPUT PARAMETERS:
State - structure stores algorithm state
-- ALGLIB --
Copyright 23.05.2010 by Bochkanov Sergey
*************************************************************************/
void mcpdcreate(const ae_int_t n, mcpdstate &s);
/*************************************************************************
DESCRIPTION:
This function is a specialized version of MCPDCreate() function, and we
recommend you to read comments for this function for general information
about MCPD solver.
This function creates MCPD (Markov Chains for Population Data) solver
for "Entry-state" model, i.e. model where transition from X[i] to X[i+1]
is modelled as
X[i+1] = P*X[i]
where
X[i] and X[i+1] are N-dimensional state vectors
P is a N*N transition matrix
and one selected component of X[] is called "entry" state and is treated
in a special way:
system state always transits from "entry" state to some another state
system state can not transit from any state into "entry" state
Such conditions basically mean that row of P which corresponds to "entry"
state is zero.
Such models arise when:
* there is some population of individuals
* individuals can have different states
* individuals can transit from one state to another
* population size is NOT constant - at every moment of time there is some
(unpredictable) amount of "new" individuals, which can transit into one
of the states at the next turn, but still no one leaves population
* you want to model transitions of individuals from one state into another
* but you do NOT want to predict amount of "new" individuals because it
does not depends on individuals already present (hence system can not
transit INTO entry state - it can only transit FROM it).
This model is discussed in more details in the ALGLIB User Guide (see
http://www.alglib.net/dataanalysis/ for more data).
INPUT PARAMETERS:
N - problem dimension, N>=2
EntryState- index of entry state, in 0..N-1
OUTPUT PARAMETERS:
State - structure stores algorithm state
-- ALGLIB --
Copyright 23.05.2010 by Bochkanov Sergey
*************************************************************************/
void mcpdcreateentry(const ae_int_t n, const ae_int_t entrystate, mcpdstate &s);
/*************************************************************************
DESCRIPTION:
This function is a specialized version of MCPDCreate() function, and we
recommend you to read comments for this function for general information
about MCPD solver.
This function creates MCPD (Markov Chains for Population Data) solver
for "Exit-state" model, i.e. model where transition from X[i] to X[i+1]
is modelled as
X[i+1] = P*X[i]
where
X[i] and X[i+1] are N-dimensional state vectors
P is a N*N transition matrix
and one selected component of X[] is called "exit" state and is treated
in a special way:
system state can transit from any state into "exit" state
system state can not transit from "exit" state into any other state
transition operator discards "exit" state (makes it zero at each turn)
Such conditions basically mean that column of P which corresponds to
"exit" state is zero. Multiplication by such P may decrease sum of vector
components.
Such models arise when:
* there is some population of individuals
* individuals can have different states
* individuals can transit from one state to another
* population size is NOT constant - individuals can move into "exit" state
and leave population at the next turn, but there are no new individuals
* amount of individuals which leave population can be predicted
* you want to model transitions of individuals from one state into another
(including transitions into the "exit" state)
This model is discussed in more details in the ALGLIB User Guide (see
http://www.alglib.net/dataanalysis/ for more data).
INPUT PARAMETERS:
N - problem dimension, N>=2
ExitState- index of exit state, in 0..N-1
OUTPUT PARAMETERS:
State - structure stores algorithm state
-- ALGLIB --
Copyright 23.05.2010 by Bochkanov Sergey
*************************************************************************/
void mcpdcreateexit(const ae_int_t n, const ae_int_t exitstate, mcpdstate &s);
/*************************************************************************
DESCRIPTION:
This function is a specialized version of MCPDCreate() function, and we
recommend you to read comments for this function for general information
about MCPD solver.
This function creates MCPD (Markov Chains for Population Data) solver
for "Entry-Exit-states" model, i.e. model where transition from X[i] to
X[i+1] is modelled as
X[i+1] = P*X[i]
where
X[i] and X[i+1] are N-dimensional state vectors
P is a N*N transition matrix
one selected component of X[] is called "entry" state and is treated in a
special way:
system state always transits from "entry" state to some another state
system state can not transit from any state into "entry" state
and another one component of X[] is called "exit" state and is treated in
a special way too:
system state can transit from any state into "exit" state
system state can not transit from "exit" state into any other state
transition operator discards "exit" state (makes it zero at each turn)
Such conditions basically mean that:
row of P which corresponds to "entry" state is zero
column of P which corresponds to "exit" state is zero
Multiplication by such P may decrease sum of vector components.
Such models arise when:
* there is some population of individuals
* individuals can have different states
* individuals can transit from one state to another
* population size is NOT constant
* at every moment of time there is some (unpredictable) amount of "new"
individuals, which can transit into one of the states at the next turn
* some individuals can move (predictably) into "exit" state and leave
population at the next turn
* you want to model transitions of individuals from one state into another,
including transitions from the "entry" state and into the "exit" state.
* but you do NOT want to predict amount of "new" individuals because it
does not depends on individuals already present (hence system can not
transit INTO entry state - it can only transit FROM it).
This model is discussed in more details in the ALGLIB User Guide (see
http://www.alglib.net/dataanalysis/ for more data).
INPUT PARAMETERS:
N - problem dimension, N>=2
EntryState- index of entry state, in 0..N-1
ExitState- index of exit state, in 0..N-1
OUTPUT PARAMETERS:
State - structure stores algorithm state
-- ALGLIB --
Copyright 23.05.2010 by Bochkanov Sergey
*************************************************************************/
void mcpdcreateentryexit(const ae_int_t n, const ae_int_t entrystate, const ae_int_t exitstate, mcpdstate &s);
/*************************************************************************
This function is used to add a track - sequence of system states at the
different moments of its evolution.
You may add one or several tracks to the MCPD solver. In case you have
several tracks, they won't overwrite each other. For example, if you pass
two tracks, A1-A2-A3 (system at t=A+1, t=A+2 and t=A+3) and B1-B2-B3, then
solver will try to model transitions from t=A+1 to t=A+2, t=A+2 to t=A+3,
t=B+1 to t=B+2, t=B+2 to t=B+3. But it WONT mix these two tracks - i.e. it
wont try to model transition from t=A+3 to t=B+1.
INPUT PARAMETERS:
S - solver
XY - track, array[K,N]:
* I-th row is a state at t=I
* elements of XY must be non-negative (exception will be
thrown on negative elements)
K - number of points in a track
* if given, only leading K rows of XY are used
* if not given, automatically determined from size of XY
NOTES:
1. Track may contain either proportional or population data:
* with proportional data all rows of XY must sum to 1.0, i.e. we have
proportions instead of absolute population values
* with population data rows of XY contain population counts and generally
do not sum to 1.0 (although they still must be non-negative)
-- ALGLIB --
Copyright 23.05.2010 by Bochkanov Sergey
*************************************************************************/
void mcpdaddtrack(const mcpdstate &s, const real_2d_array &xy, const ae_int_t k);
void mcpdaddtrack(const mcpdstate &s, const real_2d_array &xy);
/*************************************************************************
This function is used to add equality constraints on the elements of the
transition matrix P.
MCPD solver has four types of constraints which can be placed on P:
* user-specified equality constraints (optional)
* user-specified bound constraints (optional)
* user-specified general linear constraints (optional)
* basic constraints (always present):
* non-negativity: P[i,j]>=0
* consistency: every column of P sums to 1.0
Final constraints which are passed to the underlying optimizer are
calculated as intersection of all present constraints. For example, you
may specify boundary constraint on P[0,0] and equality one:
0.1<=P[0,0]<=0.9
P[0,0]=0.5
Such combination of constraints will be silently reduced to their
intersection, which is P[0,0]=0.5.
This function can be used to place equality constraints on arbitrary
subset of elements of P. Set of constraints is specified by EC, which may
contain either NAN's or finite numbers from [0,1]. NAN denotes absence of
constraint, finite number denotes equality constraint on specific element
of P.
You can also use MCPDAddEC() function which allows to ADD equality
constraint for one element of P without changing constraints for other
elements.
These functions (MCPDSetEC and MCPDAddEC) interact as follows:
* there is internal matrix of equality constraints which is stored in the
MCPD solver
* MCPDSetEC() replaces this matrix by another one (SET)
* MCPDAddEC() modifies one element of this matrix and leaves other ones
unchanged (ADD)
* thus MCPDAddEC() call preserves all modifications done by previous
calls, while MCPDSetEC() completely discards all changes done to the
equality constraints.
INPUT PARAMETERS:
S - solver
EC - equality constraints, array[N,N]. Elements of EC can be
either NAN's or finite numbers from [0,1]. NAN denotes
absence of constraints, while finite value denotes
equality constraint on the corresponding element of P.
NOTES:
1. infinite values of EC will lead to exception being thrown. Values less
than 0.0 or greater than 1.0 will lead to error code being returned after
call to MCPDSolve().
-- ALGLIB --
Copyright 23.05.2010 by Bochkanov Sergey
*************************************************************************/
void mcpdsetec(const mcpdstate &s, const real_2d_array &ec);
/*************************************************************************
This function is used to add equality constraints on the elements of the
transition matrix P.
MCPD solver has four types of constraints which can be placed on P:
* user-specified equality constraints (optional)
* user-specified bound constraints (optional)
* user-specified general linear constraints (optional)
* basic constraints (always present):
* non-negativity: P[i,j]>=0
* consistency: every column of P sums to 1.0
Final constraints which are passed to the underlying optimizer are
calculated as intersection of all present constraints. For example, you
may specify boundary constraint on P[0,0] and equality one:
0.1<=P[0,0]<=0.9
P[0,0]=0.5
Such combination of constraints will be silently reduced to their
intersection, which is P[0,0]=0.5.
This function can be used to ADD equality constraint for one element of P
without changing constraints for other elements.
You can also use MCPDSetEC() function which allows you to specify
arbitrary set of equality constraints in one call.
These functions (MCPDSetEC and MCPDAddEC) interact as follows:
* there is internal matrix of equality constraints which is stored in the
MCPD solver
* MCPDSetEC() replaces this matrix by another one (SET)
* MCPDAddEC() modifies one element of this matrix and leaves other ones
unchanged (ADD)
* thus MCPDAddEC() call preserves all modifications done by previous
calls, while MCPDSetEC() completely discards all changes done to the
equality constraints.
INPUT PARAMETERS:
S - solver
I - row index of element being constrained
J - column index of element being constrained
C - value (constraint for P[I,J]). Can be either NAN (no
constraint) or finite value from [0,1].
NOTES:
1. infinite values of C will lead to exception being thrown. Values less
than 0.0 or greater than 1.0 will lead to error code being returned after
call to MCPDSolve().
-- ALGLIB --
Copyright 23.05.2010 by Bochkanov Sergey
*************************************************************************/
void mcpdaddec(const mcpdstate &s, const ae_int_t i, const ae_int_t j, const double c);
/*************************************************************************
This function is used to add bound constraints on the elements of the
transition matrix P.
MCPD solver has four types of constraints which can be placed on P:
* user-specified equality constraints (optional)
* user-specified bound constraints (optional)
* user-specified general linear constraints (optional)
* basic constraints (always present):
* non-negativity: P[i,j]>=0
* consistency: every column of P sums to 1.0
Final constraints which are passed to the underlying optimizer are
calculated as intersection of all present constraints. For example, you
may specify boundary constraint on P[0,0] and equality one:
0.1<=P[0,0]<=0.9
P[0,0]=0.5
Such combination of constraints will be silently reduced to their
intersection, which is P[0,0]=0.5.
This function can be used to place bound constraints on arbitrary
subset of elements of P. Set of constraints is specified by BndL/BndU
matrices, which may contain arbitrary combination of finite numbers or
infinities (like -INF<x<=0.5 or 0.1<=x<+INF).
You can also use MCPDAddBC() function which allows to ADD bound constraint
for one element of P without changing constraints for other elements.
These functions (MCPDSetBC and MCPDAddBC) interact as follows:
* there is internal matrix of bound constraints which is stored in the
MCPD solver
* MCPDSetBC() replaces this matrix by another one (SET)
* MCPDAddBC() modifies one element of this matrix and leaves other ones
unchanged (ADD)
* thus MCPDAddBC() call preserves all modifications done by previous
calls, while MCPDSetBC() completely discards all changes done to the
equality constraints.
INPUT PARAMETERS:
S - solver
BndL - lower bounds constraints, array[N,N]. Elements of BndL can
be finite numbers or -INF.
BndU - upper bounds constraints, array[N,N]. Elements of BndU can
be finite numbers or +INF.
-- ALGLIB --
Copyright 23.05.2010 by Bochkanov Sergey
*************************************************************************/
void mcpdsetbc(const mcpdstate &s, const real_2d_array &bndl, const real_2d_array &bndu);
/*************************************************************************
This function is used to add bound constraints on the elements of the
transition matrix P.
MCPD solver has four types of constraints which can be placed on P:
* user-specified equality constraints (optional)
* user-specified bound constraints (optional)
* user-specified general linear constraints (optional)
* basic constraints (always present):
* non-negativity: P[i,j]>=0
* consistency: every column of P sums to 1.0
Final constraints which are passed to the underlying optimizer are
calculated as intersection of all present constraints. For example, you
may specify boundary constraint on P[0,0] and equality one:
0.1<=P[0,0]<=0.9
P[0,0]=0.5
Such combination of constraints will be silently reduced to their
intersection, which is P[0,0]=0.5.
This function can be used to ADD bound constraint for one element of P
without changing constraints for other elements.
You can also use MCPDSetBC() function which allows to place bound
constraints on arbitrary subset of elements of P. Set of constraints is
specified by BndL/BndU matrices, which may contain arbitrary combination
of finite numbers or infinities (like -INF<x<=0.5 or 0.1<=x<+INF).
These functions (MCPDSetBC and MCPDAddBC) interact as follows:
* there is internal matrix of bound constraints which is stored in the
MCPD solver
* MCPDSetBC() replaces this matrix by another one (SET)
* MCPDAddBC() modifies one element of this matrix and leaves other ones
unchanged (ADD)
* thus MCPDAddBC() call preserves all modifications done by previous
calls, while MCPDSetBC() completely discards all changes done to the
equality constraints.
INPUT PARAMETERS:
S - solver
I - row index of element being constrained
J - column index of element being constrained
BndL - lower bound
BndU - upper bound
-- ALGLIB --
Copyright 23.05.2010 by Bochkanov Sergey
*************************************************************************/
void mcpdaddbc(const mcpdstate &s, const ae_int_t i, const ae_int_t j, const double bndl, const double bndu);
/*************************************************************************
This function is used to set linear equality/inequality constraints on the
elements of the transition matrix P.
This function can be used to set one or several general linear constraints
on the elements of P. Two types of constraints are supported:
* equality constraints
* inequality constraints (both less-or-equal and greater-or-equal)
Coefficients of constraints are specified by matrix C (one of the
parameters). One row of C corresponds to one constraint. Because
transition matrix P has N*N elements, we need N*N columns to store all
coefficients (they are stored row by row), and one more column to store
right part - hence C has N*N+1 columns. Constraint kind is stored in the
CT array.
Thus, I-th linear constraint is
P[0,0]*C[I,0] + P[0,1]*C[I,1] + .. + P[0,N-1]*C[I,N-1] +
+ P[1,0]*C[I,N] + P[1,1]*C[I,N+1] + ... +
+ P[N-1,N-1]*C[I,N*N-1] ?=? C[I,N*N]
where ?=? can be either "=" (CT[i]=0), "<=" (CT[i]<0) or ">=" (CT[i]>0).
Your constraint may involve only some subset of P (less than N*N elements).
For example it can be something like
P[0,0] + P[0,1] = 0.5
In this case you still should pass matrix with N*N+1 columns, but all its
elements (except for C[0,0], C[0,1] and C[0,N*N-1]) will be zero.
INPUT PARAMETERS:
S - solver
C - array[K,N*N+1] - coefficients of constraints
(see above for complete description)
CT - array[K] - constraint types
(see above for complete description)
K - number of equality/inequality constraints, K>=0:
* if given, only leading K elements of C/CT are used
* if not given, automatically determined from sizes of C/CT
-- ALGLIB --
Copyright 23.05.2010 by Bochkanov Sergey
*************************************************************************/
void mcpdsetlc(const mcpdstate &s, const real_2d_array &c, const integer_1d_array &ct, const ae_int_t k);
void mcpdsetlc(const mcpdstate &s, const real_2d_array &c, const integer_1d_array &ct);
/*************************************************************************
This function allows to tune amount of Tikhonov regularization being
applied to your problem.
By default, regularizing term is equal to r*||P-prior_P||^2, where r is a
small non-zero value, P is transition matrix, prior_P is identity matrix,
||X||^2 is a sum of squared elements of X.
This function allows you to change coefficient r. You can also change
prior values with MCPDSetPrior() function.
INPUT PARAMETERS:
S - solver
V - regularization coefficient, finite non-negative value. It
is not recommended to specify zero value unless you are
pretty sure that you want it.
-- ALGLIB --
Copyright 23.05.2010 by Bochkanov Sergey
*************************************************************************/
void mcpdsettikhonovregularizer(const mcpdstate &s, const double v);
/*************************************************************************
This function allows to set prior values used for regularization of your
problem.
By default, regularizing term is equal to r*||P-prior_P||^2, where r is a
small non-zero value, P is transition matrix, prior_P is identity matrix,
||X||^2 is a sum of squared elements of X.
This function allows you to change prior values prior_P. You can also
change r with MCPDSetTikhonovRegularizer() function.
INPUT PARAMETERS:
S - solver
PP - array[N,N], matrix of prior values:
1. elements must be real numbers from [0,1]
2. columns must sum to 1.0.
First property is checked (exception is thrown otherwise),
while second one is not checked/enforced.
-- ALGLIB --
Copyright 23.05.2010 by Bochkanov Sergey
*************************************************************************/
void mcpdsetprior(const mcpdstate &s, const real_2d_array &pp);
/*************************************************************************
This function is used to change prediction weights
MCPD solver scales prediction errors as follows
Error(P) = ||W*(y-P*x)||^2
where
x is a system state at time t
y is a system state at time t+1
P is a transition matrix
W is a diagonal scaling matrix
By default, weights are chosen in order to minimize relative prediction
error instead of absolute one. For example, if one component of state is
about 0.5 in magnitude and another one is about 0.05, then algorithm will
make corresponding weights equal to 2.0 and 20.0.
INPUT PARAMETERS:
S - solver
PW - array[N], weights:
* must be non-negative values (exception will be thrown otherwise)
* zero values will be replaced by automatically chosen values
-- ALGLIB --
Copyright 23.05.2010 by Bochkanov Sergey
*************************************************************************/
void mcpdsetpredictionweights(const mcpdstate &s, const real_1d_array &pw);
/*************************************************************************
This function is used to start solution of the MCPD problem.
After return from this function, you can use MCPDResults() to get solution
and completion code.
-- ALGLIB --
Copyright 23.05.2010 by Bochkanov Sergey
*************************************************************************/
void mcpdsolve(const mcpdstate &s);
/*************************************************************************
MCPD results
INPUT PARAMETERS:
State - algorithm state
OUTPUT PARAMETERS:
P - array[N,N], transition matrix
Rep - optimization report. You should check Rep.TerminationType
in order to distinguish successful termination from
unsuccessful one. Speaking short, positive values denote
success, negative ones are failures.
More information about fields of this structure can be
found in the comments on MCPDReport datatype.
-- ALGLIB --
Copyright 23.05.2010 by Bochkanov Sergey
*************************************************************************/
void mcpdresults(const mcpdstate &s, real_2d_array &p, mcpdreport &rep);
/*************************************************************************
This function serializes data structure to string.
Important properties of s_out:
* it contains alphanumeric characters, dots, underscores, minus signs
* these symbols are grouped into words, which are separated by spaces
and Windows-style (CR+LF) newlines
* although serializer uses spaces and CR+LF as separators, you can
replace any separator character by arbitrary combination of spaces,
tabs, Windows or Unix newlines. It allows flexible reformatting of
the string in case you want to include it into text or XML file.
But you should not insert separators into the middle of the "words"
nor you should change case of letters.
* s_out can be freely moved between 32-bit and 64-bit systems, little
and big endian machines, and so on. You can serialize structure on
32-bit machine and unserialize it on 64-bit one (or vice versa), or
serialize it on SPARC and unserialize on x86. You can also
serialize it in C++ version of ALGLIB and unserialize in C# one,
and vice versa.
*************************************************************************/
void mlpeserialize(mlpensemble &obj, std::string &s_out);
/*************************************************************************
This function unserializes data structure from string.
*************************************************************************/
void mlpeunserialize(const std::string &s_in, mlpensemble &obj);
/*************************************************************************
This function serializes data structure to C++ stream.
Data stream generated by this function is same as string representation
generated by string version of serializer - alphanumeric characters,
dots, underscores, minus signs, which are grouped into words separated by
spaces and CR+LF.
We recommend you to read comments on string version of serializer to find
out more about serialization of AlGLIB objects.
*************************************************************************/
void mlpeserialize(mlpensemble &obj, std::ostream &s_out);
/*************************************************************************
This function unserializes data structure from stream.
*************************************************************************/
void mlpeunserialize(const std::istream &s_in, mlpensemble &obj);
/*************************************************************************
Like MLPCreate0, but for ensembles.
-- ALGLIB --
Copyright 18.02.2009 by Bochkanov Sergey
*************************************************************************/
void mlpecreate0(const ae_int_t nin, const ae_int_t nout, const ae_int_t ensemblesize, mlpensemble &ensemble);
/*************************************************************************
Like MLPCreate1, but for ensembles.
-- ALGLIB --
Copyright 18.02.2009 by Bochkanov Sergey
*************************************************************************/
void mlpecreate1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, const ae_int_t ensemblesize, mlpensemble &ensemble);
/*************************************************************************
Like MLPCreate2, but for ensembles.
-- ALGLIB --
Copyright 18.02.2009 by Bochkanov Sergey
*************************************************************************/
void mlpecreate2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, const ae_int_t ensemblesize, mlpensemble &ensemble);
/*************************************************************************
Like MLPCreateB0, but for ensembles.
-- ALGLIB --
Copyright 18.02.2009 by Bochkanov Sergey
*************************************************************************/
void mlpecreateb0(const ae_int_t nin, const ae_int_t nout, const double b, const double d, const ae_int_t ensemblesize, mlpensemble &ensemble);
/*************************************************************************
Like MLPCreateB1, but for ensembles.
-- ALGLIB --
Copyright 18.02.2009 by Bochkanov Sergey
*************************************************************************/
void mlpecreateb1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, const double b, const double d, const ae_int_t ensemblesize, mlpensemble &ensemble);
/*************************************************************************
Like MLPCreateB2, but for ensembles.
-- ALGLIB --
Copyright 18.02.2009 by Bochkanov Sergey
*************************************************************************/
void mlpecreateb2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, const double b, const double d, const ae_int_t ensemblesize, mlpensemble &ensemble);
/*************************************************************************
Like MLPCreateR0, but for ensembles.
-- ALGLIB --
Copyright 18.02.2009 by Bochkanov Sergey
*************************************************************************/
void mlpecreater0(const ae_int_t nin, const ae_int_t nout, const double a, const double b, const ae_int_t ensemblesize, mlpensemble &ensemble);
/*************************************************************************
Like MLPCreateR1, but for ensembles.
-- ALGLIB --
Copyright 18.02.2009 by Bochkanov Sergey
*************************************************************************/
void mlpecreater1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, const double a, const double b, const ae_int_t ensemblesize, mlpensemble &ensemble);
/*************************************************************************
Like MLPCreateR2, but for ensembles.
-- ALGLIB --
Copyright 18.02.2009 by Bochkanov Sergey
*************************************************************************/
void mlpecreater2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, const double a, const double b, const ae_int_t ensemblesize, mlpensemble &ensemble);
/*************************************************************************
Like MLPCreateC0, but for ensembles.
-- ALGLIB --
Copyright 18.02.2009 by Bochkanov Sergey
*************************************************************************/
void mlpecreatec0(const ae_int_t nin, const ae_int_t nout, const ae_int_t ensemblesize, mlpensemble &ensemble);
/*************************************************************************
Like MLPCreateC1, but for ensembles.
-- ALGLIB --
Copyright 18.02.2009 by Bochkanov Sergey
*************************************************************************/
void mlpecreatec1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, const ae_int_t ensemblesize, mlpensemble &ensemble);
/*************************************************************************
Like MLPCreateC2, but for ensembles.
-- ALGLIB --
Copyright 18.02.2009 by Bochkanov Sergey
*************************************************************************/
void mlpecreatec2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, const ae_int_t ensemblesize, mlpensemble &ensemble);
/*************************************************************************
Creates ensemble from network. Only network geometry is copied.
-- ALGLIB --
Copyright 17.02.2009 by Bochkanov Sergey
*************************************************************************/
void mlpecreatefromnetwork(const multilayerperceptron &network, const ae_int_t ensemblesize, mlpensemble &ensemble);
/*************************************************************************
Randomization of MLP ensemble
-- ALGLIB --
Copyright 17.02.2009 by Bochkanov Sergey
*************************************************************************/
void mlperandomize(const mlpensemble &ensemble);
/*************************************************************************
Return ensemble properties (number of inputs and outputs).
-- ALGLIB --
Copyright 17.02.2009 by Bochkanov Sergey
*************************************************************************/
void mlpeproperties(const mlpensemble &ensemble, ae_int_t &nin, ae_int_t &nout);
/*************************************************************************
Return normalization type (whether ensemble is SOFTMAX-normalized or not).
-- ALGLIB --
Copyright 17.02.2009 by Bochkanov Sergey
*************************************************************************/
bool mlpeissoftmax(const mlpensemble &ensemble);
/*************************************************************************
Procesing
INPUT PARAMETERS:
Ensemble- neural networks ensemble
X - input vector, array[0..NIn-1].
Y - (possibly) preallocated buffer; if size of Y is less than
NOut, it will be reallocated. If it is large enough, it
is NOT reallocated, so we can save some time on reallocation.
OUTPUT PARAMETERS:
Y - result. Regression estimate when solving regression task,
vector of posterior probabilities for classification task.
-- ALGLIB --
Copyright 17.02.2009 by Bochkanov Sergey
*************************************************************************/
void mlpeprocess(const mlpensemble &ensemble, const real_1d_array &x, real_1d_array &y);
/*************************************************************************
'interactive' variant of MLPEProcess for languages like Python which
support constructs like "Y = MLPEProcess(LM,X)" and interactive mode of the
interpreter
This function allocates new array on each call, so it is significantly
slower than its 'non-interactive' counterpart, but it is more convenient
when you call it from command line.
-- ALGLIB --
Copyright 17.02.2009 by Bochkanov Sergey
*************************************************************************/
void mlpeprocessi(const mlpensemble &ensemble, const real_1d_array &x, real_1d_array &y);
/*************************************************************************
Relative classification error on the test set
INPUT PARAMETERS:
Ensemble- ensemble
XY - test set
NPoints - test set size
RESULT:
percent of incorrectly classified cases.
Works both for classifier betwork and for regression networks which
are used as classifiers.
-- ALGLIB --
Copyright 17.02.2009 by Bochkanov Sergey
*************************************************************************/
double mlperelclserror(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
Average cross-entropy (in bits per element) on the test set
INPUT PARAMETERS:
Ensemble- ensemble
XY - test set
NPoints - test set size
RESULT:
CrossEntropy/(NPoints*LN(2)).
Zero if ensemble solves regression task.
-- ALGLIB --
Copyright 17.02.2009 by Bochkanov Sergey
*************************************************************************/
double mlpeavgce(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
RMS error on the test set
INPUT PARAMETERS:
Ensemble- ensemble
XY - test set
NPoints - test set size
RESULT:
root mean square error.
Its meaning for regression task is obvious. As for classification task
RMS error means error when estimating posterior probabilities.
-- ALGLIB --
Copyright 17.02.2009 by Bochkanov Sergey
*************************************************************************/
double mlpermserror(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
Average error on the test set
INPUT PARAMETERS:
Ensemble- ensemble
XY - test set
NPoints - test set size
RESULT:
Its meaning for regression task is obvious. As for classification task
it means average error when estimating posterior probabilities.
-- ALGLIB --
Copyright 17.02.2009 by Bochkanov Sergey
*************************************************************************/
double mlpeavgerror(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
Average relative error on the test set
INPUT PARAMETERS:
Ensemble- ensemble
XY - test set
NPoints - test set size
RESULT:
Its meaning for regression task is obvious. As for classification task
it means average relative error when estimating posterior probabilities.
-- ALGLIB --
Copyright 17.02.2009 by Bochkanov Sergey
*************************************************************************/
double mlpeavgrelerror(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
Neural network training using modified Levenberg-Marquardt with exact
Hessian calculation and regularization. Subroutine trains neural network
with restarts from random positions. Algorithm is well suited for small
and medium scale problems (hundreds of weights).
INPUT PARAMETERS:
Network - neural network with initialized geometry
XY - training set
NPoints - training set size
Decay - weight decay constant, >=0.001
Decay term 'Decay*||Weights||^2' is added to error
function.
If you don't know what Decay to choose, use 0.001.
Restarts - number of restarts from random position, >0.
If you don't know what Restarts to choose, use 2.
OUTPUT PARAMETERS:
Network - trained neural network.
Info - return code:
* -9, if internal matrix inverse subroutine failed
* -2, if there is a point with class number
outside of [0..NOut-1].
* -1, if wrong parameters specified
(NPoints<0, Restarts<1).
* 2, if task has been solved.
Rep - training report
-- ALGLIB --
Copyright 10.03.2009 by Bochkanov Sergey
*************************************************************************/
void mlptrainlm(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, ae_int_t &info, mlpreport &rep);
/*************************************************************************
Neural network training using L-BFGS algorithm with regularization.
Subroutine trains neural network with restarts from random positions.
Algorithm is well suited for problems of any dimensionality (memory
requirements and step complexity are linear by weights number).
INPUT PARAMETERS:
Network - neural network with initialized geometry
XY - training set
NPoints - training set size
Decay - weight decay constant, >=0.001
Decay term 'Decay*||Weights||^2' is added to error
function.
If you don't know what Decay to choose, use 0.001.
Restarts - number of restarts from random position, >0.
If you don't know what Restarts to choose, use 2.
WStep - stopping criterion. Algorithm stops if step size is
less than WStep. Recommended value - 0.01. Zero step
size means stopping after MaxIts iterations.
MaxIts - stopping criterion. Algorithm stops after MaxIts
iterations (NOT gradient calculations). Zero MaxIts
means stopping when step is sufficiently small.
OUTPUT PARAMETERS:
Network - trained neural network.
Info - return code:
* -8, if both WStep=0 and MaxIts=0
* -2, if there is a point with class number
outside of [0..NOut-1].
* -1, if wrong parameters specified
(NPoints<0, Restarts<1).
* 2, if task has been solved.
Rep - training report
-- ALGLIB --
Copyright 09.12.2007 by Bochkanov Sergey
*************************************************************************/
void mlptrainlbfgs(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, const double wstep, const ae_int_t maxits, ae_int_t &info, mlpreport &rep);
/*************************************************************************
Neural network training using early stopping (base algorithm - L-BFGS with
regularization).
INPUT PARAMETERS:
Network - neural network with initialized geometry
TrnXY - training set
TrnSize - training set size, TrnSize>0
ValXY - validation set
ValSize - validation set size, ValSize>0
Decay - weight decay constant, >=0.001
Decay term 'Decay*||Weights||^2' is added to error
function.
If you don't know what Decay to choose, use 0.001.
Restarts - number of restarts, either:
* strictly positive number - algorithm make specified
number of restarts from random position.
* -1, in which case algorithm makes exactly one run
from the initial state of the network (no randomization).
If you don't know what Restarts to choose, choose one
one the following:
* -1 (deterministic start)
* +1 (one random restart)
* +5 (moderate amount of random restarts)
OUTPUT PARAMETERS:
Network - trained neural network.
Info - return code:
* -2, if there is a point with class number
outside of [0..NOut-1].
* -1, if wrong parameters specified
(NPoints<0, Restarts<1, ...).
* 2, task has been solved, stopping criterion met -
sufficiently small step size. Not expected (we
use EARLY stopping) but possible and not an
error.
* 6, task has been solved, stopping criterion met -
increasing of validation set error.
Rep - training report
NOTE:
Algorithm stops if validation set error increases for a long enough or
step size is small enought (there are task where validation set may
decrease for eternity). In any case solution returned corresponds to the
minimum of validation set error.
-- ALGLIB --
Copyright 10.03.2009 by Bochkanov Sergey
*************************************************************************/
void mlptraines(const multilayerperceptron &network, const real_2d_array &trnxy, const ae_int_t trnsize, const real_2d_array &valxy, const ae_int_t valsize, const double decay, const ae_int_t restarts, ae_int_t &info, mlpreport &rep);
/*************************************************************************
Cross-validation estimate of generalization error.
Base algorithm - L-BFGS.
INPUT PARAMETERS:
Network - neural network with initialized geometry. Network is
not changed during cross-validation - it is used only
as a representative of its architecture.
XY - training set.
SSize - training set size
Decay - weight decay, same as in MLPTrainLBFGS
Restarts - number of restarts, >0.
restarts are counted for each partition separately, so
total number of restarts will be Restarts*FoldsCount.
WStep - stopping criterion, same as in MLPTrainLBFGS
MaxIts - stopping criterion, same as in MLPTrainLBFGS
FoldsCount - number of folds in k-fold cross-validation,
2<=FoldsCount<=SSize.
recommended value: 10.
OUTPUT PARAMETERS:
Info - return code, same as in MLPTrainLBFGS
Rep - report, same as in MLPTrainLM/MLPTrainLBFGS
CVRep - generalization error estimates
-- ALGLIB --
Copyright 09.12.2007 by Bochkanov Sergey
*************************************************************************/
void mlpkfoldcvlbfgs(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, const double wstep, const ae_int_t maxits, const ae_int_t foldscount, ae_int_t &info, mlpreport &rep, mlpcvreport &cvrep);
/*************************************************************************
Cross-validation estimate of generalization error.
Base algorithm - Levenberg-Marquardt.
INPUT PARAMETERS:
Network - neural network with initialized geometry. Network is
not changed during cross-validation - it is used only
as a representative of its architecture.
XY - training set.
SSize - training set size
Decay - weight decay, same as in MLPTrainLBFGS
Restarts - number of restarts, >0.
restarts are counted for each partition separately, so
total number of restarts will be Restarts*FoldsCount.
FoldsCount - number of folds in k-fold cross-validation,
2<=FoldsCount<=SSize.
recommended value: 10.
OUTPUT PARAMETERS:
Info - return code, same as in MLPTrainLBFGS
Rep - report, same as in MLPTrainLM/MLPTrainLBFGS
CVRep - generalization error estimates
-- ALGLIB --
Copyright 09.12.2007 by Bochkanov Sergey
*************************************************************************/
void mlpkfoldcvlm(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, const ae_int_t foldscount, ae_int_t &info, mlpreport &rep, mlpcvreport &cvrep);
/*************************************************************************
This function estimates generalization error using cross-validation on the
current dataset with current training settings.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support (C++ computational core)
!
! Second improvement gives constant speedup (2-3X). First improvement
! gives close-to-linear speedup on multicore systems. Following
! operations can be executed in parallel:
! * FoldsCount cross-validation rounds (always)
! * NRestarts training sessions performed within each of
! cross-validation rounds (if NRestarts>1)
! * gradient calculation over large dataset (if dataset is large enough)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
S - trainer object
Network - neural network. It must have same number of inputs and
output/classes as was specified during creation of the
trainer object. Network is not changed during cross-
validation and is not trained - it is used only as
representative of its architecture. I.e., we estimate
generalization properties of ARCHITECTURE, not some
specific network.
NRestarts - number of restarts, >=0:
* NRestarts>0 means that for each cross-validation
round specified number of random restarts is
performed, with best network being chosen after
training.
* NRestarts=0 is same as NRestarts=1
FoldsCount - number of folds in k-fold cross-validation:
* 2<=FoldsCount<=size of dataset
* recommended value: 10.
* values larger than dataset size will be silently
truncated down to dataset size
OUTPUT PARAMETERS:
Rep - structure which contains cross-validation estimates:
* Rep.RelCLSError - fraction of misclassified cases.
* Rep.AvgCE - acerage cross-entropy
* Rep.RMSError - root-mean-square error
* Rep.AvgError - average error
* Rep.AvgRelError - average relative error
NOTE: when no dataset was specified with MLPSetDataset/SetSparseDataset(),
or subset with only one point was given, zeros are returned as
estimates.
NOTE: this method performs FoldsCount cross-validation rounds, each one
with NRestarts random starts. Thus, FoldsCount*NRestarts networks
are trained in total.
NOTE: Rep.RelCLSError/Rep.AvgCE are zero on regression problems.
NOTE: on classification problems Rep.RMSError/Rep.AvgError/Rep.AvgRelError
contain errors in prediction of posterior probabilities.
-- ALGLIB --
Copyright 23.07.2012 by Bochkanov Sergey
*************************************************************************/
void mlpkfoldcv(const mlptrainer &s, const multilayerperceptron &network, const ae_int_t nrestarts, const ae_int_t foldscount, mlpreport &rep);
void smp_mlpkfoldcv(const mlptrainer &s, const multilayerperceptron &network, const ae_int_t nrestarts, const ae_int_t foldscount, mlpreport &rep);
/*************************************************************************
Creation of the network trainer object for regression networks
INPUT PARAMETERS:
NIn - number of inputs, NIn>=1
NOut - number of outputs, NOut>=1
OUTPUT PARAMETERS:
S - neural network trainer object.
This structure can be used to train any regression
network with NIn inputs and NOut outputs.
-- ALGLIB --
Copyright 23.07.2012 by Bochkanov Sergey
*************************************************************************/
void mlpcreatetrainer(const ae_int_t nin, const ae_int_t nout, mlptrainer &s);
/*************************************************************************
Creation of the network trainer object for classification networks
INPUT PARAMETERS:
NIn - number of inputs, NIn>=1
NClasses - number of classes, NClasses>=2
OUTPUT PARAMETERS:
S - neural network trainer object.
This structure can be used to train any classification
network with NIn inputs and NOut outputs.
-- ALGLIB --
Copyright 23.07.2012 by Bochkanov Sergey
*************************************************************************/
void mlpcreatetrainercls(const ae_int_t nin, const ae_int_t nclasses, mlptrainer &s);
/*************************************************************************
This function sets "current dataset" of the trainer object to one passed
by user.
INPUT PARAMETERS:
S - trainer object
XY - training set, see below for information on the
training set format. This function checks correctness
of the dataset (no NANs/INFs, class numbers are
correct) and throws exception when incorrect dataset
is passed.
NPoints - points count, >=0.
DATASET FORMAT:
This function uses two different dataset formats - one for regression
networks, another one for classification networks.
For regression networks with NIn inputs and NOut outputs following dataset
format is used:
* dataset is given by NPoints*(NIn+NOut) matrix
* each row corresponds to one example
* first NIn columns are inputs, next NOut columns are outputs
For classification networks with NIn inputs and NClasses clases following
datasetformat is used:
* dataset is given by NPoints*(NIn+1) matrix
* each row corresponds to one example
* first NIn columns are inputs, last column stores class number (from 0 to
NClasses-1).
-- ALGLIB --
Copyright 23.07.2012 by Bochkanov Sergey
*************************************************************************/
void mlpsetdataset(const mlptrainer &s, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
This function sets "current dataset" of the trainer object to one passed
by user (sparse matrix is used to store dataset).
INPUT PARAMETERS:
S - trainer object
XY - training set, see below for information on the
training set format. This function checks correctness
of the dataset (no NANs/INFs, class numbers are
correct) and throws exception when incorrect dataset
is passed. Any sparse storage format can be used:
Hash-table, CRS...
NPoints - points count, >=0
DATASET FORMAT:
This function uses two different dataset formats - one for regression
networks, another one for classification networks.
For regression networks with NIn inputs and NOut outputs following dataset
format is used:
* dataset is given by NPoints*(NIn+NOut) matrix
* each row corresponds to one example
* first NIn columns are inputs, next NOut columns are outputs
For classification networks with NIn inputs and NClasses clases following
datasetformat is used:
* dataset is given by NPoints*(NIn+1) matrix
* each row corresponds to one example
* first NIn columns are inputs, last column stores class number (from 0 to
NClasses-1).
-- ALGLIB --
Copyright 23.07.2012 by Bochkanov Sergey
*************************************************************************/
void mlpsetsparsedataset(const mlptrainer &s, const sparsematrix &xy, const ae_int_t npoints);
/*************************************************************************
This function sets weight decay coefficient which is used for training.
INPUT PARAMETERS:
S - trainer object
Decay - weight decay coefficient, >=0. Weight decay term
'Decay*||Weights||^2' is added to error function. If
you don't know what Decay to choose, use 1.0E-3.
Weight decay can be set to zero, in this case network
is trained without weight decay.
NOTE: by default network uses some small nonzero value for weight decay.
-- ALGLIB --
Copyright 23.07.2012 by Bochkanov Sergey
*************************************************************************/
void mlpsetdecay(const mlptrainer &s, const double decay);
/*************************************************************************
This function sets stopping criteria for the optimizer.
INPUT PARAMETERS:
S - trainer object
WStep - stopping criterion. Algorithm stops if step size is
less than WStep. Recommended value - 0.01. Zero step
size means stopping after MaxIts iterations.
WStep>=0.
MaxIts - stopping criterion. Algorithm stops after MaxIts
epochs (full passes over entire dataset). Zero MaxIts
means stopping when step is sufficiently small.
MaxIts>=0.
NOTE: by default, WStep=0.005 and MaxIts=0 are used. These values are also
used when MLPSetCond() is called with WStep=0 and MaxIts=0.
NOTE: these stopping criteria are used for all kinds of neural training -
from "conventional" networks to early stopping ensembles. When used
for "conventional" networks, they are used as the only stopping
criteria. When combined with early stopping, they used as ADDITIONAL
stopping criteria which can terminate early stopping algorithm.
-- ALGLIB --
Copyright 23.07.2012 by Bochkanov Sergey
*************************************************************************/
void mlpsetcond(const mlptrainer &s, const double wstep, const ae_int_t maxits);
/*************************************************************************
This function sets training algorithm: batch training using L-BFGS will be
used.
This algorithm:
* the most robust for small-scale problems, but may be too slow for large
scale ones.
* perfoms full pass through the dataset before performing step
* uses conditions specified by MLPSetCond() for stopping
* is default one used by trainer object
INPUT PARAMETERS:
S - trainer object
-- ALGLIB --
Copyright 23.07.2012 by Bochkanov Sergey
*************************************************************************/
void mlpsetalgobatch(const mlptrainer &s);
/*************************************************************************
This function trains neural network passed to this function, using current
dataset (one which was passed to MLPSetDataset() or MLPSetSparseDataset())
and current training settings. Training from NRestarts random starting
positions is performed, best network is chosen.
Training is performed using current training algorithm.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support (C++ computational core)
!
! Second improvement gives constant speedup (2-3X). First improvement
! gives close-to-linear speedup on multicore systems. Following
! operations can be executed in parallel:
! * NRestarts training sessions performed within each of
! cross-validation rounds (if NRestarts>1)
! * gradient calculation over large dataset (if dataset is large enough)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
S - trainer object
Network - neural network. It must have same number of inputs and
output/classes as was specified during creation of the
trainer object.
NRestarts - number of restarts, >=0:
* NRestarts>0 means that specified number of random
restarts are performed, best network is chosen after
training
* NRestarts=0 means that current state of the network
is used for training.
OUTPUT PARAMETERS:
Network - trained network
NOTE: when no dataset was specified with MLPSetDataset/SetSparseDataset(),
network is filled by zero values. Same behavior for functions
MLPStartTraining and MLPContinueTraining.
NOTE: this method uses sum-of-squares error function for training.
-- ALGLIB --
Copyright 23.07.2012 by Bochkanov Sergey
*************************************************************************/
void mlptrainnetwork(const mlptrainer &s, const multilayerperceptron &network, const ae_int_t nrestarts, mlpreport &rep);
void smp_mlptrainnetwork(const mlptrainer &s, const multilayerperceptron &network, const ae_int_t nrestarts, mlpreport &rep);
/*************************************************************************
IMPORTANT: this is an "expert" version of the MLPTrain() function. We do
not recommend you to use it unless you are pretty sure that you
need ability to monitor training progress.
This function performs step-by-step training of the neural network. Here
"step-by-step" means that training starts with MLPStartTraining() call,
and then user subsequently calls MLPContinueTraining() to perform one more
iteration of the training.
After call to this function trainer object remembers network and is ready
to train it. However, no training is performed until first call to
MLPContinueTraining() function. Subsequent calls to MLPContinueTraining()
will advance training progress one iteration further.
EXAMPLE:
>
> ...initialize network and trainer object....
>
> MLPStartTraining(Trainer, Network, True)
> while MLPContinueTraining(Trainer, Network) do
> ...visualize training progress...
>
INPUT PARAMETERS:
S - trainer object
Network - neural network. It must have same number of inputs and
output/classes as was specified during creation of the
trainer object.
RandomStart - randomize network before training or not:
* True means that network is randomized and its
initial state (one which was passed to the trainer
object) is lost.
* False means that training is started from the
current state of the network
OUTPUT PARAMETERS:
Network - neural network which is ready to training (weights are
initialized, preprocessor is initialized using current
training set)
NOTE: this method uses sum-of-squares error function for training.
NOTE: it is expected that trainer object settings are NOT changed during
step-by-step training, i.e. no one changes stopping criteria or
training set during training. It is possible and there is no defense
against such actions, but algorithm behavior in such cases is
undefined and can be unpredictable.
-- ALGLIB --
Copyright 23.07.2012 by Bochkanov Sergey
*************************************************************************/
void mlpstarttraining(const mlptrainer &s, const multilayerperceptron &network, const bool randomstart);
/*************************************************************************
IMPORTANT: this is an "expert" version of the MLPTrain() function. We do
not recommend you to use it unless you are pretty sure that you
need ability to monitor training progress.
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support (C++ computational core)
!
! Second improvement gives constant speedup (2-3X). First improvement
! gives close-to-linear speedup on multicore systems. Following
! operations can be executed in parallel:
! * gradient calculation over large dataset (if dataset is large enough)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
This function performs step-by-step training of the neural network. Here
"step-by-step" means that training starts with MLPStartTraining() call,
and then user subsequently calls MLPContinueTraining() to perform one more
iteration of the training.
This function performs one more iteration of the training and returns
either True (training continues) or False (training stopped). In case True
was returned, Network weights are updated according to the current state
of the optimization progress. In case False was returned, no additional
updates is performed (previous update of the network weights moved us to
the final point, and no additional updates is needed).
EXAMPLE:
>
> [initialize network and trainer object]
>
> MLPStartTraining(Trainer, Network, True)
> while MLPContinueTraining(Trainer, Network) do
> [visualize training progress]
>
INPUT PARAMETERS:
S - trainer object
Network - neural network structure, which is used to store
current state of the training process.
OUTPUT PARAMETERS:
Network - weights of the neural network are rewritten by the
current approximation.
NOTE: this method uses sum-of-squares error function for training.
NOTE: it is expected that trainer object settings are NOT changed during
step-by-step training, i.e. no one changes stopping criteria or
training set during training. It is possible and there is no defense
against such actions, but algorithm behavior in such cases is
undefined and can be unpredictable.
NOTE: It is expected that Network is the same one which was passed to
MLPStartTraining() function. However, THIS function checks only
following:
* that number of network inputs is consistent with trainer object
settings
* that number of network outputs/classes is consistent with trainer
object settings
* that number of network weights is the same as number of weights in
the network passed to MLPStartTraining() function
Exception is thrown when these conditions are violated.
It is also expected that you do not change state of the network on
your own - the only party who has right to change network during its
training is a trainer object. Any attempt to interfere with trainer
may lead to unpredictable results.
-- ALGLIB --
Copyright 23.07.2012 by Bochkanov Sergey
*************************************************************************/
bool mlpcontinuetraining(const mlptrainer &s, const multilayerperceptron &network);
bool smp_mlpcontinuetraining(const mlptrainer &s, const multilayerperceptron &network);
/*************************************************************************
Training neural networks ensemble using bootstrap aggregating (bagging).
Modified Levenberg-Marquardt algorithm is used as base training method.
INPUT PARAMETERS:
Ensemble - model with initialized geometry
XY - training set
NPoints - training set size
Decay - weight decay coefficient, >=0.001
Restarts - restarts, >0.
OUTPUT PARAMETERS:
Ensemble - trained model
Info - return code:
* -2, if there is a point with class number
outside of [0..NClasses-1].
* -1, if incorrect parameters was passed
(NPoints<0, Restarts<1).
* 2, if task has been solved.
Rep - training report.
OOBErrors - out-of-bag generalization error estimate
-- ALGLIB --
Copyright 17.02.2009 by Bochkanov Sergey
*************************************************************************/
void mlpebagginglm(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, ae_int_t &info, mlpreport &rep, mlpcvreport &ooberrors);
/*************************************************************************
Training neural networks ensemble using bootstrap aggregating (bagging).
L-BFGS algorithm is used as base training method.
INPUT PARAMETERS:
Ensemble - model with initialized geometry
XY - training set
NPoints - training set size
Decay - weight decay coefficient, >=0.001
Restarts - restarts, >0.
WStep - stopping criterion, same as in MLPTrainLBFGS
MaxIts - stopping criterion, same as in MLPTrainLBFGS
OUTPUT PARAMETERS:
Ensemble - trained model
Info - return code:
* -8, if both WStep=0 and MaxIts=0
* -2, if there is a point with class number
outside of [0..NClasses-1].
* -1, if incorrect parameters was passed
(NPoints<0, Restarts<1).
* 2, if task has been solved.
Rep - training report.
OOBErrors - out-of-bag generalization error estimate
-- ALGLIB --
Copyright 17.02.2009 by Bochkanov Sergey
*************************************************************************/
void mlpebagginglbfgs(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, const double wstep, const ae_int_t maxits, ae_int_t &info, mlpreport &rep, mlpcvreport &ooberrors);
/*************************************************************************
Training neural networks ensemble using early stopping.
INPUT PARAMETERS:
Ensemble - model with initialized geometry
XY - training set
NPoints - training set size
Decay - weight decay coefficient, >=0.001
Restarts - restarts, >0.
OUTPUT PARAMETERS:
Ensemble - trained model
Info - return code:
* -2, if there is a point with class number
outside of [0..NClasses-1].
* -1, if incorrect parameters was passed
(NPoints<0, Restarts<1).
* 6, if task has been solved.
Rep - training report.
OOBErrors - out-of-bag generalization error estimate
-- ALGLIB --
Copyright 10.03.2009 by Bochkanov Sergey
*************************************************************************/
void mlpetraines(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, ae_int_t &info, mlpreport &rep);
/*************************************************************************
This function trains neural network ensemble passed to this function using
current dataset and early stopping training algorithm. Each early stopping
round performs NRestarts random restarts (thus, EnsembleSize*NRestarts
training rounds is performed in total).
FOR USERS OF COMMERCIAL EDITION:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (C++ and C# computational cores)
! * SSE support (C++ computational core)
!
! Second improvement gives constant speedup (2-3X). First improvement
! gives close-to-linear speedup on multicore systems. Following
! operations can be executed in parallel:
! * EnsembleSize training sessions performed for each of ensemble
! members (always parallelized)
! * NRestarts training sessions performed within each of training
! sessions (if NRestarts>1)
! * gradient calculation over large dataset (if dataset is large enough)
!
! In order to use multicore features you have to:
! * use commercial version of ALGLIB
! * call this function with "smp_" prefix, which indicates that
! multicore code will be used (for multicore support)
!
! In order to use SSE features you have to:
! * use commercial version of ALGLIB on Intel processors
! * use C++ computational core
!
! This note is given for users of commercial edition; if you use GPL
! edition, you still will be able to call smp-version of this function,
! but all computations will be done serially.
!
! We recommend you to carefully read ALGLIB Reference Manual, section
! called 'SMP support', before using parallel version of this function.
INPUT PARAMETERS:
S - trainer object;
Ensemble - neural network ensemble. It must have same number of
inputs and outputs/classes as was specified during
creation of the trainer object.
NRestarts - number of restarts, >=0:
* NRestarts>0 means that specified number of random
restarts are performed during each ES round;
* NRestarts=0 is silently replaced by 1.
OUTPUT PARAMETERS:
Ensemble - trained ensemble;
Rep - it contains all type of errors.
NOTE: this training method uses BOTH early stopping and weight decay! So,
you should select weight decay before starting training just as you
select it before training "conventional" networks.
NOTE: when no dataset was specified with MLPSetDataset/SetSparseDataset(),
or single-point dataset was passed, ensemble is filled by zero
values.
NOTE: this method uses sum-of-squares error function for training.
-- ALGLIB --
Copyright 22.08.2012 by Bochkanov Sergey
*************************************************************************/
void mlptrainensemblees(const mlptrainer &s, const mlpensemble &ensemble, const ae_int_t nrestarts, mlpreport &rep);
void smp_mlptrainensemblees(const mlptrainer &s, const mlpensemble &ensemble, const ae_int_t nrestarts, mlpreport &rep);
/*************************************************************************
This function initializes clusterizer object. Newly initialized object is
empty, i.e. it does not contain dataset. You should use it as follows:
1. creation
2. dataset is added with ClusterizerSetPoints()
3. additional parameters are set
3. clusterization is performed with one of the clustering functions
-- ALGLIB --
Copyright 10.07.2012 by Bochkanov Sergey
*************************************************************************/
void clusterizercreate(clusterizerstate &s);
/*************************************************************************
This function adds dataset to the clusterizer structure.
This function overrides all previous calls of ClusterizerSetPoints() or
ClusterizerSetDistances().
INPUT PARAMETERS:
S - clusterizer state, initialized by ClusterizerCreate()
XY - array[NPoints,NFeatures], dataset
NPoints - number of points, >=0
NFeatures- number of features, >=1
DistType- distance function:
* 0 Chebyshev distance (L-inf norm)
* 1 city block distance (L1 norm)
* 2 Euclidean distance (L2 norm), non-squared
* 10 Pearson correlation:
dist(a,b) = 1-corr(a,b)
* 11 Absolute Pearson correlation:
dist(a,b) = 1-|corr(a,b)|
* 12 Uncentered Pearson correlation (cosine of the angle):
dist(a,b) = a'*b/(|a|*|b|)
* 13 Absolute uncentered Pearson correlation
dist(a,b) = |a'*b|/(|a|*|b|)
* 20 Spearman rank correlation:
dist(a,b) = 1-rankcorr(a,b)
* 21 Absolute Spearman rank correlation
dist(a,b) = 1-|rankcorr(a,b)|
NOTE 1: different distance functions have different performance penalty:
* Euclidean or Pearson correlation distances are the fastest ones
* Spearman correlation distance function is a bit slower
* city block and Chebyshev distances are order of magnitude slower
The reason behing difference in performance is that correlation-based
distance functions are computed using optimized linear algebra kernels,
while Chebyshev and city block distance functions are computed using
simple nested loops with two branches at each iteration.
NOTE 2: different clustering algorithms have different limitations:
* agglomerative hierarchical clustering algorithms may be used with
any kind of distance metric
* k-means++ clustering algorithm may be used only with Euclidean
distance function
Thus, list of specific clustering algorithms you may use depends
on distance function you specify when you set your dataset.
-- ALGLIB --
Copyright 10.07.2012 by Bochkanov Sergey
*************************************************************************/
void clusterizersetpoints(const clusterizerstate &s, const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures, const ae_int_t disttype);
void clusterizersetpoints(const clusterizerstate &s, const real_2d_array &xy, const ae_int_t disttype);
/*************************************************************************
This function adds dataset given by distance matrix to the clusterizer
structure. It is important that dataset is not given explicitly - only
distance matrix is given.
This function overrides all previous calls of ClusterizerSetPoints() or
ClusterizerSetDistances().
INPUT PARAMETERS:
S - clusterizer state, initialized by ClusterizerCreate()
D - array[NPoints,NPoints], distance matrix given by its upper
or lower triangle (main diagonal is ignored because its
entries are expected to be zero).
NPoints - number of points
IsUpper - whether upper or lower triangle of D is given.
NOTE 1: different clustering algorithms have different limitations:
* agglomerative hierarchical clustering algorithms may be used with
any kind of distance metric, including one which is given by
distance matrix
* k-means++ clustering algorithm may be used only with Euclidean
distance function and explicitly given points - it can not be
used with dataset given by distance matrix
Thus, if you call this function, you will be unable to use k-means
clustering algorithm to process your problem.
-- ALGLIB --
Copyright 10.07.2012 by Bochkanov Sergey
*************************************************************************/
void clusterizersetdistances(const clusterizerstate &s, const real_2d_array &d, const ae_int_t npoints, const bool isupper);
void clusterizersetdistances(const clusterizerstate &s, const real_2d_array &d, const bool isupper);
/*************************************************************************
This function sets agglomerative hierarchical clustering algorithm
INPUT PARAMETERS:
S - clusterizer state, initialized by ClusterizerCreate()
Algo - algorithm type:
* 0 complete linkage (default algorithm)
* 1 single linkage
* 2 unweighted average linkage
* 3 weighted average linkage
* 4 Ward's method
NOTE: Ward's method works correctly only with Euclidean distance, that's
why algorithm will return negative termination code (failure) for
any other distance type.
It is possible, however, to use this method with user-supplied
distance matrix. It is your responsibility to pass one which was
calculated with Euclidean distance function.
-- ALGLIB --
Copyright 10.07.2012 by Bochkanov Sergey
*************************************************************************/
void clusterizersetahcalgo(const clusterizerstate &s, const ae_int_t algo);
/*************************************************************************
This function sets k-means properties: number of restarts and maximum
number of iterations per one run.
INPUT PARAMETERS:
S - clusterizer state, initialized by ClusterizerCreate()
Restarts- restarts count, >=1.
k-means++ algorithm performs several restarts and chooses
best set of centers (one with minimum squared distance).
MaxIts - maximum number of k-means iterations performed during one
run. >=0, zero value means that algorithm performs unlimited
number of iterations.
-- ALGLIB --
Copyright 10.07.2012 by Bochkanov Sergey
*************************************************************************/
void clusterizersetkmeanslimits(const clusterizerstate &s, const ae_int_t restarts, const ae_int_t maxits);
/*************************************************************************
This function sets k-means initialization algorithm. Several different
algorithms can be chosen, including k-means++.
INPUT PARAMETERS:
S - clusterizer state, initialized by ClusterizerCreate()
InitAlgo- initialization algorithm:
* 0 automatic selection ( different versions of ALGLIB
may select different algorithms)
* 1 random initialization
* 2 k-means++ initialization (best quality of initial
centers, but long non-parallelizable initialization
phase with bad cache locality)
* 3 "fast-greedy" algorithm with efficient, easy to
parallelize initialization. Quality of initial centers
is somewhat worse than that of k-means++. This
algorithm is a default one in the current version of
ALGLIB.
*-1 "debug" algorithm which always selects first K rows
of dataset; this algorithm is used for debug purposes
only. Do not use it in the industrial code!
-- ALGLIB --
Copyright 21.01.2015 by Bochkanov Sergey
*************************************************************************/
void clusterizersetkmeansinit(const clusterizerstate &s, const ae_int_t initalgo);
/*************************************************************************
This function performs agglomerative hierarchical clustering
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Agglomerative hierarchical clustering algorithm has two phases:
! distance matrix calculation and clustering itself. Only first phase
! (distance matrix calculation) is accelerated by Intel MKL and multi-
! threading. Thus, acceleration is significant only for medium or high-
! dimensional problems.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS:
S - clusterizer state, initialized by ClusterizerCreate()
OUTPUT PARAMETERS:
Rep - clustering results; see description of AHCReport
structure for more information.
NOTE 1: hierarchical clustering algorithms require large amounts of memory.
In particular, this implementation needs sizeof(double)*NPoints^2
bytes, which are used to store distance matrix. In case we work
with user-supplied matrix, this amount is multiplied by 2 (we have
to store original matrix and to work with its copy).
For example, problem with 10000 points would require 800M of RAM,
even when working in a 1-dimensional space.
-- ALGLIB --
Copyright 10.07.2012 by Bochkanov Sergey
*************************************************************************/
void clusterizerrunahc(const clusterizerstate &s, ahcreport &rep);
void smp_clusterizerrunahc(const clusterizerstate &s, ahcreport &rep);
/*************************************************************************
This function performs clustering by k-means++ algorithm.
You may change algorithm properties by calling:
* ClusterizerSetKMeansLimits() to change number of restarts or iterations
* ClusterizerSetKMeansInit() to change initialization algorithm
By default, one restart and unlimited number of iterations are used.
Initialization algorithm is chosen automatically.
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function:
! * multicore support (can be used from C# and C++)
! * access to high-performance C++ core (actual for C# users)
!
! K-means clustering algorithm has two phases: selection of initial
! centers and clustering itself. ALGLIB parallelizes both phases.
! Parallel version is optimized for the following scenario: medium or
! high-dimensional problem (20 or more dimensions) with large number of
! points and clusters. However, some speed-up can be obtained even when
! assumptions above are violated.
!
! As for native-vs-managed comparison, working with native core brings
! 30-40% improvement in speed over pure C# version of ALGLIB.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS:
S - clusterizer state, initialized by ClusterizerCreate()
K - number of clusters, K>=0.
K can be zero only when algorithm is called for empty
dataset, in this case completion code is set to
success (+1).
If K=0 and dataset size is non-zero, we can not
meaningfully assign points to some center (there are no
centers because K=0) and return -3 as completion code
(failure).
OUTPUT PARAMETERS:
Rep - clustering results; see description of KMeansReport
structure for more information.
NOTE 1: k-means clustering can be performed only for datasets with
Euclidean distance function. Algorithm will return negative
completion code in Rep.TerminationType in case dataset was added
to clusterizer with DistType other than Euclidean (or dataset was
specified by distance matrix instead of explicitly given points).
-- ALGLIB --
Copyright 10.07.2012 by Bochkanov Sergey
*************************************************************************/
void clusterizerrunkmeans(const clusterizerstate &s, const ae_int_t k, kmeansreport &rep);
void smp_clusterizerrunkmeans(const clusterizerstate &s, const ae_int_t k, kmeansreport &rep);
/*************************************************************************
This function returns distance matrix for dataset
COMMERCIAL EDITION OF ALGLIB:
! Commercial version of ALGLIB includes two important improvements of
! this function, which can be used from C++ and C#:
! * Intel MKL support (lightweight Intel MKL is shipped with ALGLIB)
! * multicore support
!
! Agglomerative hierarchical clustering algorithm has two phases:
! distance matrix calculation and clustering itself. Only first phase
! (distance matrix calculation) is accelerated by Intel MKL and multi-
! threading. Thus, acceleration is significant only for medium or high-
! dimensional problems.
!
! We recommend you to read 'Working with commercial version' section of
! ALGLIB Reference Manual in order to find out how to use performance-
! related features provided by commercial edition of ALGLIB.
INPUT PARAMETERS:
XY - array[NPoints,NFeatures], dataset
NPoints - number of points, >=0
NFeatures- number of features, >=1
DistType- distance function:
* 0 Chebyshev distance (L-inf norm)
* 1 city block distance (L1 norm)
* 2 Euclidean distance (L2 norm, non-squared)
* 10 Pearson correlation:
dist(a,b) = 1-corr(a,b)
* 11 Absolute Pearson correlation:
dist(a,b) = 1-|corr(a,b)|
* 12 Uncentered Pearson correlation (cosine of the angle):
dist(a,b) = a'*b/(|a|*|b|)
* 13 Absolute uncentered Pearson correlation
dist(a,b) = |a'*b|/(|a|*|b|)
* 20 Spearman rank correlation:
dist(a,b) = 1-rankcorr(a,b)
* 21 Absolute Spearman rank correlation
dist(a,b) = 1-|rankcorr(a,b)|
OUTPUT PARAMETERS:
D - array[NPoints,NPoints], distance matrix
(full matrix is returned, with lower and upper triangles)
NOTE: different distance functions have different performance penalty:
* Euclidean or Pearson correlation distances are the fastest ones
* Spearman correlation distance function is a bit slower
* city block and Chebyshev distances are order of magnitude slower
The reason behing difference in performance is that correlation-based
distance functions are computed using optimized linear algebra kernels,
while Chebyshev and city block distance functions are computed using
simple nested loops with two branches at each iteration.
-- ALGLIB --
Copyright 10.07.2012 by Bochkanov Sergey
*************************************************************************/
void clusterizergetdistances(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures, const ae_int_t disttype, real_2d_array &d);
void smp_clusterizergetdistances(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures, const ae_int_t disttype, real_2d_array &d);
/*************************************************************************
This function takes as input clusterization report Rep, desired clusters
count K, and builds top K clusters from hierarchical clusterization tree.
It returns assignment of points to clusters (array of cluster indexes).
INPUT PARAMETERS:
Rep - report from ClusterizerRunAHC() performed on XY
K - desired number of clusters, 1<=K<=NPoints.
K can be zero only when NPoints=0.
OUTPUT PARAMETERS:
CIdx - array[NPoints], I-th element contains cluster index (from
0 to K-1) for I-th point of the dataset.
CZ - array[K]. This array allows to convert cluster indexes
returned by this function to indexes used by Rep.Z. J-th
cluster returned by this function corresponds to CZ[J]-th
cluster stored in Rep.Z/PZ/PM.
It is guaranteed that CZ[I]<CZ[I+1].
NOTE: K clusters built by this subroutine are assumed to have no hierarchy.
Although they were obtained by manipulation with top K nodes of
dendrogram (i.e. hierarchical decomposition of dataset), this
function does not return information about hierarchy. Each of the
clusters stand on its own.
NOTE: Cluster indexes returned by this function does not correspond to
indexes returned in Rep.Z/PZ/PM. Either you work with hierarchical
representation of the dataset (dendrogram), or you work with "flat"
representation returned by this function. Each of representations
has its own clusters indexing system (former uses [0, 2*NPoints-2]),
while latter uses [0..K-1]), although it is possible to perform
conversion from one system to another by means of CZ array, returned
by this function, which allows you to convert indexes stored in CIdx
to the numeration system used by Rep.Z.
NOTE: this subroutine is optimized for moderate values of K. Say, for K=5
it will perform many times faster than for K=100. Its worst-case
performance is O(N*K), although in average case it perform better
(up to O(N*log(K))).
-- ALGLIB --
Copyright 10.07.2012 by Bochkanov Sergey
*************************************************************************/
void clusterizergetkclusters(const ahcreport &rep, const ae_int_t k, integer_1d_array &cidx, integer_1d_array &cz);
/*************************************************************************
This function accepts AHC report Rep, desired minimum intercluster
distance and returns top clusters from hierarchical clusterization tree
which are separated by distance R or HIGHER.
It returns assignment of points to clusters (array of cluster indexes).
There is one more function with similar name - ClusterizerSeparatedByCorr,
which returns clusters with intercluster correlation equal to R or LOWER
(note: higher for distance, lower for correlation).
INPUT PARAMETERS:
Rep - report from ClusterizerRunAHC() performed on XY
R - desired minimum intercluster distance, R>=0
OUTPUT PARAMETERS:
K - number of clusters, 1<=K<=NPoints
CIdx - array[NPoints], I-th element contains cluster index (from
0 to K-1) for I-th point of the dataset.
CZ - array[K]. This array allows to convert cluster indexes
returned by this function to indexes used by Rep.Z. J-th
cluster returned by this function corresponds to CZ[J]-th
cluster stored in Rep.Z/PZ/PM.
It is guaranteed that CZ[I]<CZ[I+1].
NOTE: K clusters built by this subroutine are assumed to have no hierarchy.
Although they were obtained by manipulation with top K nodes of
dendrogram (i.e. hierarchical decomposition of dataset), this
function does not return information about hierarchy. Each of the
clusters stand on its own.
NOTE: Cluster indexes returned by this function does not correspond to
indexes returned in Rep.Z/PZ/PM. Either you work with hierarchical
representation of the dataset (dendrogram), or you work with "flat"
representation returned by this function. Each of representations
has its own clusters indexing system (former uses [0, 2*NPoints-2]),
while latter uses [0..K-1]), although it is possible to perform
conversion from one system to another by means of CZ array, returned
by this function, which allows you to convert indexes stored in CIdx
to the numeration system used by Rep.Z.
NOTE: this subroutine is optimized for moderate values of K. Say, for K=5
it will perform many times faster than for K=100. Its worst-case
performance is O(N*K), although in average case it perform better
(up to O(N*log(K))).
-- ALGLIB --
Copyright 10.07.2012 by Bochkanov Sergey
*************************************************************************/
void clusterizerseparatedbydist(const ahcreport &rep, const double r, ae_int_t &k, integer_1d_array &cidx, integer_1d_array &cz);
/*************************************************************************
This function accepts AHC report Rep, desired maximum intercluster
correlation and returns top clusters from hierarchical clusterization tree
which are separated by correlation R or LOWER.
It returns assignment of points to clusters (array of cluster indexes).
There is one more function with similar name - ClusterizerSeparatedByDist,
which returns clusters with intercluster distance equal to R or HIGHER
(note: higher for distance, lower for correlation).
INPUT PARAMETERS:
Rep - report from ClusterizerRunAHC() performed on XY
R - desired maximum intercluster correlation, -1<=R<=+1
OUTPUT PARAMETERS:
K - number of clusters, 1<=K<=NPoints
CIdx - array[NPoints], I-th element contains cluster index (from
0 to K-1) for I-th point of the dataset.
CZ - array[K]. This array allows to convert cluster indexes
returned by this function to indexes used by Rep.Z. J-th
cluster returned by this function corresponds to CZ[J]-th
cluster stored in Rep.Z/PZ/PM.
It is guaranteed that CZ[I]<CZ[I+1].
NOTE: K clusters built by this subroutine are assumed to have no hierarchy.
Although they were obtained by manipulation with top K nodes of
dendrogram (i.e. hierarchical decomposition of dataset), this
function does not return information about hierarchy. Each of the
clusters stand on its own.
NOTE: Cluster indexes returned by this function does not correspond to
indexes returned in Rep.Z/PZ/PM. Either you work with hierarchical
representation of the dataset (dendrogram), or you work with "flat"
representation returned by this function. Each of representations
has its own clusters indexing system (former uses [0, 2*NPoints-2]),
while latter uses [0..K-1]), although it is possible to perform
conversion from one system to another by means of CZ array, returned
by this function, which allows you to convert indexes stored in CIdx
to the numeration system used by Rep.Z.
NOTE: this subroutine is optimized for moderate values of K. Say, for K=5
it will perform many times faster than for K=100. Its worst-case
performance is O(N*K), although in average case it perform better
(up to O(N*log(K))).
-- ALGLIB --
Copyright 10.07.2012 by Bochkanov Sergey
*************************************************************************/
void clusterizerseparatedbycorr(const ahcreport &rep, const double r, ae_int_t &k, integer_1d_array &cidx, integer_1d_array &cz);
/*************************************************************************
This function serializes data structure to string.
Important properties of s_out:
* it contains alphanumeric characters, dots, underscores, minus signs
* these symbols are grouped into words, which are separated by spaces
and Windows-style (CR+LF) newlines
* although serializer uses spaces and CR+LF as separators, you can
replace any separator character by arbitrary combination of spaces,
tabs, Windows or Unix newlines. It allows flexible reformatting of
the string in case you want to include it into text or XML file.
But you should not insert separators into the middle of the "words"
nor you should change case of letters.
* s_out can be freely moved between 32-bit and 64-bit systems, little
and big endian machines, and so on. You can serialize structure on
32-bit machine and unserialize it on 64-bit one (or vice versa), or
serialize it on SPARC and unserialize on x86. You can also
serialize it in C++ version of ALGLIB and unserialize in C# one,
and vice versa.
*************************************************************************/
void dfserialize(decisionforest &obj, std::string &s_out);
/*************************************************************************
This function unserializes data structure from string.
*************************************************************************/
void dfunserialize(const std::string &s_in, decisionforest &obj);
/*************************************************************************
This function serializes data structure to C++ stream.
Data stream generated by this function is same as string representation
generated by string version of serializer - alphanumeric characters,
dots, underscores, minus signs, which are grouped into words separated by
spaces and CR+LF.
We recommend you to read comments on string version of serializer to find
out more about serialization of AlGLIB objects.
*************************************************************************/
void dfserialize(decisionforest &obj, std::ostream &s_out);
/*************************************************************************
This function unserializes data structure from stream.
*************************************************************************/
void dfunserialize(const std::istream &s_in, decisionforest &obj);
/*************************************************************************
This subroutine builds random decision forest.
INPUT PARAMETERS:
XY - training set
NPoints - training set size, NPoints>=1
NVars - number of independent variables, NVars>=1
NClasses - task type:
* NClasses=1 - regression task with one
dependent variable
* NClasses>1 - classification task with
NClasses classes.
NTrees - number of trees in a forest, NTrees>=1.
recommended values: 50-100.
R - percent of a training set used to build
individual trees. 0<R<=1.
recommended values: 0.1 <= R <= 0.66.
OUTPUT PARAMETERS:
Info - return code:
* -2, if there is a point with class number
outside of [0..NClasses-1].
* -1, if incorrect parameters was passed
(NPoints<1, NVars<1, NClasses<1, NTrees<1, R<=0
or R>1).
* 1, if task has been solved
DF - model built
Rep - training report, contains error on a training set
and out-of-bag estimates of generalization error.
-- ALGLIB --
Copyright 19.02.2009 by Bochkanov Sergey
*************************************************************************/
void dfbuildrandomdecisionforest(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nclasses, const ae_int_t ntrees, const double r, ae_int_t &info, decisionforest &df, dfreport &rep);
/*************************************************************************
This subroutine builds random decision forest.
This function gives ability to tune number of variables used when choosing
best split.
INPUT PARAMETERS:
XY - training set
NPoints - training set size, NPoints>=1
NVars - number of independent variables, NVars>=1
NClasses - task type:
* NClasses=1 - regression task with one
dependent variable
* NClasses>1 - classification task with
NClasses classes.
NTrees - number of trees in a forest, NTrees>=1.
recommended values: 50-100.
NRndVars - number of variables used when choosing best split
R - percent of a training set used to build
individual trees. 0<R<=1.
recommended values: 0.1 <= R <= 0.66.
OUTPUT PARAMETERS:
Info - return code:
* -2, if there is a point with class number
outside of [0..NClasses-1].
* -1, if incorrect parameters was passed
(NPoints<1, NVars<1, NClasses<1, NTrees<1, R<=0
or R>1).
* 1, if task has been solved
DF - model built
Rep - training report, contains error on a training set
and out-of-bag estimates of generalization error.
-- ALGLIB --
Copyright 19.02.2009 by Bochkanov Sergey
*************************************************************************/
void dfbuildrandomdecisionforestx1(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nclasses, const ae_int_t ntrees, const ae_int_t nrndvars, const double r, ae_int_t &info, decisionforest &df, dfreport &rep);
/*************************************************************************
Procesing
INPUT PARAMETERS:
DF - decision forest model
X - input vector, array[0..NVars-1].
OUTPUT PARAMETERS:
Y - result. Regression estimate when solving regression task,
vector of posterior probabilities for classification task.
See also DFProcessI.
-- ALGLIB --
Copyright 16.02.2009 by Bochkanov Sergey
*************************************************************************/
void dfprocess(const decisionforest &df, const real_1d_array &x, real_1d_array &y);
/*************************************************************************
'interactive' variant of DFProcess for languages like Python which support
constructs like "Y = DFProcessI(DF,X)" and interactive mode of interpreter
This function allocates new array on each call, so it is significantly
slower than its 'non-interactive' counterpart, but it is more convenient
when you call it from command line.
-- ALGLIB --
Copyright 28.02.2010 by Bochkanov Sergey
*************************************************************************/
void dfprocessi(const decisionforest &df, const real_1d_array &x, real_1d_array &y);
/*************************************************************************
Relative classification error on the test set
INPUT PARAMETERS:
DF - decision forest model
XY - test set
NPoints - test set size
RESULT:
percent of incorrectly classified cases.
Zero if model solves regression task.
-- ALGLIB --
Copyright 16.02.2009 by Bochkanov Sergey
*************************************************************************/
double dfrelclserror(const decisionforest &df, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
Average cross-entropy (in bits per element) on the test set
INPUT PARAMETERS:
DF - decision forest model
XY - test set
NPoints - test set size
RESULT:
CrossEntropy/(NPoints*LN(2)).
Zero if model solves regression task.
-- ALGLIB --
Copyright 16.02.2009 by Bochkanov Sergey
*************************************************************************/
double dfavgce(const decisionforest &df, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
RMS error on the test set
INPUT PARAMETERS:
DF - decision forest model
XY - test set
NPoints - test set size
RESULT:
root mean square error.
Its meaning for regression task is obvious. As for
classification task, RMS error means error when estimating posterior
probabilities.
-- ALGLIB --
Copyright 16.02.2009 by Bochkanov Sergey
*************************************************************************/
double dfrmserror(const decisionforest &df, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
Average error on the test set
INPUT PARAMETERS:
DF - decision forest model
XY - test set
NPoints - test set size
RESULT:
Its meaning for regression task is obvious. As for
classification task, it means average error when estimating posterior
probabilities.
-- ALGLIB --
Copyright 16.02.2009 by Bochkanov Sergey
*************************************************************************/
double dfavgerror(const decisionforest &df, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
Average relative error on the test set
INPUT PARAMETERS:
DF - decision forest model
XY - test set
NPoints - test set size
RESULT:
Its meaning for regression task is obvious. As for
classification task, it means average relative error when estimating
posterior probability of belonging to the correct class.
-- ALGLIB --
Copyright 16.02.2009 by Bochkanov Sergey
*************************************************************************/
double dfavgrelerror(const decisionforest &df, const real_2d_array &xy, const ae_int_t npoints);
/*************************************************************************
k-means++ clusterization.
Backward compatibility function, we recommend to use CLUSTERING subpackage
as better replacement.
-- ALGLIB --
Copyright 21.03.2009 by Bochkanov Sergey
*************************************************************************/
void kmeansgenerate(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t k, const ae_int_t restarts, ae_int_t &info, real_2d_array &c, integer_1d_array &xyc);
}
/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (FUNCTIONS)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
void pcabuildbasis(/* Real */ ae_matrix* x,
ae_int_t npoints,
ae_int_t nvars,
ae_int_t* info,
/* Real */ ae_vector* s2,
/* Real */ ae_matrix* v,
ae_state *_state);
void _pexec_pcabuildbasis(/* Real */ ae_matrix* x,
ae_int_t npoints,
ae_int_t nvars,
ae_int_t* info,
/* Real */ ae_vector* s2,
/* Real */ ae_matrix* v, ae_state *_state);
void pcatruncatedsubspace(/* Real */ ae_matrix* x,
ae_int_t npoints,
ae_int_t nvars,
ae_int_t nneeded,
double eps,
ae_int_t maxits,
/* Real */ ae_vector* s2,
/* Real */ ae_matrix* v,
ae_state *_state);
void _pexec_pcatruncatedsubspace(/* Real */ ae_matrix* x,
ae_int_t npoints,
ae_int_t nvars,
ae_int_t nneeded,
double eps,
ae_int_t maxits,
/* Real */ ae_vector* s2,
/* Real */ ae_matrix* v, ae_state *_state);
void dserrallocate(ae_int_t nclasses,
/* Real */ ae_vector* buf,
ae_state *_state);
void dserraccumulate(/* Real */ ae_vector* buf,
/* Real */ ae_vector* y,
/* Real */ ae_vector* desiredy,
ae_state *_state);
void dserrfinish(/* Real */ ae_vector* buf, ae_state *_state);
void dsnormalize(/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nvars,
ae_int_t* info,
/* Real */ ae_vector* means,
/* Real */ ae_vector* sigmas,
ae_state *_state);
void dsnormalizec(/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nvars,
ae_int_t* info,
/* Real */ ae_vector* means,
/* Real */ ae_vector* sigmas,
ae_state *_state);
double dsgetmeanmindistance(/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nvars,
ae_state *_state);
void dstie(/* Real */ ae_vector* a,
ae_int_t n,
/* Integer */ ae_vector* ties,
ae_int_t* tiecount,
/* Integer */ ae_vector* p1,
/* Integer */ ae_vector* p2,
ae_state *_state);
void dstiefasti(/* Real */ ae_vector* a,
/* Integer */ ae_vector* b,
ae_int_t n,
/* Integer */ ae_vector* ties,
ae_int_t* tiecount,
/* Real */ ae_vector* bufr,
/* Integer */ ae_vector* bufi,
ae_state *_state);
void dsoptimalsplit2(/* Real */ ae_vector* a,
/* Integer */ ae_vector* c,
ae_int_t n,
ae_int_t* info,
double* threshold,
double* pal,
double* pbl,
double* par,
double* pbr,
double* cve,
ae_state *_state);
void dsoptimalsplit2fast(/* Real */ ae_vector* a,
/* Integer */ ae_vector* c,
/* Integer */ ae_vector* tiesbuf,
/* Integer */ ae_vector* cntbuf,
/* Real */ ae_vector* bufr,
/* Integer */ ae_vector* bufi,
ae_int_t n,
ae_int_t nc,
double alpha,
ae_int_t* info,
double* threshold,
double* rms,
double* cvrms,
ae_state *_state);
void dssplitk(/* Real */ ae_vector* a,
/* Integer */ ae_vector* c,
ae_int_t n,
ae_int_t nc,
ae_int_t kmax,
ae_int_t* info,
/* Real */ ae_vector* thresholds,
ae_int_t* ni,
double* cve,
ae_state *_state);
void dsoptimalsplitk(/* Real */ ae_vector* a,
/* Integer */ ae_vector* c,
ae_int_t n,
ae_int_t nc,
ae_int_t kmax,
ae_int_t* info,
/* Real */ ae_vector* thresholds,
ae_int_t* ni,
double* cve,
ae_state *_state);
void _cvreport_init(void* _p, ae_state *_state);
void _cvreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _cvreport_clear(void* _p);
void _cvreport_destroy(void* _p);
ae_int_t mlpgradsplitcost(ae_state *_state);
ae_int_t mlpgradsplitsize(ae_state *_state);
void mlpcreate0(ae_int_t nin,
ae_int_t nout,
multilayerperceptron* network,
ae_state *_state);
void mlpcreate1(ae_int_t nin,
ae_int_t nhid,
ae_int_t nout,
multilayerperceptron* network,
ae_state *_state);
void mlpcreate2(ae_int_t nin,
ae_int_t nhid1,
ae_int_t nhid2,
ae_int_t nout,
multilayerperceptron* network,
ae_state *_state);
void mlpcreateb0(ae_int_t nin,
ae_int_t nout,
double b,
double d,
multilayerperceptron* network,
ae_state *_state);
void mlpcreateb1(ae_int_t nin,
ae_int_t nhid,
ae_int_t nout,
double b,
double d,
multilayerperceptron* network,
ae_state *_state);
void mlpcreateb2(ae_int_t nin,
ae_int_t nhid1,
ae_int_t nhid2,
ae_int_t nout,
double b,
double d,
multilayerperceptron* network,
ae_state *_state);
void mlpcreater0(ae_int_t nin,
ae_int_t nout,
double a,
double b,
multilayerperceptron* network,
ae_state *_state);
void mlpcreater1(ae_int_t nin,
ae_int_t nhid,
ae_int_t nout,
double a,
double b,
multilayerperceptron* network,
ae_state *_state);
void mlpcreater2(ae_int_t nin,
ae_int_t nhid1,
ae_int_t nhid2,
ae_int_t nout,
double a,
double b,
multilayerperceptron* network,
ae_state *_state);
void mlpcreatec0(ae_int_t nin,
ae_int_t nout,
multilayerperceptron* network,
ae_state *_state);
void mlpcreatec1(ae_int_t nin,
ae_int_t nhid,
ae_int_t nout,
multilayerperceptron* network,
ae_state *_state);
void mlpcreatec2(ae_int_t nin,
ae_int_t nhid1,
ae_int_t nhid2,
ae_int_t nout,
multilayerperceptron* network,
ae_state *_state);
void mlpcopy(multilayerperceptron* network1,
multilayerperceptron* network2,
ae_state *_state);
void mlpcopyshared(multilayerperceptron* network1,
multilayerperceptron* network2,
ae_state *_state);
ae_bool mlpsamearchitecture(multilayerperceptron* network1,
multilayerperceptron* network2,
ae_state *_state);
void mlpcopytunableparameters(multilayerperceptron* network1,
multilayerperceptron* network2,
ae_state *_state);
void mlpexporttunableparameters(multilayerperceptron* network,
/* Real */ ae_vector* p,
ae_int_t* pcount,
ae_state *_state);
void mlpimporttunableparameters(multilayerperceptron* network,
/* Real */ ae_vector* p,
ae_state *_state);
void mlpserializeold(multilayerperceptron* network,
/* Real */ ae_vector* ra,
ae_int_t* rlen,
ae_state *_state);
void mlpunserializeold(/* Real */ ae_vector* ra,
multilayerperceptron* network,
ae_state *_state);
void mlprandomize(multilayerperceptron* network, ae_state *_state);
void mlprandomizefull(multilayerperceptron* network, ae_state *_state);
void mlpinitpreprocessor(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t ssize,
ae_state *_state);
void mlpinitpreprocessorsparse(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t ssize,
ae_state *_state);
void mlpinitpreprocessorsubset(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t setsize,
/* Integer */ ae_vector* idx,
ae_int_t subsetsize,
ae_state *_state);
void mlpinitpreprocessorsparsesubset(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t setsize,
/* Integer */ ae_vector* idx,
ae_int_t subsetsize,
ae_state *_state);
void mlpproperties(multilayerperceptron* network,
ae_int_t* nin,
ae_int_t* nout,
ae_int_t* wcount,
ae_state *_state);
ae_int_t mlpntotal(multilayerperceptron* network, ae_state *_state);
ae_int_t mlpgetinputscount(multilayerperceptron* network,
ae_state *_state);
ae_int_t mlpgetoutputscount(multilayerperceptron* network,
ae_state *_state);
ae_int_t mlpgetweightscount(multilayerperceptron* network,
ae_state *_state);
ae_bool mlpissoftmax(multilayerperceptron* network, ae_state *_state);
ae_int_t mlpgetlayerscount(multilayerperceptron* network,
ae_state *_state);
ae_int_t mlpgetlayersize(multilayerperceptron* network,
ae_int_t k,
ae_state *_state);
void mlpgetinputscaling(multilayerperceptron* network,
ae_int_t i,
double* mean,
double* sigma,
ae_state *_state);
void mlpgetoutputscaling(multilayerperceptron* network,
ae_int_t i,
double* mean,
double* sigma,
ae_state *_state);
void mlpgetneuroninfo(multilayerperceptron* network,
ae_int_t k,
ae_int_t i,
ae_int_t* fkind,
double* threshold,
ae_state *_state);
double mlpgetweight(multilayerperceptron* network,
ae_int_t k0,
ae_int_t i0,
ae_int_t k1,
ae_int_t i1,
ae_state *_state);
void mlpsetinputscaling(multilayerperceptron* network,
ae_int_t i,
double mean,
double sigma,
ae_state *_state);
void mlpsetoutputscaling(multilayerperceptron* network,
ae_int_t i,
double mean,
double sigma,
ae_state *_state);
void mlpsetneuroninfo(multilayerperceptron* network,
ae_int_t k,
ae_int_t i,
ae_int_t fkind,
double threshold,
ae_state *_state);
void mlpsetweight(multilayerperceptron* network,
ae_int_t k0,
ae_int_t i0,
ae_int_t k1,
ae_int_t i1,
double w,
ae_state *_state);
void mlpactivationfunction(double net,
ae_int_t k,
double* f,
double* df,
double* d2f,
ae_state *_state);
void mlpprocess(multilayerperceptron* network,
/* Real */ ae_vector* x,
/* Real */ ae_vector* y,
ae_state *_state);
void mlpprocessi(multilayerperceptron* network,
/* Real */ ae_vector* x,
/* Real */ ae_vector* y,
ae_state *_state);
double mlperror(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
double _pexec_mlperror(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t npoints, ae_state *_state);
double mlperrorsparse(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t npoints,
ae_state *_state);
double _pexec_mlperrorsparse(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t npoints, ae_state *_state);
double mlperrorn(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t ssize,
ae_state *_state);
ae_int_t mlpclserror(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
ae_int_t _pexec_mlpclserror(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t npoints, ae_state *_state);
double mlprelclserror(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
double _pexec_mlprelclserror(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t npoints, ae_state *_state);
double mlprelclserrorsparse(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t npoints,
ae_state *_state);
double _pexec_mlprelclserrorsparse(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t npoints, ae_state *_state);
double mlpavgce(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
double _pexec_mlpavgce(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t npoints, ae_state *_state);
double mlpavgcesparse(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t npoints,
ae_state *_state);
double _pexec_mlpavgcesparse(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t npoints, ae_state *_state);
double mlprmserror(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
double _pexec_mlprmserror(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t npoints, ae_state *_state);
double mlprmserrorsparse(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t npoints,
ae_state *_state);
double _pexec_mlprmserrorsparse(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t npoints, ae_state *_state);
double mlpavgerror(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
double _pexec_mlpavgerror(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t npoints, ae_state *_state);
double mlpavgerrorsparse(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t npoints,
ae_state *_state);
double _pexec_mlpavgerrorsparse(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t npoints, ae_state *_state);
double mlpavgrelerror(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
double _pexec_mlpavgrelerror(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t npoints, ae_state *_state);
double mlpavgrelerrorsparse(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t npoints,
ae_state *_state);
double _pexec_mlpavgrelerrorsparse(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t npoints, ae_state *_state);
void mlpgrad(multilayerperceptron* network,
/* Real */ ae_vector* x,
/* Real */ ae_vector* desiredy,
double* e,
/* Real */ ae_vector* grad,
ae_state *_state);
void mlpgradn(multilayerperceptron* network,
/* Real */ ae_vector* x,
/* Real */ ae_vector* desiredy,
double* e,
/* Real */ ae_vector* grad,
ae_state *_state);
void mlpgradbatch(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t ssize,
double* e,
/* Real */ ae_vector* grad,
ae_state *_state);
void _pexec_mlpgradbatch(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t ssize,
double* e,
/* Real */ ae_vector* grad, ae_state *_state);
void mlpgradbatchsparse(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t ssize,
double* e,
/* Real */ ae_vector* grad,
ae_state *_state);
void _pexec_mlpgradbatchsparse(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t ssize,
double* e,
/* Real */ ae_vector* grad, ae_state *_state);
void mlpgradbatchsubset(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t setsize,
/* Integer */ ae_vector* idx,
ae_int_t subsetsize,
double* e,
/* Real */ ae_vector* grad,
ae_state *_state);
void _pexec_mlpgradbatchsubset(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t setsize,
/* Integer */ ae_vector* idx,
ae_int_t subsetsize,
double* e,
/* Real */ ae_vector* grad, ae_state *_state);
void mlpgradbatchsparsesubset(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t setsize,
/* Integer */ ae_vector* idx,
ae_int_t subsetsize,
double* e,
/* Real */ ae_vector* grad,
ae_state *_state);
void _pexec_mlpgradbatchsparsesubset(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t setsize,
/* Integer */ ae_vector* idx,
ae_int_t subsetsize,
double* e,
/* Real */ ae_vector* grad, ae_state *_state);
void mlpgradbatchx(multilayerperceptron* network,
/* Real */ ae_matrix* densexy,
sparsematrix* sparsexy,
ae_int_t datasetsize,
ae_int_t datasettype,
/* Integer */ ae_vector* idx,
ae_int_t subset0,
ae_int_t subset1,
ae_int_t subsettype,
ae_shared_pool* buf,
ae_shared_pool* gradbuf,
ae_state *_state);
void mlpgradnbatch(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t ssize,
double* e,
/* Real */ ae_vector* grad,
ae_state *_state);
void mlphessiannbatch(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t ssize,
double* e,
/* Real */ ae_vector* grad,
/* Real */ ae_matrix* h,
ae_state *_state);
void mlphessianbatch(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t ssize,
double* e,
/* Real */ ae_vector* grad,
/* Real */ ae_matrix* h,
ae_state *_state);
void mlpinternalprocessvector(/* Integer */ ae_vector* structinfo,
/* Real */ ae_vector* weights,
/* Real */ ae_vector* columnmeans,
/* Real */ ae_vector* columnsigmas,
/* Real */ ae_vector* neurons,
/* Real */ ae_vector* dfdnet,
/* Real */ ae_vector* x,
/* Real */ ae_vector* y,
ae_state *_state);
void mlpalloc(ae_serializer* s,
multilayerperceptron* network,
ae_state *_state);
void mlpserialize(ae_serializer* s,
multilayerperceptron* network,
ae_state *_state);
void mlpunserialize(ae_serializer* s,
multilayerperceptron* network,
ae_state *_state);
void mlpallerrorssubset(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t setsize,
/* Integer */ ae_vector* subset,
ae_int_t subsetsize,
modelerrors* rep,
ae_state *_state);
void _pexec_mlpallerrorssubset(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t setsize,
/* Integer */ ae_vector* subset,
ae_int_t subsetsize,
modelerrors* rep, ae_state *_state);
void mlpallerrorssparsesubset(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t setsize,
/* Integer */ ae_vector* subset,
ae_int_t subsetsize,
modelerrors* rep,
ae_state *_state);
void _pexec_mlpallerrorssparsesubset(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t setsize,
/* Integer */ ae_vector* subset,
ae_int_t subsetsize,
modelerrors* rep, ae_state *_state);
double mlperrorsubset(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t setsize,
/* Integer */ ae_vector* subset,
ae_int_t subsetsize,
ae_state *_state);
double _pexec_mlperrorsubset(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t setsize,
/* Integer */ ae_vector* subset,
ae_int_t subsetsize, ae_state *_state);
double mlperrorsparsesubset(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t setsize,
/* Integer */ ae_vector* subset,
ae_int_t subsetsize,
ae_state *_state);
double _pexec_mlperrorsparsesubset(multilayerperceptron* network,
sparsematrix* xy,
ae_int_t setsize,
/* Integer */ ae_vector* subset,
ae_int_t subsetsize, ae_state *_state);
void mlpallerrorsx(multilayerperceptron* network,
/* Real */ ae_matrix* densexy,
sparsematrix* sparsexy,
ae_int_t datasetsize,
ae_int_t datasettype,
/* Integer */ ae_vector* idx,
ae_int_t subset0,
ae_int_t subset1,
ae_int_t subsettype,
ae_shared_pool* buf,
modelerrors* rep,
ae_state *_state);
void _modelerrors_init(void* _p, ae_state *_state);
void _modelerrors_init_copy(void* _dst, void* _src, ae_state *_state);
void _modelerrors_clear(void* _p);
void _modelerrors_destroy(void* _p);
void _smlpgrad_init(void* _p, ae_state *_state);
void _smlpgrad_init_copy(void* _dst, void* _src, ae_state *_state);
void _smlpgrad_clear(void* _p);
void _smlpgrad_destroy(void* _p);
void _multilayerperceptron_init(void* _p, ae_state *_state);
void _multilayerperceptron_init_copy(void* _dst, void* _src, ae_state *_state);
void _multilayerperceptron_clear(void* _p);
void _multilayerperceptron_destroy(void* _p);
void fisherlda(/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nvars,
ae_int_t nclasses,
ae_int_t* info,
/* Real */ ae_vector* w,
ae_state *_state);
void fisherldan(/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nvars,
ae_int_t nclasses,
ae_int_t* info,
/* Real */ ae_matrix* w,
ae_state *_state);
void _pexec_fisherldan(/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nvars,
ae_int_t nclasses,
ae_int_t* info,
/* Real */ ae_matrix* w, ae_state *_state);
void lrbuild(/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nvars,
ae_int_t* info,
linearmodel* lm,
lrreport* ar,
ae_state *_state);
void lrbuilds(/* Real */ ae_matrix* xy,
/* Real */ ae_vector* s,
ae_int_t npoints,
ae_int_t nvars,
ae_int_t* info,
linearmodel* lm,
lrreport* ar,
ae_state *_state);
void lrbuildzs(/* Real */ ae_matrix* xy,
/* Real */ ae_vector* s,
ae_int_t npoints,
ae_int_t nvars,
ae_int_t* info,
linearmodel* lm,
lrreport* ar,
ae_state *_state);
void lrbuildz(/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nvars,
ae_int_t* info,
linearmodel* lm,
lrreport* ar,
ae_state *_state);
void lrunpack(linearmodel* lm,
/* Real */ ae_vector* v,
ae_int_t* nvars,
ae_state *_state);
void lrpack(/* Real */ ae_vector* v,
ae_int_t nvars,
linearmodel* lm,
ae_state *_state);
double lrprocess(linearmodel* lm,
/* Real */ ae_vector* x,
ae_state *_state);
double lrrmserror(linearmodel* lm,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
double lravgerror(linearmodel* lm,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
double lravgrelerror(linearmodel* lm,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
void lrcopy(linearmodel* lm1, linearmodel* lm2, ae_state *_state);
void lrlines(/* Real */ ae_matrix* xy,
/* Real */ ae_vector* s,
ae_int_t n,
ae_int_t* info,
double* a,
double* b,
double* vara,
double* varb,
double* covab,
double* corrab,
double* p,
ae_state *_state);
void lrline(/* Real */ ae_matrix* xy,
ae_int_t n,
ae_int_t* info,
double* a,
double* b,
ae_state *_state);
void _linearmodel_init(void* _p, ae_state *_state);
void _linearmodel_init_copy(void* _dst, void* _src, ae_state *_state);
void _linearmodel_clear(void* _p);
void _linearmodel_destroy(void* _p);
void _lrreport_init(void* _p, ae_state *_state);
void _lrreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _lrreport_clear(void* _p);
void _lrreport_destroy(void* _p);
void filtersma(/* Real */ ae_vector* x,
ae_int_t n,
ae_int_t k,
ae_state *_state);
void filterema(/* Real */ ae_vector* x,
ae_int_t n,
double alpha,
ae_state *_state);
void filterlrma(/* Real */ ae_vector* x,
ae_int_t n,
ae_int_t k,
ae_state *_state);
void mnltrainh(/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nvars,
ae_int_t nclasses,
ae_int_t* info,
logitmodel* lm,
mnlreport* rep,
ae_state *_state);
void mnlprocess(logitmodel* lm,
/* Real */ ae_vector* x,
/* Real */ ae_vector* y,
ae_state *_state);
void mnlprocessi(logitmodel* lm,
/* Real */ ae_vector* x,
/* Real */ ae_vector* y,
ae_state *_state);
void mnlunpack(logitmodel* lm,
/* Real */ ae_matrix* a,
ae_int_t* nvars,
ae_int_t* nclasses,
ae_state *_state);
void mnlpack(/* Real */ ae_matrix* a,
ae_int_t nvars,
ae_int_t nclasses,
logitmodel* lm,
ae_state *_state);
void mnlcopy(logitmodel* lm1, logitmodel* lm2, ae_state *_state);
double mnlavgce(logitmodel* lm,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
double mnlrelclserror(logitmodel* lm,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
double mnlrmserror(logitmodel* lm,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
double mnlavgerror(logitmodel* lm,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
double mnlavgrelerror(logitmodel* lm,
/* Real */ ae_matrix* xy,
ae_int_t ssize,
ae_state *_state);
ae_int_t mnlclserror(logitmodel* lm,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
void _logitmodel_init(void* _p, ae_state *_state);
void _logitmodel_init_copy(void* _dst, void* _src, ae_state *_state);
void _logitmodel_clear(void* _p);
void _logitmodel_destroy(void* _p);
void _logitmcstate_init(void* _p, ae_state *_state);
void _logitmcstate_init_copy(void* _dst, void* _src, ae_state *_state);
void _logitmcstate_clear(void* _p);
void _logitmcstate_destroy(void* _p);
void _mnlreport_init(void* _p, ae_state *_state);
void _mnlreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _mnlreport_clear(void* _p);
void _mnlreport_destroy(void* _p);
void mcpdcreate(ae_int_t n, mcpdstate* s, ae_state *_state);
void mcpdcreateentry(ae_int_t n,
ae_int_t entrystate,
mcpdstate* s,
ae_state *_state);
void mcpdcreateexit(ae_int_t n,
ae_int_t exitstate,
mcpdstate* s,
ae_state *_state);
void mcpdcreateentryexit(ae_int_t n,
ae_int_t entrystate,
ae_int_t exitstate,
mcpdstate* s,
ae_state *_state);
void mcpdaddtrack(mcpdstate* s,
/* Real */ ae_matrix* xy,
ae_int_t k,
ae_state *_state);
void mcpdsetec(mcpdstate* s,
/* Real */ ae_matrix* ec,
ae_state *_state);
void mcpdaddec(mcpdstate* s,
ae_int_t i,
ae_int_t j,
double c,
ae_state *_state);
void mcpdsetbc(mcpdstate* s,
/* Real */ ae_matrix* bndl,
/* Real */ ae_matrix* bndu,
ae_state *_state);
void mcpdaddbc(mcpdstate* s,
ae_int_t i,
ae_int_t j,
double bndl,
double bndu,
ae_state *_state);
void mcpdsetlc(mcpdstate* s,
/* Real */ ae_matrix* c,
/* Integer */ ae_vector* ct,
ae_int_t k,
ae_state *_state);
void mcpdsettikhonovregularizer(mcpdstate* s, double v, ae_state *_state);
void mcpdsetprior(mcpdstate* s,
/* Real */ ae_matrix* pp,
ae_state *_state);
void mcpdsetpredictionweights(mcpdstate* s,
/* Real */ ae_vector* pw,
ae_state *_state);
void mcpdsolve(mcpdstate* s, ae_state *_state);
void mcpdresults(mcpdstate* s,
/* Real */ ae_matrix* p,
mcpdreport* rep,
ae_state *_state);
void _mcpdstate_init(void* _p, ae_state *_state);
void _mcpdstate_init_copy(void* _dst, void* _src, ae_state *_state);
void _mcpdstate_clear(void* _p);
void _mcpdstate_destroy(void* _p);
void _mcpdreport_init(void* _p, ae_state *_state);
void _mcpdreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _mcpdreport_clear(void* _p);
void _mcpdreport_destroy(void* _p);
void mlpecreate0(ae_int_t nin,
ae_int_t nout,
ae_int_t ensemblesize,
mlpensemble* ensemble,
ae_state *_state);
void mlpecreate1(ae_int_t nin,
ae_int_t nhid,
ae_int_t nout,
ae_int_t ensemblesize,
mlpensemble* ensemble,
ae_state *_state);
void mlpecreate2(ae_int_t nin,
ae_int_t nhid1,
ae_int_t nhid2,
ae_int_t nout,
ae_int_t ensemblesize,
mlpensemble* ensemble,
ae_state *_state);
void mlpecreateb0(ae_int_t nin,
ae_int_t nout,
double b,
double d,
ae_int_t ensemblesize,
mlpensemble* ensemble,
ae_state *_state);
void mlpecreateb1(ae_int_t nin,
ae_int_t nhid,
ae_int_t nout,
double b,
double d,
ae_int_t ensemblesize,
mlpensemble* ensemble,
ae_state *_state);
void mlpecreateb2(ae_int_t nin,
ae_int_t nhid1,
ae_int_t nhid2,
ae_int_t nout,
double b,
double d,
ae_int_t ensemblesize,
mlpensemble* ensemble,
ae_state *_state);
void mlpecreater0(ae_int_t nin,
ae_int_t nout,
double a,
double b,
ae_int_t ensemblesize,
mlpensemble* ensemble,
ae_state *_state);
void mlpecreater1(ae_int_t nin,
ae_int_t nhid,
ae_int_t nout,
double a,
double b,
ae_int_t ensemblesize,
mlpensemble* ensemble,
ae_state *_state);
void mlpecreater2(ae_int_t nin,
ae_int_t nhid1,
ae_int_t nhid2,
ae_int_t nout,
double a,
double b,
ae_int_t ensemblesize,
mlpensemble* ensemble,
ae_state *_state);
void mlpecreatec0(ae_int_t nin,
ae_int_t nout,
ae_int_t ensemblesize,
mlpensemble* ensemble,
ae_state *_state);
void mlpecreatec1(ae_int_t nin,
ae_int_t nhid,
ae_int_t nout,
ae_int_t ensemblesize,
mlpensemble* ensemble,
ae_state *_state);
void mlpecreatec2(ae_int_t nin,
ae_int_t nhid1,
ae_int_t nhid2,
ae_int_t nout,
ae_int_t ensemblesize,
mlpensemble* ensemble,
ae_state *_state);
void mlpecreatefromnetwork(multilayerperceptron* network,
ae_int_t ensemblesize,
mlpensemble* ensemble,
ae_state *_state);
void mlpecopy(mlpensemble* ensemble1,
mlpensemble* ensemble2,
ae_state *_state);
void mlperandomize(mlpensemble* ensemble, ae_state *_state);
void mlpeproperties(mlpensemble* ensemble,
ae_int_t* nin,
ae_int_t* nout,
ae_state *_state);
ae_bool mlpeissoftmax(mlpensemble* ensemble, ae_state *_state);
void mlpeprocess(mlpensemble* ensemble,
/* Real */ ae_vector* x,
/* Real */ ae_vector* y,
ae_state *_state);
void mlpeprocessi(mlpensemble* ensemble,
/* Real */ ae_vector* x,
/* Real */ ae_vector* y,
ae_state *_state);
void mlpeallerrorsx(mlpensemble* ensemble,
/* Real */ ae_matrix* densexy,
sparsematrix* sparsexy,
ae_int_t datasetsize,
ae_int_t datasettype,
/* Integer */ ae_vector* idx,
ae_int_t subset0,
ae_int_t subset1,
ae_int_t subsettype,
ae_shared_pool* buf,
modelerrors* rep,
ae_state *_state);
void mlpeallerrorssparse(mlpensemble* ensemble,
sparsematrix* xy,
ae_int_t npoints,
double* relcls,
double* avgce,
double* rms,
double* avg,
double* avgrel,
ae_state *_state);
double mlperelclserror(mlpensemble* ensemble,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
double mlpeavgce(mlpensemble* ensemble,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
double mlpermserror(mlpensemble* ensemble,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
double mlpeavgerror(mlpensemble* ensemble,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
double mlpeavgrelerror(mlpensemble* ensemble,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
void mlpealloc(ae_serializer* s, mlpensemble* ensemble, ae_state *_state);
void mlpeserialize(ae_serializer* s,
mlpensemble* ensemble,
ae_state *_state);
void mlpeunserialize(ae_serializer* s,
mlpensemble* ensemble,
ae_state *_state);
void _mlpensemble_init(void* _p, ae_state *_state);
void _mlpensemble_init_copy(void* _dst, void* _src, ae_state *_state);
void _mlpensemble_clear(void* _p);
void _mlpensemble_destroy(void* _p);
void mlptrainlm(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
double decay,
ae_int_t restarts,
ae_int_t* info,
mlpreport* rep,
ae_state *_state);
void mlptrainlbfgs(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
double decay,
ae_int_t restarts,
double wstep,
ae_int_t maxits,
ae_int_t* info,
mlpreport* rep,
ae_state *_state);
void mlptraines(multilayerperceptron* network,
/* Real */ ae_matrix* trnxy,
ae_int_t trnsize,
/* Real */ ae_matrix* valxy,
ae_int_t valsize,
double decay,
ae_int_t restarts,
ae_int_t* info,
mlpreport* rep,
ae_state *_state);
void mlpkfoldcvlbfgs(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
double decay,
ae_int_t restarts,
double wstep,
ae_int_t maxits,
ae_int_t foldscount,
ae_int_t* info,
mlpreport* rep,
mlpcvreport* cvrep,
ae_state *_state);
void mlpkfoldcvlm(multilayerperceptron* network,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
double decay,
ae_int_t restarts,
ae_int_t foldscount,
ae_int_t* info,
mlpreport* rep,
mlpcvreport* cvrep,
ae_state *_state);
void mlpkfoldcv(mlptrainer* s,
multilayerperceptron* network,
ae_int_t nrestarts,
ae_int_t foldscount,
mlpreport* rep,
ae_state *_state);
void _pexec_mlpkfoldcv(mlptrainer* s,
multilayerperceptron* network,
ae_int_t nrestarts,
ae_int_t foldscount,
mlpreport* rep, ae_state *_state);
void mlpcreatetrainer(ae_int_t nin,
ae_int_t nout,
mlptrainer* s,
ae_state *_state);
void mlpcreatetrainercls(ae_int_t nin,
ae_int_t nclasses,
mlptrainer* s,
ae_state *_state);
void mlpsetdataset(mlptrainer* s,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
void mlpsetsparsedataset(mlptrainer* s,
sparsematrix* xy,
ae_int_t npoints,
ae_state *_state);
void mlpsetdecay(mlptrainer* s, double decay, ae_state *_state);
void mlpsetcond(mlptrainer* s,
double wstep,
ae_int_t maxits,
ae_state *_state);
void mlpsetalgobatch(mlptrainer* s, ae_state *_state);
void mlptrainnetwork(mlptrainer* s,
multilayerperceptron* network,
ae_int_t nrestarts,
mlpreport* rep,
ae_state *_state);
void _pexec_mlptrainnetwork(mlptrainer* s,
multilayerperceptron* network,
ae_int_t nrestarts,
mlpreport* rep, ae_state *_state);
void mlpstarttraining(mlptrainer* s,
multilayerperceptron* network,
ae_bool randomstart,
ae_state *_state);
ae_bool mlpcontinuetraining(mlptrainer* s,
multilayerperceptron* network,
ae_state *_state);
ae_bool _pexec_mlpcontinuetraining(mlptrainer* s,
multilayerperceptron* network, ae_state *_state);
void mlpebagginglm(mlpensemble* ensemble,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
double decay,
ae_int_t restarts,
ae_int_t* info,
mlpreport* rep,
mlpcvreport* ooberrors,
ae_state *_state);
void mlpebagginglbfgs(mlpensemble* ensemble,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
double decay,
ae_int_t restarts,
double wstep,
ae_int_t maxits,
ae_int_t* info,
mlpreport* rep,
mlpcvreport* ooberrors,
ae_state *_state);
void mlpetraines(mlpensemble* ensemble,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
double decay,
ae_int_t restarts,
ae_int_t* info,
mlpreport* rep,
ae_state *_state);
void mlptrainensemblees(mlptrainer* s,
mlpensemble* ensemble,
ae_int_t nrestarts,
mlpreport* rep,
ae_state *_state);
void _pexec_mlptrainensemblees(mlptrainer* s,
mlpensemble* ensemble,
ae_int_t nrestarts,
mlpreport* rep, ae_state *_state);
void _mlpreport_init(void* _p, ae_state *_state);
void _mlpreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _mlpreport_clear(void* _p);
void _mlpreport_destroy(void* _p);
void _mlpcvreport_init(void* _p, ae_state *_state);
void _mlpcvreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _mlpcvreport_clear(void* _p);
void _mlpcvreport_destroy(void* _p);
void _smlptrnsession_init(void* _p, ae_state *_state);
void _smlptrnsession_init_copy(void* _dst, void* _src, ae_state *_state);
void _smlptrnsession_clear(void* _p);
void _smlptrnsession_destroy(void* _p);
void _mlpetrnsession_init(void* _p, ae_state *_state);
void _mlpetrnsession_init_copy(void* _dst, void* _src, ae_state *_state);
void _mlpetrnsession_clear(void* _p);
void _mlpetrnsession_destroy(void* _p);
void _mlptrainer_init(void* _p, ae_state *_state);
void _mlptrainer_init_copy(void* _dst, void* _src, ae_state *_state);
void _mlptrainer_clear(void* _p);
void _mlptrainer_destroy(void* _p);
void _mlpparallelizationcv_init(void* _p, ae_state *_state);
void _mlpparallelizationcv_init_copy(void* _dst, void* _src, ae_state *_state);
void _mlpparallelizationcv_clear(void* _p);
void _mlpparallelizationcv_destroy(void* _p);
void clusterizercreate(clusterizerstate* s, ae_state *_state);
void clusterizersetpoints(clusterizerstate* s,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nfeatures,
ae_int_t disttype,
ae_state *_state);
void clusterizersetdistances(clusterizerstate* s,
/* Real */ ae_matrix* d,
ae_int_t npoints,
ae_bool isupper,
ae_state *_state);
void clusterizersetahcalgo(clusterizerstate* s,
ae_int_t algo,
ae_state *_state);
void clusterizersetkmeanslimits(clusterizerstate* s,
ae_int_t restarts,
ae_int_t maxits,
ae_state *_state);
void clusterizersetkmeansinit(clusterizerstate* s,
ae_int_t initalgo,
ae_state *_state);
void clusterizerrunahc(clusterizerstate* s,
ahcreport* rep,
ae_state *_state);
void _pexec_clusterizerrunahc(clusterizerstate* s,
ahcreport* rep, ae_state *_state);
void clusterizerrunkmeans(clusterizerstate* s,
ae_int_t k,
kmeansreport* rep,
ae_state *_state);
void _pexec_clusterizerrunkmeans(clusterizerstate* s,
ae_int_t k,
kmeansreport* rep, ae_state *_state);
void clusterizergetdistances(/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nfeatures,
ae_int_t disttype,
/* Real */ ae_matrix* d,
ae_state *_state);
void _pexec_clusterizergetdistances(/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nfeatures,
ae_int_t disttype,
/* Real */ ae_matrix* d, ae_state *_state);
void clusterizergetdistancesbuf(apbuffers* buf,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nfeatures,
ae_int_t disttype,
/* Real */ ae_matrix* d,
ae_state *_state);
void clusterizergetkclusters(ahcreport* rep,
ae_int_t k,
/* Integer */ ae_vector* cidx,
/* Integer */ ae_vector* cz,
ae_state *_state);
void clusterizerseparatedbydist(ahcreport* rep,
double r,
ae_int_t* k,
/* Integer */ ae_vector* cidx,
/* Integer */ ae_vector* cz,
ae_state *_state);
void clusterizerseparatedbycorr(ahcreport* rep,
double r,
ae_int_t* k,
/* Integer */ ae_vector* cidx,
/* Integer */ ae_vector* cz,
ae_state *_state);
void kmeansinitbuf(kmeansbuffers* buf, ae_state *_state);
void kmeansgenerateinternal(/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nvars,
ae_int_t k,
ae_int_t initalgo,
ae_int_t maxits,
ae_int_t restarts,
ae_bool kmeansdbgnoits,
ae_int_t* info,
ae_int_t* iterationscount,
/* Real */ ae_matrix* ccol,
ae_bool needccol,
/* Real */ ae_matrix* crow,
ae_bool needcrow,
/* Integer */ ae_vector* xyc,
double* energy,
kmeansbuffers* buf,
ae_state *_state);
void kmeansupdatedistances(/* Real */ ae_matrix* xy,
ae_int_t idx0,
ae_int_t idx1,
ae_int_t nvars,
/* Real */ ae_matrix* ct,
ae_int_t cidx0,
ae_int_t cidx1,
/* Integer */ ae_vector* xyc,
/* Real */ ae_vector* xydist2,
ae_shared_pool* bufferpool,
ae_state *_state);
void _kmeansbuffers_init(void* _p, ae_state *_state);
void _kmeansbuffers_init_copy(void* _dst, void* _src, ae_state *_state);
void _kmeansbuffers_clear(void* _p);
void _kmeansbuffers_destroy(void* _p);
void _clusterizerstate_init(void* _p, ae_state *_state);
void _clusterizerstate_init_copy(void* _dst, void* _src, ae_state *_state);
void _clusterizerstate_clear(void* _p);
void _clusterizerstate_destroy(void* _p);
void _ahcreport_init(void* _p, ae_state *_state);
void _ahcreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _ahcreport_clear(void* _p);
void _ahcreport_destroy(void* _p);
void _kmeansreport_init(void* _p, ae_state *_state);
void _kmeansreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _kmeansreport_clear(void* _p);
void _kmeansreport_destroy(void* _p);
void dfbuildrandomdecisionforest(/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nvars,
ae_int_t nclasses,
ae_int_t ntrees,
double r,
ae_int_t* info,
decisionforest* df,
dfreport* rep,
ae_state *_state);
void dfbuildrandomdecisionforestx1(/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nvars,
ae_int_t nclasses,
ae_int_t ntrees,
ae_int_t nrndvars,
double r,
ae_int_t* info,
decisionforest* df,
dfreport* rep,
ae_state *_state);
void dfbuildinternal(/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nvars,
ae_int_t nclasses,
ae_int_t ntrees,
ae_int_t samplesize,
ae_int_t nfeatures,
ae_int_t flags,
ae_int_t* info,
decisionforest* df,
dfreport* rep,
ae_state *_state);
void dfprocess(decisionforest* df,
/* Real */ ae_vector* x,
/* Real */ ae_vector* y,
ae_state *_state);
void dfprocessi(decisionforest* df,
/* Real */ ae_vector* x,
/* Real */ ae_vector* y,
ae_state *_state);
double dfrelclserror(decisionforest* df,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
double dfavgce(decisionforest* df,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
double dfrmserror(decisionforest* df,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
double dfavgerror(decisionforest* df,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
double dfavgrelerror(decisionforest* df,
/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_state *_state);
void dfcopy(decisionforest* df1, decisionforest* df2, ae_state *_state);
void dfalloc(ae_serializer* s, decisionforest* forest, ae_state *_state);
void dfserialize(ae_serializer* s,
decisionforest* forest,
ae_state *_state);
void dfunserialize(ae_serializer* s,
decisionforest* forest,
ae_state *_state);
void _decisionforest_init(void* _p, ae_state *_state);
void _decisionforest_init_copy(void* _dst, void* _src, ae_state *_state);
void _decisionforest_clear(void* _p);
void _decisionforest_destroy(void* _p);
void _dfreport_init(void* _p, ae_state *_state);
void _dfreport_init_copy(void* _dst, void* _src, ae_state *_state);
void _dfreport_clear(void* _p);
void _dfreport_destroy(void* _p);
void _dfinternalbuffers_init(void* _p, ae_state *_state);
void _dfinternalbuffers_init_copy(void* _dst, void* _src, ae_state *_state);
void _dfinternalbuffers_clear(void* _p);
void _dfinternalbuffers_destroy(void* _p);
void kmeansgenerate(/* Real */ ae_matrix* xy,
ae_int_t npoints,
ae_int_t nvars,
ae_int_t k,
ae_int_t restarts,
ae_int_t* info,
/* Real */ ae_matrix* c,
/* Integer */ ae_vector* xyc,
ae_state *_state);
}
#endif
|