This file is indexed.

/usr/include/libalglib/alglibmisc.h is in libalglib-dev 3.11.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
/*************************************************************************
ALGLIB 3.11.0 (source code generated 2017-05-11)
Copyright (c) Sergey Bochkanov (ALGLIB project).

>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the 
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses
>>> END OF LICENSE >>>
*************************************************************************/
#ifndef _alglibmisc_pkg_h
#define _alglibmisc_pkg_h
#include "ap.h"
#include "alglibinternal.h"

/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (DATATYPES)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
typedef struct
{
    ae_vector x;
    ae_vector boxmin;
    ae_vector boxmax;
    ae_int_t kneeded;
    double rneeded;
    ae_bool selfmatch;
    double approxf;
    ae_int_t kcur;
    ae_vector idx;
    ae_vector r;
    ae_vector buf;
    ae_vector curboxmin;
    ae_vector curboxmax;
    double curdist;
} kdtreerequestbuffer;
typedef struct
{
    ae_int_t n;
    ae_int_t nx;
    ae_int_t ny;
    ae_int_t normtype;
    ae_matrix xy;
    ae_vector tags;
    ae_vector boxmin;
    ae_vector boxmax;
    ae_vector nodes;
    ae_vector splits;
    kdtreerequestbuffer innerbuf;
    ae_int_t debugcounter;
} kdtree;
typedef struct
{
    ae_int_t s1;
    ae_int_t s2;
    ae_int_t magicv;
} hqrndstate;
typedef struct
{
    ae_int_t i;
    ae_complex c;
    ae_vector a;
} xdebugrecord1;

}

/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS C++ INTERFACE
//
/////////////////////////////////////////////////////////////////////////
namespace alglib
{

/*************************************************************************
Buffer object which is used to perform nearest neighbor  requests  in  the
multithreaded mode (multiple threads working with same KD-tree object).

This object should be created with KDTreeCreateBuffer().
*************************************************************************/
class _kdtreerequestbuffer_owner
{
public:
    _kdtreerequestbuffer_owner();
    _kdtreerequestbuffer_owner(const _kdtreerequestbuffer_owner &rhs);
    _kdtreerequestbuffer_owner& operator=(const _kdtreerequestbuffer_owner &rhs);
    virtual ~_kdtreerequestbuffer_owner();
    alglib_impl::kdtreerequestbuffer* c_ptr();
    alglib_impl::kdtreerequestbuffer* c_ptr() const;
protected:
    alglib_impl::kdtreerequestbuffer *p_struct;
};
class kdtreerequestbuffer : public _kdtreerequestbuffer_owner
{
public:
    kdtreerequestbuffer();
    kdtreerequestbuffer(const kdtreerequestbuffer &rhs);
    kdtreerequestbuffer& operator=(const kdtreerequestbuffer &rhs);
    virtual ~kdtreerequestbuffer();

};


/*************************************************************************
KD-tree object.
*************************************************************************/
class _kdtree_owner
{
public:
    _kdtree_owner();
    _kdtree_owner(const _kdtree_owner &rhs);
    _kdtree_owner& operator=(const _kdtree_owner &rhs);
    virtual ~_kdtree_owner();
    alglib_impl::kdtree* c_ptr();
    alglib_impl::kdtree* c_ptr() const;
protected:
    alglib_impl::kdtree *p_struct;
};
class kdtree : public _kdtree_owner
{
public:
    kdtree();
    kdtree(const kdtree &rhs);
    kdtree& operator=(const kdtree &rhs);
    virtual ~kdtree();

};

/*************************************************************************
Portable high quality random number generator state.
Initialized with HQRNDRandomize() or HQRNDSeed().

Fields:
    S1, S2      -   seed values
    V           -   precomputed value
    MagicV      -   'magic' value used to determine whether State structure
                    was correctly initialized.
*************************************************************************/
class _hqrndstate_owner
{
public:
    _hqrndstate_owner();
    _hqrndstate_owner(const _hqrndstate_owner &rhs);
    _hqrndstate_owner& operator=(const _hqrndstate_owner &rhs);
    virtual ~_hqrndstate_owner();
    alglib_impl::hqrndstate* c_ptr();
    alglib_impl::hqrndstate* c_ptr() const;
protected:
    alglib_impl::hqrndstate *p_struct;
};
class hqrndstate : public _hqrndstate_owner
{
public:
    hqrndstate();
    hqrndstate(const hqrndstate &rhs);
    hqrndstate& operator=(const hqrndstate &rhs);
    virtual ~hqrndstate();

};

/*************************************************************************

*************************************************************************/
class _xdebugrecord1_owner
{
public:
    _xdebugrecord1_owner();
    _xdebugrecord1_owner(const _xdebugrecord1_owner &rhs);
    _xdebugrecord1_owner& operator=(const _xdebugrecord1_owner &rhs);
    virtual ~_xdebugrecord1_owner();
    alglib_impl::xdebugrecord1* c_ptr();
    alglib_impl::xdebugrecord1* c_ptr() const;
protected:
    alglib_impl::xdebugrecord1 *p_struct;
};
class xdebugrecord1 : public _xdebugrecord1_owner
{
public:
    xdebugrecord1();
    xdebugrecord1(const xdebugrecord1 &rhs);
    xdebugrecord1& operator=(const xdebugrecord1 &rhs);
    virtual ~xdebugrecord1();
    ae_int_t &i;
    alglib::complex &c;
    real_1d_array a;

};

/*************************************************************************
This function serializes data structure to string.

Important properties of s_out:
* it contains alphanumeric characters, dots, underscores, minus signs
* these symbols are grouped into words, which are separated by spaces
  and Windows-style (CR+LF) newlines
* although  serializer  uses  spaces and CR+LF as separators, you can 
  replace any separator character by arbitrary combination of spaces,
  tabs, Windows or Unix newlines. It allows flexible reformatting  of
  the  string  in  case you want to include it into text or XML file. 
  But you should not insert separators into the middle of the "words"
  nor you should change case of letters.
* s_out can be freely moved between 32-bit and 64-bit systems, little
  and big endian machines, and so on. You can serialize structure  on
  32-bit machine and unserialize it on 64-bit one (or vice versa), or
  serialize  it  on  SPARC  and  unserialize  on  x86.  You  can also 
  serialize  it  in  C++ version of ALGLIB and unserialize in C# one, 
  and vice versa.
*************************************************************************/
void kdtreeserialize(kdtree &obj, std::string &s_out);


/*************************************************************************
This function unserializes data structure from string.
*************************************************************************/
void kdtreeunserialize(const std::string &s_in, kdtree &obj);




/*************************************************************************
This function serializes data structure to C++ stream.

Data stream generated by this function is same as  string  representation
generated  by  string  version  of  serializer - alphanumeric characters,
dots, underscores, minus signs, which are grouped into words separated by
spaces and CR+LF.

We recommend you to read comments on string version of serializer to find
out more about serialization of AlGLIB objects.
*************************************************************************/
void kdtreeserialize(kdtree &obj, std::ostream &s_out);


/*************************************************************************
This function unserializes data structure from stream.
*************************************************************************/
void kdtreeunserialize(const std::istream &s_in, kdtree &obj);


/*************************************************************************
KD-tree creation

This subroutine creates KD-tree from set of X-values and optional Y-values

INPUT PARAMETERS
    XY      -   dataset, array[0..N-1,0..NX+NY-1].
                one row corresponds to one point.
                first NX columns contain X-values, next NY (NY may be zero)
                columns may contain associated Y-values
    N       -   number of points, N>=0.
    NX      -   space dimension, NX>=1.
    NY      -   number of optional Y-values, NY>=0.
    NormType-   norm type:
                * 0 denotes infinity-norm
                * 1 denotes 1-norm
                * 2 denotes 2-norm (Euclidean norm)

OUTPUT PARAMETERS
    KDT     -   KD-tree


NOTES

1. KD-tree  creation  have O(N*logN) complexity and O(N*(2*NX+NY))  memory
   requirements.
2. Although KD-trees may be used with any combination of N  and  NX,  they
   are more efficient than brute-force search only when N >> 4^NX. So they
   are most useful in low-dimensional tasks (NX=2, NX=3). NX=1  is another
   inefficient case, because  simple  binary  search  (without  additional
   structures) is much more efficient in such tasks than KD-trees.

  -- ALGLIB --
     Copyright 28.02.2010 by Bochkanov Sergey
*************************************************************************/
void kdtreebuild(const real_2d_array &xy, const ae_int_t n, const ae_int_t nx, const ae_int_t ny, const ae_int_t normtype, kdtree &kdt);
void kdtreebuild(const real_2d_array &xy, const ae_int_t nx, const ae_int_t ny, const ae_int_t normtype, kdtree &kdt);


/*************************************************************************
KD-tree creation

This  subroutine  creates  KD-tree  from set of X-values, integer tags and
optional Y-values

INPUT PARAMETERS
    XY      -   dataset, array[0..N-1,0..NX+NY-1].
                one row corresponds to one point.
                first NX columns contain X-values, next NY (NY may be zero)
                columns may contain associated Y-values
    Tags    -   tags, array[0..N-1], contains integer tags associated
                with points.
    N       -   number of points, N>=0
    NX      -   space dimension, NX>=1.
    NY      -   number of optional Y-values, NY>=0.
    NormType-   norm type:
                * 0 denotes infinity-norm
                * 1 denotes 1-norm
                * 2 denotes 2-norm (Euclidean norm)

OUTPUT PARAMETERS
    KDT     -   KD-tree

NOTES

1. KD-tree  creation  have O(N*logN) complexity and O(N*(2*NX+NY))  memory
   requirements.
2. Although KD-trees may be used with any combination of N  and  NX,  they
   are more efficient than brute-force search only when N >> 4^NX. So they
   are most useful in low-dimensional tasks (NX=2, NX=3). NX=1  is another
   inefficient case, because  simple  binary  search  (without  additional
   structures) is much more efficient in such tasks than KD-trees.

  -- ALGLIB --
     Copyright 28.02.2010 by Bochkanov Sergey
*************************************************************************/
void kdtreebuildtagged(const real_2d_array &xy, const integer_1d_array &tags, const ae_int_t n, const ae_int_t nx, const ae_int_t ny, const ae_int_t normtype, kdtree &kdt);
void kdtreebuildtagged(const real_2d_array &xy, const integer_1d_array &tags, const ae_int_t nx, const ae_int_t ny, const ae_int_t normtype, kdtree &kdt);


/*************************************************************************
This function creates buffer  structure  which  can  be  used  to  perform
parallel KD-tree requests.

KD-tree subpackage provides two sets of request functions - ones which use
internal buffer of KD-tree object  (these  functions  are  single-threaded
because they use same buffer, which can not shared between  threads),  and
ones which use external buffer.

This function is used to initialize external buffer.

INPUT PARAMETERS
    KDT         -   KD-tree which is associated with newly created buffer

OUTPUT PARAMETERS
    Buf         -   external buffer.


IMPORTANT: KD-tree buffer should be used only with  KD-tree  object  which
           was used to initialize buffer. Any attempt to use biffer   with
           different object is dangerous - you  may  get  integrity  check
           failure (exception) because sizes of internal arrays do not fit
           to dimensions of KD-tree structure.

  -- ALGLIB --
     Copyright 18.03.2016 by Bochkanov Sergey
*************************************************************************/
void kdtreecreaterequestbuffer(const kdtree &kdt, kdtreerequestbuffer &buf);


/*************************************************************************
K-NN query: K nearest neighbors

IMPORTANT: this function can not be used in multithreaded code because  it
           uses internal temporary buffer of kd-tree object, which can not
           be shared between multiple threads.  If  you  want  to  perform
           parallel requests, use function  which  uses  external  request
           buffer: KDTreeTsQueryKNN() ("Ts" stands for "thread-safe").

INPUT PARAMETERS
    KDT         -   KD-tree
    X           -   point, array[0..NX-1].
    K           -   number of neighbors to return, K>=1
    SelfMatch   -   whether self-matches are allowed:
                    * if True, nearest neighbor may be the point itself
                      (if it exists in original dataset)
                    * if False, then only points with non-zero distance
                      are returned
                    * if not given, considered True

RESULT
    number of actual neighbors found (either K or N, if K>N).

This  subroutine  performs  query  and  stores  its result in the internal
structures of the KD-tree. You can use  following  subroutines  to  obtain
these results:
* KDTreeQueryResultsX() to get X-values
* KDTreeQueryResultsXY() to get X- and Y-values
* KDTreeQueryResultsTags() to get tag values
* KDTreeQueryResultsDistances() to get distances

  -- ALGLIB --
     Copyright 28.02.2010 by Bochkanov Sergey
*************************************************************************/
ae_int_t kdtreequeryknn(const kdtree &kdt, const real_1d_array &x, const ae_int_t k, const bool selfmatch);
ae_int_t kdtreequeryknn(const kdtree &kdt, const real_1d_array &x, const ae_int_t k);


/*************************************************************************
K-NN query: K nearest neighbors, using external thread-local buffer.

You can call this function from multiple threads for same kd-tree instance,
assuming that different instances of buffer object are passed to different
threads.

INPUT PARAMETERS
    KDT         -   kd-tree
    Buf         -   request buffer  object  created  for  this  particular
                    instance of kd-tree structure with kdtreecreaterequestbuffer()
                    function.
    X           -   point, array[0..NX-1].
    K           -   number of neighbors to return, K>=1
    SelfMatch   -   whether self-matches are allowed:
                    * if True, nearest neighbor may be the point itself
                      (if it exists in original dataset)
                    * if False, then only points with non-zero distance
                      are returned
                    * if not given, considered True

RESULT
    number of actual neighbors found (either K or N, if K>N).

This  subroutine  performs  query  and  stores  its result in the internal
structures  of  the  buffer object. You can use following  subroutines  to
obtain these results (pay attention to "buf" in their names):
* KDTreeTsQueryResultsX() to get X-values
* KDTreeTsQueryResultsXY() to get X- and Y-values
* KDTreeTsQueryResultsTags() to get tag values
* KDTreeTsQueryResultsDistances() to get distances

IMPORTANT: kd-tree buffer should be used only with  KD-tree  object  which
           was used to initialize buffer. Any attempt to use biffer   with
           different object is dangerous - you  may  get  integrity  check
           failure (exception) because sizes of internal arrays do not fit
           to dimensions of KD-tree structure.

  -- ALGLIB --
     Copyright 18.03.2016 by Bochkanov Sergey
*************************************************************************/
ae_int_t kdtreetsqueryknn(const kdtree &kdt, const kdtreerequestbuffer &buf, const real_1d_array &x, const ae_int_t k, const bool selfmatch);
ae_int_t kdtreetsqueryknn(const kdtree &kdt, const kdtreerequestbuffer &buf, const real_1d_array &x, const ae_int_t k);


/*************************************************************************
R-NN query: all points within R-sphere centered at X

IMPORTANT: this function can not be used in multithreaded code because  it
           uses internal temporary buffer of kd-tree object, which can not
           be shared between multiple threads.  If  you  want  to  perform
           parallel requests, use function  which  uses  external  request
           buffer: KDTreeTsQueryRNN() ("Ts" stands for "thread-safe").

INPUT PARAMETERS
    KDT         -   KD-tree
    X           -   point, array[0..NX-1].
    R           -   radius of sphere (in corresponding norm), R>0
    SelfMatch   -   whether self-matches are allowed:
                    * if True, nearest neighbor may be the point itself
                      (if it exists in original dataset)
                    * if False, then only points with non-zero distance
                      are returned
                    * if not given, considered True

RESULT
    number of neighbors found, >=0

This  subroutine  performs  query  and  stores  its result in the internal
structures of the KD-tree. You can use  following  subroutines  to  obtain
actual results:
* KDTreeQueryResultsX() to get X-values
* KDTreeQueryResultsXY() to get X- and Y-values
* KDTreeQueryResultsTags() to get tag values
* KDTreeQueryResultsDistances() to get distances

  -- ALGLIB --
     Copyright 28.02.2010 by Bochkanov Sergey
*************************************************************************/
ae_int_t kdtreequeryrnn(const kdtree &kdt, const real_1d_array &x, const double r, const bool selfmatch);
ae_int_t kdtreequeryrnn(const kdtree &kdt, const real_1d_array &x, const double r);


/*************************************************************************
R-NN query: all points within  R-sphere  centered  at  X,  using  external
thread-local buffer.

You can call this function from multiple threads for same kd-tree instance,
assuming that different instances of buffer object are passed to different
threads.

INPUT PARAMETERS
    KDT         -   KD-tree
    Buf         -   request buffer  object  created  for  this  particular
                    instance of kd-tree structure with kdtreecreaterequestbuffer()
                    function.
    X           -   point, array[0..NX-1].
    R           -   radius of sphere (in corresponding norm), R>0
    SelfMatch   -   whether self-matches are allowed:
                    * if True, nearest neighbor may be the point itself
                      (if it exists in original dataset)
                    * if False, then only points with non-zero distance
                      are returned
                    * if not given, considered True

RESULT
    number of neighbors found, >=0

This  subroutine  performs  query  and  stores  its result in the internal
structures  of  the  buffer object. You can use following  subroutines  to
obtain these results (pay attention to "buf" in their names):
* KDTreeTsQueryResultsX() to get X-values
* KDTreeTsQueryResultsXY() to get X- and Y-values
* KDTreeTsQueryResultsTags() to get tag values
* KDTreeTsQueryResultsDistances() to get distances

IMPORTANT: kd-tree buffer should be used only with  KD-tree  object  which
           was used to initialize buffer. Any attempt to use biffer   with
           different object is dangerous - you  may  get  integrity  check
           failure (exception) because sizes of internal arrays do not fit
           to dimensions of KD-tree structure.

  -- ALGLIB --
     Copyright 18.03.2016 by Bochkanov Sergey
*************************************************************************/
ae_int_t kdtreetsqueryrnn(const kdtree &kdt, const kdtreerequestbuffer &buf, const real_1d_array &x, const double r, const bool selfmatch);
ae_int_t kdtreetsqueryrnn(const kdtree &kdt, const kdtreerequestbuffer &buf, const real_1d_array &x, const double r);


/*************************************************************************
K-NN query: approximate K nearest neighbors

IMPORTANT: this function can not be used in multithreaded code because  it
           uses internal temporary buffer of kd-tree object, which can not
           be shared between multiple threads.  If  you  want  to  perform
           parallel requests, use function  which  uses  external  request
           buffer: KDTreeTsQueryAKNN() ("Ts" stands for "thread-safe").

INPUT PARAMETERS
    KDT         -   KD-tree
    X           -   point, array[0..NX-1].
    K           -   number of neighbors to return, K>=1
    SelfMatch   -   whether self-matches are allowed:
                    * if True, nearest neighbor may be the point itself
                      (if it exists in original dataset)
                    * if False, then only points with non-zero distance
                      are returned
                    * if not given, considered True
    Eps         -   approximation factor, Eps>=0. eps-approximate  nearest
                    neighbor  is  a  neighbor  whose distance from X is at
                    most (1+eps) times distance of true nearest neighbor.

RESULT
    number of actual neighbors found (either K or N, if K>N).

NOTES
    significant performance gain may be achieved only when Eps  is  is  on
    the order of magnitude of 1 or larger.

This  subroutine  performs  query  and  stores  its result in the internal
structures of the KD-tree. You can use  following  subroutines  to  obtain
these results:
* KDTreeQueryResultsX() to get X-values
* KDTreeQueryResultsXY() to get X- and Y-values
* KDTreeQueryResultsTags() to get tag values
* KDTreeQueryResultsDistances() to get distances

  -- ALGLIB --
     Copyright 28.02.2010 by Bochkanov Sergey
*************************************************************************/
ae_int_t kdtreequeryaknn(const kdtree &kdt, const real_1d_array &x, const ae_int_t k, const bool selfmatch, const double eps);
ae_int_t kdtreequeryaknn(const kdtree &kdt, const real_1d_array &x, const ae_int_t k, const double eps);


/*************************************************************************
K-NN query: approximate K nearest neighbors, using thread-local buffer.

You can call this function from multiple threads for same kd-tree instance,
assuming that different instances of buffer object are passed to different
threads.

INPUT PARAMETERS
    KDT         -   KD-tree
    Buf         -   request buffer  object  created  for  this  particular
                    instance of kd-tree structure with kdtreecreaterequestbuffer()
                    function.
    X           -   point, array[0..NX-1].
    K           -   number of neighbors to return, K>=1
    SelfMatch   -   whether self-matches are allowed:
                    * if True, nearest neighbor may be the point itself
                      (if it exists in original dataset)
                    * if False, then only points with non-zero distance
                      are returned
                    * if not given, considered True
    Eps         -   approximation factor, Eps>=0. eps-approximate  nearest
                    neighbor  is  a  neighbor  whose distance from X is at
                    most (1+eps) times distance of true nearest neighbor.

RESULT
    number of actual neighbors found (either K or N, if K>N).

NOTES
    significant performance gain may be achieved only when Eps  is  is  on
    the order of magnitude of 1 or larger.

This  subroutine  performs  query  and  stores  its result in the internal
structures  of  the  buffer object. You can use following  subroutines  to
obtain these results (pay attention to "buf" in their names):
* KDTreeTsQueryResultsX() to get X-values
* KDTreeTsQueryResultsXY() to get X- and Y-values
* KDTreeTsQueryResultsTags() to get tag values
* KDTreeTsQueryResultsDistances() to get distances

IMPORTANT: kd-tree buffer should be used only with  KD-tree  object  which
           was used to initialize buffer. Any attempt to use biffer   with
           different object is dangerous - you  may  get  integrity  check
           failure (exception) because sizes of internal arrays do not fit
           to dimensions of KD-tree structure.

  -- ALGLIB --
     Copyright 18.03.2016 by Bochkanov Sergey
*************************************************************************/
ae_int_t kdtreetsqueryaknn(const kdtree &kdt, const kdtreerequestbuffer &buf, const real_1d_array &x, const ae_int_t k, const bool selfmatch, const double eps);
ae_int_t kdtreetsqueryaknn(const kdtree &kdt, const kdtreerequestbuffer &buf, const real_1d_array &x, const ae_int_t k, const double eps);


/*************************************************************************
Box query: all points within user-specified box.

IMPORTANT: this function can not be used in multithreaded code because  it
           uses internal temporary buffer of kd-tree object, which can not
           be shared between multiple threads.  If  you  want  to  perform
           parallel requests, use function  which  uses  external  request
           buffer: KDTreeTsQueryBox() ("Ts" stands for "thread-safe").

INPUT PARAMETERS
    KDT         -   KD-tree
    BoxMin      -   lower bounds, array[0..NX-1].
    BoxMax      -   upper bounds, array[0..NX-1].


RESULT
    number of actual neighbors found (in [0,N]).

This  subroutine  performs  query  and  stores  its result in the internal
structures of the KD-tree. You can use  following  subroutines  to  obtain
these results:
* KDTreeQueryResultsX() to get X-values
* KDTreeQueryResultsXY() to get X- and Y-values
* KDTreeQueryResultsTags() to get tag values
* KDTreeQueryResultsDistances() returns zeros for this request

NOTE: this particular query returns unordered results, because there is no
      meaningful way of  ordering  points.  Furthermore,  no 'distance' is
      associated with points - it is either INSIDE  or OUTSIDE (so request
      for distances will return zeros).

  -- ALGLIB --
     Copyright 14.05.2016 by Bochkanov Sergey
*************************************************************************/
ae_int_t kdtreequerybox(const kdtree &kdt, const real_1d_array &boxmin, const real_1d_array &boxmax);


/*************************************************************************
Box query: all points within user-specified box, using thread-local buffer.

You can call this function from multiple threads for same kd-tree instance,
assuming that different instances of buffer object are passed to different
threads.

INPUT PARAMETERS
    KDT         -   KD-tree
    Buf         -   request buffer  object  created  for  this  particular
                    instance of kd-tree structure with kdtreecreaterequestbuffer()
                    function.
    BoxMin      -   lower bounds, array[0..NX-1].
    BoxMax      -   upper bounds, array[0..NX-1].

RESULT
    number of actual neighbors found (in [0,N]).

This  subroutine  performs  query  and  stores  its result in the internal
structures  of  the  buffer object. You can use following  subroutines  to
obtain these results (pay attention to "ts" in their names):
* KDTreeTsQueryResultsX() to get X-values
* KDTreeTsQueryResultsXY() to get X- and Y-values
* KDTreeTsQueryResultsTags() to get tag values
* KDTreeTsQueryResultsDistances() returns zeros for this query

NOTE: this particular query returns unordered results, because there is no
      meaningful way of  ordering  points.  Furthermore,  no 'distance' is
      associated with points - it is either INSIDE  or OUTSIDE (so request
      for distances will return zeros).

IMPORTANT: kd-tree buffer should be used only with  KD-tree  object  which
           was used to initialize buffer. Any attempt to use biffer   with
           different object is dangerous - you  may  get  integrity  check
           failure (exception) because sizes of internal arrays do not fit
           to dimensions of KD-tree structure.

  -- ALGLIB --
     Copyright 14.05.2016 by Bochkanov Sergey
*************************************************************************/
ae_int_t kdtreetsquerybox(const kdtree &kdt, const kdtreerequestbuffer &buf, const real_1d_array &boxmin, const real_1d_array &boxmax);


/*************************************************************************
X-values from last query.

This function retuns results stored in  the  internal  buffer  of  kd-tree
object. If you performed buffered requests (ones which  use  instances  of
kdtreerequestbuffer class), you  should  call  buffered  version  of  this
function - kdtreetsqueryresultsx().

INPUT PARAMETERS
    KDT     -   KD-tree
    X       -   possibly pre-allocated buffer. If X is too small to store
                result, it is resized. If size(X) is enough to store
                result, it is left unchanged.

OUTPUT PARAMETERS
    X       -   rows are filled with X-values

NOTES
1. points are ordered by distance from the query point (first = closest)
2. if  XY is larger than required to store result, only leading part  will
   be overwritten; trailing part will be left unchanged. So  if  on  input
   XY = [[A,B],[C,D]], and result is [1,2],  then  on  exit  we  will  get
   XY = [[1,2],[C,D]]. This is done purposely to increase performance;  if
   you want function  to  resize  array  according  to  result  size,  use
   function with same name and suffix 'I'.

SEE ALSO
* KDTreeQueryResultsXY()            X- and Y-values
* KDTreeQueryResultsTags()          tag values
* KDTreeQueryResultsDistances()     distances

  -- ALGLIB --
     Copyright 28.02.2010 by Bochkanov Sergey
*************************************************************************/
void kdtreequeryresultsx(const kdtree &kdt, real_2d_array &x);


/*************************************************************************
X- and Y-values from last query

This function retuns results stored in  the  internal  buffer  of  kd-tree
object. If you performed buffered requests (ones which  use  instances  of
kdtreerequestbuffer class), you  should  call  buffered  version  of  this
function - kdtreetsqueryresultsxy().

INPUT PARAMETERS
    KDT     -   KD-tree
    XY      -   possibly pre-allocated buffer. If XY is too small to store
                result, it is resized. If size(XY) is enough to store
                result, it is left unchanged.

OUTPUT PARAMETERS
    XY      -   rows are filled with points: first NX columns with
                X-values, next NY columns - with Y-values.

NOTES
1. points are ordered by distance from the query point (first = closest)
2. if  XY is larger than required to store result, only leading part  will
   be overwritten; trailing part will be left unchanged. So  if  on  input
   XY = [[A,B],[C,D]], and result is [1,2],  then  on  exit  we  will  get
   XY = [[1,2],[C,D]]. This is done purposely to increase performance;  if
   you want function  to  resize  array  according  to  result  size,  use
   function with same name and suffix 'I'.

SEE ALSO
* KDTreeQueryResultsX()             X-values
* KDTreeQueryResultsTags()          tag values
* KDTreeQueryResultsDistances()     distances

  -- ALGLIB --
     Copyright 28.02.2010 by Bochkanov Sergey
*************************************************************************/
void kdtreequeryresultsxy(const kdtree &kdt, real_2d_array &xy);


/*************************************************************************
Tags from last query

This function retuns results stored in  the  internal  buffer  of  kd-tree
object. If you performed buffered requests (ones which  use  instances  of
kdtreerequestbuffer class), you  should  call  buffered  version  of  this
function - kdtreetsqueryresultstags().

INPUT PARAMETERS
    KDT     -   KD-tree
    Tags    -   possibly pre-allocated buffer. If X is too small to store
                result, it is resized. If size(X) is enough to store
                result, it is left unchanged.

OUTPUT PARAMETERS
    Tags    -   filled with tags associated with points,
                or, when no tags were supplied, with zeros

NOTES
1. points are ordered by distance from the query point (first = closest)
2. if  XY is larger than required to store result, only leading part  will
   be overwritten; trailing part will be left unchanged. So  if  on  input
   XY = [[A,B],[C,D]], and result is [1,2],  then  on  exit  we  will  get
   XY = [[1,2],[C,D]]. This is done purposely to increase performance;  if
   you want function  to  resize  array  according  to  result  size,  use
   function with same name and suffix 'I'.

SEE ALSO
* KDTreeQueryResultsX()             X-values
* KDTreeQueryResultsXY()            X- and Y-values
* KDTreeQueryResultsDistances()     distances

  -- ALGLIB --
     Copyright 28.02.2010 by Bochkanov Sergey
*************************************************************************/
void kdtreequeryresultstags(const kdtree &kdt, integer_1d_array &tags);


/*************************************************************************
Distances from last query

This function retuns results stored in  the  internal  buffer  of  kd-tree
object. If you performed buffered requests (ones which  use  instances  of
kdtreerequestbuffer class), you  should  call  buffered  version  of  this
function - kdtreetsqueryresultsdistances().

INPUT PARAMETERS
    KDT     -   KD-tree
    R       -   possibly pre-allocated buffer. If X is too small to store
                result, it is resized. If size(X) is enough to store
                result, it is left unchanged.

OUTPUT PARAMETERS
    R       -   filled with distances (in corresponding norm)

NOTES
1. points are ordered by distance from the query point (first = closest)
2. if  XY is larger than required to store result, only leading part  will
   be overwritten; trailing part will be left unchanged. So  if  on  input
   XY = [[A,B],[C,D]], and result is [1,2],  then  on  exit  we  will  get
   XY = [[1,2],[C,D]]. This is done purposely to increase performance;  if
   you want function  to  resize  array  according  to  result  size,  use
   function with same name and suffix 'I'.

SEE ALSO
* KDTreeQueryResultsX()             X-values
* KDTreeQueryResultsXY()            X- and Y-values
* KDTreeQueryResultsTags()          tag values

  -- ALGLIB --
     Copyright 28.02.2010 by Bochkanov Sergey
*************************************************************************/
void kdtreequeryresultsdistances(const kdtree &kdt, real_1d_array &r);


/*************************************************************************
X-values from last query associated with kdtreerequestbuffer object.

INPUT PARAMETERS
    KDT     -   KD-tree
    Buf     -   request  buffer  object  created   for   this   particular
                instance of kd-tree structure.
    X       -   possibly pre-allocated buffer. If X is too small to store
                result, it is resized. If size(X) is enough to store
                result, it is left unchanged.

OUTPUT PARAMETERS
    X       -   rows are filled with X-values

NOTES
1. points are ordered by distance from the query point (first = closest)
2. if  XY is larger than required to store result, only leading part  will
   be overwritten; trailing part will be left unchanged. So  if  on  input
   XY = [[A,B],[C,D]], and result is [1,2],  then  on  exit  we  will  get
   XY = [[1,2],[C,D]]. This is done purposely to increase performance;  if
   you want function  to  resize  array  according  to  result  size,  use
   function with same name and suffix 'I'.

SEE ALSO
* KDTreeQueryResultsXY()            X- and Y-values
* KDTreeQueryResultsTags()          tag values
* KDTreeQueryResultsDistances()     distances

  -- ALGLIB --
     Copyright 28.02.2010 by Bochkanov Sergey
*************************************************************************/
void kdtreetsqueryresultsx(const kdtree &kdt, const kdtreerequestbuffer &buf, real_2d_array &x);


/*************************************************************************
X- and Y-values from last query associated with kdtreerequestbuffer object.

INPUT PARAMETERS
    KDT     -   KD-tree
    Buf     -   request  buffer  object  created   for   this   particular
                instance of kd-tree structure.
    XY      -   possibly pre-allocated buffer. If XY is too small to store
                result, it is resized. If size(XY) is enough to store
                result, it is left unchanged.

OUTPUT PARAMETERS
    XY      -   rows are filled with points: first NX columns with
                X-values, next NY columns - with Y-values.

NOTES
1. points are ordered by distance from the query point (first = closest)
2. if  XY is larger than required to store result, only leading part  will
   be overwritten; trailing part will be left unchanged. So  if  on  input
   XY = [[A,B],[C,D]], and result is [1,2],  then  on  exit  we  will  get
   XY = [[1,2],[C,D]]. This is done purposely to increase performance;  if
   you want function  to  resize  array  according  to  result  size,  use
   function with same name and suffix 'I'.

SEE ALSO
* KDTreeQueryResultsX()             X-values
* KDTreeQueryResultsTags()          tag values
* KDTreeQueryResultsDistances()     distances

  -- ALGLIB --
     Copyright 28.02.2010 by Bochkanov Sergey
*************************************************************************/
void kdtreetsqueryresultsxy(const kdtree &kdt, const kdtreerequestbuffer &buf, real_2d_array &xy);


/*************************************************************************
Tags from last query associated with kdtreerequestbuffer object.

This function retuns results stored in  the  internal  buffer  of  kd-tree
object. If you performed buffered requests (ones which  use  instances  of
kdtreerequestbuffer class), you  should  call  buffered  version  of  this
function - KDTreeTsqueryresultstags().

INPUT PARAMETERS
    KDT     -   KD-tree
    Buf     -   request  buffer  object  created   for   this   particular
                instance of kd-tree structure.
    Tags    -   possibly pre-allocated buffer. If X is too small to store
                result, it is resized. If size(X) is enough to store
                result, it is left unchanged.

OUTPUT PARAMETERS
    Tags    -   filled with tags associated with points,
                or, when no tags were supplied, with zeros

NOTES
1. points are ordered by distance from the query point (first = closest)
2. if  XY is larger than required to store result, only leading part  will
   be overwritten; trailing part will be left unchanged. So  if  on  input
   XY = [[A,B],[C,D]], and result is [1,2],  then  on  exit  we  will  get
   XY = [[1,2],[C,D]]. This is done purposely to increase performance;  if
   you want function  to  resize  array  according  to  result  size,  use
   function with same name and suffix 'I'.

SEE ALSO
* KDTreeQueryResultsX()             X-values
* KDTreeQueryResultsXY()            X- and Y-values
* KDTreeQueryResultsDistances()     distances

  -- ALGLIB --
     Copyright 28.02.2010 by Bochkanov Sergey
*************************************************************************/
void kdtreetsqueryresultstags(const kdtree &kdt, const kdtreerequestbuffer &buf, integer_1d_array &tags);


/*************************************************************************
Distances from last query associated with kdtreerequestbuffer object.

This function retuns results stored in  the  internal  buffer  of  kd-tree
object. If you performed buffered requests (ones which  use  instances  of
kdtreerequestbuffer class), you  should  call  buffered  version  of  this
function - KDTreeTsqueryresultsdistances().

INPUT PARAMETERS
    KDT     -   KD-tree
    Buf     -   request  buffer  object  created   for   this   particular
                instance of kd-tree structure.
    R       -   possibly pre-allocated buffer. If X is too small to store
                result, it is resized. If size(X) is enough to store
                result, it is left unchanged.

OUTPUT PARAMETERS
    R       -   filled with distances (in corresponding norm)

NOTES
1. points are ordered by distance from the query point (first = closest)
2. if  XY is larger than required to store result, only leading part  will
   be overwritten; trailing part will be left unchanged. So  if  on  input
   XY = [[A,B],[C,D]], and result is [1,2],  then  on  exit  we  will  get
   XY = [[1,2],[C,D]]. This is done purposely to increase performance;  if
   you want function  to  resize  array  according  to  result  size,  use
   function with same name and suffix 'I'.

SEE ALSO
* KDTreeQueryResultsX()             X-values
* KDTreeQueryResultsXY()            X- and Y-values
* KDTreeQueryResultsTags()          tag values

  -- ALGLIB --
     Copyright 28.02.2010 by Bochkanov Sergey
*************************************************************************/
void kdtreetsqueryresultsdistances(const kdtree &kdt, const kdtreerequestbuffer &buf, real_1d_array &r);


/*************************************************************************
X-values from last query; 'interactive' variant for languages like  Python
which   support    constructs   like  "X = KDTreeQueryResultsXI(KDT)"  and
interactive mode of interpreter.

This function allocates new array on each call,  so  it  is  significantly
slower than its 'non-interactive' counterpart, but it is  more  convenient
when you call it from command line.

  -- ALGLIB --
     Copyright 28.02.2010 by Bochkanov Sergey
*************************************************************************/
void kdtreequeryresultsxi(const kdtree &kdt, real_2d_array &x);


/*************************************************************************
XY-values from last query; 'interactive' variant for languages like Python
which   support    constructs   like "XY = KDTreeQueryResultsXYI(KDT)" and
interactive mode of interpreter.

This function allocates new array on each call,  so  it  is  significantly
slower than its 'non-interactive' counterpart, but it is  more  convenient
when you call it from command line.

  -- ALGLIB --
     Copyright 28.02.2010 by Bochkanov Sergey
*************************************************************************/
void kdtreequeryresultsxyi(const kdtree &kdt, real_2d_array &xy);


/*************************************************************************
Tags  from  last  query;  'interactive' variant for languages like  Python
which  support  constructs  like "Tags = KDTreeQueryResultsTagsI(KDT)" and
interactive mode of interpreter.

This function allocates new array on each call,  so  it  is  significantly
slower than its 'non-interactive' counterpart, but it is  more  convenient
when you call it from command line.

  -- ALGLIB --
     Copyright 28.02.2010 by Bochkanov Sergey
*************************************************************************/
void kdtreequeryresultstagsi(const kdtree &kdt, integer_1d_array &tags);


/*************************************************************************
Distances from last query; 'interactive' variant for languages like Python
which  support  constructs   like  "R = KDTreeQueryResultsDistancesI(KDT)"
and interactive mode of interpreter.

This function allocates new array on each call,  so  it  is  significantly
slower than its 'non-interactive' counterpart, but it is  more  convenient
when you call it from command line.

  -- ALGLIB --
     Copyright 28.02.2010 by Bochkanov Sergey
*************************************************************************/
void kdtreequeryresultsdistancesi(const kdtree &kdt, real_1d_array &r);

/*************************************************************************
HQRNDState  initialization  with  random  values  which come from standard
RNG.

  -- ALGLIB --
     Copyright 02.12.2009 by Bochkanov Sergey
*************************************************************************/
void hqrndrandomize(hqrndstate &state);


/*************************************************************************
HQRNDState initialization with seed values

  -- ALGLIB --
     Copyright 02.12.2009 by Bochkanov Sergey
*************************************************************************/
void hqrndseed(const ae_int_t s1, const ae_int_t s2, hqrndstate &state);


/*************************************************************************
This function generates random real number in (0,1),
not including interval boundaries

State structure must be initialized with HQRNDRandomize() or HQRNDSeed().

  -- ALGLIB --
     Copyright 02.12.2009 by Bochkanov Sergey
*************************************************************************/
double hqrnduniformr(const hqrndstate &state);


/*************************************************************************
This function generates random integer number in [0, N)

1. State structure must be initialized with HQRNDRandomize() or HQRNDSeed()
2. N can be any positive number except for very large numbers:
   * close to 2^31 on 32-bit systems
   * close to 2^62 on 64-bit systems
   An exception will be generated if N is too large.

  -- ALGLIB --
     Copyright 02.12.2009 by Bochkanov Sergey
*************************************************************************/
ae_int_t hqrnduniformi(const hqrndstate &state, const ae_int_t n);


/*************************************************************************
Random number generator: normal numbers

This function generates one random number from normal distribution.
Its performance is equal to that of HQRNDNormal2()

State structure must be initialized with HQRNDRandomize() or HQRNDSeed().

  -- ALGLIB --
     Copyright 02.12.2009 by Bochkanov Sergey
*************************************************************************/
double hqrndnormal(const hqrndstate &state);


/*************************************************************************
Random number generator: random X and Y such that X^2+Y^2=1

State structure must be initialized with HQRNDRandomize() or HQRNDSeed().

  -- ALGLIB --
     Copyright 02.12.2009 by Bochkanov Sergey
*************************************************************************/
void hqrndunit2(const hqrndstate &state, double &x, double &y);


/*************************************************************************
Random number generator: normal numbers

This function generates two independent random numbers from normal
distribution. Its performance is equal to that of HQRNDNormal()

State structure must be initialized with HQRNDRandomize() or HQRNDSeed().

  -- ALGLIB --
     Copyright 02.12.2009 by Bochkanov Sergey
*************************************************************************/
void hqrndnormal2(const hqrndstate &state, double &x1, double &x2);


/*************************************************************************
Random number generator: exponential distribution

State structure must be initialized with HQRNDRandomize() or HQRNDSeed().

  -- ALGLIB --
     Copyright 11.08.2007 by Bochkanov Sergey
*************************************************************************/
double hqrndexponential(const hqrndstate &state, const double lambdav);


/*************************************************************************
This function generates  random number from discrete distribution given by
finite sample X.

INPUT PARAMETERS
    State   -   high quality random number generator, must be
                initialized with HQRNDRandomize() or HQRNDSeed().
        X   -   finite sample
        N   -   number of elements to use, N>=1

RESULT
    this function returns one of the X[i] for random i=0..N-1

  -- ALGLIB --
     Copyright 08.11.2011 by Bochkanov Sergey
*************************************************************************/
double hqrnddiscrete(const hqrndstate &state, const real_1d_array &x, const ae_int_t n);


/*************************************************************************
This function generates random number from continuous  distribution  given
by finite sample X.

INPUT PARAMETERS
    State   -   high quality random number generator, must be
                initialized with HQRNDRandomize() or HQRNDSeed().
        X   -   finite sample, array[N] (can be larger, in this  case only
                leading N elements are used). THIS ARRAY MUST BE SORTED BY
                ASCENDING.
        N   -   number of elements to use, N>=1

RESULT
    this function returns random number from continuous distribution which
    tries to approximate X as mush as possible. min(X)<=Result<=max(X).

  -- ALGLIB --
     Copyright 08.11.2011 by Bochkanov Sergey
*************************************************************************/
double hqrndcontinuous(const hqrndstate &state, const real_1d_array &x, const ae_int_t n);

/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Creates and returns XDebugRecord1 structure:
* integer and complex fields of Rec1 are set to 1 and 1+i correspondingly
* array field of Rec1 is set to [2,3]

  -- ALGLIB --
     Copyright 27.05.2014 by Bochkanov Sergey
*************************************************************************/
void xdebuginitrecord1(xdebugrecord1 &rec1);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Counts number of True values in the boolean 1D array.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
ae_int_t xdebugb1count(const boolean_1d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Replace all values in array by NOT(a[i]).
Array is passed using "shared" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugb1not(const boolean_1d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Appends copy of array to itself.
Array is passed using "var" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugb1appendcopy(boolean_1d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Generate N-element array with even-numbered elements set to True.
Array is passed using "out" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugb1outeven(const ae_int_t n, boolean_1d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Returns sum of elements in the array.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
ae_int_t xdebugi1sum(const integer_1d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Replace all values in array by -A[I]
Array is passed using "shared" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugi1neg(const integer_1d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Appends copy of array to itself.
Array is passed using "var" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugi1appendcopy(integer_1d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Generate N-element array with even-numbered A[I] set to I, and odd-numbered
ones set to 0.

Array is passed using "out" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugi1outeven(const ae_int_t n, integer_1d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Returns sum of elements in the array.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
double xdebugr1sum(const real_1d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Replace all values in array by -A[I]
Array is passed using "shared" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugr1neg(const real_1d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Appends copy of array to itself.
Array is passed using "var" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugr1appendcopy(real_1d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Generate N-element array with even-numbered A[I] set to I*0.25,
and odd-numbered ones are set to 0.

Array is passed using "out" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugr1outeven(const ae_int_t n, real_1d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Returns sum of elements in the array.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
alglib::complex xdebugc1sum(const complex_1d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Replace all values in array by -A[I]
Array is passed using "shared" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugc1neg(const complex_1d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Appends copy of array to itself.
Array is passed using "var" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugc1appendcopy(complex_1d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Generate N-element array with even-numbered A[K] set to (x,y) = (K*0.25, K*0.125)
and odd-numbered ones are set to 0.

Array is passed using "out" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugc1outeven(const ae_int_t n, complex_1d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Counts number of True values in the boolean 2D array.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
ae_int_t xdebugb2count(const boolean_2d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Replace all values in array by NOT(a[i]).
Array is passed using "shared" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugb2not(const boolean_2d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Transposes array.
Array is passed using "var" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugb2transpose(boolean_2d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Generate MxN matrix with elements set to "Sin(3*I+5*J)>0"
Array is passed using "out" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugb2outsin(const ae_int_t m, const ae_int_t n, boolean_2d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Returns sum of elements in the array.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
ae_int_t xdebugi2sum(const integer_2d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Replace all values in array by -a[i,j]
Array is passed using "shared" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugi2neg(const integer_2d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Transposes array.
Array is passed using "var" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugi2transpose(integer_2d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Generate MxN matrix with elements set to "Sign(Sin(3*I+5*J))"
Array is passed using "out" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugi2outsin(const ae_int_t m, const ae_int_t n, integer_2d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Returns sum of elements in the array.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
double xdebugr2sum(const real_2d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Replace all values in array by -a[i,j]
Array is passed using "shared" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugr2neg(const real_2d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Transposes array.
Array is passed using "var" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugr2transpose(real_2d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Generate MxN matrix with elements set to "Sin(3*I+5*J)"
Array is passed using "out" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugr2outsin(const ae_int_t m, const ae_int_t n, real_2d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Returns sum of elements in the array.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
alglib::complex xdebugc2sum(const complex_2d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Replace all values in array by -a[i,j]
Array is passed using "shared" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugc2neg(const complex_2d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Transposes array.
Array is passed using "var" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugc2transpose(complex_2d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Generate MxN matrix with elements set to "Sin(3*I+5*J),Cos(3*I+5*J)"
Array is passed using "out" convention.

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
void xdebugc2outsincos(const ae_int_t m, const ae_int_t n, complex_2d_array &a);


/*************************************************************************
This is debug function intended for testing ALGLIB interface generator.
Never use it in any real life project.

Returns sum of a[i,j]*(1+b[i,j]) such that c[i,j] is True

  -- ALGLIB --
     Copyright 11.10.2013 by Bochkanov Sergey
*************************************************************************/
double xdebugmaskedbiasedproductsum(const ae_int_t m, const ae_int_t n, const real_2d_array &a, const real_2d_array &b, const boolean_2d_array &c);
}

/////////////////////////////////////////////////////////////////////////
//
// THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (FUNCTIONS)
//
/////////////////////////////////////////////////////////////////////////
namespace alglib_impl
{
void kdtreebuild(/* Real    */ ae_matrix* xy,
     ae_int_t n,
     ae_int_t nx,
     ae_int_t ny,
     ae_int_t normtype,
     kdtree* kdt,
     ae_state *_state);
void kdtreebuildtagged(/* Real    */ ae_matrix* xy,
     /* Integer */ ae_vector* tags,
     ae_int_t n,
     ae_int_t nx,
     ae_int_t ny,
     ae_int_t normtype,
     kdtree* kdt,
     ae_state *_state);
void kdtreecreaterequestbuffer(kdtree* kdt,
     kdtreerequestbuffer* buf,
     ae_state *_state);
ae_int_t kdtreequeryknn(kdtree* kdt,
     /* Real    */ ae_vector* x,
     ae_int_t k,
     ae_bool selfmatch,
     ae_state *_state);
ae_int_t kdtreetsqueryknn(kdtree* kdt,
     kdtreerequestbuffer* buf,
     /* Real    */ ae_vector* x,
     ae_int_t k,
     ae_bool selfmatch,
     ae_state *_state);
ae_int_t kdtreequeryrnn(kdtree* kdt,
     /* Real    */ ae_vector* x,
     double r,
     ae_bool selfmatch,
     ae_state *_state);
ae_int_t kdtreetsqueryrnn(kdtree* kdt,
     kdtreerequestbuffer* buf,
     /* Real    */ ae_vector* x,
     double r,
     ae_bool selfmatch,
     ae_state *_state);
ae_int_t kdtreequeryaknn(kdtree* kdt,
     /* Real    */ ae_vector* x,
     ae_int_t k,
     ae_bool selfmatch,
     double eps,
     ae_state *_state);
ae_int_t kdtreetsqueryaknn(kdtree* kdt,
     kdtreerequestbuffer* buf,
     /* Real    */ ae_vector* x,
     ae_int_t k,
     ae_bool selfmatch,
     double eps,
     ae_state *_state);
ae_int_t kdtreequerybox(kdtree* kdt,
     /* Real    */ ae_vector* boxmin,
     /* Real    */ ae_vector* boxmax,
     ae_state *_state);
ae_int_t kdtreetsquerybox(kdtree* kdt,
     kdtreerequestbuffer* buf,
     /* Real    */ ae_vector* boxmin,
     /* Real    */ ae_vector* boxmax,
     ae_state *_state);
void kdtreequeryresultsx(kdtree* kdt,
     /* Real    */ ae_matrix* x,
     ae_state *_state);
void kdtreequeryresultsxy(kdtree* kdt,
     /* Real    */ ae_matrix* xy,
     ae_state *_state);
void kdtreequeryresultstags(kdtree* kdt,
     /* Integer */ ae_vector* tags,
     ae_state *_state);
void kdtreequeryresultsdistances(kdtree* kdt,
     /* Real    */ ae_vector* r,
     ae_state *_state);
void kdtreetsqueryresultsx(kdtree* kdt,
     kdtreerequestbuffer* buf,
     /* Real    */ ae_matrix* x,
     ae_state *_state);
void kdtreetsqueryresultsxy(kdtree* kdt,
     kdtreerequestbuffer* buf,
     /* Real    */ ae_matrix* xy,
     ae_state *_state);
void kdtreetsqueryresultstags(kdtree* kdt,
     kdtreerequestbuffer* buf,
     /* Integer */ ae_vector* tags,
     ae_state *_state);
void kdtreetsqueryresultsdistances(kdtree* kdt,
     kdtreerequestbuffer* buf,
     /* Real    */ ae_vector* r,
     ae_state *_state);
void kdtreequeryresultsxi(kdtree* kdt,
     /* Real    */ ae_matrix* x,
     ae_state *_state);
void kdtreequeryresultsxyi(kdtree* kdt,
     /* Real    */ ae_matrix* xy,
     ae_state *_state);
void kdtreequeryresultstagsi(kdtree* kdt,
     /* Integer */ ae_vector* tags,
     ae_state *_state);
void kdtreequeryresultsdistancesi(kdtree* kdt,
     /* Real    */ ae_vector* r,
     ae_state *_state);
void kdtreeexplorebox(kdtree* kdt,
     /* Real    */ ae_vector* boxmin,
     /* Real    */ ae_vector* boxmax,
     ae_state *_state);
void kdtreeexplorenodetype(kdtree* kdt,
     ae_int_t node,
     ae_int_t* nodetype,
     ae_state *_state);
void kdtreeexploreleaf(kdtree* kdt,
     ae_int_t node,
     /* Real    */ ae_matrix* xy,
     ae_int_t* k,
     ae_state *_state);
void kdtreeexploresplit(kdtree* kdt,
     ae_int_t node,
     ae_int_t* d,
     double* s,
     ae_int_t* nodele,
     ae_int_t* nodege,
     ae_state *_state);
void kdtreealloc(ae_serializer* s, kdtree* tree, ae_state *_state);
void kdtreeserialize(ae_serializer* s, kdtree* tree, ae_state *_state);
void kdtreeunserialize(ae_serializer* s, kdtree* tree, ae_state *_state);
void _kdtreerequestbuffer_init(void* _p, ae_state *_state);
void _kdtreerequestbuffer_init_copy(void* _dst, void* _src, ae_state *_state);
void _kdtreerequestbuffer_clear(void* _p);
void _kdtreerequestbuffer_destroy(void* _p);
void _kdtree_init(void* _p, ae_state *_state);
void _kdtree_init_copy(void* _dst, void* _src, ae_state *_state);
void _kdtree_clear(void* _p);
void _kdtree_destroy(void* _p);
void hqrndrandomize(hqrndstate* state, ae_state *_state);
void hqrndseed(ae_int_t s1,
     ae_int_t s2,
     hqrndstate* state,
     ae_state *_state);
double hqrnduniformr(hqrndstate* state, ae_state *_state);
ae_int_t hqrnduniformi(hqrndstate* state, ae_int_t n, ae_state *_state);
double hqrndnormal(hqrndstate* state, ae_state *_state);
void hqrndunit2(hqrndstate* state, double* x, double* y, ae_state *_state);
void hqrndnormal2(hqrndstate* state,
     double* x1,
     double* x2,
     ae_state *_state);
double hqrndexponential(hqrndstate* state,
     double lambdav,
     ae_state *_state);
double hqrnddiscrete(hqrndstate* state,
     /* Real    */ ae_vector* x,
     ae_int_t n,
     ae_state *_state);
double hqrndcontinuous(hqrndstate* state,
     /* Real    */ ae_vector* x,
     ae_int_t n,
     ae_state *_state);
void _hqrndstate_init(void* _p, ae_state *_state);
void _hqrndstate_init_copy(void* _dst, void* _src, ae_state *_state);
void _hqrndstate_clear(void* _p);
void _hqrndstate_destroy(void* _p);
void xdebuginitrecord1(xdebugrecord1* rec1, ae_state *_state);
ae_int_t xdebugb1count(/* Boolean */ ae_vector* a, ae_state *_state);
void xdebugb1not(/* Boolean */ ae_vector* a, ae_state *_state);
void xdebugb1appendcopy(/* Boolean */ ae_vector* a, ae_state *_state);
void xdebugb1outeven(ae_int_t n,
     /* Boolean */ ae_vector* a,
     ae_state *_state);
ae_int_t xdebugi1sum(/* Integer */ ae_vector* a, ae_state *_state);
void xdebugi1neg(/* Integer */ ae_vector* a, ae_state *_state);
void xdebugi1appendcopy(/* Integer */ ae_vector* a, ae_state *_state);
void xdebugi1outeven(ae_int_t n,
     /* Integer */ ae_vector* a,
     ae_state *_state);
double xdebugr1sum(/* Real    */ ae_vector* a, ae_state *_state);
void xdebugr1neg(/* Real    */ ae_vector* a, ae_state *_state);
void xdebugr1appendcopy(/* Real    */ ae_vector* a, ae_state *_state);
void xdebugr1outeven(ae_int_t n,
     /* Real    */ ae_vector* a,
     ae_state *_state);
ae_complex xdebugc1sum(/* Complex */ ae_vector* a, ae_state *_state);
void xdebugc1neg(/* Complex */ ae_vector* a, ae_state *_state);
void xdebugc1appendcopy(/* Complex */ ae_vector* a, ae_state *_state);
void xdebugc1outeven(ae_int_t n,
     /* Complex */ ae_vector* a,
     ae_state *_state);
ae_int_t xdebugb2count(/* Boolean */ ae_matrix* a, ae_state *_state);
void xdebugb2not(/* Boolean */ ae_matrix* a, ae_state *_state);
void xdebugb2transpose(/* Boolean */ ae_matrix* a, ae_state *_state);
void xdebugb2outsin(ae_int_t m,
     ae_int_t n,
     /* Boolean */ ae_matrix* a,
     ae_state *_state);
ae_int_t xdebugi2sum(/* Integer */ ae_matrix* a, ae_state *_state);
void xdebugi2neg(/* Integer */ ae_matrix* a, ae_state *_state);
void xdebugi2transpose(/* Integer */ ae_matrix* a, ae_state *_state);
void xdebugi2outsin(ae_int_t m,
     ae_int_t n,
     /* Integer */ ae_matrix* a,
     ae_state *_state);
double xdebugr2sum(/* Real    */ ae_matrix* a, ae_state *_state);
void xdebugr2neg(/* Real    */ ae_matrix* a, ae_state *_state);
void xdebugr2transpose(/* Real    */ ae_matrix* a, ae_state *_state);
void xdebugr2outsin(ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_matrix* a,
     ae_state *_state);
ae_complex xdebugc2sum(/* Complex */ ae_matrix* a, ae_state *_state);
void xdebugc2neg(/* Complex */ ae_matrix* a, ae_state *_state);
void xdebugc2transpose(/* Complex */ ae_matrix* a, ae_state *_state);
void xdebugc2outsincos(ae_int_t m,
     ae_int_t n,
     /* Complex */ ae_matrix* a,
     ae_state *_state);
double xdebugmaskedbiasedproductsum(ae_int_t m,
     ae_int_t n,
     /* Real    */ ae_matrix* a,
     /* Real    */ ae_matrix* b,
     /* Boolean */ ae_matrix* c,
     ae_state *_state);
void _xdebugrecord1_init(void* _p, ae_state *_state);
void _xdebugrecord1_init_copy(void* _dst, void* _src, ae_state *_state);
void _xdebugrecord1_clear(void* _p);
void _xdebugrecord1_destroy(void* _p);

}
#endif