This file is indexed.

/usr/bin/decode-dimms is in i2c-tools 4.0-2.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
#!/usr/bin/perl -w
#
# EEPROM data decoder for SDRAM DIMM modules
#
# Copyright 1998, 1999 Philip Edelbrock <phil@netroedge.com>
# modified by Christian Zuckschwerdt <zany@triq.net>
# modified by Burkart Lingner <burkart@bollchen.de>
# Copyright (C) 2005-2013  Jean Delvare <jdelvare@suse.de>
#
#    This program is free software; you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation; either version 2 of the License, or
#    (at your option) any later version.
#
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License
#    along with this program; if not, write to the Free Software
#    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
#    MA 02110-1301 USA.
#
#
# The eeprom driver must be loaded (unless option -x is used). For kernels
# older than 2.6.0, the eeprom driver can be found in the lm-sensors package.
#
# References:
# PC SDRAM Serial Presence
# Detect (SPD) Specification, Intel,
# 1997,1999, Rev 1.2B
#
# Jedec Standards 4.1.x & 4.5.x
# http://www.jedec.org
#

require 5.004;

use strict;
use POSIX qw(ceil);
use Fcntl qw(:DEFAULT :seek);
use File::Basename;
use vars qw($opt_html $opt_bodyonly $opt_side_by_side $opt_merge
	    $opt_igncheck $use_sysfs $use_hexdump $sbs_col_width
	    @vendors %decode_callback $revision @dimm $current %hexdump_cache);

use constant LITTLEENDIAN	=> "little-endian";
use constant BIGENDIAN		=> "big-endian";

$revision = '$Revision$ ($Date$)';
$revision =~ s/\$\w+: (.*?) \$/$1/g;
$revision =~ s/ \([^()]*\)//;

@vendors = (
["AMD", "AMI", "Fairchild", "Fujitsu",
 "GTE", "Harris", "Hitachi", "Inmos",
 "Intel", "I.T.T.", "Intersil", "Monolithic Memories",
 "Mostek", "Freescale (former Motorola)", "National", "NEC",
 "RCA", "Raytheon", "Conexant (Rockwell)", "Seeq",
 "NXP (former Signetics, Philips Semi.)", "Synertek", "Texas Instruments", "Toshiba",
 "Xicor", "Zilog", "Eurotechnique", "Mitsubishi",
 "Lucent (AT&T)", "Exel", "Atmel", "STMicroelectronics (former SGS/Thomson)",
 "Lattice Semi.", "NCR", "Wafer Scale Integration", "IBM",
 "Tristar", "Visic", "Intl. CMOS Technology", "SSSI",
 "MicrochipTechnology", "Ricoh Ltd.", "VLSI", "Micron Technology",
 "SK Hynix (former Hyundai Electronics)", "OKI Semiconductor", "ACTEL", "Sharp",
 "Catalyst", "Panasonic", "IDT", "Cypress",
 "DEC", "LSI Logic", "Zarlink (former Plessey)", "UTMC",
 "Thinking Machine", "Thomson CSF", "Integrated CMOS (Vertex)", "Honeywell",
 "Tektronix", "Oracle Corporation (former Sun Microsystems)", "Silicon Storage Technology", "ProMos/Mosel Vitelic",
 "Infineon (former Siemens)", "Macronix", "Xerox", "Plus Logic",
 "SunDisk", "Elan Circuit Tech.", "European Silicon Str.", "Apple Computer",
 "Xilinx", "Compaq", "Protocol Engines", "SCI",
 "Seiko Instruments", "Samsung", "I3 Design System", "Klic",
 "Crosspoint Solutions", "Alliance Semiconductor", "Tandem", "Hewlett-Packard",
 "Integrated Silicon Solutions", "Brooktree", "New Media", "MHS Electronic",
 "Performance Semi.", "Winbond Electronic", "Kawasaki Steel", "Bright Micro",
 "TECMAR", "Exar", "PCMCIA", "LG Semi (former Goldstar)",
 "Northern Telecom", "Sanyo", "Array Microsystems", "Crystal Semiconductor",
 "Analog Devices", "PMC-Sierra", "Asparix", "Convex Computer",
 "Quality Semiconductor", "Nimbus Technology", "Transwitch", "Micronas (ITT Intermetall)",
 "Cannon", "Altera", "NEXCOM", "QUALCOMM",
 "Sony", "Cray Research", "AMS(Austria Micro)", "Vitesse",
 "Aster Electronics", "Bay Networks (Synoptic)", "Zentrum or ZMD", "TRW",
 "Thesys", "Solbourne Computer", "Allied-Signal", "Dialog",
 "Media Vision", "Numonyx Corporation (former Level One Communication)"],
["Cirrus Logic", "National Instruments", "ILC Data Device", "Alcatel Mietec",
 "Micro Linear", "Univ. of NC", "JTAG Technologies", "BAE Systems",
 "Nchip", "Galileo Tech", "Bestlink Systems", "Graychip",
 "GENNUM", "VideoLogic", "Robert Bosch", "Chip Express",
 "DATARAM", "United Microelec Corp.", "TCSI", "Smart Modular",
 "Hughes Aircraft", "Lanstar Semiconductor", "Qlogic", "Kingston",
 "Music Semi", "Ericsson Components", "SpaSE", "Eon Silicon Devices",
 "Programmable Micro Corp", "DoD", "Integ. Memories Tech.", "Corollary Inc.",
 "Dallas Semiconductor", "Omnivision", "EIV(Switzerland)", "Novatel Wireless",
 "Zarlink (former Mitel)", "Clearpoint", "Cabletron", "STEC (former Silicon Technology)",
 "Vanguard", "Hagiwara Sys-Com", "Vantis", "Celestica",
 "Century", "Hal Computers", "Rohm Company Ltd.", "Juniper Networks",
 "Libit Signal Processing", "Mushkin Enhanced Memory", "Tundra Semiconductor", "Adaptec Inc.",
 "LightSpeed Semi.", "ZSP Corp.", "AMIC Technology", "Adobe Systems",
 "Dynachip", "PNY Technologies Inc. (former PNY Electronics)", "Newport Digital", "MMC Networks",
 "T Square", "Seiko Epson", "Broadcom", "Viking Components",
 "V3 Semiconductor", "Flextronics (former Orbit)", "Suwa Electronics", "Transmeta",
 "Micron CMS", "American Computer & Digital Components Inc", "Enhance 3000 Inc", "Tower Semiconductor",
 "CPU Design", "Price Point", "Maxim Integrated Product", "Tellabs",
 "Centaur Technology", "Unigen Corporation", "Transcend Information", "Memory Card Technology",
 "CKD Corporation Ltd.", "Capital Instruments, Inc.", "Aica Kogyo, Ltd.", "Linvex Technology",
 "MSC Vertriebs GmbH", "AKM Company, Ltd.", "Dynamem, Inc.", "NERA ASA",
 "GSI Technology", "Dane-Elec (C Memory)", "Acorn Computers", "Lara Technology",
 "Oak Technology, Inc.", "Itec Memory", "Tanisys Technology", "Truevision",
 "Wintec Industries", "Super PC Memory", "MGV Memory", "Galvantech",
 "Gadzoox Nteworks", "Multi Dimensional Cons.", "GateField", "Integrated Memory System",
 "Triscend", "XaQti", "Goldenram", "Clear Logic",
 "Cimaron Communications", "Nippon Steel Semi. Corp.", "Advantage Memory", "AMCC",
 "LeCroy", "Yamaha Corporation", "Digital Microwave", "NetLogic Microsystems",
 "MIMOS Semiconductor", "Advanced Fibre", "BF Goodrich Data.", "Epigram",
 "Acbel Polytech Inc.", "Apacer Technology", "Admor Memory", "FOXCONN",
 "Quadratics Superconductor", "3COM"],
["Camintonn Corporation", "ISOA Incorporated", "Agate Semiconductor", "ADMtek Incorporated",
 "HYPERTEC", "Adhoc Technologies", "MOSAID Technologies", "Ardent Technologies",
 "Switchcore", "Cisco Systems, Inc.", "Allayer Technologies", "WorkX AG (Wichman)",
 "Oasis Semiconductor", "Novanet Semiconductor", "E-M Solutions", "Power General",
 "Advanced Hardware Arch.", "Inova Semiconductors GmbH", "Telocity", "Delkin Devices",
 "Symagery Microsystems", "C-Port Corporation", "SiberCore Technologies", "Southland Microsystems",
 "Malleable Technologies", "Kendin Communications", "Great Technology Microcomputer", "Sanmina Corporation",
 "HADCO Corporation", "Corsair", "Actrans System Inc.", "ALPHA Technologies",
 "Silicon Laboratories, Inc. (Cygnal)", "Artesyn Technologies", "Align Manufacturing", "Peregrine Semiconductor",
 "Chameleon Systems", "Aplus Flash Technology", "MIPS Technologies", "Chrysalis ITS",
 "ADTEC Corporation", "Kentron Technologies", "Win Technologies", "Tezzaron Semiconductor (former Tachyon Semiconductor)",
 "Extreme Packet Devices", "RF Micro Devices", "Siemens AG", "Sarnoff Corporation",
 "Itautec SA (former Itautec Philco SA)", "Radiata Inc.", "Benchmark Elect. (AVEX)", "Legend",
 "SpecTek Incorporated", "Hi/fn", "Enikia Incorporated", "SwitchOn Networks",
 "AANetcom Incorporated", "Micro Memory Bank", "ESS Technology", "Virata Corporation",
 "Excess Bandwidth", "West Bay Semiconductor", "DSP Group", "Newport Communications",
 "Chip2Chip Incorporated", "Phobos Corporation", "Intellitech Corporation", "Nordic VLSI ASA",
 "Ishoni Networks", "Silicon Spice", "Alchemy Semiconductor", "Agilent Technologies",
 "Centillium Communications", "W.L. Gore", "HanBit Electronics", "GlobeSpan",
 "Element 14", "Pycon", "Saifun Semiconductors", "Sibyte, Incorporated",
 "MetaLink Technologies", "Feiya Technology", "I & C Technology", "Shikatronics",
 "Elektrobit", "Megic", "Com-Tier", "Malaysia Micro Solutions",
 "Hyperchip", "Gemstone Communications", "Anadigm (former Anadyne)", "3ParData",
 "Mellanox Technologies", "Tenx Technologies", "Helix AG", "Domosys",
 "Skyup Technology", "HiNT Corporation", "Chiaro", "MDT Technologies GmbH (former MCI Computer GMBH)",
 "Exbit Technology A/S", "Integrated Technology Express", "AVED Memory", "Legerity",
 "Jasmine Networks", "Caspian Networks", "nCUBE", "Silicon Access Networks",
 "FDK Corporation", "High Bandwidth Access", "MultiLink Technology", "BRECIS",
 "World Wide Packets", "APW", "Chicory Systems", "Xstream Logic",
 "Fast-Chip", "Zucotto Wireless", "Realchip", "Galaxy Power",
 "eSilicon", "Morphics Technology", "Accelerant Networks", "Silicon Wave",
 "SandCraft", "Elpida"],
["Solectron", "Optosys Technologies", "Buffalo (former Melco)", "TriMedia Technologies",
 "Cyan Technologies", "Global Locate", "Optillion", "Terago Communications",
 "Ikanos Communications", "Princeton Technology", "Nanya Technology", "Elite Flash Storage",
 "Mysticom", "LightSand Communications", "ATI Technologies", "Agere Systems",
 "NeoMagic", "AuroraNetics", "Golden Empire", "Mushkin",
 "Tioga Technologies", "Netlist", "TeraLogic", "Cicada Semiconductor",
 "Centon Electronics", "Tyco Electronics", "Magis Works", "Zettacom",
 "Cogency Semiconductor", "Chipcon AS", "Aspex Technology", "F5 Networks",
 "Programmable Silicon Solutions", "ChipWrights", "Acorn Networks", "Quicklogic",
 "Kingmax Semiconductor", "BOPS", "Flasys", "BitBlitz Communications",
 "eMemory Technology", "Procket Networks", "Purple Ray", "Trebia Networks",
 "Delta Electronics", "Onex Communications", "Ample Communications", "Memory Experts Intl",
 "Astute Networks", "Azanda Network Devices", "Dibcom", "Tekmos",
 "API NetWorks", "Bay Microsystems", "Firecron Ltd", "Resonext Communications",
 "Tachys Technologies", "Equator Technology", "Concept Computer", "SILCOM",
 "3Dlabs", "c't Magazine", "Sanera Systems", "Silicon Packets",
 "Viasystems Group", "Simtek", "Semicon Devices Singapore", "Satron Handelsges",
 "Improv Systems", "INDUSYS GmbH", "Corrent", "Infrant Technologies",
 "Ritek Corp", "empowerTel Networks", "Hypertec", "Cavium Networks",
 "PLX Technology", "Massana Design", "Intrinsity", "Valence Semiconductor",
 "Terawave Communications", "IceFyre Semiconductor", "Primarion", "Picochip Designs Ltd",
 "Silverback Systems", "Jade Star Technologies", "Pijnenburg Securealink",
 "takeMS - Ultron AG (former Memorysolution GmbH)", "Cambridge Silicon Radio",
 "Swissbit", "Nazomi Communications", "eWave System",
 "Rockwell Collins", "Picocel Co., Ltd.", "Alphamosaic Ltd", "Sandburst",
 "SiCon Video", "NanoAmp Solutions", "Ericsson Technology", "PrairieComm",
 "Mitac International", "Layer N Networks", "MtekVision", "Allegro Networks",
 "Marvell Semiconductors", "Netergy Microelectronic", "NVIDIA", "Internet Machines",
 "Memorysolution GmbH (former Peak Electronics)", "Litchfield Communication", "Accton Technology", "Teradiant Networks",
 "Scaleo Chip (former Europe Technologies)", "Cortina Systems", "RAM Components", "Raqia Networks",
 "ClearSpeed", "Matsushita Battery", "Xelerated", "SimpleTech",
 "Utron Technology", "Astec International", "AVM gmbH", "Redux Communications",
 "Dot Hill Systems", "TeraChip"],
["T-RAM Incorporated", "Innovics Wireless", "Teknovus", "KeyEye Communications",
 "Runcom Technologies", "RedSwitch", "Dotcast", "Silicon Mountain Memory",
 "Signia Technologies", "Pixim", "Galazar Networks", "White Electronic Designs",
 "Patriot Scientific", "Neoaxiom Corporation", "3Y Power Technology", "Scaleo Chip (former Europe Technologies)",
 "Potentia Power Systems", "C-guys Incorporated", "Digital Communications Technology Incorporated", "Silicon-Based Technology",
 "Fulcrum Microsystems", "Positivo Informatica Ltd", "XIOtech Corporation", "PortalPlayer",
 "Zhiying Software", "Parker Vision, Inc. (former Direct2Data)", "Phonex Broadband", "Skyworks Solutions",
 "Entropic Communications", "I'M Intelligent Memory Ltd (former Pacific Force Technology)", "Zensys A/S", "Legend Silicon Corp.",
 "sci-worx GmbH", "SMSC (former Oasis Silicon Systems)", "Renesas Electronics (former Renesas Technology)", "Raza Microelectronics",
 "Phyworks", "MediaTek", "Non-cents Productions", "US Modular",
 "Wintegra Ltd", "Mathstar", "StarCore", "Oplus Technologies",
 "Mindspeed", "Just Young Computer", "Radia Communications", "OCZ",
 "Emuzed", "LOGIC Devices", "Inphi Corporation", "Quake Technologies",
 "Vixel", "SolusTek", "Kongsberg Maritime", "Faraday Technology",
 "Altium Ltd.", "Insyte", "ARM Ltd.", "DigiVision",
 "Vativ Technologies", "Endicott Interconnect Technologies", "Pericom", "Bandspeed",
 "LeWiz Communications", "CPU Technology", "Ramaxel Technology", "DSP Group",
 "Axis Communications", "Legacy Electronics", "Chrontel", "Powerchip Semiconductor",
 "MobilEye Technologies", "Excel Semiconductor", "A-DATA Technology", "VirtualDigm",
 "G Skill Intl", "Quanta Computer", "Yield Microelectronics", "Afa Technologies",
 "KINGBOX Technology Co. Ltd.", "Ceva", "iStor Networks", "Advance Modules",
 "Microsoft", "Open-Silicon", "Goal Semiconductor", "ARC International",
 "Simmtec", "Metanoia", "Key Stream", "Lowrance Electronics",
 "Adimos", "SiGe Semiconductor", "Fodus Communications", "Credence Systems Corp.",
 "Genesis Microchip Inc.", "Vihana, Inc.", "WIS Technologies", "GateChange Technologies",
 "High Density Devices AS", "Synopsys", "Gigaram", "Enigma Semiconductor Inc.",
 "Century Micro Inc.", "Icera Semiconductor", "Mediaworks Integrated Systems", "O'Neil Product Development",
 "Supreme Top Technology Ltd.", "MicroDisplay Corporation", "Team Group Inc.", "Sinett Corporation",
 "Toshiba Corporation", "Tensilica", "SiRF Technology", "Bacoc Inc.",
 "SMaL Camera Technologies", "Thomson SC", "Airgo Networks", "Wisair Ltd.",
 "SigmaTel", "Arkados", "Compete IT gmbH Co. KG", "Eudar Technology Inc.",
 "Focus Enhancements", "Xyratex"],
["Specular Networks", "Patriot Memory", "U-Chip Technology Corp.", "Silicon Optix",
 "Greenfield Networks", "CompuRAM GmbH", "Stargen, Inc.", "NetCell Corporation",
 "Excalibrus Technologies Ltd", "SCM Microsystems", "Xsigo Systems, Inc.", "CHIPS & Systems Inc",
 "Tier 1 Multichip Solutions", "CWRL Labs", "Teradici", "Gigaram, Inc.",
 "g2 Microsystems", "PowerFlash Semiconductor", "P.A. Semi, Inc.", "NovaTech Solutions, S.A.",
 "c2 Microsystems, Inc.", "Level5 Networks", "COS Memory AG", "Innovasic Semiconductor",
 "02IC Co. Ltd", "Tabula, Inc.", "Crucial Technology", "Chelsio Communications",
 "Solarflare Communications", "Xambala Inc.", "EADS Astrium", "Terra Semiconductor Inc. (former ATO Semicon Co. Ltd.)",
 "Imaging Works, Inc.", "Astute Networks, Inc.", "Tzero", "Emulex",
 "Power-One", "Pulse~LINK Inc.", "Hon Hai Precision Industry", "White Rock Networks Inc.",
 "Telegent Systems USA, Inc.", "Atrua Technologies, Inc.", "Acbel Polytech Inc.",
 "eRide Inc.","ULi Electronics Inc.", "Magnum Semiconductor Inc.", "neoOne Technology, Inc.",
 "Connex Technology, Inc.", "Stream Processors, Inc.", "Focus Enhancements", "Telecis Wireless, Inc.",
 "uNav Microelectronics", "Tarari, Inc.", "Ambric, Inc.", "Newport Media, Inc.", "VMTS",
 "Enuclia Semiconductor, Inc.", "Virtium Technology Inc.", "Solid State System Co., Ltd.", "Kian Tech LLC",
 "Artimi", "Power Quotient International", "Avago Technologies", "ADTechnology", "Sigma Designs",
 "SiCortex, Inc.", "Ventura Technology Group", "eASIC", "M.H.S. SAS", "Micro Star International",
 "Rapport Inc.", "Makway International", "Broad Reach Engineering Co.",
 "Semiconductor Mfg Intl Corp", "SiConnect", "FCI USA Inc.", "Validity Sensors",
 "Coney Technology Co. Ltd.", "Spans Logic", "Neterion Inc.", "Qimonda",
 "New Japan Radio Co. Ltd.", "Velogix", "Montalvo Systems", "iVivity Inc.", "Walton Chaintech",
 "AENEON", "Lorom Industrial Co. Ltd.", "Radiospire Networks", "Sensio Technologies, Inc.",
 "Nethra Imaging", "Hexon Technology Pte Ltd", "CompuStocx (CSX)", "Methode Electronics, Inc.",
 "Connect One Ltd.", "Opulan Technologies", "Septentrio NV", "Goldenmars Technology Inc.",
 "Kreton Corporation", "Cochlear Ltd.", "Altair Semiconductor", "NetEffect, Inc.",
 "Spansion, Inc.", "Taiwan Semiconductor Mfg", "Emphany Systems Inc.",
 "ApaceWave Technologies", "Mobilygen Corporation", "Tego", "Cswitch Corporation",
 "Haier (Beijing) IC Design Co.", "MetaRAM", "Axel Electronics Co. Ltd.", "Tilera Corporation",
 "Aquantia", "Vivace Semiconductor", "Redpine Signals", "Octalica", "InterDigital Communications",
 "Avant Technology", "Asrock, Inc.", "Availink", "Quartics, Inc.", "Element CXI",
 "Innovaciones Microelectronicas", "VeriSilicon Microelectronics", "W5 Networks"],
["MOVEKING", "Mavrix Technology, Inc.", "CellGuide Ltd.", "Faraday Technology",
 "Diablo Technologies, Inc.", "Jennic", "Octasic", "Molex Incorporated", "3Leaf Networks",
 "Bright Micron Technology", "Netxen", "NextWave Broadband Inc.", "DisplayLink", "ZMOS Technology",
 "Tec-Hill", "Multigig, Inc.", "Amimon", "Euphonic Technologies, Inc.", "BRN Phoenix",
 "InSilica", "Ember Corporation", "Avexir Technologies Corporation", "Echelon Corporation",
 "Edgewater Computer Systems", "XMOS Semiconductor Ltd.", "GENUSION, Inc.", "Memory Corp NV",
 "SiliconBlue Technologies", "Rambus Inc.", "Andes Technology Corporation", "Coronis Systems",
 "Achronix Semiconductor", "Siano Mobile Silicon Ltd.", "Semtech Corporation", "Pixelworks Inc.",
 "Gaisler Research AB", "Teranetics", "Toppan Printing Co. Ltd.", "Kingxcon",
 "Silicon Integrated Systems", "I-O Data Device, Inc.", "NDS Americas Inc.", "Solomon Systech Limited",
 "On Demand Microelectronics", "Amicus Wireless Inc.", "SMARDTV SNC", "Comsys Communication Ltd.",
 "Movidia Ltd.", "Javad GNSS, Inc.", "Montage Technology Group", "Trident Microsystems", "Super Talent",
 "Optichron, Inc.", "Future Waves UK Ltd.", "SiBEAM, Inc.", "Inicore, Inc.", "Virident Systems",
 "M2000, Inc.", "ZeroG Wireless, Inc.", "Gingle Technology Co. Ltd.", "Space Micro Inc.", "Wilocity",
 "Novafora, Inc.", "iKoa Corporation", "ASint Technology", "Ramtron", "Plato Networks Inc.",
 "IPtronics AS", "Infinite-Memories", "Parade Technologies Inc.", "Dune Networks",
 "GigaDevice Semiconductor", "Modu Ltd.", "CEITEC", "Northrop Grumman", "XRONET Corporation",
 "Sicon Semiconductor AB", "Atla Electronics Co. Ltd.", "TOPRAM Technology", "Silego Technology Inc.",
 "Kinglife", "Ability Industries Ltd.", "Silicon Power Computer & Communications",
 "Augusta Technology, Inc.", "Nantronics Semiconductors", "Hilscher Gesellschaft", "Quixant Ltd.",
 "Percello Ltd.", "NextIO Inc.", "Scanimetrics Inc.", "FS-Semi Company Ltd.", "Infinera Corporation",
 "SandForce Inc.", "Lexar Media", "Teradyne Inc.", "Memory Exchange Corp.", "Suzhou Smartek Electronics",
 "Avantium Corporation", "ATP Electronics Inc.", "Valens Semiconductor Ltd", "Agate Logic, Inc.",
 "Netronome", "Zenverge, Inc.", "N-trig Ltd", "SanMax Technologies Inc.", "Contour Semiconductor Inc.",
 "TwinMOS", "Silicon Systems, Inc.", "V-Color Technology Inc.", "Certicom Corporation", "JSC ICC Milandr",
 "PhotoFast Global Inc.", "InnoDisk Corporation", "Muscle Power", "Energy Micro", "Innofidei",
 "CopperGate Communications", "Holtek Semiconductor Inc.", "Myson Century, Inc.", "FIDELIX",
 "Red Digital Cinema", "Densbits Technology", "Zempro", "MoSys", "Provigent", "Triad Semiconductor, Inc."],
["Siklu Communication Ltd.", "A Force Manufacturing Ltd.", "Strontium", "Abilis Systems", "Siglead, Inc.",
 "Ubicom, Inc.", "Unifosa Corporation", "Stretch, Inc.", "Lantiq Deutschland GmbH", "Visipro",
 "EKMemory", "Microelectronics Institute ZTE", "Cognovo Ltd.", "Carry Technology Co. Ltd.", "Nokia",
 "King Tiger Technology", "Sierra Wireless", "HT Micron", "Albatron Technology Co. Ltd.",
 "Leica Geosystems AG", "BroadLight", "AEXEA", "ClariPhy Communications, Inc.", "Green Plug",
 "Design Art Networks", "Mach Xtreme Technology Ltd.", "ATO Solutions Co. Ltd.", "Ramsta",
 "Greenliant Systems, Ltd.", "Teikon", "Antec Hadron", "NavCom Technology, Inc.",
 "Shanghai Fudan Microelectronics", "Calxeda, Inc.", "JSC EDC Electronics", "Kandit Technology Co. Ltd.",
 "Ramos Technology", "Goldenmars Technology", "XeL Technology Inc.", "Newzone Corporation",
 "ShenZhen MercyPower Tech", "Nanjing Yihuo Technology", "Nethra Imaging Inc.", "SiTel Semiconductor BV",
 "SolidGear Corporation", "Topower Computer Ind Co Ltd.", "Wilocity", "Profichip GmbH",
 "Gerad Technologies", "Ritek Corporation", "Gomos Technology Limited", "Memoright Corporation",
 "D-Broad, Inc.", "HiSilicon Technologies", "Syndiant Inc.", "Enverv Inc.", "Cognex",
 "Xinnova Technology Inc.", "Ultron AG", "Concord Idea Corporation", "AIM Corporation",
 "Lifetime Memory Products", "Ramsway", "Recore Systems BV", "Haotian Jinshibo Science Tech",
 "Being Advanced Memory", "Adesto Technologies", "Giantec Semiconductor, Inc.", "HMD Electronics AG",
 "Gloway International (HK)", "Kingcore", "Anucell Technology Holding",
 "Accord Software & Systems Pvt. Ltd.", "Active-Semi Inc.", "Denso Corporation", "TLSI Inc.",
 "Shenzhen Daling Electronic Co. Ltd.", "Mustang", "Orca Systems", "Passif Semiconductor",
 "GigaDevice Semiconductor (Beijing) Inc.", "Memphis Electronic", "Beckhoff Automation GmbH",
 "Harmony Semiconductor Corp (former ProPlus Design Solutions)", "Air Computers SRL", "TMT Memory",
 "Eorex Corporation", "Xingtera", "Netsol", "Bestdon Technology Co. Ltd.", "Baysand Inc.",
 "Uroad Technology Co. Ltd. (former Triple Grow Industrial Ltd.)", "Wilk Elektronik S.A.",
 "AAI", "Harman", "Berg Microelectronics Inc.", "ASSIA, Inc.", "Visiontek Products LLC",
 "OCMEMORY", "Welink Solution Inc.", "Shark Gaming", "Avalanche Technology",
 "R&D Center ELVEES OJSC", "KingboMars Technology Co. Ltd.",
 "High Bridge Solutions Industria Eletronica", "Transcend Technology Co. Ltd.",
 "Everspin Technologies", "Hon-Hai Precision", "Smart Storage Systems", "Toumaz Group",
 "Zentel Electronics Corporation", "Panram International Corporation",
 "Silicon Space Technology", "LITE-ON IT Corporation", "Inuitive", "HMicro",
 "BittWare Inc.", "GLOBALFOUNDRIES", "ACPI Digital Co. Ltd", "Annapurna Labs",
 "AcSiP Technology Corporation", "Idea! Electronic Systems", "Gowe Technology Co. Ltd",
 "Hermes Testing Solutions Inc.", "Positivo BGH", "Intelligence Silicon Technology"],
["3D PLUS", "Diehl Aerospace", "Fairchild", "Mercury Systems",
 "Sonics Inc.", "GE Intelligent Platforms GmbH & Co.", "Shenzhen Jinge Information Co. Ltd",
 "SCWW", "Silicon Motion Inc.", "Anurag", "King Kong",
 "FROM30 Co. Ltd", "Gowin Semiconductor Corp", "Fremont Micro Devices Ltd",
 "Ericsson Modems", "Exelis", "Satixfy Ltd", "Galaxy Microsystems Ltd",
 "Gloway International Co. Ltd", "Lab", "Smart Energy Instruments",
 "Approved Memory Corporation", "Axell Corporation", "ISD Technology Limited",
 "Phytium", "Xi'an SinoChip Semiconductor", "Ambiq Micro", "eveRAM Technology Inc.",
 "Infomax", "Butterfly Network Inc.", "Shenzhen City Gcai Electronics",
 "Stack Devices Corporation", "ADK Media Group", "TSP Global Co. Ltd",
 "HighX", "Shenzhen Elicks Technology", "ISSI/Chingis", "Google Inc.",
 "Dasima International Development", "Leahkinn Technology Limited",
 "HIMA Paul Hildebrandt GmbH Co KG", "Keysight Technologies",
 "Techcomp International (Fastable)", "Ancore Technology Corporation",
 "Nuvoton", "Korea Uhbele International Group Ltd", "Ikegami Tsushinki Co. Ltd",
 "RelChip Inc.", "Baikal Electronics", "Nemostech Inc.",
 "Memorysolution GmbH", "Silicon Integrated Systems Corporation",
 "Xiede", "Multilaser Components", "Flash Chi", "Jone",
 "GCT Semiconductor Inc.", "Hong Kong Zetta Device Technology",
 "Unimemory Technology(s) Pte Ltd", "Cuso", "Kuso",
 "Uniquify Inc.", "Skymedi Corporation", "Core Chance Co. Ltd",
 "Tekism Co. Ltd", "Seagate Technology PLC", "Hong Kong Gaia Group Co. Limited",
 "Gigacom Semiconductor LLC", "V2 Technologies", "TLi", "Neotion",
 "Lenovo", "Shenzhen Zhongteng Electronic Corp. Ltd", "Compound Photonics",
 "Cognimem Technologies Inc.", "Shenzhen Pango Microsystems Co. Ltd",
 "Vasekey", "Cal-Comp Industria de Semicondutores", "Eyenix Co. Ltd",
 "Heoriady", "Accelerated Memory Production Inc.", "INVECAS Inc.",
 "AP Memory", "Douqi Technology", "Etron Technology Inc.",
 "Indie Semiconductor", "Socionext Inc.", "HGST", "EVGA",
 "Audience Inc.", "EpicGear", "Vitesse Enterprise Co.",
 "Foxtronn International Corporation", "Bretelon Inc.",
 "Zbit Semiconductor Inc."]
);

$use_sysfs = -d '/sys/bus';

# We consider that no data was written to this area of the SPD EEPROM if
# all bytes read 0x00 or all bytes read 0xff
sub spd_written(@)
{
	my $all_00 = 1;
	my $all_ff = 1;

	foreach my $b (@_) {
		$all_00 = 0 unless $b == 0x00;
		$all_ff = 0 unless $b == 0xff;
		return 1 unless $all_00 or $all_ff;
	}

	return 0;
}

sub parity($)
{
	my $n = shift;
	my $parity = 0;

	while ($n) {
		$parity++ if ($n & 1);
		$n >>= 1;
	}

	return ($parity & 1);
}

# The code byte includes parity, the count byte does not.
sub manufacturer_common($$)
{
	my ($count, $code) = @_;
	my $manufacturer;

	return "Invalid" if parity($code) != 1
			 or ($code &= 0x7F) == 0;
	return "Unknown" if $count >= @vendors
			 or $code - 1 >= @{$vendors[$count]};
	$manufacturer = $vendors[$count][$code - 1];
	$manufacturer =~ s/ \(former .*\)$// if $opt_side_by_side;
	return $manufacturer;
}

# New encoding format (as of DDR3) for manufacturer just has a count of
# leading 0x7F rather than all the individual bytes.  The count bytes includes
# parity!
sub manufacturer_ddr3($$)
{
	my ($count, $code) = @_;
	my $manufacturer;

	return "Undefined" unless spd_written($count, $code);

	$manufacturer = manufacturer_common($count & 0x7F, $code);
	$manufacturer .= "? (Invalid parity)" if parity($count) != 1;
	return $manufacturer;
}

sub manufacturer(@)
{
	my @bytes = @_;
	my $ai = 0;
	my $first;

	return ("Undefined", []) unless spd_written(@bytes);

	while (defined($first = shift(@bytes)) && $first == 0x7F) {
		$ai++;
	}

	return ("Invalid", []) unless defined $first;
	return (manufacturer_common($ai, $first), \@bytes);
}

sub manufacturer_data(@)
{
	my $hex = "";
	my $asc = "";

	return unless spd_written(@_);

	foreach my $byte (@_) {
		$hex .= sprintf("\%02X ", $byte);
		$asc .= ($byte >= 32 && $byte < 127) ? chr($byte) : '?';
	}

	return "$hex(\"$asc\")";
}

sub part_number(@)
{
	my $asc = "";
	my $byte;

	while (defined ($byte = shift) && $byte >= 32 && $byte < 127) {
		$asc .= chr($byte);
	}

	return ($asc eq "") ? "Undefined" : $asc;
}

sub cas_latencies(@)
{
	return "None" unless @_;
	return join ', ', map("${_}T", sort { $b <=> $a } @_);
}

# Real printing functions

sub html_encode($)
{
	my $text = shift;
	$text =~ s/</\&lt;/sg;
	$text =~ s/>/\&gt;/sg;
	$text =~ s/ degrees C/\&deg;C/sg;
	$text =~ s/\n/<br\/>\n/sg;
	return $text;
}

sub same_values(@)
{
	my $value = shift;
	while (@_) {
		return 0 unless $value eq shift;
	}
	return 1;
}

sub real_printl($$) # print a line w/ label and values
{
	my ($label, @values) = @_;
	local $_;
	my $same_values = same_values(@values);

	# If all values are N/A, don't bother printing
	return if $values[0] eq "N/A" and $same_values;

	if ($opt_html) {
		$label = html_encode($label);
		@values = map { html_encode($_) } @values;
		print "<tr><td style=\"vertical-align: top;\">$label</td>";
		if (!$opt_merge) {
			print "<td>$_</td>" foreach @values;
		} elsif ($same_values) {
			print "<td colspan=\"".(scalar @values)."\">$values[0]</td>";
		} else {
			# For HTML output, merge adjacent cells even if
			# the whole line cannot be merged.
			my $colcnt = 0;
			while (@values) {
				$colcnt++;
				my $value = shift @values;
				next if (@values && $value eq $values[0]);
				print "<td" . ($colcnt > 1 ? " colspan=\"$colcnt\"" : "") .">$value</td>";
				$colcnt = 0;
			}
		}
		print "</tr>\n";
	} else {
		if ($opt_merge && $same_values) {
			splice(@values, 1);
		}

		my $format = "%-47s".(("  %-".$sbs_col_width."s") x (scalar @values - 1))."  %s\n";
		my $maxl = 0; # Keep track of the max number of lines

		# It's a bit tricky because each value may span over more than
		# one line. We can easily extract the values per column, but
		# we need them per line at printing time. So we have to
		# prepare a 2D array with all the individual string fragments.
		my ($col, @lines);
		for ($col = 0; $col < @values; $col++) {
			my @cells = split /\n/, $values[$col];
			$maxl = @cells if @cells > $maxl;
			for (my $l = 0; $l < @cells; $l++) {
				$lines[$l]->[$col] = $cells[$l];
			}
		}

		# Also make sure there are no holes in the array
		for (my $l = 0; $l < $maxl; $l++) {
			for ($col = 0; $col < @values; $col++) {
				$lines[$l]->[$col] = ""
					if not defined $lines[$l]->[$col];
			}
		}

		printf $format, $label, @{shift @lines};
		printf $format, "", @{$_} foreach (@lines);
	}
}

sub printl2 # print a line w/ label and value (outside a table)
{
	my ($label, $value, $style) = @_;
	if ($opt_html) {
		$label = html_encode($label);
		$value = html_encode($value);
		print "<p", (defined $style ? " style=\"$style\"" : ""), ">";
	}
	print "$label: $value\n";
	print "</p>\n" if $opt_html;
}

sub real_prints($) # print separator w/ given text
{
	my ($label, $ncol) = @_;
	$ncol = 1 unless $ncol;
	if ($opt_html) {
		$label = html_encode($label);
		print "<tr><td style=\"font-weight: bold; text-align: center;\" colspan=\"".(1+$ncol)."\">$label</td></tr>\n";
	} else {
		print "\n---=== $label ===---\n";
	}
}

sub printh($$) # print header w/ given text
{
	my ($header, $sub) = @_;
	if ($opt_html) {
		$header = html_encode($header);
		$sub = html_encode($sub);
		print "<h1>$header</h1>\n";
		print "<p>$sub</p>\n";
	} else {
		print "\n$header\n$sub\n";
	}
}

sub printc($) # print comment
{
	my ($comment) = @_;
	if ($opt_html) {
		$comment = html_encode($comment);
		print "<!-- $comment -->\n";
	} else {
		print "# $comment\n";
	}
}

# Fake printing functions
# These don't actually print anything, instead they store the desired
# output for later processing.

sub printl($$) # print a line w/ label and value
{
	my @output = (\&real_printl, @_);
	push @{$dimm[$current]->{output}}, \@output;
}

sub printl_cond($$$) # same as printl but conditional
{
	my ($cond, $label, $value) = @_;
	return unless $cond || $opt_side_by_side;
	printl($label, $cond ? $value : "N/A");
}

sub prints($) # print separator w/ given text
{
	my @output = (\&real_prints, @_);
	push @{$dimm[$current]->{output}}, \@output;
}

# Helper functions

sub tns1($) # print a time in ns, with 1 decimal digit
{
	return sprintf("%.1f ns", $_[0]);
}

sub tns($) # print a time in ns, with 2 decimal digits
{
	return sprintf("%3.2f ns", $_[0]);
}

sub tns3($) # print a time in ns, with 3 decimal digits
{
	return sprintf("%.3f ns", $_[0]);
}

sub value_or_undefined
{
	my ($value, $unit) = @_;
	return "Undefined!" unless $value;
	$value .= " $unit" if defined $unit;
	return $value;
}

# Common to SDR, DDR and DDR2 SDRAM
sub sdram_voltage_interface_level($)
{
	my @levels = (
		"TTL (5V tolerant)",		#  0
		"LVTTL (not 5V tolerant)",	#  1
		"HSTL 1.5V",			#  2
		"SSTL 3.3V",			#  3
		"SSTL 2.5V",			#  4
		"SSTL 1.8V",			#  5
	);
	
	return ($_[0] < @levels) ? $levels[$_[0]] : "Undefined!";
}

# Common to SDR, DDR and DDR2 SDRAM
sub sdram_module_configuration_type($)
{
	my $byte = $_[0] & 0x07;
	my @edc;

	return "No Parity" if $byte == 0;

	# Data ECC includes Data Parity so don't print both
	push @edc, "Data Parity" if ($byte & 0x03) == 0x01;
	push @edc, "Data ECC" if ($byte & 0x02);
	# New in DDR2 specification
	push @edc, "Address/Command Parity" if ($byte & 0x04);

	return join ", ", @edc;
}

# Parameter: EEPROM bytes 0-127 (using 3-62)
sub decode_sdr_sdram($)
{
	my $bytes = shift;
	my $temp;
	my ($ctime, $ctime1, $ctime2, $ctime_min);

# SPD revision
	# Starting with SPD revision 1.2, this byte is encoded in BCD
	printl("SPD Revision", $bytes->[62] < 0x12 ? $bytes->[62] :
		($bytes->[62] >> 4) . "." . ($bytes->[62] & 0xf));

#size computation

	prints("Memory Characteristics");

	my $k = 0;
	my $ii = 0;

	$ii = ($bytes->[3] & 0x0f) + ($bytes->[4] & 0x0f) - 17;
	if (($bytes->[5] <= 8) && ($bytes->[17] <= 8)) {
		 $k = $bytes->[5] * $bytes->[17];
	}

	if ($ii > 0 && $ii <= 12 && $k > 0) {
		printl("Size", ((1 << $ii) * $k) . " MB");
	} else {
		printl("Size", "INVALID: " . $bytes->[3] . "," . $bytes->[4] . "," .
			       $bytes->[5] . "," . $bytes->[17]);
	}

	my @cas;
	for ($ii = 0; $ii < 7; $ii++) {
		push(@cas, $ii + 1) if ($bytes->[18] & (1 << $ii));
	}

	my $trcd;
	my $trp;
	my $tras;
	$ctime_min = $ctime = ($bytes->[9] >> 4) + ($bytes->[9] & 0xf) * 0.1;

	$trcd = $bytes->[29];
	$trp = $bytes->[27];
	$tras = $bytes->[30];

	printl("tCL-tRCD-tRP-tRAS",
		$cas[$#cas] . "-" .
		ceil($trcd/$ctime) . "-" .
		ceil($trp/$ctime) . "-" .
		ceil($tras/$ctime));

	if ($bytes->[3] == 0) { $temp = "Undefined!"; }
	elsif ($bytes->[3] == 1) { $temp = "1/16"; }
	elsif ($bytes->[3] == 2) { $temp = "2/17"; }
	elsif ($bytes->[3] == 3) { $temp = "3/18"; }
	else { $temp = $bytes->[3]; }
	printl("Number of Row Address Bits", $temp);

	if ($bytes->[4] == 0) { $temp = "Undefined!"; }
	elsif ($bytes->[4] == 1) { $temp = "1/16"; }
	elsif ($bytes->[4] == 2) { $temp = "2/17"; }
	elsif ($bytes->[4] == 3) { $temp = "3/18"; }
	else { $temp = $bytes->[4]; }
	printl("Number of Col Address Bits", $temp);

	printl("Number of Module Rows", value_or_undefined($bytes->[5]));

	if ($bytes->[7] > 1) { $temp = "Undefined!"; }
	else { $temp = ($bytes->[7] * 256) + $bytes->[6]; }
	printl("Data Width", $temp);

	printl("Voltage Interface Level",
	       sdram_voltage_interface_level($bytes->[8]));

	printl("Module Configuration Type",
	       sdram_module_configuration_type($bytes->[11]));

	printl("Refresh Rate", ddr2_refresh_rate($bytes->[12]));

	if ($bytes->[13] & 0x80) { $temp = "Bank2 = 2 x Bank1"; }
	else { $temp = "No Bank2 OR Bank2 = Bank1 width"; }
	printl("Primary SDRAM Component Bank Config", $temp);
	printl("Primary SDRAM Component Widths",
	       value_or_undefined($bytes->[13] & 0x7f));

	if ($bytes->[14] & 0x80) { $temp = "Bank2 = 2 x Bank1"; }
	else { $temp = "No Bank2 OR Bank2 = Bank1 width"; }
	printl("Error Checking SDRAM Component Bank Config", $temp);
	printl("Error Checking SDRAM Component Widths",
	       value_or_undefined($bytes->[14] & 0x7f));

	printl("Min Clock Delay for Back to Back Random Access",
	       value_or_undefined($bytes->[15]));

	my @array;
	for ($ii = 0; $ii < 4; $ii++) {
		push(@array, 1 << $ii) if ($bytes->[16] & (1 << $ii));
	}
	push(@array, "Page") if ($bytes->[16] & 128);
	if (@array) { $temp = join ', ', @array; }
	else { $temp = "None"; }
	printl("Supported Burst Lengths", $temp);

	printl("Number of Device Banks",
	       value_or_undefined($bytes->[17]));

	printl("Supported CAS Latencies", cas_latencies(@cas));

	@array = ();
	for ($ii = 0; $ii < 7; $ii++) {
		push(@array, $ii) if ($bytes->[19] & (1 << $ii));
	}
	if (@array) { $temp = join ', ', @array; }
	else { $temp = "None"; }
	printl("Supported CS Latencies", $temp);

	@array = ();
	for ($ii = 0; $ii < 7; $ii++) {
		push(@array, $ii) if ($bytes->[20] & (1 << $ii));
	}
	if (@array) { $temp = join ', ', @array; }
	else { $temp = "None"; }
	printl("Supported WE Latencies", $temp);

	my ($cycle_time, $access_time);

	if (@cas >= 1) {
		$cycle_time = "$ctime ns at CAS ".$cas[$#cas];

		$temp = ($bytes->[10] >> 4) + ($bytes->[10] & 0xf) * 0.1;
		$access_time = "$temp ns at CAS ".$cas[$#cas];
	}

	if (@cas >= 2 && spd_written(@$bytes[23..24])) {
		$temp = $bytes->[23] >> 4;
		if ($temp == 0) { $temp = "Undefined!"; }
		else {
			$temp += 15 if $temp < 4;
			$temp += ($bytes->[23] & 0xf) * 0.1;
			$ctime1 = $temp;
		}
		$cycle_time .= "\n$temp ns at CAS ".$cas[$#cas-1];

		$temp = $bytes->[24] >> 4;
		if ($temp == 0) { $temp = "Undefined!"; }
		else {
			$temp += 15 if $temp < 4;
			$temp += ($bytes->[24] & 0xf) * 0.1;
		}
		$access_time .= "\n$temp ns at CAS ".$cas[$#cas-1];
	}

	if (@cas >= 3 && spd_written(@$bytes[25..26])) {
		$temp = $bytes->[25] >> 2;
		if ($temp == 0) { $temp = "Undefined!"; }
		else {
			$temp += ($bytes->[25] & 0x3) * 0.25;
			$ctime2 = $temp;
		}
		$cycle_time .= "\n$temp ns at CAS ".$cas[$#cas-2];

		$temp = $bytes->[26] >> 2;
		if ($temp == 0) { $temp = "Undefined!"; }
		else {
			$temp += ($bytes->[26] & 0x3) * 0.25;
		}
		$access_time .= "\n$temp ns at CAS ".$cas[$#cas-2];
	}

	printl_cond(defined $cycle_time, "Cycle Time", $cycle_time);
	printl_cond(defined $access_time, "Access Time", $access_time);

	prints("Attributes");
	$temp = "";
	if ($bytes->[21] & 1) { $temp .= "Buffered Address/Control Inputs\n"; }
	if ($bytes->[21] & 2) { $temp .= "Registered Address/Control Inputs\n"; }
	if ($bytes->[21] & 4) { $temp .= "On card PLL (clock)\n"; }
	if ($bytes->[21] & 8) { $temp .= "Buffered DQMB Inputs\n"; }
	if ($bytes->[21] & 16) { $temp .= "Registered DQMB Inputs\n"; }
	if ($bytes->[21] & 32) { $temp .= "Differential Clock Input\n"; }
	if ($bytes->[21] & 64) { $temp .= "Redundant Row Address\n"; }
	if ($bytes->[21] & 128) { $temp .= "Undefined (bit 7)\n"; }
	printl_cond($bytes->[21], "SDRAM Module Attributes", $temp);

# standard DDR speeds
	prints("Timings at Standard Speeds");
	foreach $ctime (7.5, 10, 15) {
		my $best_cas;

		# Find min CAS latency at this speed
		if (defined $ctime2 && $ctime >= $ctime2) {
			$best_cas = $cas[$#cas-2];
		} elsif (defined $ctime1 && $ctime >= $ctime1) {
			$best_cas = $cas[$#cas-1];
		} else {
			$best_cas = $cas[$#cas];
		}

		printl_cond($ctime >= $ctime_min,
			    "tCL-tRCD-tRP-tRAS as PC" . int(1000 / $ctime),
			    ddr_core_timings($best_cas, $ctime,
					     $trcd, $trp, $tras));
	}

	$temp = "";
	if ($bytes->[22] & 1) { $temp .= "Supports Early RAS# Recharge\n"; }
	if ($bytes->[22] & 2) { $temp .= "Supports Auto-Precharge\n"; }
	if ($bytes->[22] & 4) { $temp .= "Supports Precharge All\n"; }
	if ($bytes->[22] & 8) { $temp .= "Supports Write1/Read Burst\n"; }
	if ($bytes->[22] & 16) { $temp .= "Lower VCC Tolerance: 5%\n"; }
	else { $temp .= "Lower VCC Tolerance: 10%\n"; }
	if ($bytes->[22] & 32) { $temp .= "Upper VCC Tolerance: 5%\n"; }
	else { $temp .= "Upper VCC Tolerance: 10%\n"; }
	if ($bytes->[22] & 64) { $temp .= "Undefined (bit 6)\n"; }
	if ($bytes->[22] & 128) { $temp .= "Undefined (bit 7)\n"; }
	printl("SDRAM Device Attributes (General)", $temp);

	prints("Timing Parameters");
	printl("Minimum Row Precharge Time",
	       value_or_undefined($bytes->[27], "ns"));

	printl("Row Active to Row Active Min",
	       value_or_undefined($bytes->[28], "ns"));

	printl("RAS to CAS Delay",
	       value_or_undefined($bytes->[29], "ns"));

	printl("Min RAS Pulse Width",
	       value_or_undefined($bytes->[30], "ns"));

	$temp = "";
	if ($bytes->[31] & 1) { $temp .= "4 MByte\n"; }
	if ($bytes->[31] & 2) { $temp .= "8 MByte\n"; }
	if ($bytes->[31] & 4) { $temp .= "16 MByte\n"; }
	if ($bytes->[31] & 8) { $temp .= "32 MByte\n"; }
	if ($bytes->[31] & 16) { $temp .= "64 MByte\n"; }
	if ($bytes->[31] & 32) { $temp .= "128 MByte\n"; }
	if ($bytes->[31] & 64) { $temp .= "256 MByte\n"; }
	if ($bytes->[31] & 128) { $temp .= "512 MByte\n"; }
	if ($bytes->[31] == 0) { $temp .= "(Undefined! -- None Reported!)\n"; }
	printl("Row Densities", $temp);

	$temp = (($bytes->[32] & 0x7f) >> 4) + ($bytes->[32] & 0xf) * 0.1;
	printl_cond(($bytes->[32] & 0xf) <= 9,
		    "Command and Address Signal Setup Time",
		    (($bytes->[32] >> 7) ? -$temp : $temp) . " ns");

	$temp = (($bytes->[33] & 0x7f) >> 4) + ($bytes->[33] & 0xf) * 0.1;
	printl_cond(($bytes->[33] & 0xf) <= 9,
		    "Command and Address Signal Hold Time",
		    (($bytes->[33] >> 7) ? -$temp : $temp) . " ns");

	$temp = (($bytes->[34] & 0x7f) >> 4) + ($bytes->[34] & 0xf) * 0.1;
	printl_cond(($bytes->[34] & 0xf) <= 9, "Data Signal Setup Time",
		    (($bytes->[34] >> 7) ? -$temp : $temp) . " ns");

	$temp = (($bytes->[35] & 0x7f) >> 4) + ($bytes->[35] & 0xf) * 0.1;
	printl_cond(($bytes->[35] & 0xf) <= 9, "Data Signal Hold Time",
		    (($bytes->[35] >> 7) ? -$temp : $temp) . " ns");
}

sub as_ddr($$)
{
	my ($gen, $ctime) = @_;

	return " as DDR" . ($gen == 1 ? "" : $gen) . "-" .
	       int(2000 / $ctime);
}

sub ddr_core_timings($$$$$)
{
	my ($cas, $ctime, $trcd, $trp, $tras) = @_;

	return $cas . "-" . ceil($trcd/$ctime) . "-" . ceil($trp/$ctime) .
		"-" . ceil($tras/$ctime);
}

# Parameter: EEPROM bytes 0-127 (using 3-62)
sub decode_ddr_sdram($)
{
	my $bytes = shift;
	my $temp;
	my ($ctime, $ctime1, $ctime2, $ctime_min, $ctime_max);

# SPD revision
	printl_cond($bytes->[62] != 0xff, "SPD Revision",
		    ($bytes->[62] >> 4) . "." . ($bytes->[62] & 0xf));

# speed
	prints("Memory Characteristics");

	$ctime_min = $ctime = ($bytes->[9] >> 4) + ($bytes->[9] & 0xf) * 0.1;
	my $ddrclk = 2 * (1000 / $ctime);
	my $tbits = ($bytes->[7] * 256) + $bytes->[6];
	if (($bytes->[11] == 2) || ($bytes->[11] == 1)) { $tbits = $tbits - 8; }
	my $pcclk = int ($ddrclk * $tbits / 8);
	$pcclk += 100 if ($pcclk % 100) >= 50; # Round properly
	$pcclk = $pcclk - ($pcclk % 100);
	$ddrclk = int ($ddrclk);
	printl("Maximum module speed", "$ddrclk MHz (PC${pcclk})");

#size computation
	my $k = 0;
	my $ii = 0;

	$ii = ($bytes->[3] & 0x0f) + ($bytes->[4] & 0x0f) - 17;
	if (($bytes->[5] <= 8) && ($bytes->[17] <= 8)) {
		 $k = $bytes->[5] * $bytes->[17];
	}

	if ($ii > 0 && $ii <= 12 && $k > 0) {
		printl("Size", ((1 << $ii) * $k) . " MB");
	} else {
		printl("Size", "INVALID: " . $bytes->[3] . ", " . $bytes->[4] . ", " .
			       $bytes->[5] . ", " . $bytes->[17]);
	}

	printl("Banks x Rows x Columns x Bits",
	       join(' x ', $bytes->[17], $bytes->[3], $bytes->[4], $bytes->[6]));
	printl("Ranks", $bytes->[5]);

	printl("Voltage Interface Level",
	       sdram_voltage_interface_level($bytes->[8]));

	printl("Module Configuration Type",
	       sdram_module_configuration_type($bytes->[11]));

	printl("Refresh Rate", ddr2_refresh_rate($bytes->[12]));

	my $highestCAS = 0;
	my %cas;
	for ($ii = 0; $ii < 7; $ii++) {
		if ($bytes->[18] & (1 << $ii)) {
			$highestCAS = 1+$ii*0.5;
			$cas{$highestCAS}++;
		}
	}

	my $trcd;
	my $trp;
	my $tras;

	$trcd = ($bytes->[29] >> 2) + (($bytes->[29] & 3) * 0.25);
	$trp = ($bytes->[27] >> 2) + (($bytes->[27] & 3) * 0.25);
	$tras = $bytes->[30];

# latencies
	printl("Supported CAS Latencies", cas_latencies(keys %cas));

	my @array;
	for ($ii = 0; $ii < 7; $ii++) {
		push(@array, $ii) if ($bytes->[19] & (1 << $ii));
	}
	if (@array) { $temp = join ', ', @array; }
	else { $temp = "None"; }
	printl("Supported CS Latencies", $temp);

	@array = ();
	for ($ii = 0; $ii < 7; $ii++) {
		push(@array, $ii) if ($bytes->[20] & (1 << $ii));
	}
	if (@array) { $temp = join ', ', @array; }
	else { $temp = "None"; }
	printl("Supported WE Latencies", $temp);

# timings
	my ($cycle_time, $access_time, $core_timings);

	if (exists $cas{$highestCAS}) {
		$core_timings = ddr_core_timings($highestCAS, $ctime,
			$trcd, $trp, $tras) . as_ddr(1, $ctime);

		$cycle_time = "$ctime ns at CAS $highestCAS";
		$access_time = (($bytes->[10] >> 4) * 0.1 + ($bytes->[10] & 0xf) * 0.01)
			     . " ns at CAS $highestCAS";
	}

	if (exists $cas{$highestCAS-0.5} && spd_written(@$bytes[23..24])) {
		$ctime1 = ($bytes->[23] >> 4) + ($bytes->[23] & 0xf) * 0.1;
		$core_timings .= "\n".ddr_core_timings($highestCAS-0.5, $ctime1,
			$trcd, $trp, $tras) . as_ddr(1, $ctime1);

		$cycle_time .= "\n$ctime1 ns at CAS ".($highestCAS-0.5);
		$access_time .= "\n".(($bytes->[24] >> 4) * 0.1 + ($bytes->[24] & 0xf) * 0.01)
			      . " ns at CAS ".($highestCAS-0.5);
	}

	if (exists $cas{$highestCAS-1} && spd_written(@$bytes[25..26])) {
		$ctime2 = ($bytes->[25] >> 4) + ($bytes->[25] & 0xf) * 0.1,
		$core_timings .= "\n".ddr_core_timings($highestCAS-1, $ctime2,
			$trcd, $trp, $tras) . as_ddr(1, $ctime2);

		$cycle_time .= "\n$ctime2 ns at CAS ".($highestCAS-1);
		$access_time .= "\n".(($bytes->[26] >> 4) * 0.1 + ($bytes->[26] & 0xf) * 0.01)
			      . " ns at CAS ".($highestCAS-1);
	}

	$ctime_max = $bytes->[43] == 0xff ? 0 : $bytes->[43]/4;

	printl_cond(defined $core_timings, "tCL-tRCD-tRP-tRAS", $core_timings);
	printl_cond(defined $cycle_time, "Minimum Cycle Time", $cycle_time);
	printl_cond(defined $access_time, "Maximum Access Time", $access_time);
	printl_cond($bytes->[43] & 0xfc,
		    "Maximum Cycle Time (tCK max)",
		    $bytes->[43] == 0xff ? "No minimum frequency" :
		    $bytes->[43] == 0 ? "" : # Wouldn't be displayed, prevent div by 0
		    tns1($ctime_max)." (DDR-".int(8000 / $bytes->[43]).")");

# standard DDR speeds
	prints("Timings at Standard Speeds");
	foreach $ctime (5, 6, 7.5, 10) {
		my $best_cas;

		# Find min CAS latency at this speed
		if (defined $ctime2 && $ctime >= $ctime2) {
			$best_cas = $highestCAS-1;
		} elsif (defined $ctime1 && $ctime >= $ctime1) {
			$best_cas = $highestCAS-0.5;
		} else {
			$best_cas = $highestCAS;
		}

		printl_cond($ctime >= $ctime_min && ($ctime_max < 1 || $ctime <= $ctime_max),
			    "tCL-tRCD-tRP-tRAS" . as_ddr(1, $ctime),
			    ddr_core_timings($best_cas, $ctime,
					     $trcd, $trp, $tras));
	}

# more timing information
	prints("Timing Parameters");
	printl_cond($bytes->[32] != 0xff,
		    "Address/Command Setup Time Before Clock",
		    tns(ddr2_sdram_atime($bytes->[32])));
	printl_cond($bytes->[33] != 0xff,
		    "Address/Command Hold Time After Clock",
		    tns(ddr2_sdram_atime($bytes->[33])));
	printl_cond($bytes->[34] != 0xff,
		    "Data Input Setup Time Before Clock",
		    tns(ddr2_sdram_atime($bytes->[34])));
	printl_cond($bytes->[35] != 0xff,
		    "Data Input Hold Time After Clock",
		    tns(ddr2_sdram_atime($bytes->[35])));
	printl("Minimum Row Precharge Delay (tRP)", tns($trp));
	printl_cond($bytes->[28] & 0xfc,
		    "Minimum Row Active to Row Active Delay (tRRD)",
		    tns($bytes->[28]/4));
	printl("Minimum RAS# to CAS# Delay (tRCD)", tns($trcd));
	printl("Minimum RAS# Pulse Width (tRAS)", tns($tras));
	printl_cond($bytes->[41] && $bytes->[41] != 0xff,
		    "Minimum Active to Active/AR Time (tRC)",
		    tns($bytes->[41]));
	printl_cond($bytes->[42],
		    "Minimum AR to Active/AR Command Period (tRFC)",
		    tns($bytes->[42]));
	printl_cond($bytes->[44],
		    "Maximum DQS to DQ Skew (tDQSQ)",
		    tns($bytes->[44]/100));
	printl_cond(($bytes->[45] & 0xf0) && $bytes->[45] != 0xff,
		    "Maximum Read Data Hold Skew (tQHS)",
		    tns(ddr2_sdram_atime($bytes->[45])));

# module attributes
	prints("Module Attributes");
	if (($bytes->[47] & 0x03) == 0x01) { $temp = "1.125\" to 1.25\""; }
	elsif (($bytes->[47] & 0x03) == 0x02) { $temp = "1.7\""; }
	else { $temp = "Other"; }
	printl_cond($bytes->[47] & 0x03, "Module Height", $temp);
}

sub ddr2_sdram_ctime($)
{
	my $byte = shift;
	my $ctime;

	$ctime = $byte >> 4;
	if (($byte & 0xf) <= 9) { $ctime += ($byte & 0xf) * 0.1; }
	elsif (($byte & 0xf) == 10) { $ctime += 0.25; }
	elsif (($byte & 0xf) == 11) { $ctime += 0.33; }
	elsif (($byte & 0xf) == 12) { $ctime += 0.66; }
	elsif (($byte & 0xf) == 13) { $ctime += 0.75; }

	return $ctime;
}

sub ddr2_sdram_atime($)
{
	my $byte = shift;
	my $atime;

	$atime = ($byte >> 4) * 0.1 + ($byte & 0xf) * 0.01;

	return $atime;
}

# Base, high-bit, 3-bit fraction code
sub ddr2_sdram_rtime($$$)
{
	my ($rtime, $msb, $ext) = @_;
	my @table = (0, .25, .33, .50, .66, .75);

	return $rtime + $msb * 256 + $table[$ext];
}

sub ddr2_module_types($)
{
	my $byte = shift;
	my @types = qw(RDIMM UDIMM SO-DIMM Micro-DIMM Mini-RDIMM Mini-UDIMM);
	my @widths = (133.35, 133.25, 67.6, 45.5, 82.0, 82.0);
	my @suptypes;
	local $_;

	foreach (0..5) {
		push @suptypes, "$types[$_] ($widths[$_] mm)"
			if ($byte & (1 << $_));
	}

	return @suptypes;
}

# Common to SDR, DDR and DDR2 SDRAM
sub ddr2_refresh_rate($)
{
	my $byte = shift;
	my @refresh = qw(Normal Reduced Reduced Extended Extended Extended);
	my @refresht = (15.625, 3.9, 7.8, 31.3, 62.5, 125);

	return "$refresh[$byte & 0x7f] ($refresht[$byte & 0x7f] us)".
	       ($byte & 0x80 ? " - Self Refresh" : "");
}

# Parameter: EEPROM bytes 0-127 (using 3-62)
sub decode_ddr2_sdram($)
{
	my $bytes = shift;
	my $temp;
	my ($ctime, $ctime1, $ctime2, $ctime_min, $ctime_max);

# SPD revision
	printl_cond($bytes->[62] != 0xff, "SPD Revision",
		    ($bytes->[62] >> 4) . "." . ($bytes->[62] & 0xf));

# speed
	prints("Memory Characteristics");

	$ctime_min = $ctime = ddr2_sdram_ctime($bytes->[9]);
	my $ddrclk = 2 * (1000 / $ctime);
	my $tbits = ($bytes->[7] * 256) + $bytes->[6];
	if ($bytes->[11] & 0x03) { $tbits = $tbits - 8; }
	my $pcclk = int ($ddrclk * $tbits / 8);
	# Round down to comply with Jedec
	$pcclk = $pcclk - ($pcclk % 100);
	$ddrclk = int ($ddrclk);
	printl("Maximum module speed", "$ddrclk MHz (PC2-${pcclk})");

#size computation
	my $k = 0;
	my $ii = 0;

	$ii = ($bytes->[3] & 0x0f) + ($bytes->[4] & 0x0f) - 17;
	$k = (($bytes->[5] & 0x7) + 1) * $bytes->[17];

	if($ii > 0 && $ii <= 12 && $k > 0) {
		printl("Size", ((1 << $ii) * $k) . " MB");
	} else {
		printl("Size", "INVALID: " . $bytes->[3] . "," . $bytes->[4] . "," .
			       $bytes->[5] . "," . $bytes->[17]);
	}

	printl("Banks x Rows x Columns x Bits",
	       join(' x ', $bytes->[17], $bytes->[3], $bytes->[4], $bytes->[6]));
	printl("Ranks", ($bytes->[5] & 7) + 1);

	printl("SDRAM Device Width", $bytes->[13]." bits");

	my @heights = ('< 25.4', '25.4', '25.4 - 30.0', '30.0', '30.5', '> 30.5');
	printl("Module Height", $heights[$bytes->[5] >> 5]." mm");

	my @suptypes = ddr2_module_types($bytes->[20]);
	printl("Module Type".(@suptypes > 1 ? 's' : ''), join(', ', @suptypes));

	printl("DRAM Package", $bytes->[5] & 0x10 ? "Stack" : "Planar");

	printl("Voltage Interface Level",
	       sdram_voltage_interface_level($bytes->[8]));

	printl("Module Configuration Type",
	       sdram_module_configuration_type($bytes->[11]));

	printl("Refresh Rate", ddr2_refresh_rate($bytes->[12]));

	my @burst;
	push @burst, 4 if ($bytes->[16] & 4);
	push @burst, 8 if ($bytes->[16] & 8);
	$burst[0] = 'None' if !@burst;
	printl("Supported Burst Lengths", join(', ', @burst));

	my $highestCAS = 0;
	my %cas;
	for ($ii = 2; $ii < 7; $ii++) {
		if ($bytes->[18] & (1 << $ii)) {
			$highestCAS = $ii;
			$cas{$highestCAS}++;
		}
	}

	my $trcd;
	my $trp;
	my $tras;

	$trcd = ($bytes->[29] >> 2) + (($bytes->[29] & 3) * 0.25);
	$trp = ($bytes->[27] >> 2) + (($bytes->[27] & 3) * 0.25);
	$tras = $bytes->[30];

# latencies
	printl("Supported CAS Latencies (tCL)", cas_latencies(keys %cas));

# timings
	my ($cycle_time, $access_time, $core_timings);

	if (exists $cas{$highestCAS}) {
		$core_timings = ddr_core_timings($highestCAS, $ctime,
			$trcd, $trp, $tras) . as_ddr(2, $ctime);

		$cycle_time = tns($ctime) . " at CAS $highestCAS (tCK min)";
		$access_time = tns(ddr2_sdram_atime($bytes->[10]))
			     . " at CAS $highestCAS (tAC)";
	}

	if (exists $cas{$highestCAS-1} && spd_written(@$bytes[23..24])) {
		$ctime1 = ddr2_sdram_ctime($bytes->[23]);
		$core_timings .= "\n".ddr_core_timings($highestCAS-1, $ctime1,
			$trcd, $trp, $tras) . as_ddr(2, $ctime1);

		$cycle_time .= "\n".tns($ctime1)
			     . " at CAS ".($highestCAS-1);
		$access_time .= "\n".tns(ddr2_sdram_atime($bytes->[24]))
			      . " at CAS ".($highestCAS-1);
	}

	if (exists $cas{$highestCAS-2} && spd_written(@$bytes[25..26])) {
		$ctime2 = ddr2_sdram_ctime($bytes->[25]);
		$core_timings .= "\n".ddr_core_timings($highestCAS-2, $ctime2,
			$trcd, $trp, $tras) . as_ddr(2, $ctime2);

		$cycle_time .= "\n".tns($ctime2)
			     . " at CAS ".($highestCAS-2);
		$access_time .= "\n".tns(ddr2_sdram_atime($bytes->[26]))
			      . " at CAS ".($highestCAS-2);
	}

	$ctime_max = ddr2_sdram_ctime($bytes->[43]);

	printl_cond(defined $core_timings, "tCL-tRCD-tRP-tRAS", $core_timings);
	printl_cond(defined $cycle_time, "Minimum Cycle Time", $cycle_time);
	printl_cond(defined $access_time, "Maximum Access Time", $access_time);
	printl_cond(($bytes->[43] & 0xf0) && $bytes->[43] != 0xff,
		    "Maximum Cycle Time (tCK max)",
		    $ctime_max == 0 ? "" : # Wouldn't be displayed, prevent div by 0
		    tns($ctime_max)." (DDR2-".int(2000 / $ctime_max).")");

# standard DDR2 speeds
	prints("Timings at Standard Speeds");
	foreach $ctime (1.875, 2.5, 3, 3.75, 5) {
		my $best_cas;

		# Find min CAS latency at this speed
		if (defined $ctime2 && $ctime >= $ctime2) {
			$best_cas = $highestCAS-2;
		} elsif (defined $ctime1 && $ctime >= $ctime1) {
			$best_cas = $highestCAS-1;
		} else {
			$best_cas = $highestCAS;
		}

		printl_cond($ctime >= $ctime_min && $ctime <= $ctime_max,
			    "tCL-tRCD-tRP-tRAS" . as_ddr(2,$ctime),
			    ddr_core_timings($best_cas, $ctime,
					     $trcd, $trp, $tras));
	}

# more timing information
	prints("Timing Parameters");
	# According to the JEDEC standard, the four timings below can't be less
	# than 0.1 ns, however we've seen memory modules code such values so
	# handle them properly.
	printl_cond($bytes->[32] && $bytes->[32] != 0xff,
		    "Address/Command Setup Time Before Clock (tIS)",
		    tns(ddr2_sdram_atime($bytes->[32])));
	printl_cond($bytes->[33] && $bytes->[33] != 0xff,
		    "Address/Command Hold Time After Clock (tIH)",
		    tns(ddr2_sdram_atime($bytes->[33])));
	printl_cond($bytes->[34] && $bytes->[34] != 0xff,
		    "Data Input Setup Time Before Strobe (tDS)",
		    tns(ddr2_sdram_atime($bytes->[34])));
	printl_cond($bytes->[35] && $bytes->[35] != 0xff,
		    "Data Input Hold Time After Strobe (tDH)",
		    tns(ddr2_sdram_atime($bytes->[35])));

	printl("Minimum Row Precharge Delay (tRP)", tns($trp));
	printl_cond($bytes->[28] & 0xfc,
		    "Minimum Row Active to Row Active Delay (tRRD)",
		    tns($bytes->[28]/4));
	printl("Minimum RAS# to CAS# Delay (tRCD)", tns($trcd));
	printl("Minimum RAS# Pulse Width (tRAS)", tns($tras));
	printl_cond($bytes->[36] & 0xfc,
		    "Write Recovery Time (tWR)",
		    tns($bytes->[36]/4));
	printl_cond($bytes->[37] & 0xfc,
		    "Minimum Write to Read CMD Delay (tWTR)",
		    tns($bytes->[37]/4));
	printl_cond($bytes->[38] & 0xfc,
		    "Minimum Read to Pre-charge CMD Delay (tRTP)",
		    tns($bytes->[38]/4));

	printl_cond($bytes->[41] && $bytes->[41] != 0xff,
		    "Minimum Active to Auto-refresh Delay (tRC)",
		    tns(ddr2_sdram_rtime($bytes->[41], 0,
					 ($bytes->[40] >> 4) & 7)));
	printl_cond($bytes->[42],
		    "Minimum Recovery Delay (tRFC)",
		    tns(ddr2_sdram_rtime($bytes->[42], $bytes->[40] & 1,
					 ($bytes->[40] >> 1) & 7)));

	printl_cond($bytes->[44], "Maximum DQS to DQ Skew (tDQSQ)",
		    tns($bytes->[44]/100));
	printl_cond($bytes->[45], "Maximum Read Data Hold Skew (tQHS)",
		    tns($bytes->[45]/100));
	printl_cond($bytes->[46], "PLL Relock Time", $bytes->[46] . " us");
}

# Return combined time in ns
sub ddr3_mtb_ftb($$$$)
{
	my ($byte1, $byte2, $mtb, $ftb) = @_;

	# byte1 is unsigned in ns, but byte2 is signed in ps
	$byte2 -= 0x100 if $byte2 & 0x80;

	return $byte1 * $mtb + $byte2 * $ftb / 1000;
}

sub ddr3_reference_card($$)
{
	my ($rrc, $ext) = @_;
	my $alphabet = "ABCDEFGHJKLMNPRTUVWY";
	my $ref = $rrc & 0x1f;
	my $revision = $ext >> 5;
	my $ref_card;

	return "ZZ" if $ref == 0x1f;
	$ref += 0x1f if $rrc & 0x80;
	$revision = (($rrc >> 5) & 0x03) if $revision == 0;

	if ($ref < length($alphabet)) {
		# One letter reference card
		$ref_card = substr($alphabet, $ref, 1);
	} else {
		# Two letter reference card
		my $ref1 = int($ref / (length($alphabet)));
		$ref -= length($alphabet) * $ref1;
		$ref_card = substr($alphabet, $ref1, 1) .
			    substr($alphabet, $ref, 1);
	}

	return "$ref_card revision $revision";
}

sub ddr3_revision_number($)
{
	my $h = $_[0] >> 4;
	my $l = $_[0] & 0x0f;

	# Decode as suggested by JEDEC Standard 21-C
	return sprintf("%d", $l) if $h == 0;
	return sprintf("%d.%d", $h, $l) if $h < 0xa;
	return sprintf("%c%d", ord('A') + $h - 0xa, $l);
}

sub ddr3_device_type($)
{
	my $byte = shift;
	my $type = $byte & 0x80 ? "Non-Standard" : "Standard Monolithic";
	my $die_count = ($byte >> 4) & 0x07;
	my $loading = ($byte >> 2) & 0x03;

	if ($die_count == 1) {
		$type .= "\nSingle die";
	} elsif ($die_count == 2) {
		$type .= "\n2 die";
	} elsif ($die_count == 3) {
		$type .= "\n4 die";
	} elsif ($die_count == 4) {
		$type .= "\n8 die";
	}

	if ($loading == 1) {
		$type .= "\nMulti load stack";
	} elsif ($loading == 2) {
		$type .= "\nSingle load stack";
	}

	return $type;
}

use constant DDR3_UNBUFFERED	=> 1;
use constant DDR3_REGISTERED	=> 2;
use constant DDR3_CLOCKED	=> 3;
use constant DDR3_LOAD_REDUCED	=> 4;

# Parameter: EEPROM bytes 0-127 (using 3-76)
sub decode_ddr3_sdram($)
{
	my $bytes = shift;
	my $temp;
	my $ctime;
	my ($ftb, $mtb);
	my $ii;

	my @module_types = (
		{ type => "Undefined",		width => "Unknown"	},
		{ type => "RDIMM",		width => "133.35 mm",	family => DDR3_REGISTERED },
		{ type => "UDIMM",		width => "133.35 mm",	family => DDR3_UNBUFFERED },
		{ type => "SO-DIMM",		width => "67.6 mm",	family => DDR3_UNBUFFERED },
		{ type => "Micro-DIMM",		width => "TBD",		family => DDR3_UNBUFFERED },
		{ type => "Mini-RDIMM",		width => "82.0 mm",	family => DDR3_REGISTERED },
		{ type => "Mini-UDIMM",		width => "82.0 mm",	family => DDR3_UNBUFFERED },
		{ type => "Mini-CDIMM",		width => "67.6 mm",	family => DDR3_CLOCKED },
		{ type => "72b-SO-UDIMM",	width => "67.6 mm",	family => DDR3_UNBUFFERED },
		{ type => "72b-SO-RDIMM",	width => "67.6 mm",	family => DDR3_REGISTERED },
		{ type => "72b-SO-CDIMM",	width => "67.6 mm",	family => DDR3_CLOCKED },
		{ type => "LRDIMM",		width => "133.35 mm",	family => DDR3_LOAD_REDUCED },
		{ type => "16b-SO-DIMM",	width => "67.6 mm",	family => DDR3_UNBUFFERED },
		{ type => "32b-SO-DIMM",	width => "67.6 mm",	family => DDR3_UNBUFFERED },
	);

	printl("Module Type", ($bytes->[3] <= $#module_types) ?
					$module_types[$bytes->[3]]->{type} :
					sprintf("Reserved (0x%.2X)", $bytes->[3]));

# time bases
	if (($bytes->[9] & 0x0f) == 0 || $bytes->[11] == 0) {
		print STDERR "Invalid time base divisor, can't decode\n";
		return;
	}
	$ftb = ($bytes->[9] >> 4) / ($bytes->[9] & 0x0f);
	$mtb = $bytes->[10] / $bytes->[11];

# speed
	prints("Memory Characteristics");

	$ctime = ddr3_mtb_ftb($bytes->[12], $bytes->[34], $mtb, $ftb);
	# Starting with DDR3-1866, vendors may start approximating the
	# minimum cycle time. Try to guess what they really meant so
	# that the reported speed matches the standard.
	for ($ii = 7; $ii < 15; $ii++) {
		if ($ctime > 7.5/$ii - $ftb/1000 && $ctime < 7.5/$ii + $ftb/1000) {
			$ctime = 7.5/$ii;
			last;
		}
	}

	my $ddrclk = 2 * (1000 / $ctime);
	my $tbits = 1 << (($bytes->[8] & 7) + 3);
	my $pcclk = int ($ddrclk * $tbits / 8);
	# Round down to comply with Jedec
	$pcclk = $pcclk - ($pcclk % 100);
	$ddrclk = int ($ddrclk);
	printl("Maximum module speed", "$ddrclk MHz (PC3-${pcclk})");

# Size computation

	my $cap =  ($bytes->[4]       & 15) + 28;
	$cap   +=  ($bytes->[8]       & 7)  + 3;
	$cap   -=  ($bytes->[7]       & 7)  + 2;
	$cap   -= 20 + 3;
	my $k   = (($bytes->[7] >> 3) & 31) + 1;
	printl("Size", ((1 << $cap) * $k) . " MB");

	printl("Banks x Rows x Columns x Bits",
	       join(' x ', 1 << ((($bytes->[4] >> 4) &  7) +  3),
			   ((($bytes->[5] >> 3) & 31) + 12),
			   ( ($bytes->[5]       &  7) +  9),
			   ( 1 << (($bytes->[8] &  7) + 3)) ));
	printl("Ranks", $k);

	printl("SDRAM Device Width", (1 << (($bytes->[7] & 7) + 2))." bits");

	printl("Bus Width Extension", ($bytes->[8] & 24)." bits");

	my $taa;
	my $trcd;
	my $trp;
	my $tras;

	$taa  = ddr3_mtb_ftb($bytes->[16], $bytes->[35], $mtb, $ftb);
	$trcd = ddr3_mtb_ftb($bytes->[18], $bytes->[36], $mtb, $ftb);
	$trp  = ddr3_mtb_ftb($bytes->[20], $bytes->[37], $mtb, $ftb);
	$tras = ((($bytes->[21] & 0x0f) << 8) + $bytes->[22]) * $mtb;

	printl("tCL-tRCD-tRP-tRAS", ddr_core_timings(ceil($taa / $ctime), $ctime, $trcd, $trp, $tras));

# latencies
	my $highestCAS = 0;
	my %cas;
	my $cas_sup = ($bytes->[15] << 8) + $bytes->[14];
	for ($ii = 0; $ii < 15; $ii++) {
		if ($cas_sup & (1 << $ii)) {
			$highestCAS = $ii + 4;
			$cas{$highestCAS}++;
		}
	}
	printl("Supported CAS Latencies (tCL)", cas_latencies(keys %cas));

# standard DDR3 speeds
	prints("Timings at Standard Speeds");
	foreach my $ctime_at_speed (7.5/8, 7.5/7, 1.25, 1.5, 1.875, 2.5) {
		my $best_cas = 0;

		# Find min CAS latency at this speed
		for ($ii = 14; $ii >= 0; $ii--) {
			next unless ($cas_sup & (1 << $ii));
			if (ceil($taa / $ctime_at_speed) <= $ii + 4) {
				$best_cas = $ii + 4;
			}
		}

		printl_cond($best_cas && $ctime_at_speed >= $ctime,
			    "tCL-tRCD-tRP-tRAS" . as_ddr(3, $ctime_at_speed),
			    ddr_core_timings($best_cas, $ctime_at_speed,
					     $trcd, $trp, $tras));
	}

# more timing information
	prints("Timing Parameters");

	printl("Minimum Cycle Time (tCK)", tns3($ctime));
	printl("Minimum CAS Latency Time (tAA)", tns3($taa));
	printl("Minimum Write Recovery time (tWR)", tns3($bytes->[17] * $mtb));
	printl("Minimum RAS# to CAS# Delay (tRCD)", tns3($trcd));
	printl("Minimum Row Active to Row Active Delay (tRRD)",
		tns3($bytes->[19] * $mtb));
	printl("Minimum Row Precharge Delay (tRP)", tns3($trp));
	printl("Minimum Active to Precharge Delay (tRAS)", tns3($tras));
	printl("Minimum Active to Auto-Refresh Delay (tRC)",
		tns3(ddr3_mtb_ftb((($bytes->[21] & 0xf0) << 4) + $bytes->[23], $bytes->[38], $mtb, $ftb)));
	printl("Minimum Recovery Delay (tRFC)",
		tns3((($bytes->[25] << 8) + $bytes->[24]) * $mtb));
	printl("Minimum Write to Read CMD Delay (tWTR)",
		tns3($bytes->[26] * $mtb));
	printl("Minimum Read to Pre-charge CMD Delay (tRTP)",
		tns3($bytes->[27] * $mtb));
	printl("Minimum Four Activate Window Delay (tFAW)",
		tns3(((($bytes->[28] & 15) << 8) + $bytes->[29]) * $mtb));

# miscellaneous stuff
	prints("Optional Features");

	my $volts = "1.5V";
	if ($bytes->[6] & 1) {
		$volts .= " tolerant";
	}
	if ($bytes->[6] & 2) {
		$volts .= ", 1.35V ";
	}
	if ($bytes->[6] & 4) {
		$volts .= ", 1.2X V";
	}
	printl("Operable voltages", $volts);
	printl("RZQ/6 supported?", ($bytes->[30] & 1) ? "Yes" : "No");
	printl("RZQ/7 supported?", ($bytes->[30] & 2) ? "Yes" : "No");
	printl("DLL-Off Mode supported?", ($bytes->[30] & 128) ? "Yes" : "No");
	printl("Operating temperature range", sprintf "0-%d degrees C",
		($bytes->[31] & 1) ? 95 : 85);
	printl_cond($bytes->[31] & 1,
		    "Refresh Rate in extended temp range",
		    ($bytes->[31] & 2) ? "1X" : "2X");
	printl("Auto Self-Refresh?", ($bytes->[31] & 4) ? "Yes" : "No");
	printl("On-Die Thermal Sensor readout?",
		($bytes->[31] & 8) ? "Yes" : "No");
	printl("Partial Array Self-Refresh?",
		($bytes->[31] & 128) ? "Yes" : "No");
	printl("Module Thermal Sensor",
		($bytes->[32] & 128) ? "Yes" : "No");
	printl("SDRAM Device Type", ddr3_device_type($bytes->[33]));

	# Following bytes are type-specific, so don't continue if type
	# isn't known.
	return if $bytes->[3] == 0 || $bytes->[3] > $#module_types;

	if ($module_types[$bytes->[3]]->{family} == DDR3_UNBUFFERED ||
	    $module_types[$bytes->[3]]->{family} == DDR3_REGISTERED ||
	    $module_types[$bytes->[3]]->{family} == DDR3_CLOCKED ||
	    $module_types[$bytes->[3]]->{family} == DDR3_LOAD_REDUCED) {
		prints("Physical Characteristics");
		printl("Module Height", (($bytes->[60] & 31) + 15) . " mm");
		printl("Module Thickness", sprintf("%d mm front, %d mm back",
						($bytes->[61] & 15) + 1,
						(($bytes->[61] >> 4) & 15) +1));
		printl("Module Width", $module_types[$bytes->[3]]->{width});
		printl("Module Reference Card", ddr3_reference_card($bytes->[62], $bytes->[60]));

		printl_cond($module_types[$bytes->[3]]->{family} == DDR3_UNBUFFERED,
			    "Rank 1 Mapping", $bytes->[63] & 0x01 ? "Mirrored" : "Standard");
	}

	if ($module_types[$bytes->[3]]->{family} == DDR3_REGISTERED) {
		prints("Registered DIMM");

		my @rows = ("Undefined", 1, 2, 4);
		printl("# DRAM Rows", $rows[($bytes->[63] >> 2) & 3]);
		printl("# Registers", $rows[$bytes->[63] & 3]);
		printl("Register manufacturer",
			manufacturer_ddr3($bytes->[65], $bytes->[66]));
		printl("Register device type",
				(($bytes->[68] & 7) == 0) ? "SSTE32882" :
					"Undefined");
		printl_cond($bytes->[67] != 0xff,
			    "Register revision", ddr3_revision_number($bytes->[67]));
		printl("Heat spreader", $bytes->[64] & 0x80 ? "Yes" : "No");
	}

	if ($module_types[$bytes->[3]]->{family} == DDR3_LOAD_REDUCED) {
		prints("Load Reduced DIMM");

		my @rows = ("Undefined", 1, 2, "Reserved");
		printl("# DRAM Rows", $rows[($bytes->[63] >> 2) & 3]);
		my @mirroring = ("None", "Odd ranks", "Reserved", "Reserved");
		printl("Mirroring", $mirroring[$bytes->[63] & 3]);
		printl("Rank Numbering", $bytes->[63] & 0x20 ? "Even only" : "Contiguous");
		printl("Buffer Orientation", $bytes->[63] & 0x10 ? "Horizontal" : "Vertical");
		printl("Register manufacturer",
			manufacturer_ddr3($bytes->[65], $bytes->[66]));
		printl_cond($bytes->[64] != 0xff,
			    "Buffer Revision", ddr3_revision_number($bytes->[64]));
		printl("Heat spreader", $bytes->[63] & 0x80 ? "Yes" : "No");
	}

}

# Parameter: EEPROM bytes 0-127 (using 4-5)
sub decode_direct_rambus($)
{
	my $bytes = shift;

#size computation
	prints("Memory Characteristics");

	my $ii;

	$ii = ($bytes->[4] & 0x0f) + ($bytes->[4] >> 4) + ($bytes->[5] & 0x07) - 13;

	if ($ii > 0 && $ii < 16) {
		printl("Size", (1 << $ii) . " MB");
	} else {
		printl("Size", sprintf("INVALID: 0x%02x, 0x%02x",
				       $bytes->[4], $bytes->[5]));
	}
}

# Parameter: EEPROM bytes 0-127 (using 3-5)
sub decode_rambus($)
{
	my $bytes = shift;

#size computation
	prints("Memory Characteristics");

	my $ii;

	$ii = ($bytes->[3] & 0x0f) + ($bytes->[3] >> 4) + ($bytes->[5] & 0x07) - 13;

	if ($ii > 0 && $ii < 16) {
		printl("Size", (1 << $ii) . " MB");
	} else {
		printl("Size", "INVALID: " . sprintf("0x%02x, 0x%02x",
					       $bytes->[3], $bytes->[5]));
	}
}

%decode_callback = (
	"SDR SDRAM"	=> \&decode_sdr_sdram,
	"DDR SDRAM"	=> \&decode_ddr_sdram,
	"DDR2 SDRAM"	=> \&decode_ddr2_sdram,
	"DDR3 SDRAM"	=> \&decode_ddr3_sdram,
	"Direct Rambus"	=> \&decode_direct_rambus,
	"Rambus"	=> \&decode_rambus,
);

# Parameter: Manufacturing year/week bytes
sub manufacture_date($$)
{
	my ($year, $week) = @_;

	# In theory the year and week are in BCD format, but
	# this is not always true in practice :(
	if (($year & 0xf0) <= 0x90 && ($year & 0x0f) <= 0x09
	 && ($week & 0xf0) <= 0x90 && ($week & 0x0f) <= 0x09) {
		# Note that this heuristic will break in year 2080
		return sprintf("%d%02X-W%02X",
				$year >= 0x80 ? 19 : 20, $year, $week);
	# Fallback to binary format if it seems to make sense
	} elsif ($year <= 99 && $week >= 1 && $week <= 53) {
		return sprintf("%d%02d-W%02d",
				$year >= 80 ? 19 : 20, $year, $week);
	} else {
		return sprintf("0x%02X%02X", $year, $week);
	}
}

sub printl_mfg_location_code($)
{
	my $code = shift;
	my $letter = chr($code);

	# Try the location code as ASCII first, as earlier specifications
	# suggested this. As newer specifications don't mention it anymore,
	# we still fall back to binary.
	printl_cond(spd_written($code), "Manufacturing Location Code",
		    $letter =~ m/^[\w\d]$/ ? $letter : sprintf("0x%.2X", $code));
}

sub printl_mfg_assembly_serial(@)
{
	printl_cond(spd_written(@_), "Assembly Serial Number",
		    sprintf("0x%02X%02X%02X%02X", @_));
}

# Parameter: EEPROM bytes 0-175 (using 117-149)
sub decode_ddr3_mfg_data($)
{
	my $bytes = shift;

	prints("Manufacturer Data");

	printl("Module Manufacturer",
	       manufacturer_ddr3($bytes->[117], $bytes->[118]));

	printl_cond(spd_written(@{$bytes}[148..149]),
		    "DRAM Manufacturer",
		    manufacturer_ddr3($bytes->[148], $bytes->[149]));

	printl_mfg_location_code($bytes->[119]);

	printl_cond(spd_written(@{$bytes}[120..121]),
		    "Manufacturing Date",
		    manufacture_date($bytes->[120], $bytes->[121]));

	printl_mfg_assembly_serial(@{$bytes}[122..125]);

	printl("Part Number", part_number(@{$bytes}[128..145]));

	printl_cond(spd_written(@{$bytes}[146..147]),
		    "Revision Code",
		    sprintf("0x%02X%02X", $bytes->[146], $bytes->[147]));
}

# Parameter: EEPROM bytes 0-127 (using 64-98)
sub decode_manufacturing_information($)
{
	my $bytes = shift;
	my ($temp, $extra);

	prints("Manufacturing Information");

	# $extra is a reference to an array containing up to
	# 7 extra bytes from the Manufacturer field. Sometimes
	# these bytes are filled with interesting data.
	($temp, $extra) = manufacturer(@{$bytes}[64..71]);
	printl("Manufacturer", $temp);
	$temp = manufacturer_data(@{$extra});
	printl_cond(defined $temp, "Custom Manufacturer Data", $temp);

	printl_mfg_location_code($bytes->[72]);

	printl("Part Number", part_number(@{$bytes}[73..90]));

	printl_cond(spd_written(@{$bytes}[91..92]), "Revision Code",
		    sprintf("0x%02X%02X", @{$bytes}[91..92]));

	printl_cond(spd_written(@{$bytes}[93..94]), "Manufacturing Date",
	       manufacture_date($bytes->[93], $bytes->[94]));

	printl_mfg_assembly_serial(@{$bytes}[95..98]);
}

# Parameter: EEPROM bytes 0-127 (using 126-127)
sub decode_intel_spec_freq($)
{
	my $bytes = shift;
	my $temp;

	prints("Intel Specification");

	if ($bytes->[126] == 0x66) { $temp = "66 MHz"; }
	elsif ($bytes->[126] == 100) { $temp = "100 MHz or 133 MHz"; }
	elsif ($bytes->[126] == 133) { $temp = "133 MHz"; }
	else { $temp = "Undefined!"; }
	printl("Frequency", $temp);

	$temp = "";
	if ($bytes->[127] & 1) { $temp .= "Intel Concurrent Auto-precharge\n"; }
	if ($bytes->[127] & 2) { $temp .= "CAS Latency = 2\n"; }
	if ($bytes->[127] & 4) { $temp .= "CAS Latency = 3\n"; }
	if ($bytes->[127] & 8) { $temp .= "Junction Temp A (100 degrees C)\n"; }
	else { $temp .= "Junction Temp B (90 degrees C)\n"; }
	if ($bytes->[127] & 16) { $temp .= "CLK 3 Connected\n"; }
	if ($bytes->[127] & 32) { $temp .= "CLK 2 Connected\n"; }
	if ($bytes->[127] & 64) { $temp .= "CLK 1 Connected\n"; }
	if ($bytes->[127] & 128) { $temp .= "CLK 0 Connected\n"; }
	if (($bytes->[127] & 192) == 192) { $temp .= "Double-sided DIMM\n"; }
	elsif (($bytes->[127] & 192) != 0) { $temp .= "Single-sided DIMM\n"; }
	printl("Details for 100 MHz Support", $temp);
}

# Read various hex dump style formats: hexdump, hexdump -C, i2cdump, eeprog
# note that normal 'hexdump' format on a little-endian system byte-swaps
# words, using hexdump -C is better.
sub read_hexdump($)
{
	my $addr = 0;
	my $repstart = 0;
	my @bytes;
	my $header = 1;
	my $word = 0;

	# Look in the cache first
	return @{$hexdump_cache{$_[0]}} if exists $hexdump_cache{$_[0]};

	open F, '<', $_[0] or die "Unable to open: $_[0]";
	while (<F>) {
		chomp;
		if (/^\*$/) {
			$repstart = $addr;
			next;
		}
		/^(?:0000 )?([a-f\d]{2,8}):?\s+((:?[a-f\d]{4}\s*){8}|(:?[a-f\d]{2}\s*){16})/i ||
		/^(?:0000 )?([a-f\d]{2,8}):?\s*$/i;
		next if (!defined $1 && $header);		# skip leading unparsed lines

		defined $1 or die "Unable to parse input";
		$header = 0;

		$addr = hex $1;
		if ($repstart) {
			@bytes[$repstart .. ($addr-1)] =
				(@bytes[($repstart-16)..($repstart-1)]) x (($addr-$repstart)/16);
			$repstart = 0;
		}
		last unless defined $2;
		foreach (split(/\s+/, $2)) {
			if (/^(..)(..)$/) {
			        $word |= 1;
				if ($use_hexdump eq LITTLEENDIAN) {
					$bytes[$addr++] = hex($2);
					$bytes[$addr++] = hex($1);
				} else {
					$bytes[$addr++] = hex($1);
					$bytes[$addr++] = hex($2);
				}
			} else {
				$bytes[$addr++] = hex($_);
			}
		}
	}
	close F;
	$header and die "Unable to parse any data from hexdump '$_[0]'";
	$word and printc("Using $use_hexdump 16-bit hex dump");

	# Cache the data for later use
	$hexdump_cache{$_[0]} = \@bytes;
	return @bytes;
}

# Returns the (total, used) number of bytes in the EEPROM,
# assuming it is a non-Rambus SPD EEPROM.
sub spd_sizes($)
{
	my $bytes = shift;

	if ($bytes->[2] >= 9) {
		# For FB-DIMM and newer, decode number of bytes written
		my $spd_len = ($bytes->[0] >> 4) & 7;
		my $size = 64 << ($bytes->[0] & 15);
		if ($spd_len == 0) {
			return ($size, 128);
		} elsif ($spd_len == 1) {
			return ($size, 176);
		} elsif ($spd_len == 2) {
			return ($size, 256);
		} else {
			return (64, 64);
		}
	} else {
		my $size;
		if ($bytes->[1] <= 14) {
			$size = 1 << $bytes->[1];
		} elsif ($bytes->[1] == 0) {
			$size = "RFU";
		} else { $size = "ERROR!" }

		return ($size, ($bytes->[0] < 64) ? 64 : $bytes->[0]);
	}
}

# Read bytes from SPD-EEPROM
# Note: offset must be a multiple of 16!
sub readspd($$$)
{
	my ($offset, $size, $dimm_i) = @_;
	my @bytes;
	if ($use_hexdump) {
		@bytes = read_hexdump($dimm_i);
		return @bytes[$offset..($offset + $size - 1)];
	} elsif ($use_sysfs) {
		# Kernel 2.6 with sysfs
		sysopen(HANDLE, "$dimm_i/eeprom", O_RDONLY)
			or die "Cannot open $dimm_i/eeprom";
		binmode HANDLE;
		sysseek(HANDLE, $offset, SEEK_SET)
			or die "Cannot seek $dimm_i/eeprom";
		sysread(HANDLE, my $eeprom, $size)
			or die "Cannot read $dimm_i/eeprom";
		close HANDLE;
		@bytes = unpack("C*", $eeprom);
	} else {
		# Kernel 2.4 with procfs
		for my $i (0 .. ($size-1)/16) {
			my $hexoff = sprintf('%02x', $offset + $i * 16);
			push @bytes, split(" ", `cat $dimm_i/$hexoff`);
		}
	}
	return @bytes;
}

# Calculate and verify checksum of first 63 bytes
sub checksum($)
{
	my $bytes = shift;
	my $dimm_checksum = 0;
	local $_;

	$dimm_checksum += $bytes->[$_] foreach (0 .. 62);
	$dimm_checksum &= 0xff;

	return ("EEPROM Checksum of bytes 0-62",
		($bytes->[63] == $dimm_checksum) ? 1 : 0,
		sprintf('0x%02X', $bytes->[63]),
		sprintf('0x%02X', $dimm_checksum));
}

# Calculate and verify CRC
sub check_crc($)
{
	my $bytes = shift;
	my $crc = 0;
	my $crc_cover = $bytes->[0] & 0x80 ? 116 : 125;
	my $crc_ptr = 0;
	my $crc_bit;

	while ($crc_ptr <= $crc_cover) {
		$crc = $crc ^ ($bytes->[$crc_ptr] << 8);
		for ($crc_bit = 0; $crc_bit < 8; $crc_bit++) {
			if ($crc & 0x8000) {
				$crc = ($crc << 1) ^ 0x1021;
			} else {
				$crc = $crc << 1
			}
		}
		$crc_ptr++;
	}
	$crc &= 0xffff;

	my $dimm_crc = ($bytes->[127] << 8) | $bytes->[126];
	return ("EEPROM CRC of bytes 0-$crc_cover",
		($dimm_crc == $crc) ? 1 : 0,
		sprintf("0x%04X", $dimm_crc),
		sprintf("0x%04X", $crc));
}

# Parse command-line
foreach (@ARGV) {
	if ($_ eq '-h' || $_ eq '--help') {
		print "Usage: $0 [-c] [-f [-b]] [-x|-X file [files..]]\n",
			"       $0 -h\n\n",
			"  -f, --format            Print nice html output\n",
			"  -b, --bodyonly          Don't print html header\n",
			"                          (useful for postprocessing the output)\n",
			"      --side-by-side      Display all DIMMs side-by-side if possible\n",
			"      --merge-cells       Merge neighbour cells with identical values\n",
			"                          (side-by-side output only, default)\n",
			"      --no-merge-cells    Don't merge neighbour cells with identical values\n",
			"                          (side-by-side output only)\n",
			"  -c, --checksum          Decode completely even if checksum fails\n",
			"  -x,                     Read data from hexdump files\n",
			"  -X,                     Same as -x except treat multibyte hex\n",
			"                          data as little endian\n",
			"  -h, --help              Display this usage summary\n";
		print <<"EOF";

Hexdumps can be the output from hexdump, hexdump -C, i2cdump, eeprog and
likely many other progams producing hex dumps of one kind or another.  Note
that the default output of "hexdump" will be byte-swapped on little-endian
systems and you must use -X instead of -x, otherwise the dump will not be
parsed correctly.  It is better to use "hexdump -C", which is not ambiguous.
EOF
		exit;
	}

	if ($_ eq '-f' || $_ eq '--format') {
		$opt_html = 1;
		next;
	}
	if ($_ eq '-b' || $_ eq '--bodyonly') {
		$opt_bodyonly = 1;
		next;
	}
	if ($_ eq '--side-by-side') {
		$opt_side_by_side = 1;
		next;
	}
	if ($_ eq '--merge-cells') {
		$opt_merge = 1;
		next;
	}
	if ($_ eq '--no-merge-cells') {
		$opt_merge = 0;
		next;
	}
	if ($_ eq '-c' || $_ eq '--checksum') {
		$opt_igncheck = 1;
		next;
	}
	if ($_ eq '-x') {
		$use_hexdump = BIGENDIAN;
		next;
	}
	if ($_ eq '-X') {
		$use_hexdump = LITTLEENDIAN;
		next;
	}

	if (m/^-/) {
		print STDERR "Unrecognized option $_\n";
		exit;
	}

	push @dimm, { eeprom => basename($_), file => $_ } if $use_hexdump;
}

# Default values
$opt_merge = 1 unless defined $opt_merge;

# From a sysfs device path and an attribute name, return the attribute
# value, or undef (stolen from sensors-detect)
sub sysfs_device_attribute
{
	my ($device, $attr) = @_;
	my $value;

	open(local *FILE, "$device/$attr") or return "";
	$value = <FILE>;
	close(FILE);
	return unless defined $value;

	chomp($value);
	return $value;
}

sub get_dimm_list
{
	my (@dirs, $dir, $opened, $file, @files);

	if ($use_sysfs) {
		@dirs = ('/sys/bus/i2c/drivers/eeprom', '/sys/bus/i2c/drivers/at24');
	} else {
		@dirs = ('/proc/sys/dev/sensors');
	}

	foreach $dir (@dirs) {
		next unless opendir(local *DIR, $dir);
		$opened++;
		while (defined($file = readdir(DIR))) {
			if ($use_sysfs) {
				# We look for I2C devices like 0-0050 or 2-0051
				next unless $file =~ /^\d+-[\da-f]+$/i;
				next unless -d "$dir/$file";

				# Device name must be eeprom (driver eeprom)
				# or spd (driver at24)
				my $attr = sysfs_device_attribute("$dir/$file", "name");
				next unless defined $attr &&
					    ($attr eq "eeprom" || $attr eq "spd");
			} else {
				next unless $file =~ /^eeprom-/;
			}
			push @files, { eeprom => "$file",
				       file => "$dir/$file" };
		}
		close(DIR);
	}

	if (!@files) {
		if (!$opened) {
			print STDERR "No EEPROM found, try loading the eeprom or at24 module\n";
			exit;
		} else {
			print STDERR "No EEPROM found, the kernel probably does not support your hardware.\n";
			exit;
		}
	}

	return sort { $a->{file} cmp $b->{file} } @files;
}

# @dimm is a list of hashes. There's one hash for each EEPROM we found.
# Each hash has the following keys:
#  * eeprom: Name of the eeprom data file
#  * file: Full path to the eeprom data file
#  * bytes: The EEPROM data (array)
#  * is_rambus: Whether this is a RAMBUS DIMM or not (boolean)
#  * chk_label: The label to display for the checksum or CRC
#  * chk_valid: Whether the checksum or CRC is valid or not (boolean)
#  * chk_spd: The checksum or CRC value found in the EEPROM
#  * chk_calc: The checksum or CRC computed from the EEPROM data
# Keys are added over time.
@dimm = get_dimm_list() unless $use_hexdump;

for my $i (0 .. $#dimm) {
	my @bytes = readspd(0, 128, $dimm[$i]->{file});
	$dimm[$i]->{bytes} = \@bytes;
	$dimm[$i]->{is_rambus} = $bytes[0] < 4;		# Simple heuristic
	if ($dimm[$i]->{is_rambus} || $bytes[2] < 9) {
		($dimm[$i]->{chk_label}, $dimm[$i]->{chk_valid},
		 $dimm[$i]->{chk_spd}, $dimm[$i]->{chk_calc}) =
			checksum(\@bytes);
	} else {
		($dimm[$i]->{chk_label}, $dimm[$i]->{chk_valid},
		 $dimm[$i]->{chk_spd}, $dimm[$i]->{chk_calc}) =
			check_crc(\@bytes);
	}
}

# Checksum or CRC validation
if (!$opt_igncheck) {
	for (my $i = 0; $i < @dimm; ) {
		if ($dimm[$i]->{chk_valid}) {
			$i++;
		} else {
			splice(@dimm, $i, 1);
		}
	}
}


if ($opt_html && !$opt_bodyonly) {
	print "<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.1//EN' \"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd\">\n\n",
	      "<html xmlns=\"http://www.w3.org/1999/xhtml\" lang=\"en\">\n",
	      "<head>\n",
	      "\t<meta http-equiv=\"Content-Type\" content=\"text/html; charset=iso-8859-1\" />\n",
	      "\t<title>PC DIMM Serial Presence Detect Tester/Decoder Output</title>\n",
	      "</head>\n\n",
	      "<body>\n";
}

printc("decode-dimms version $revision");
printh('Memory Serial Presence Detect Decoder',
'By Philip Edelbrock, Christian Zuckschwerdt, Burkart Lingner,
Jean Delvare, Trent Piepho and others');

# Process the valid entries
for $current (0 .. $#dimm) {
	my @bytes = @{$dimm[$current]->{bytes}};

	if ($opt_side_by_side) {
		printl("Decoding EEPROM", $dimm[$current]->{eeprom});
	}

	if (!$use_hexdump) {
		if ($dimm[$current]->{file} =~ /-([\da-f]+)$/i) {
			my $dimm_num = hex($1) - 0x50 + 1;
			if ($dimm_num >= 1 && $dimm_num <= 8) {
				printl("Guessing DIMM is in", "bank $dimm_num");
			}
		}
	}

# Decode first 3 bytes (0-2)
	prints("SPD EEPROM Information");

	printl($dimm[$current]->{chk_label}, ($dimm[$current]->{chk_valid} ?
		sprintf("OK (%s)", $dimm[$current]->{chk_calc}) :
		sprintf("Bad\n(found %s, calculated %s)",
			$dimm[$current]->{chk_spd}, $dimm[$current]->{chk_calc})));

	my $temp;
	if ($dimm[$current]->{is_rambus}) {
		if ($bytes[0] == 1) { $temp = "0.7"; }
		elsif ($bytes[0] == 2) { $temp = "1.0"; }
		elsif ($bytes[0] == 0) { $temp = "Invalid"; }
		else { $temp = "Reserved"; }
		printl("SPD Revision", $temp);
	} else {
		my ($spd_size, $spd_used) = spd_sizes(\@bytes);
		printl("# of bytes written to SDRAM EEPROM", $spd_used);
		printl("Total number of bytes in EEPROM", $spd_size);

		# If there's more data than what we've read, let's
		# read it now.  DDR3 will need this data.
		if ($spd_used > @bytes) {
			push (@bytes,
			      readspd(@bytes, $spd_used - @bytes,
				      $dimm[$current]->{file}));
		}
	}

	my $type = sprintf("Unknown (0x%02x)", $bytes[2]);
	if ($dimm[$current]->{is_rambus}) {
		if ($bytes[2] == 1) { $type = "Direct Rambus"; }
		elsif ($bytes[2] == 17) { $type = "Rambus"; }
	} else {
		my @type_list = (
			"Reserved", "FPM DRAM",		# 0, 1
			"EDO", "Pipelined Nibble",	# 2, 3
			"SDR SDRAM", "Multiplexed ROM",	# 4, 5
			"DDR SGRAM", "DDR SDRAM",	# 6, 7
			"DDR2 SDRAM", "FB-DIMM",	# 8, 9
			"FB-DIMM Probe", "DDR3 SDRAM",	# 10, 11
		);
		if ($bytes[2] < @type_list) {
			$type = $type_list[$bytes[2]];
		}
	}
	printl("Fundamental Memory type", $type);

# Decode next 61 bytes (3-63, depend on memory type)
	$decode_callback{$type}->(\@bytes)
		if exists $decode_callback{$type};

	if ($type eq "DDR3 SDRAM") {
		# Decode DDR3-specific manufacturing data in bytes
		# 117-149
		decode_ddr3_mfg_data(\@bytes)
	} else {
		# Decode next 35 bytes (64-98, common to most
		# memory types)
		decode_manufacturing_information(\@bytes);
	}

# Next 27 bytes (99-125) are manufacturer specific, can't decode

# Last 2 bytes (126-127) are reserved, Intel used them as an extension
	if ($type eq "SDR SDRAM") {
		decode_intel_spec_freq(\@bytes);
	}
}

# Side-by-side output format is only possible if all DIMMs have a similar
# output structure
if ($opt_side_by_side) {
	for $current (1 .. $#dimm) {
		my @ref_output = @{$dimm[0]->{output}};
		my @test_output = @{$dimm[$current]->{output}};
		my $line;

		if (scalar @ref_output != scalar @test_output) {
			$opt_side_by_side = 0;
			last;
		}

		for ($line = 0; $line < @ref_output; $line++) {
			my ($ref_func, $ref_label, @ref_dummy) = @{$ref_output[$line]};
			my ($test_func, $test_label, @test_dummy) = @{$test_output[$line]};

			if ($ref_func != $test_func || $ref_label ne $test_label) {
				$opt_side_by_side = 0;
				last;
			}
		}
	}

	if (!$opt_side_by_side) {
		printc("Side-by-side output only possible if all DIMMS are similar\n");

		# Discard "Decoding EEPROM" entry from all outputs
		for $current (0 .. $#dimm) {
			shift(@{$dimm[$current]->{output}});
		}
	}
}

# Check if all dimms have the same value for a given line
sub line_has_same_values($)
{
	my $line = shift;
	my $value = $dimm[0]->{output}->[$line]->[2];

	# Skip lines with no values (headers)
	return 1 unless defined $value;

	for my $other (1 .. $#dimm) {
		return 0 unless $value eq $dimm[$other]->{output}->[$line]->[2];
	}

	return 1;
}

# Find out the longest value string to adjust the column width
sub find_col_width($)
{
	my $width = shift;

	return $width unless $opt_side_by_side && !$opt_html;

	my $line;
	my $line_nr = @{$dimm[0]->{output}};

	for ($line = 0; $line < $line_nr; $line++) {
		next if $opt_merge && line_has_same_values($line);

		my @strings;

		for my $current (0 .. $#dimm) {
			my $value = $dimm[$current]->{output}->[$line]->[2];
			push @strings, split("\n", $value) if defined $value;
		}

		foreach my $line2 (@strings) {
			my $len = length($line2);
			$width = $len if $len > $width;
		}
	}

	return $width;
}

$sbs_col_width = find_col_width(15);

# Print the decoded information for all DIMMs
for $current (0 .. $#dimm) {
	if ($opt_side_by_side) {
		print "\n\n";
	} else {
		printl2("\n\nDecoding EEPROM", $dimm[$current]->{file},
			"text-decoration: underline; font-weight: bold;");
	}
	print "<table border=\"1\">\n" if $opt_html;

	my @output = @{$dimm[$current]->{output}};
	for (my $line = 0; $line < @output; $line++) {
		my ($func, @param) = @{$output[$line]};

		if ($opt_side_by_side) {
			foreach ($current+1 .. $#dimm) {
				my @xoutput = @{$dimm[$_]->{output}};
				if (@{$xoutput[$line]} == 3) {
					# Line with data, stack all values
					push @param, @{$xoutput[$line]}[2];
				} else {
					# Separator, make it span
					push @param, scalar @dimm;
				}
			}
		}

		$func->(@param);
	}

	print "</table>\n" if $opt_html;
	last if $opt_side_by_side;
}
printl2("\n\nNumber of SDRAM DIMMs detected and decoded", scalar @dimm);

print "</body></html>\n" if ($opt_html && !$opt_bodyonly);