This file is indexed.

/usr/lib/hugs/packages/hugsbase/Hugs/Int.hs is in hugs 98.200609.21-5.4build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
----------------------------------------------------------------------------
-- Signed Integers
-- Suitable for use with Hugs 98 on 32 bit systems.
-----------------------------------------------------------------------------

module Hugs.Int
	( Int8
	, Int16
	, Int32
	, Int64
	-- plus Eq, Ord, Num, Bounded, Real, Integral, Ix, Enum, Read,
	--  Show and Bits instances for each of Int8, Int16 and Int32
	) where

import Hugs.Prelude ( Int8, Int16, Int32, Int64,
		      boundedSucc, boundedPred,
                      boundedEnumFrom, boundedEnumFromTo,
                      boundedEnumFromThen, boundedEnumFromThenTo )
import Hugs.Prelude ( Ix(..) )
import Hugs.Prelude ( (%) )
import Hugs.Prelude ( readDec )
import Hugs.Prelude ( Num(fromInt), Integral(toInt) )
import Hugs.Numeric ( showInt )
import Hugs.Bits
import Data.Bits

-----------------------------------------------------------------------------
-- Int8
-----------------------------------------------------------------------------

primitive int8ToInt "primInt8ToInt" :: Int8 -> Int
primitive intToInt8 "primIntToInt8" :: Int -> Int8

instance Eq  Int8     where (==)    = binop (==)
instance Ord Int8     where compare = binop compare

instance Num Int8 where
    x + y         = intToInt8 (binop (+) x y)
    x - y         = intToInt8 (binop (-) x y)
    negate        = intToInt8 . negate . int8ToInt
    x * y         = intToInt8 (binop (*) x y)
    abs           = absReal
    signum        = signumReal
    fromInteger   = intToInt8 . fromInteger
    fromInt       = intToInt8

instance Bounded Int8 where
    minBound = 0x80
    maxBound = 0x7f

instance Real Int8 where
    toRational x = toInteger x % 1

instance Integral Int8 where
    x `div` y     = intToInt8  (binop div x y)
    x `quot` y    = intToInt8  (binop quot x y)
    x `rem` y     = intToInt8  (binop rem x y)
    x `mod` y     = intToInt8  (binop mod x y)
    x `quotRem` y = to2 (binop quotRem x y)
    toInteger     = toInteger . int8ToInt
    toInt         = int8ToInt

instance Ix Int8 where
    range (m,n)          = [m..n]
    unsafeIndex (m,_) i  = toInt (i - m)
    inRange (m,n) i      = m <= i && i <= n

instance Enum Int8 where
    succ             = boundedSucc
    pred             = boundedPred
    toEnum           = fromInt
    fromEnum         = toInt
    enumFrom         = boundedEnumFrom
    enumFromThen     = boundedEnumFromThen

instance Read Int8 where
    readsPrec p s = [ (intToInt8 x,r) | (x,r) <- readsPrec p s ]

instance Show Int8 where
    showsPrec p = showsPrec p . int8ToInt

instance Bits Int8 where
  x .&. y       = intToInt8 (binop (.&.) x y)
  x .|. y       = intToInt8 (binop (.|.) x y)
  x `xor` y     = intToInt8 (binop xor x y)
  complement    = intToInt8 . complement . int8ToInt
  x `shift` i   = intToInt8 (int8ToInt x `shift` i)
  rotate        = rotateSigned
  bit           = intToInt8 . bit
  setBit x i    = intToInt8 (setBit (int8ToInt x) i)
  clearBit x i  = intToInt8 (clearBit (int8ToInt x) i)
  complementBit x i = intToInt8 (complementBit (int8ToInt x) i)
  testBit x i   = testBit (int8ToInt x) i
  bitSize  _    = 8
  isSigned _    = True

-----------------------------------------------------------------------------
-- Int16
-----------------------------------------------------------------------------

primitive int16ToInt "primInt16ToInt" :: Int16 -> Int
primitive intToInt16 "primIntToInt16" :: Int -> Int16

instance Eq  Int16     where (==)    = binop (==)
instance Ord Int16     where compare = binop compare

instance Num Int16 where
    x + y         = intToInt16 (binop (+) x y)
    x - y         = intToInt16 (binop (-) x y)
    negate        = intToInt16 . negate . int16ToInt
    x * y         = intToInt16 (binop (*) x y)
    abs           = absReal
    signum        = signumReal
    fromInteger   = intToInt16 . fromInteger
    fromInt       = intToInt16

instance Bounded Int16 where
    minBound = 0x8000
    maxBound = 0x7fff

instance Real Int16 where
    toRational x = toInteger x % 1

instance Integral Int16 where
    x `div` y     = intToInt16  (binop div x y)
    x `quot` y    = intToInt16  (binop quot x y)
    x `rem` y     = intToInt16  (binop rem x y)
    x `mod` y     = intToInt16  (binop mod x y)
    x `quotRem` y = to2 (binop quotRem x y)
    toInteger     = toInteger . int16ToInt
    toInt         = int16ToInt

instance Ix Int16 where
    range (m,n)          = [m..n]
    unsafeIndex (m,_) i  = toInt (i - m)
    inRange (m,n) i      = m <= i && i <= n

instance Enum Int16 where
    succ             = boundedSucc
    pred             = boundedPred
    toEnum           = fromInt
    fromEnum         = toInt
    enumFrom         = boundedEnumFrom
    enumFromThen     = boundedEnumFromThen

instance Read Int16 where
    readsPrec p s = [ (intToInt16 x,r) | (x,r) <- readsPrec p s ]

instance Show Int16 where
    showsPrec p = showsPrec p . int16ToInt

instance Bits Int16 where
  x .&. y       = intToInt16 (binop (.&.) x y)
  x .|. y       = intToInt16 (binop (.|.) x y)
  x `xor` y     = intToInt16 (binop xor x y)
  complement    = intToInt16 . complement . int16ToInt
  x `shift` i   = intToInt16 (int16ToInt x `shift` i)
  rotate        = rotateSigned
  bit           = intToInt16 . bit
  setBit x i    = intToInt16 (setBit (int16ToInt x) i)
  clearBit x i  = intToInt16 (clearBit (int16ToInt x) i)
  complementBit x i = intToInt16 (complementBit (int16ToInt x) i)
  testBit x i   = testBit (int16ToInt x) i
  bitSize  _    = 16
  isSigned _    = True

-----------------------------------------------------------------------------
-- Int32
-----------------------------------------------------------------------------

primitive int32ToInt "primInt32ToInt" :: Int32 -> Int
primitive intToInt32 "primIntToInt32" :: Int -> Int32

instance Eq  Int32 where (==)    = binop (==)
instance Ord Int32 where compare = binop compare

instance Num Int32 where
    x + y         = intToInt32 (binop (+) x y)
    x - y         = intToInt32 (binop (-) x y)
    negate        = intToInt32 . negate . int32ToInt
    x * y         = intToInt32 (binop (*) x y)
    abs           = absReal
    signum        = signumReal
    fromInteger   = intToInt32 . fromInteger
    fromInt       = intToInt32

instance Bounded Int32 where
    minBound = intToInt32 minBound
    maxBound = intToInt32 maxBound

instance Real Int32 where
    toRational x = toInteger x % 1

instance Integral Int32 where
    x `div` y     = intToInt32 (binop div x y)
    x `quot` y    = intToInt32 (binop quot x y)
    x `rem` y     = intToInt32 (binop rem x y)
    x `mod` y     = intToInt32 (binop mod x y)
    x `quotRem` y = to2 (binop quotRem x y)
    toInteger     = toInteger . int32ToInt
    toInt         = int32ToInt

instance Ix Int32 where
    range (m,n)          = [m..n]
    unsafeIndex (m,_) i  = toInt (i - m)
    inRange (m,n) i      = m <= i && i <= n

instance Enum Int32 where
    succ             = boundedSucc
    pred             = boundedPred
    toEnum           = fromInt
    fromEnum         = toInt
    enumFrom         = boundedEnumFrom
    enumFromThen     = boundedEnumFromThen

instance Read Int32 where
    readsPrec p s = [ (intToInt32 x,r) | (x,r) <- readsPrec p s ]

instance Show Int32 where
    showsPrec p = showsPrec p . int32ToInt

instance Bits Int32 where
    x .&. y       = intToInt32 (binop (.&.) x y)
    x .|. y       = intToInt32 (binop (.|.) x y)
    x `xor` y     = intToInt32 (binop xor x y)
    complement    = intToInt32 . complement . int32ToInt
    x `shift` i   = intToInt32 (int32ToInt x `shift` i)
    rotate        = rotateSigned
    bit           = intToInt32 . bit
    setBit x i    = intToInt32 (setBit (int32ToInt x) i)
    clearBit x i  = intToInt32 (clearBit (int32ToInt x) i)
    complementBit x i = intToInt32 (complementBit (int32ToInt x) i)
    testBit x i   = testBit (int32ToInt x) i
    bitSize  _    = 32
    isSigned _    = True

-----------------------------------------------------------------------------
-- Int64
-----------------------------------------------------------------------------

-- Assume a 2s-complement representation, and that this function
-- separates the top 32 bits from the lower 32.

primitive int64ToInt32 "primInt64ToInt32" :: Int64 -> (Int32,Int32)
primitive int32ToInt64 "primInt32ToInt64" :: Int32 -> Int32 -> Int64

integerToI64 :: Integer -> Int64
integerToI64 x = case x `divMod` 0x100000000 of
    (hi,lo) -> int32ToInt64 (fromInteger hi) (fromInteger lo)

i64ToInteger :: Int64 -> Integer
i64ToInteger x = case int64ToInt32 x of
    (hi,lo) -> (if lo<0 then toInteger hi+1 else toInteger hi)*0x100000000 +
	toInteger lo

instance Eq Int64 where
    x == y = int64ToInt32 x == int64ToInt32 y

instance Ord Int64 where
    compare x y = compare (toInteger x) (toInteger y)

instance Bounded Int64 where
    minBound = int32ToInt64 minBound 0
    maxBound = int32ToInt64 maxBound (-1)

instance Show Int64 where
    showsPrec p = showsPrec p . toInteger

instance Read Int64 where
    readsPrec p s = [ (fromInteger x,r) | (x,r) <- readDec s ]

instance Num Int64 where
    x + y         = fromInteger (toInteger x + toInteger y)
    x - y         = fromInteger (toInteger x - toInteger y)
    x * y         = fromInteger (toInteger x * toInteger y)
    abs           = absReal
    signum        = signumReal
    fromInteger   = integerToI64

instance Real Int64 where
    toRational x = toInteger x % 1

instance Ix Int64 where
    range (m,n)          = [m..n]
    unsafeIndex (m,_) i  = toInt (i - m)
    inRange (m,n) i      = m <= i && i <= n

instance Enum Int64 where
    succ             = boundedSucc
    pred             = boundedPred
    toEnum           = fromInt
    fromEnum         = toInt

    enumFrom x       = enumFromTo x maxBound
    enumFromTo x y   = map fromInteger [toInteger x .. toInteger y]
    enumFromThen     = boundedEnumFromThen
    enumFromThenTo x y z =
                       map fromInteger [toInteger x, toInteger y .. toInteger z]

instance Integral Int64 where
    x `quotRem` y = (fromInteger q, fromInteger r)
	where (q,r) = toInteger x `quotRem` toInteger y
    toInteger     = i64ToInteger

instance Bits Int64 where
    x .&. y       = liftBinary (.&.) x y
    x .|. y       = liftBinary (.|.) x y
    x `xor` y     = liftBinary xor x y
    complement    = liftUnary complement
    x `shift` i   = fromInteger (toInteger x `shift` i)
    rotate        = rotateSigned
    bit i | i `mod` 64 < 32 = int32ToInt64 0 (bit i)
          | otherwise       = int32ToInt64 (bit i) 0
    bitSize  _    = 64
    isSigned _    = True

liftBinary :: (Int32 -> Int32 -> Int32) -> Int64 -> Int64 -> Int64
liftBinary op x y = int32ToInt64 (op xhi yhi) (op xlo ylo)
	where	(xhi,xlo) = int64ToInt32 x
		(yhi,ylo) = int64ToInt32 y

liftUnary :: (Int32 -> Int32) -> Int64 -> Int64
liftUnary op x = int32ToInt64 (op xhi) (op xlo)
	where	(xhi,xlo) = int64ToInt32 x

rotateSigned :: (Bits a, Ord a) => a -> Int -> a
rotateSigned x i | i<0 && x<0
                        = let left = i+bitSize x in
                          ((x `shift` i) .&. complement ((-1) `shift` left))
                          .|. (x `shift` left)
                 | i<0  = (x `shift` i) .|. (x `shift` (i+bitSize x))
                 | i==0 = x
                 | i>0  = (x `shift` i) .|. (x `shift` (i-bitSize x))

-----------------------------------------------------------------------------
-- End of exported definitions
--
-- The remainder of this file consists of definitions which are only
-- used in the implementation.
-----------------------------------------------------------------------------

binop :: Integral int => (Int -> Int -> a) -> (int -> int -> a)
binop op x y = toInt x `op` toInt y

from :: Integral int => int -> Int
from = toInt

to :: Num int => Int -> int
to = fromInt

to2 :: Num int => (Int, Int) -> (int, int)
to2 (x,y) = (fromInt x, fromInt y)

-----------------------------------------------------------------------------
-- Code copied from the Prelude
-----------------------------------------------------------------------------

absReal x    | x >= 0    = x
	     | otherwise = -x

signumReal x | x == 0    =  0
	     | x > 0     =  1
	     | otherwise = -1

-----------------------------------------------------------------------------
-- End
-----------------------------------------------------------------------------