This file is indexed.

/usr/share/hol-light/normalizer.ml is in hol-light 20170706-0ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
(* ========================================================================= *)
(* Relatively efficient HOL conversions for canonical polynomial form.       *)
(*                                                                           *)
(*              (c) Copyright, John Harrison 1998-2007                       *)
(* ========================================================================= *)

needs "calc_num.ml";;

let SEMIRING_NORMALIZERS_CONV =
  let SEMIRING_PTHS = prove
   (`(!x:A y z. add x (add y z) = add (add x y) z) /\
     (!x y. add x y = add y x) /\
     (!x. add r0 x = x) /\
     (!x y z. mul x (mul y z) = mul (mul x y) z) /\
     (!x y. mul x y = mul y x) /\
     (!x. mul r1 x = x) /\
     (!x. mul r0 x = r0) /\
     (!x y z. mul x (add y z) = add (mul x y) (mul x z)) /\
     (!x. pwr x 0 = r1) /\
     (!x n. pwr x (SUC n) = mul x (pwr x n))
     ==> (mul r1 x = x) /\
         (add (mul a m) (mul b m) = mul (add a b) m) /\
         (add (mul a m) m = mul (add a r1) m) /\
         (add m (mul a m) = mul (add a r1) m) /\
         (add m m = mul (add r1 r1) m) /\
         (mul r0 m = r0) /\
         (add r0 a = a) /\
         (add a r0 = a) /\
         (mul a b = mul b a) /\
         (mul (add a b) c = add (mul a c) (mul b c)) /\
         (mul r0 a = r0) /\
         (mul a r0 = r0) /\
         (mul r1 a = a) /\
         (mul a r1 = a) /\
         (mul (mul lx ly) (mul rx ry) = mul (mul lx rx) (mul ly ry)) /\
         (mul (mul lx ly) (mul rx ry) = mul lx (mul ly (mul rx ry))) /\
         (mul (mul lx ly) (mul rx ry) = mul rx (mul (mul lx ly) ry)) /\
         (mul (mul lx ly) rx = mul (mul lx rx) ly) /\
         (mul (mul lx ly) rx = mul lx (mul ly rx)) /\
         (mul lx rx = mul rx lx) /\
         (mul lx (mul rx ry) = mul (mul lx rx) ry) /\
         (mul lx (mul rx ry) = mul rx (mul lx ry)) /\
         (add (add a b) (add c d) = add (add a c) (add b d)) /\
         (add (add a b) c = add a (add b c)) /\
         (add a (add c d) = add c (add a d)) /\
         (add (add a b) c = add (add a c) b) /\
         (add a c = add c a) /\
         (add a (add c d) = add (add a c) d) /\
         (mul (pwr x p) (pwr x q) = pwr x (p + q)) /\
         (mul x (pwr x q) = pwr x (SUC q)) /\
         (mul (pwr x q) x = pwr x (SUC q)) /\
         (mul x x = pwr x 2) /\
         (pwr (mul x y) q = mul (pwr x q) (pwr y q)) /\
         (pwr (pwr x p) q = pwr x (p * q)) /\
         (pwr x 0 = r1) /\
         (pwr x 1 = x) /\
         (mul x (add y z) = add (mul x y) (mul x z)) /\
         (pwr x (SUC q) = mul x (pwr x q))`,
    STRIP_TAC THEN
    SUBGOAL_THEN
     `(!m:A n. add m n = add n m) /\
      (!m n p. add (add m n) p = add m (add n p)) /\
      (!m n p. add m (add n p) = add n (add m p)) /\
      (!x. add x r0 = x) /\
      (!m n. mul m n = mul n m) /\
      (!m n p. mul (mul m n) p = mul m (mul n p)) /\
      (!m n p. mul m (mul n p) = mul n (mul m p)) /\
      (!m n p. mul (add m n) p = add (mul m p) (mul n p)) /\
      (!x. mul x r1 = x) /\
      (!x. mul x r0 = r0)`
    MP_TAC THENL
     [ASM_MESON_TAC[];
      MAP_EVERY (fun t -> UNDISCH_THEN t (K ALL_TAC))
       [`!x:A y z. add x (add y z) = add (add x y) z`;
        `!x:A y. add x y :A = add y x`;
        `!x:A y z. mul x (mul y z) = mul (mul x y) z`;
        `!x:A y. mul x y :A = mul y x`] THEN
      STRIP_TAC] THEN
    ASM_REWRITE_TAC[num_CONV `2`; num_CONV `1`] THEN
    SUBGOAL_THEN `!m n:num x:A. pwr x (m + n) :A = mul (pwr x m) (pwr x n)`
    ASSUME_TAC THENL
     [GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES]; ALL_TAC] THEN
    SUBGOAL_THEN `!x:A y:A n:num. pwr (mul x y) n = mul (pwr x n) (pwr y n)`
    ASSUME_TAC THENL
     [GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[];
      ALL_TAC] THEN
    SUBGOAL_THEN `!x:A m:num n. pwr (pwr x m) n = pwr x (m * n)`
     (fun th -> ASM_MESON_TAC[th]) THEN
    GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[MULT_CLAUSES])
  and true_tm = concl TRUTH in
  fun sth rth (is_semiring_constant,
               SEMIRING_ADD_CONV,
               SEMIRING_MUL_CONV,
               SEMIRING_POW_CONV) ->
    let
     [pthm_01; pthm_02; pthm_03; pthm_04; pthm_05; pthm_06; pthm_07; pthm_08;
      pthm_09; pthm_10; pthm_11; pthm_12; pthm_13; pthm_14; pthm_15; pthm_16;
      pthm_17; pthm_18; pthm_19; pthm_20; pthm_21; pthm_22; pthm_23; pthm_24;
      pthm_25; pthm_26; pthm_27; pthm_28; pthm_29; pthm_30; pthm_31; pthm_32;
      pthm_33; pthm_34; pthm_35; pthm_36; pthm_37; pthm_38] =
     CONJUNCTS(MATCH_MP SEMIRING_PTHS sth) in
    let add_tm = rator(rator(lhand(concl pthm_07)))
    and mul_tm = rator(rator(lhand(concl pthm_13)))
    and pow_tm = rator(rator(rand(concl pthm_32)))
    and zero_tm = rand(concl pthm_06)
    and one_tm = rand(lhand(concl pthm_14))
    and ty = type_of(rand(concl pthm_01)) in

    let p_tm = `p:num`
    and q_tm = `q:num`
    and zeron_tm = `0`
    and onen_tm = `1`
    and a_tm = mk_var("a",ty)
    and b_tm = mk_var("b",ty)
    and c_tm = mk_var("c",ty)
    and d_tm = mk_var("d",ty)
    and lx_tm = mk_var("lx",ty)
    and ly_tm = mk_var("ly",ty)
    and m_tm = mk_var("m",ty)
    and rx_tm = mk_var("rx",ty)
    and ry_tm = mk_var("ry",ty)
    and x_tm = mk_var("x",ty)
    and y_tm = mk_var("y",ty)
    and z_tm = mk_var("z",ty) in

    let dest_add = dest_binop add_tm
    and dest_mul = dest_binop mul_tm
    and dest_pow tm =
      let l,r = dest_binop pow_tm tm in
      if is_numeral r then l,r else failwith "dest_pow"
    and is_add = is_binop add_tm
    and is_mul = is_binop mul_tm in

    let nthm_1,nthm_2,sub_tm,neg_tm,dest_sub,is_sub =
      if concl rth = true_tm then rth,rth,true_tm,true_tm,
                     (fun t -> t,t),K false
      else
        let nthm_1 = SPEC x_tm (CONJUNCT1 rth)
        and nthm_2 = SPECL [x_tm; y_tm] (CONJUNCT2 rth) in
        let sub_tm = rator(rator(lhand(concl nthm_2)))
        and neg_tm = rator(lhand(concl nthm_1)) in
        let dest_sub = dest_binop sub_tm
        and is_sub = is_binop sub_tm in
        (nthm_1,nthm_2,sub_tm,neg_tm,dest_sub,is_sub) in

    fun variable_order ->

(* ------------------------------------------------------------------------- *)
(* Conversion for "x^n * x^m", with either x^n = x and/or x^m = x possible.  *)
(* Also deals with "const * const", but both terms must involve powers of    *)
(* the same variable, or both be constants, or behaviour may be incorrect.   *)
(* ------------------------------------------------------------------------- *)

    let POWVAR_MUL_CONV tm =
      let l,r = dest_mul tm in
      if is_semiring_constant l && is_semiring_constant r
      then SEMIRING_MUL_CONV tm else
      try let lx,ln = dest_pow l in
          try let rx,rn = dest_pow r in
              let th1 = INST [lx,x_tm; ln,p_tm; rn,q_tm] pthm_29 in
              let tm1,tm2 = dest_comb(rand(concl th1)) in
              TRANS th1 (AP_TERM tm1 (NUM_ADD_CONV tm2))
          with Failure _ ->
              let th1 = INST [lx,x_tm; ln,q_tm] pthm_31 in
              let tm1,tm2 = dest_comb(rand(concl th1)) in
              TRANS th1 (AP_TERM tm1 (NUM_SUC_CONV tm2))
      with Failure _ ->
          try let rx,rn = dest_pow r in
              let th1 = INST [rx,x_tm; rn,q_tm] pthm_30 in
              let tm1,tm2 = dest_comb(rand(concl th1)) in
              TRANS th1 (AP_TERM tm1 (NUM_SUC_CONV tm2))
          with Failure _ ->
              INST [l,x_tm] pthm_32 in

(* ------------------------------------------------------------------------- *)
(* Remove "1 * m" from a monomial, and just leave m.                         *)
(* ------------------------------------------------------------------------- *)

    let MONOMIAL_DEONE th =
      try let l,r = dest_mul(rand(concl th)) in
          if l = one_tm then TRANS th (INST [r,x_tm] pthm_01) else th
      with Failure _ -> th in

(* ------------------------------------------------------------------------- *)
(* Conversion for "(monomial)^n", where n is a numeral.                      *)
(* ------------------------------------------------------------------------- *)

    let MONOMIAL_POW_CONV =
      let rec MONOMIAL_POW tm bod ntm =
        if not(is_comb bod) then REFL tm
        else if is_semiring_constant bod then SEMIRING_POW_CONV tm else
        let lop,r = dest_comb bod in
        if not(is_comb lop) then REFL tm else
        let op,l = dest_comb lop in
        if op = pow_tm && is_numeral r then
          let th1 = INST [l,x_tm; r,p_tm; ntm,q_tm] pthm_34 in
          let l,r = dest_comb(rand(concl th1)) in
          TRANS th1 (AP_TERM l (NUM_MULT_CONV r))
        else if op = mul_tm then
          let th1 = INST [l,x_tm; r,y_tm; ntm,q_tm] pthm_33 in
          let xy,z = dest_comb(rand(concl th1)) in
          let x,y = dest_comb xy in
          let thl = MONOMIAL_POW y l ntm
          and thr = MONOMIAL_POW z r ntm in
          TRANS th1 (MK_COMB(AP_TERM x thl,thr))
        else REFL tm in
      fun tm ->
        let lop,r = dest_comb tm in
        let op,l = dest_comb lop in
        if op <> pow_tm || not(is_numeral r) then failwith "MONOMIAL_POW_CONV"
        else if r = zeron_tm then INST [l,x_tm] pthm_35
        else if r = onen_tm then INST [l,x_tm] pthm_36
        else MONOMIAL_DEONE(MONOMIAL_POW tm l r) in

(* ------------------------------------------------------------------------- *)
(* Multiplication of canonical monomials.                                    *)
(* ------------------------------------------------------------------------- *)

    let MONOMIAL_MUL_CONV =
      let powvar tm =
        if is_semiring_constant tm then one_tm else
        try let lop,r = dest_comb tm in
            let op,l = dest_comb lop in
            if op = pow_tm && is_numeral r then l else failwith ""
        with Failure _ -> tm in
      let vorder x y =
        if x = y then 0
        else if x = one_tm then -1
        else if y = one_tm then 1
        else if variable_order x y then -1 else 1 in
      let rec MONOMIAL_MUL tm l r =
        try let lx,ly = dest_mul l in
            let vl = powvar lx in
            try let rx,ry = dest_mul r in
                let vr = powvar rx in
                let ord = vorder vl vr in
                if ord = 0 then
                  let th1 = INST
                    [lx,lx_tm; ly,ly_tm; rx,rx_tm; ry,ry_tm] pthm_15 in
                  let tm1,tm2 = dest_comb(rand(concl th1)) in
                  let tm3,tm4 = dest_comb tm1 in
                  let th2 = AP_THM (AP_TERM tm3 (POWVAR_MUL_CONV tm4)) tm2 in
                  let th3 = TRANS th1 th2 in
                  let tm5,tm6 = dest_comb(rand(concl th3)) in
                  let tm7,tm8 = dest_comb tm6 in
                  let th4 = MONOMIAL_MUL tm6 (rand tm7) tm8 in
                  TRANS th3 (AP_TERM tm5 th4)
                else
                  let th0 = if ord < 0 then pthm_16 else pthm_17 in
                  let th1 = INST
                    [lx,lx_tm; ly,ly_tm; rx,rx_tm; ry,ry_tm] th0 in
                  let tm1,tm2 = dest_comb(rand(concl th1)) in
                  let tm3,tm4 = dest_comb tm2 in
                  TRANS th1 (AP_TERM tm1 (MONOMIAL_MUL tm2 (rand tm3) tm4))
            with Failure _ ->
                let vr = powvar r in
                let ord = vorder vl vr in
                if ord = 0 then
                  let th1 = INST [lx,lx_tm; ly,ly_tm; r,rx_tm] pthm_18 in
                  let tm1,tm2 = dest_comb(rand(concl th1)) in
                  let tm3,tm4 = dest_comb tm1 in
                  let th2 = AP_THM (AP_TERM tm3 (POWVAR_MUL_CONV tm4)) tm2 in
                  TRANS th1 th2
                else if ord < 0 then
                  let th1 = INST [lx,lx_tm; ly,ly_tm; r,rx_tm] pthm_19 in
                  let tm1,tm2 = dest_comb(rand(concl th1)) in
                  let tm3,tm4 = dest_comb tm2 in
                  TRANS th1 (AP_TERM tm1 (MONOMIAL_MUL tm2 (rand tm3) tm4))
                else INST [l,lx_tm; r,rx_tm] pthm_20
        with Failure _ ->
            let vl = powvar l in
            try let rx,ry = dest_mul r in
                let vr = powvar rx in
                let ord = vorder vl vr in
                if ord = 0 then
                  let th1 = INST [l,lx_tm; rx,rx_tm; ry,ry_tm] pthm_21 in
                  let tm1,tm2 = dest_comb(rand(concl th1)) in
                  let tm3,tm4 = dest_comb tm1 in
                  TRANS th1 (AP_THM (AP_TERM tm3 (POWVAR_MUL_CONV tm4)) tm2)
                else if ord > 0 then
                  let th1 = INST [l,lx_tm; rx,rx_tm; ry,ry_tm] pthm_22 in
                  let tm1,tm2 = dest_comb(rand(concl th1)) in
                  let tm3,tm4 = dest_comb tm2 in
                  TRANS th1 (AP_TERM tm1 (MONOMIAL_MUL tm2 (rand tm3) tm4))
                else REFL tm
            with Failure _ ->
                let vr = powvar r in
                let ord = vorder vl vr in
                if ord = 0 then POWVAR_MUL_CONV tm
                else if ord > 0 then INST [l,lx_tm; r,rx_tm] pthm_20
                else REFL tm in
      fun tm -> let l,r = dest_mul tm in MONOMIAL_DEONE(MONOMIAL_MUL tm l r) in

(* ------------------------------------------------------------------------- *)
(* Multiplication by monomial of a polynomial.                               *)
(* ------------------------------------------------------------------------- *)

    let POLYNOMIAL_MONOMIAL_MUL_CONV =
      let rec PMM_CONV tm =
        let l,r = dest_mul tm in
        try let y,z = dest_add r in
            let th1 = INST [l,x_tm; y,y_tm; z,z_tm] pthm_37 in
            let tm1,tm2 = dest_comb(rand(concl th1)) in
            let tm3,tm4 = dest_comb tm1 in
            let th2 = MK_COMB(AP_TERM tm3 (MONOMIAL_MUL_CONV tm4),
                              PMM_CONV tm2) in
            TRANS th1 th2
        with Failure _ -> MONOMIAL_MUL_CONV tm in
      PMM_CONV in

(* ------------------------------------------------------------------------- *)
(* Addition of two monomials identical except for constant multiples.        *)
(* ------------------------------------------------------------------------- *)

    let MONOMIAL_ADD_CONV tm =
      let l,r = dest_add tm in
      if is_semiring_constant l && is_semiring_constant r
      then SEMIRING_ADD_CONV tm else
      let th1 =
        if is_mul l && is_semiring_constant(lhand l) then
          if is_mul r && is_semiring_constant(lhand r) then
            INST [lhand l,a_tm; lhand r,b_tm; rand r,m_tm] pthm_02
          else
            INST [lhand l,a_tm; r,m_tm] pthm_03
        else
          if is_mul r && is_semiring_constant(lhand r) then
            INST [lhand r,a_tm; l,m_tm] pthm_04
          else
            INST [r,m_tm] pthm_05 in
      let tm1,tm2 = dest_comb(rand(concl th1)) in
      let tm3,tm4 = dest_comb tm1 in
      let th2 = AP_TERM tm3 (SEMIRING_ADD_CONV tm4) in
      let th3 = TRANS th1 (AP_THM th2 tm2) in
      let tm5 = rand(concl th3) in
      if lhand tm5 = zero_tm then TRANS th3 (INST [rand tm5,m_tm] pthm_06)
      else MONOMIAL_DEONE th3 in

(* ------------------------------------------------------------------------- *)
(* Ordering on monomials.                                                    *)
(* ------------------------------------------------------------------------- *)

    let powervars tm =
      let ptms = striplist dest_mul tm in
      if is_semiring_constant (hd ptms) then tl ptms else ptms in

    let dest_varpow tm =
      try let x,n = dest_pow tm in (x,dest_numeral n)
      with Failure _ ->
       (tm,(if is_semiring_constant tm then num_0 else num_1)) in

    let morder =
      let rec lexorder l1 l2 =
        match (l1,l2) with
          [],[] -> 0
        | vps,[] -> -1
        | [],vps -> 1
        | ((x1,n1)::vs1),((x2,n2)::vs2) ->
              if variable_order x1 x2 then 1
              else if variable_order x2 x1 then -1
              else if n1 </ n2 then -1
              else if n2 </ n1 then 1
              else lexorder vs1 vs2 in
      fun tm1 tm2 ->
        let vdegs1 = map dest_varpow (powervars tm1)
        and vdegs2 = map dest_varpow (powervars tm2) in
        let deg1 = itlist ((+/) o snd) vdegs1 num_0
        and deg2 = itlist ((+/) o snd) vdegs2 num_0 in
        if deg1 </ deg2 then -1 else if deg1 >/ deg2 then 1
        else lexorder vdegs1 vdegs2 in

(* ------------------------------------------------------------------------- *)
(* Addition of two polynomials.                                              *)
(* ------------------------------------------------------------------------- *)

    let POLYNOMIAL_ADD_CONV =
      let DEZERO_RULE th =
        let tm = rand(concl th) in
        if not(is_add tm) then th else
        let lop,r = dest_comb tm in
        let l = rand lop in
        if l = zero_tm then TRANS th (INST [r,a_tm] pthm_07)
        else if r = zero_tm then TRANS th (INST [l,a_tm] pthm_08)
        else th in
      let rec PADD tm =
        let l,r = dest_add tm in
        if l = zero_tm then INST [r,a_tm] pthm_07
        else if r = zero_tm then INST [l,a_tm] pthm_08 else
        if is_add l then
          let a,b = dest_add l in
          if is_add r then
            let c,d = dest_add r in
            let ord = morder a c in
            if ord = 0 then
              let th1 = INST [a,a_tm; b,b_tm; c,c_tm; d,d_tm] pthm_23 in
              let tm1,tm2 = dest_comb(rand(concl th1)) in
              let tm3,tm4 = dest_comb tm1 in
              let th2 = AP_TERM tm3 (MONOMIAL_ADD_CONV tm4) in
              DEZERO_RULE (TRANS th1 (MK_COMB(th2,PADD tm2)))
            else
              let th1 =
                if ord > 0 then INST [a,a_tm; b,b_tm; r,c_tm] pthm_24
                else INST [l,a_tm; c,c_tm; d,d_tm] pthm_25 in
              let tm1,tm2 = dest_comb(rand(concl th1)) in
              DEZERO_RULE (TRANS th1 (AP_TERM tm1 (PADD tm2)))
          else
            let ord = morder a r in
            if ord = 0 then
              let th1 = INST [a,a_tm; b,b_tm; r,c_tm] pthm_26 in
              let tm1,tm2 = dest_comb(rand(concl th1)) in
              let tm3,tm4 = dest_comb tm1 in
              let th2 = AP_THM (AP_TERM tm3 (MONOMIAL_ADD_CONV tm4)) tm2 in
              DEZERO_RULE (TRANS th1 th2)
            else if ord > 0 then
              let th1 = INST [a,a_tm; b,b_tm; r,c_tm] pthm_24 in
              let tm1,tm2 = dest_comb(rand(concl th1)) in
              DEZERO_RULE (TRANS th1 (AP_TERM tm1 (PADD tm2)))
            else
              DEZERO_RULE (INST [l,a_tm; r,c_tm] pthm_27)
        else
          if is_add r then
            let c,d = dest_add r in
            let ord = morder l c in
            if ord = 0 then
              let th1 = INST [l,a_tm; c,c_tm; d,d_tm] pthm_28 in
              let tm1,tm2 = dest_comb(rand(concl th1)) in
              let tm3,tm4 = dest_comb tm1 in
              let th2 = AP_THM (AP_TERM tm3 (MONOMIAL_ADD_CONV tm4)) tm2 in
              DEZERO_RULE (TRANS th1 th2)
            else if ord > 0 then
              REFL tm
            else
              let th1 = INST [l,a_tm; c,c_tm; d,d_tm] pthm_25 in
              let tm1,tm2 = dest_comb(rand(concl th1)) in
              DEZERO_RULE (TRANS th1 (AP_TERM tm1 (PADD tm2)))
          else
            let ord = morder l r in
            if ord = 0 then MONOMIAL_ADD_CONV tm
            else if ord > 0 then DEZERO_RULE(REFL tm)
            else DEZERO_RULE(INST [l,a_tm; r,c_tm] pthm_27) in
      PADD in

(* ------------------------------------------------------------------------- *)
(* Multiplication of two polynomials.                                        *)
(* ------------------------------------------------------------------------- *)

    let POLYNOMIAL_MUL_CONV =
      let rec PMUL tm =
        let l,r = dest_mul tm in
        if not(is_add l) then POLYNOMIAL_MONOMIAL_MUL_CONV tm
        else if not(is_add r) then
          let th1 = INST [l,a_tm; r,b_tm] pthm_09 in
          TRANS th1 (POLYNOMIAL_MONOMIAL_MUL_CONV(rand(concl th1)))
        else
          let a,b = dest_add l in
          let th1 = INST [a,a_tm; b,b_tm; r,c_tm] pthm_10 in
          let tm1,tm2 = dest_comb(rand(concl th1)) in
          let tm3,tm4 = dest_comb tm1 in
          let th2 = AP_TERM tm3 (POLYNOMIAL_MONOMIAL_MUL_CONV tm4) in
          let th3 = TRANS th1 (MK_COMB(th2,PMUL tm2)) in
          TRANS th3 (POLYNOMIAL_ADD_CONV (rand(concl th3))) in
      fun tm ->
        let l,r = dest_mul tm in
        if l = zero_tm then INST [r,a_tm] pthm_11
        else if r = zero_tm then INST [l,a_tm] pthm_12
        else if l = one_tm then INST [r,a_tm] pthm_13
        else if r = one_tm then INST [l,a_tm] pthm_14
        else PMUL tm in

(* ------------------------------------------------------------------------- *)
(* Power of polynomial (optimized for the monomial and trivial cases).       *)
(* ------------------------------------------------------------------------- *)

    let POLYNOMIAL_POW_CONV =
      let rec PPOW tm =
        let l,n = dest_pow tm in
        if n = zeron_tm then INST [l,x_tm] pthm_35
        else if n = onen_tm then INST [l,x_tm] pthm_36 else
        let th1 = num_CONV n in
        let th2 = INST [l,x_tm; rand(rand(concl th1)),q_tm] pthm_38 in
        let tm1,tm2 = dest_comb(rand(concl th2)) in
        let th3 = TRANS th2 (AP_TERM tm1 (PPOW tm2)) in
        let th4 = TRANS (AP_TERM (rator tm) th1) th3 in
        TRANS th4 (POLYNOMIAL_MUL_CONV (rand(concl th4))) in
      fun tm ->
        if is_add(lhand tm) then PPOW tm else MONOMIAL_POW_CONV tm in

(* ------------------------------------------------------------------------- *)
(* Negation.                                                                 *)
(* ------------------------------------------------------------------------- *)

    let POLYNOMIAL_NEG_CONV =
      fun tm ->
        let l,r = dest_comb tm in
        if l <> neg_tm then failwith "POLYNOMIAL_NEG_CONV" else
        let th1 = INST [r,x_tm] nthm_1 in
        TRANS th1 (POLYNOMIAL_MONOMIAL_MUL_CONV (rand(concl th1))) in

(* ------------------------------------------------------------------------- *)
(* Subtraction.                                                              *)
(* ------------------------------------------------------------------------- *)

    let POLYNOMIAL_SUB_CONV =
      fun tm ->
        let l,r = dest_sub tm in
        let th1 = INST [l,x_tm; r,y_tm] nthm_2 in
        let tm1,tm2 = dest_comb(rand(concl th1)) in
        let th2 = AP_TERM tm1 (POLYNOMIAL_MONOMIAL_MUL_CONV tm2) in
        TRANS th1 (TRANS th2 (POLYNOMIAL_ADD_CONV (rand(concl th2)))) in

(* ------------------------------------------------------------------------- *)
(* Conversion from HOL term.                                                 *)
(* ------------------------------------------------------------------------- *)

    let rec POLYNOMIAL_CONV tm =
      if not(is_comb tm) || is_semiring_constant tm then REFL tm else
      let lop,r = dest_comb tm in
      if lop = neg_tm then
         let th1 = AP_TERM lop (POLYNOMIAL_CONV r) in
         TRANS th1 (POLYNOMIAL_NEG_CONV (rand(concl th1)))
      else if not(is_comb lop) then REFL tm else
         let op,l = dest_comb lop in
         if op = pow_tm && is_numeral r then
           let th1 = AP_THM (AP_TERM op (POLYNOMIAL_CONV l)) r in
           TRANS th1 (POLYNOMIAL_POW_CONV (rand(concl th1)))
         else
           if op = add_tm || op = mul_tm || op = sub_tm then
             let th1 = MK_COMB(AP_TERM op (POLYNOMIAL_CONV l),
                               POLYNOMIAL_CONV r) in
             let fn = if op = add_tm then POLYNOMIAL_ADD_CONV
                      else if op = mul_tm then POLYNOMIAL_MUL_CONV
                      else POLYNOMIAL_SUB_CONV in
             TRANS th1 (fn (rand(concl th1)))
           else REFL tm in
    POLYNOMIAL_NEG_CONV,POLYNOMIAL_ADD_CONV,POLYNOMIAL_SUB_CONV,
    POLYNOMIAL_MUL_CONV,POLYNOMIAL_POW_CONV,POLYNOMIAL_CONV;;

(* ------------------------------------------------------------------------- *)
(* Instantiate it to the natural numbers.                                    *)
(* ------------------------------------------------------------------------- *)

let NUM_NORMALIZE_CONV =
  let sth = prove
   (`(!x y z. x + (y + z) = (x + y) + z) /\
     (!x y. x + y = y + x) /\
     (!x. 0 + x = x) /\
     (!x y z. x * (y * z) = (x * y) * z) /\
     (!x y. x * y = y * x) /\
     (!x. 1 * x = x) /\
     (!x. 0 * x = 0) /\
     (!x y z. x * (y + z) = x * y + x * z) /\
     (!x. x EXP 0 = 1) /\
     (!x n. x EXP (SUC n) = x * x EXP n)`,
    REWRITE_TAC[EXP; MULT_CLAUSES; ADD_CLAUSES; LEFT_ADD_DISTRIB] THEN
    REWRITE_TAC[ADD_AC; MULT_AC])
  and rth = TRUTH
  and is_semiring_constant = is_numeral
  and SEMIRING_ADD_CONV = NUM_ADD_CONV
  and SEMIRING_MUL_CONV = NUM_MULT_CONV
  and SEMIRING_POW_CONV = NUM_EXP_CONV in
  let _,_,_,_,_,NUM_NORMALIZE_CONV =
    SEMIRING_NORMALIZERS_CONV sth rth
     (is_semiring_constant,
      SEMIRING_ADD_CONV,SEMIRING_MUL_CONV,SEMIRING_POW_CONV)
     (<) in
  NUM_NORMALIZE_CONV;;