This file is indexed.

/usr/share/hol-light/iterate.ml is in hol-light 20170706-0ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
(* ========================================================================= *)
(* Generic iterated operations and special cases of sums over N and R.       *)
(*                                                                           *)
(*              (c) Copyright, John Harrison 1998-2007                       *)
(*              (c) Copyright, Lars Schewe 2007                              *)
(* ========================================================================= *)

needs "sets.ml";;

prioritize_num();;

(* ------------------------------------------------------------------------- *)
(* A natural notation for segments of the naturals.                          *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("..",(15,"right"));;

let numseg = new_definition
  `m..n = {x:num | m <= x /\ x <= n}`;;

let FINITE_NUMSEG = prove
 (`!m n. FINITE(m..n)`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN
  EXISTS_TAC `{x:num | x <= n}` THEN REWRITE_TAC[FINITE_NUMSEG_LE] THEN
  SIMP_TAC[SUBSET; IN_ELIM_THM; numseg]);;

let NUMSEG_COMBINE_R = prove
 (`!m p n. m <= p + 1 /\ p <= n ==> ((m..p) UNION ((p+1)..n) = m..n)`,
  REWRITE_TAC[EXTENSION; IN_UNION; numseg; IN_ELIM_THM] THEN ARITH_TAC);;

let NUMSEG_COMBINE_L = prove
 (`!m p n. m <= p /\ p <= n + 1 ==> ((m..(p-1)) UNION (p..n) = m..n)`,
  REWRITE_TAC[EXTENSION; IN_UNION; numseg; IN_ELIM_THM] THEN ARITH_TAC);;

let NUMSEG_LREC = prove
 (`!m n. m <= n ==> (m INSERT ((m+1)..n) = m..n)`,
  REWRITE_TAC[EXTENSION; IN_INSERT; numseg; IN_ELIM_THM] THEN ARITH_TAC);;

let NUMSEG_RREC = prove
 (`!m n. m <= n ==> (n INSERT (m..(n-1)) = m..n)`,
  REWRITE_TAC[EXTENSION; IN_INSERT; numseg; IN_ELIM_THM] THEN ARITH_TAC);;

let NUMSEG_REC = prove
 (`!m n. m <= SUC n ==> (m..SUC n = (SUC n) INSERT (m..n))`,
  SIMP_TAC[GSYM NUMSEG_RREC; SUC_SUB1]);;

let IN_NUMSEG = prove
 (`!m n p. p IN (m..n) <=> m <= p /\ p <= n`,
  REWRITE_TAC[numseg; IN_ELIM_THM]);;

let IN_NUMSEG_0 = prove
 (`!m n. m IN (0..n) <=> m <= n`,
  REWRITE_TAC[IN_NUMSEG; LE_0]);;

let NUMSEG_SING = prove
 (`!n. n..n = {n}`,
  REWRITE_TAC[EXTENSION; IN_SING; IN_NUMSEG] THEN ARITH_TAC);;

let NUMSEG_EMPTY = prove
 (`!m n. (m..n = {}) <=> n < m`,
  REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_NUMSEG] THEN
  MESON_TAC[NOT_LE; LE_TRANS; LE_REFL]);;

let FINITE_SUBSET_NUMSEG = prove
 (`!s:num->bool. FINITE s <=> ?n. s SUBSET 0..n`,
  GEN_TAC THEN EQ_TAC THENL
   [REWRITE_TAC[SUBSET; IN_NUMSEG; LE_0] THEN
    SPEC_TAC(`s:num->bool`,`s:num->bool`) THEN
    MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
    REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
    MESON_TAC[LE_CASES; LE_REFL; LE_TRANS];
    MESON_TAC[FINITE_SUBSET; FINITE_NUMSEG]]);;

let CARD_NUMSEG_LEMMA = prove
 (`!m d. CARD(m..(m+d)) = d + 1`,
  GEN_TAC THEN INDUCT_TAC THEN
  ASM_SIMP_TAC[ADD_CLAUSES; NUMSEG_REC; NUMSEG_SING; FINITE_RULES;
               ARITH_RULE `m <= SUC(m + d)`; CARD_CLAUSES; FINITE_NUMSEG;
               NOT_IN_EMPTY; ARITH; IN_NUMSEG; ARITH_RULE `~(SUC n <= n)`]);;

let CARD_NUMSEG = prove
 (`!m n. CARD(m..n) = (n + 1) - m`,
  REPEAT GEN_TAC THEN
  DISJ_CASES_THEN MP_TAC (ARITH_RULE `n:num < m \/ m <= n`) THENL
   [ASM_MESON_TAC[NUMSEG_EMPTY; CARD_CLAUSES;
                  ARITH_RULE `n < m ==> ((n + 1) - m = 0)`];
    SIMP_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM; CARD_NUMSEG_LEMMA] THEN
    REPEAT STRIP_TAC THEN ARITH_TAC]);;

let HAS_SIZE_NUMSEG = prove
 (`!m n. (m..n) HAS_SIZE ((n + 1) - m)`,
  REWRITE_TAC[HAS_SIZE; FINITE_NUMSEG; CARD_NUMSEG]);;

let CARD_NUMSEG_1 = prove
 (`!n. CARD(1..n) = n`,
  REWRITE_TAC[CARD_NUMSEG] THEN ARITH_TAC);;

let HAS_SIZE_NUMSEG_1 = prove
 (`!n. (1..n) HAS_SIZE n`,
  REWRITE_TAC[CARD_NUMSEG; HAS_SIZE; FINITE_NUMSEG] THEN ARITH_TAC);;

let NUMSEG_CLAUSES = prove
 (`(!m. m..0 = if m = 0 then {0} else {}) /\
   (!m n. m..SUC n = if m <= SUC n then (SUC n) INSERT (m..n) else m..n)`,
  REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
  GEN_REWRITE_TAC I [EXTENSION] THEN
  REWRITE_TAC[IN_NUMSEG; NOT_IN_EMPTY; IN_INSERT] THEN
  POP_ASSUM MP_TAC THEN ARITH_TAC);;

let FINITE_INDEX_NUMSEG = prove
 (`!s:A->bool.
        FINITE s =
        ?f. (!i j. i IN (1..CARD(s)) /\ j IN (1..CARD(s)) /\ (f i = f j)
                   ==> (i = j)) /\
            (s = IMAGE f (1..CARD(s)))`,
  GEN_TAC THEN EQ_TAC THENL
   [ALL_TAC; MESON_TAC[FINITE_NUMSEG; FINITE_IMAGE]] THEN
  DISCH_TAC THEN
  MP_TAC(ISPECL [`s:A->bool`; `CARD(s:A->bool)`] HAS_SIZE_INDEX) THEN
  ASM_REWRITE_TAC[HAS_SIZE] THEN
  DISCH_THEN(X_CHOOSE_THEN `f:num->A` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `\n. f(n - 1):A` THEN
  ASM_REWRITE_TAC[EXTENSION; IN_IMAGE; IN_NUMSEG] THEN
  CONJ_TAC THENL
   [REWRITE_TAC[ARITH_RULE `1 <= i /\ i <= n <=> ~(i = 0) /\ i - 1 < n`] THEN
    ASM_MESON_TAC[ARITH_RULE
     `~(x = 0) /\ ~(y = 0) /\ (x - 1 = y - 1) ==> (x = y)`];
    ASM_MESON_TAC
     [ARITH_RULE `m < C ==> (m = (m + 1) - 1) /\ 1 <= m + 1 /\ m + 1 <= C`;
      ARITH_RULE `1 <= i /\ i <= n <=> ~(i = 0) /\ i - 1 < n`]]);;

let FINITE_INDEX_NUMBERS = prove
 (`!s:A->bool.
        FINITE s =
         ?k:num->bool f. (!i j. i IN k /\ j IN k /\ (f i = f j) ==> (i = j)) /\
                         FINITE k /\ (s = IMAGE f k)`,
  MESON_TAC[FINITE_INDEX_NUMSEG; FINITE_NUMSEG; FINITE_IMAGE]);;

let INTER_NUMSEG = prove
 (`!m n p q. (m..n) INTER (p..q) = (MAX m p)..(MIN n q)`,
  REWRITE_TAC[EXTENSION; IN_INTER; IN_NUMSEG] THEN ARITH_TAC);;

let DISJOINT_NUMSEG = prove
 (`!m n p q. DISJOINT (m..n) (p..q) <=> n < p \/ q < m \/ n < m \/ q < p`,
  REWRITE_TAC[DISJOINT; NUMSEG_EMPTY; INTER_NUMSEG] THEN ARITH_TAC);;

let NUMSEG_ADD_SPLIT = prove
 (`!m n p. m <= n + 1 ==> (m..(n+p) = (m..n) UNION (n+1..n+p))`,
  REWRITE_TAC[EXTENSION; IN_UNION; IN_NUMSEG] THEN ARITH_TAC);;

let NUMSEG_OFFSET_IMAGE = prove
 (`!m n p. (m+p..n+p) = IMAGE (\i. i + p) (m..n)`,
  REWRITE_TAC[EXTENSION; IN_IMAGE; IN_NUMSEG] THEN
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [DISCH_THEN(fun th -> EXISTS_TAC `x - p:num` THEN MP_TAC th); ALL_TAC] THEN
  ARITH_TAC);;

let SUBSET_NUMSEG = prove
 (`!m n p q. (m..n) SUBSET (p..q) <=> n < m \/ p <= m /\ n <= q`,
  REPEAT GEN_TAC THEN REWRITE_TAC[SUBSET; IN_NUMSEG] THEN
  EQ_TAC THENL [MESON_TAC[LE_TRANS; NOT_LE; LE_REFL]; ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* Equivalence with the more ad-hoc comprehension notation.                  *)
(* ------------------------------------------------------------------------- *)

let NUMSEG_LE = prove
 (`!n. {x | x <= n} = 0..n`,
  REWRITE_TAC[EXTENSION; IN_NUMSEG; IN_ELIM_THM] THEN ARITH_TAC);;

let NUMSEG_LT = prove
 (`!n. {x | x < n} = if n = 0 then {} else 0..(n-1)`,
  GEN_TAC THEN COND_CASES_TAC THEN
  REWRITE_TAC[EXTENSION; IN_NUMSEG; IN_ELIM_THM; NOT_IN_EMPTY] THEN
  ASM_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Conversion to evaluate m..n for specific numerals.                        *)
(* ------------------------------------------------------------------------- *)

let NUMSEG_CONV =
  let pth_0 = MESON[NUMSEG_EMPTY] `n < m ==> m..n = {}`
  and pth_1 = MESON[NUMSEG_SING] `m..m = {m}`
  and pth_2 = MESON[NUMSEG_LREC; ADD1] `m <= n ==> m..n = m INSERT (SUC m..n)`
  and ns_tm = `(..)` and m_tm = `m:num` and n_tm = `n:num` in
  let rec NUMSEG_CONV tm =
    let nstm,nt = dest_comb tm in
    let nst,mt = dest_comb nstm in
    if nst <> ns_tm then failwith "NUMSEG_CONV" else
    let m = dest_numeral mt and n = dest_numeral nt in
    if n </ m then MP_CONV NUM_LT_CONV (INST [mt,m_tm; nt,n_tm] pth_0)
    else if n =/ m then INST [mt,m_tm] pth_1
    else let th = MP_CONV NUM_LE_CONV (INST [mt,m_tm; nt,n_tm] pth_2) in
         CONV_RULE(funpow 2 RAND_CONV
          (LAND_CONV NUM_SUC_CONV THENC NUMSEG_CONV)) th in
  NUMSEG_CONV;;

(* ------------------------------------------------------------------------- *)
(* Topological sorting of a finite set.                                      *)
(* ------------------------------------------------------------------------- *)

let TOPOLOGICAL_SORT = prove
 (`!(<<). (!x y:A. x << y /\ y << x ==> x = y) /\
          (!x y z. x << y /\ y << z ==> x << z)
          ==> !n s. s HAS_SIZE n
                    ==> ?f. s = IMAGE f (1..n) /\
                            (!j k. j IN 1..n /\ k IN 1..n /\ j < k
                                   ==> ~(f k << f j))`,
  GEN_TAC THEN DISCH_TAC THEN
  SUBGOAL_THEN `!n s. s HAS_SIZE n /\ ~(s = {})
                      ==> ?a:A. a IN s /\ !b. b IN (s DELETE a) ==> ~(b << a)`
  ASSUME_TAC THENL
   [INDUCT_TAC THEN
    REWRITE_TAC[HAS_SIZE_0; HAS_SIZE_SUC; TAUT `~(a /\ ~a)`] THEN
    X_GEN_TAC `s:A->bool` THEN STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
    DISCH_THEN(X_CHOOSE_TAC `a:A`) THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `a:A`) THEN ASM_REWRITE_TAC[] THEN
    DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `s DELETE (a:A)`) THEN
    ASM_SIMP_TAC[SET_RULE `a IN s ==> (s DELETE a = {} <=> s = {a})`] THEN
    ASM_CASES_TAC `s = {a:A}` THEN ASM_REWRITE_TAC[] THENL
     [EXISTS_TAC `a:A` THEN SET_TAC[]; ALL_TAC] THEN
    DISCH_THEN(X_CHOOSE_THEN `b:A` STRIP_ASSUME_TAC) THEN
    ASM_CASES_TAC `((a:A) << (b:A)) :bool` THENL
     [EXISTS_TAC `a:A`; EXISTS_TAC `b:A`] THEN ASM SET_TAC[];
    ALL_TAC] THEN
  INDUCT_TAC THENL
   [SIMP_TAC[HAS_SIZE_0; NUMSEG_CLAUSES; ARITH; IMAGE_CLAUSES; NOT_IN_EMPTY];
    ALL_TAC] THEN
  REWRITE_TAC[HAS_SIZE_SUC] THEN X_GEN_TAC `s:A->bool` THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPECL [`SUC n`; `s:A->bool`]) THEN
  ASM_REWRITE_TAC[HAS_SIZE_SUC] THEN
  DISCH_THEN(X_CHOOSE_THEN `a:A` MP_TAC) THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `s DELETE (a:A)`) THEN ASM_SIMP_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `f:num->A` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `\k. if k = 1 then a:A else f(k - 1)` THEN
  SIMP_TAC[ARITH_RULE `1 <= k ==> ~(SUC k = 1)`; SUC_SUB1] THEN
  SUBGOAL_THEN `!i. i IN 1..SUC n <=> i = 1 \/ 1 < i /\ (i - 1) IN 1..n`
   (fun th -> REWRITE_TAC[EXTENSION; IN_IMAGE; th])
  THENL [REWRITE_TAC[IN_NUMSEG] THEN ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL
   [X_GEN_TAC `b:A` THEN ASM_CASES_TAC `b:A = a` THENL
     [ASM_MESON_TAC[]; ALL_TAC] THEN
    FIRST_ASSUM(fun th -> ONCE_REWRITE_TAC[MATCH_MP
     (SET_RULE `~(b = a) ==> (b IN s <=> b IN (s DELETE a))`) th]) THEN
    ONCE_REWRITE_TAC[COND_RAND] THEN
    ASM_REWRITE_TAC[IN_IMAGE; IN_NUMSEG] THEN
    EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
    DISCH_THEN(X_CHOOSE_TAC `i:num`) THEN EXISTS_TAC `i + 1` THEN
    ASM_SIMP_TAC[ARITH_RULE `1 <= x ==> 1 < x + 1 /\ ~(x + 1 = 1)`; ADD_SUB];
    MAP_EVERY X_GEN_TAC [`j:num`; `k:num`] THEN
    MAP_EVERY ASM_CASES_TAC [`j = 1`; `k = 1`] THEN
    ASM_REWRITE_TAC[LT_REFL] THENL
     [STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM SET_TAC[];
      ARITH_TAC;
      STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
      ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC]]);;

(* ------------------------------------------------------------------------- *)
(* Analogous finiteness theorem for segments of integers.                    *)
(* ------------------------------------------------------------------------- *)

let FINITE_INTSEG = prove
 (`(!l r. FINITE {x:int | l <= x /\ x <= r}) /\
   (!l r. FINITE {x:int | l <= x /\ x < r}) /\
   (!l r. FINITE {x:int | l < x /\ x <= r}) /\
   (!l r. FINITE {x:int | l < x /\ x < r})`,
  MATCH_MP_TAC(TAUT `(a ==> b) /\ a ==> a /\ b`) THEN CONJ_TAC THENL
   [DISCH_TAC THEN REPEAT CONJ_TAC THEN POP_ASSUM MP_TAC THEN
    REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN
    REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN INT_ARITH_TAC;
    REPEAT GEN_TAC THEN ASM_CASES_TAC `&0:int <= r - l` THEN
    ASM_SIMP_TAC[INT_ARITH `~(&0 <= r - l:int) ==> ~(l <= x /\ x <= r)`] THEN
    ASM_SIMP_TAC[EMPTY_GSPEC; FINITE_EMPTY] THEN
    MATCH_MP_TAC FINITE_SUBSET THEN
    EXISTS_TAC `IMAGE (\n. l + &n) (0..num_of_int(r - l))` THEN
    ASM_SIMP_TAC[FINITE_IMAGE; FINITE_NUMSEG] THEN
    REWRITE_TAC[SUBSET; IN_IMAGE; IN_ELIM_THM] THEN
    REWRITE_TAC[GSYM INT_OF_NUM_LE; IN_NUMSEG] THEN
    X_GEN_TAC `x:int` THEN STRIP_TAC THEN EXISTS_TAC `num_of_int(x - l)` THEN
    ASM_SIMP_TAC[INT_OF_NUM_OF_INT; INT_SUB_LE] THEN ASM_INT_ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* Generic iteration of operation over set with finite support.              *)
(* ------------------------------------------------------------------------- *)

let neutral = new_definition
  `neutral op = @x. !y. (op x y = y) /\ (op y x = y)`;;

let monoidal = new_definition
  `monoidal op <=> (!x y. op x y = op y x) /\
                   (!x y z. op x (op y z) = op (op x y) z) /\
                   (!x:A. op (neutral op) x = x)`;;

let MONOIDAL_AC = prove
 (`!op. monoidal op
        ==> (!a. op (neutral op) a = a) /\
            (!a. op a (neutral op) = a) /\
            (!a b. op a b = op b a) /\
            (!a b c. op (op a b) c = op a (op b c)) /\
            (!a b c. op a (op b c) = op b (op a c))`,
  REWRITE_TAC[monoidal] THEN MESON_TAC[]);;

let support = new_definition
  `support op (f:A->B) s = {x | x IN s /\ ~(f x = neutral op)}`;;

let iterate = new_definition
  `iterate op (s:A->bool) f =
        if FINITE(support op f s)
        then ITSET (\x a. op (f x) a) (support op f s) (neutral op)
        else neutral op`;;

let IN_SUPPORT = prove
 (`!op f x s. x IN (support op f s) <=> x IN s /\ ~(f x = neutral op)`,
  REWRITE_TAC[support; IN_ELIM_THM]);;

let SUPPORT_SUPPORT = prove
 (`!op f s. support op f (support op f s) = support op f s`,
  REWRITE_TAC[support; IN_ELIM_THM; EXTENSION] THEN REWRITE_TAC[CONJ_ACI]);;

let SUPPORT_EMPTY = prove
 (`!op f s. (!x. x IN s ==> (f(x) = neutral op)) <=> (support op f s = {})`,
  REWRITE_TAC[IN_SUPPORT; EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN
  MESON_TAC[]);;

let SUPPORT_SUBSET = prove
 (`!op f s. (support op f s) SUBSET s`,
  SIMP_TAC[SUBSET; IN_SUPPORT]);;

let FINITE_SUPPORT = prove
 (`!op f s. FINITE s ==> FINITE(support op f s)`,
  MESON_TAC[SUPPORT_SUBSET; FINITE_SUBSET]);;

let SUPPORT_CLAUSES = prove
 (`(!f. support op f {} = {}) /\
   (!f x s. support op f (x INSERT s) =
       if f(x) = neutral op then support op f s
       else x INSERT (support op f s)) /\
   (!f x s. support op f (s DELETE x) = (support op f s) DELETE x) /\
   (!f s t. support op f (s UNION t) =
                    (support op f s) UNION (support op f t)) /\
   (!f s t. support op f (s INTER t) =
                    (support op f s) INTER (support op f t)) /\
   (!f s t. support op f (s DIFF t) =
                    (support op f s) DIFF (support op f t)) /\
   (!f g s.  support op g (IMAGE f s) = IMAGE f (support op (g o f) s))`,
  REWRITE_TAC[support; EXTENSION; IN_ELIM_THM; IN_INSERT; IN_DELETE; o_THM;
    IN_IMAGE; NOT_IN_EMPTY; IN_UNION; IN_INTER; IN_DIFF; COND_RAND] THEN
  REPEAT STRIP_TAC THEN TRY COND_CASES_TAC THEN ASM_MESON_TAC[]);;

let SUPPORT_DELTA = prove
 (`!op s f a. support op (\x. if x = a then f(x) else neutral op) s =
              if a IN s then support op f {a} else {}`,
  REWRITE_TAC[EXTENSION; support; IN_ELIM_THM; IN_SING] THEN
  REPEAT GEN_TAC THEN REPEAT COND_CASES_TAC THEN
  ASM_REWRITE_TAC[IN_ELIM_THM; NOT_IN_EMPTY]);;

let FINITE_SUPPORT_DELTA = prove
 (`!op f a. FINITE(support op (\x. if x = a then f(x) else neutral op) s)`,
  REWRITE_TAC[SUPPORT_DELTA] THEN REPEAT GEN_TAC THEN
  COND_CASES_TAC THEN SIMP_TAC[FINITE_RULES; FINITE_SUPPORT]);;

(* ------------------------------------------------------------------------- *)
(* Key lemmas about the generic notion.                                      *)
(* ------------------------------------------------------------------------- *)

let ITERATE_SUPPORT = prove
 (`!op f s. iterate op (support op f s) f = iterate op s f`,
  SIMP_TAC[iterate; SUPPORT_SUPPORT]);;

let ITERATE_EXPAND_CASES = prove
 (`!op f s. iterate op s f =
              if FINITE(support op f s) then iterate op (support op f s) f
              else neutral op`,
  SIMP_TAC[iterate; SUPPORT_SUPPORT]);;

let ITERATE_CLAUSES_GEN = prove
 (`!op. monoidal op
        ==> (!(f:A->B). iterate op {} f = neutral op) /\
            (!f x s. monoidal op /\ FINITE(support op (f:A->B) s)
                     ==> (iterate op (x INSERT s) f =
                                if x IN s then iterate op s f
                                else op (f x) (iterate op s f)))`,
  GEN_TAC THEN STRIP_TAC THEN
  ONCE_REWRITE_TAC[AND_FORALL_THM] THEN GEN_TAC THEN
  MP_TAC(ISPECL [`\x a. (op:B->B->B) ((f:A->B)(x)) a`; `neutral op :B`]
   FINITE_RECURSION) THEN
  ANTS_TAC THENL [ASM_MESON_TAC[monoidal]; ALL_TAC] THEN
  REPEAT STRIP_TAC THEN
  ASM_REWRITE_TAC[iterate; SUPPORT_CLAUSES; FINITE_RULES] THEN
  GEN_REWRITE_TAC (LAND_CONV o RATOR_CONV o LAND_CONV) [COND_RAND] THEN
  ASM_REWRITE_TAC[SUPPORT_CLAUSES; FINITE_INSERT; COND_ID] THEN
  ASM_CASES_TAC `(f:A->B) x = neutral op` THEN
  ASM_SIMP_TAC[IN_SUPPORT] THEN COND_CASES_TAC THEN ASM_MESON_TAC[monoidal]);;

let ITERATE_CLAUSES = prove
 (`!op. monoidal op
        ==> (!f. iterate op {} f = neutral op) /\
            (!f x s. FINITE(s)
                     ==> (iterate op (x INSERT s) f =
                          if x IN s then iterate op s f
                          else op (f x) (iterate op s f)))`,
  SIMP_TAC[ITERATE_CLAUSES_GEN; FINITE_SUPPORT]);;

let ITERATE_UNION = prove
 (`!op. monoidal op
        ==> !f s t. FINITE s /\ FINITE t /\ DISJOINT s t
                    ==> (iterate op (s UNION t) f =
                         op (iterate op s f) (iterate op t f))`,
  let lemma = prove
   (`(s UNION (x INSERT t) = x INSERT (s UNION t)) /\
     (DISJOINT s (x INSERT t) <=> ~(x IN s) /\ DISJOINT s t)`,
    SET_TAC[]) in
  GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN GEN_TAC THEN
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REPEAT DISCH_TAC THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  ASM_SIMP_TAC[ITERATE_CLAUSES; IN_UNION; UNION_EMPTY; REAL_ADD_RID; lemma;
               FINITE_UNION] THEN
  ASM_MESON_TAC[monoidal]);;

let ITERATE_UNION_GEN = prove
 (`!op. monoidal op
        ==> !(f:A->B) s t. FINITE(support op f s) /\ FINITE(support op f t) /\
                           DISJOINT (support op f s) (support op f t)
                           ==> (iterate op (s UNION t) f =
                                op (iterate op s f) (iterate op t f))`,
  ONCE_REWRITE_TAC[GSYM ITERATE_SUPPORT] THEN
  SIMP_TAC[SUPPORT_CLAUSES; ITERATE_UNION]);;

let ITERATE_DIFF = prove
 (`!op. monoidal op
        ==> !f s t. FINITE s /\ t SUBSET s
                    ==> (op (iterate op (s DIFF t) f) (iterate op t f) =
                         iterate op s f)`,
  let lemma = prove
   (`t SUBSET s ==> (s = (s DIFF t) UNION t) /\ DISJOINT (s DIFF t) t`,
    SET_TAC[]) in
  MESON_TAC[lemma; ITERATE_UNION; FINITE_UNION; FINITE_SUBSET; SUBSET_DIFF]);;

let ITERATE_DIFF_GEN = prove
 (`!op. monoidal op
        ==> !f:A->B s t. FINITE (support op f s) /\
                         (support op f t) SUBSET (support op f s)
                         ==> (op (iterate op (s DIFF t) f) (iterate op t f) =
                              iterate op s f)`,
  ONCE_REWRITE_TAC[GSYM ITERATE_SUPPORT] THEN
  SIMP_TAC[SUPPORT_CLAUSES; ITERATE_DIFF]);;

let ITERATE_INCL_EXCL = prove
 (`!op. monoidal op
        ==> !s t f. FINITE s /\ FINITE t
                    ==> op (iterate op s f) (iterate op t f) =
                        op (iterate op (s UNION t) f)
                           (iterate op (s INTER t) f)`,
  REPEAT STRIP_TAC THEN
  ONCE_REWRITE_TAC[SET_RULE
    `a UNION b = ((a DIFF b) UNION (b DIFF a)) UNION (a INTER b)`] THEN
  GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o ONCE_DEPTH_CONV)
    [SET_RULE `s:A->bool = s DIFF t UNION s INTER t`] THEN
  GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o ONCE_DEPTH_CONV)
    [SET_RULE `t:A->bool = t DIFF s UNION s INTER t`] THEN
  ASM_SIMP_TAC[ITERATE_UNION; FINITE_UNION; FINITE_DIFF; FINITE_INTER;
    SET_RULE `DISJOINT (s DIFF s' UNION s' DIFF s) (s INTER s')`;
    SET_RULE `DISJOINT (s DIFF s') (s' DIFF s)`;
    SET_RULE `DISJOINT (s DIFF s') (s' INTER s)`;
    SET_RULE `DISJOINT (s DIFF s') (s INTER s')`] THEN
  FIRST_X_ASSUM(fun th -> REWRITE_TAC[MATCH_MP MONOIDAL_AC th]));;

let ITERATE_CLOSED = prove
 (`!op. monoidal op
        ==> !P. P(neutral op) /\ (!x y. P x /\ P y ==> P (op x y))
                ==> !f:A->B s. (!x. x IN s /\ ~(f x = neutral op) ==> P(f x))
                               ==> P(iterate op s f)`,
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
  REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[GSYM IN_SUPPORT] THEN
  COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN POP_ASSUM MP_TAC THEN
  SPEC_TAC(`support op (f:A->B) s`,`s:A->bool`) THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  ASM_SIMP_TAC[ITERATE_CLAUSES; FINITE_INSERT; IN_INSERT]);;

let ITERATE_RELATED = prove
 (`!op. monoidal op
        ==> !R. R (neutral op) (neutral op) /\
                (!x1 y1 x2 y2. R x1 x2 /\ R y1 y2 ==> R (op x1 y1) (op x2 y2))
                ==> !f:A->B g s.
                      FINITE s /\
                      (!x. x IN s ==> R (f x) (g x))
                      ==> R (iterate op s f) (iterate op s g)`,
  GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN STRIP_TAC THEN GEN_TAC THEN
  GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  ASM_SIMP_TAC[ITERATE_CLAUSES; FINITE_INSERT; IN_INSERT]);;

let ITERATE_EQ_NEUTRAL = prove
 (`!op. monoidal op
        ==> !f:A->B s. (!x. x IN s ==> (f(x) = neutral op))
                       ==> (iterate op s f = neutral op)`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `support op (f:A->B) s = {}` ASSUME_TAC THENL
   [ASM_MESON_TAC[EXTENSION; NOT_IN_EMPTY; IN_SUPPORT];
    ASM_MESON_TAC[ITERATE_CLAUSES; FINITE_RULES; ITERATE_SUPPORT]]);;

let ITERATE_SING = prove
 (`!op. monoidal op ==> !f:A->B x. (iterate op {x} f = f x)`,
  SIMP_TAC[ITERATE_CLAUSES; FINITE_RULES; NOT_IN_EMPTY] THEN
  MESON_TAC[monoidal]);;

let ITERATE_DELETE = prove
 (`!op. monoidal op
        ==> !f:A->B s a. FINITE s /\ a IN s
                         ==> op (f a) (iterate op (s DELETE a) f) =
                             iterate op s f`,
  MESON_TAC[ITERATE_CLAUSES; FINITE_DELETE; IN_DELETE; INSERT_DELETE]);;

let ITERATE_DELTA = prove
 (`!op. monoidal op
        ==> !f a s. iterate op s (\x. if x = a then f(x) else neutral op) =
                    if a IN s then f(a) else neutral op`,
  GEN_TAC THEN DISCH_TAC THEN ONCE_REWRITE_TAC[GSYM ITERATE_SUPPORT] THEN
  REWRITE_TAC[SUPPORT_DELTA] THEN REPEAT GEN_TAC THEN COND_CASES_TAC THEN
  ASM_SIMP_TAC[ITERATE_CLAUSES] THEN REWRITE_TAC[SUPPORT_CLAUSES] THEN
  COND_CASES_TAC THEN ASM_SIMP_TAC[ITERATE_CLAUSES; ITERATE_SING]);;

let ITERATE_IMAGE = prove
 (`!op. monoidal op
       ==> !f:A->B g:B->C s.
                (!x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y))
                ==> (iterate op (IMAGE f s) g = iterate op s (g o f))`,
  GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN GEN_TAC THEN
  SUBGOAL_THEN
   `!s. FINITE s /\
        (!x y:A. x IN s /\ y IN s /\ (f x = f y) ==> (x = y))
        ==> (iterate op (IMAGE f s) (g:B->C) = iterate op s (g o f))`
  ASSUME_TAC THENL
   [REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
    ASM_SIMP_TAC[ITERATE_CLAUSES; IMAGE_CLAUSES; FINITE_IMAGE] THEN
    REWRITE_TAC[o_THM; IN_INSERT] THEN ASM_MESON_TAC[IN_IMAGE];
    GEN_TAC THEN DISCH_TAC THEN ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
    REPEAT STRIP_TAC THEN MATCH_MP_TAC(TAUT
     `(a <=> a') /\ (a' ==> (b = b'))
      ==> (if a then b else c) = (if a' then b' else c)`) THEN
    REWRITE_TAC[SUPPORT_CLAUSES] THEN REPEAT STRIP_TAC THENL
     [MATCH_MP_TAC FINITE_IMAGE_INJ_EQ THEN ASM_MESON_TAC[IN_SUPPORT];
      FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[IN_SUPPORT]]]);;

let ITERATE_BIJECTION = prove
 (`!op. monoidal op
        ==>  !f:A->B p s.
                (!x. x IN s ==> p(x) IN s) /\
                (!y. y IN s ==> ?!x. x IN s /\ p(x) = y)
                ==> iterate op s f = iterate op s (f o p)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `iterate op (IMAGE (p:A->A) s) (f:A->B)` THEN CONJ_TAC THENL
   [AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_IMAGE];
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP
      (INST_TYPE [aty,bty] ITERATE_IMAGE))] THEN
  ASM_MESON_TAC[]);;

let ITERATE_ITERATE_PRODUCT = prove
 (`!op. monoidal op
        ==> !s:A->bool t:A->B->bool x:A->B->C.
                FINITE s /\ (!i. i IN s ==> FINITE(t i))
                ==> iterate op s (\i. iterate op (t i) (x i)) =
                    iterate op {i,j | i IN s /\ j IN t i} (\(i,j). x i j)`,
  GEN_TAC THEN DISCH_TAC THEN
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  ASM_SIMP_TAC[NOT_IN_EMPTY; SET_RULE `{a,b | F} = {}`; ITERATE_CLAUSES] THEN
  REWRITE_TAC[SET_RULE `{i,j | i IN a INSERT s /\ j IN t i} =
            IMAGE (\j. a,j) (t a) UNION {i,j | i IN s /\ j IN t i}`] THEN
  ASM_SIMP_TAC[FINITE_INSERT; ITERATE_CLAUSES; IN_INSERT] THEN
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(fun th ->
   W(MP_TAC o PART_MATCH (lhand o rand) (MATCH_MP ITERATE_UNION th) o
   rand o snd)) THEN
  ANTS_TAC THENL
   [ASM_SIMP_TAC[FINITE_IMAGE; FINITE_PRODUCT_DEPENDENT; IN_INSERT] THEN
    REWRITE_TAC[DISJOINT; EXTENSION; IN_IMAGE; IN_INTER; NOT_IN_EMPTY;
                IN_ELIM_THM; EXISTS_PAIR_THM; FORALL_PAIR_THM; PAIR_EQ] THEN
    ASM_MESON_TAC[];
    ALL_TAC] THEN
  DISCH_THEN SUBST1_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
  FIRST_ASSUM(fun th ->
   W(MP_TAC o PART_MATCH (lhand o rand) (MATCH_MP ITERATE_IMAGE th) o
   rand o snd)) THEN
  ANTS_TAC THENL
   [SIMP_TAC[FORALL_PAIR_THM] THEN CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    ASM_SIMP_TAC[PAIR_EQ];
    DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[o_DEF] THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN REWRITE_TAC[ETA_AX]]);;

let ITERATE_EQ = prove
 (`!op. monoidal op
        ==> !f:A->B g s.
              (!x. x IN s ==> f x = g x) ==> iterate op s f = iterate op s g`,
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
  SUBGOAL_THEN `support op g s = support op (f:A->B) s` SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_SUPPORT] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN
   `FINITE(support op (f:A->B) s) /\
    (!x. x IN (support op f s) ==> f x = g x)`
  MP_TAC THENL [ASM_MESON_TAC[IN_SUPPORT]; REWRITE_TAC[IMP_CONJ]] THEN
  SPEC_TAC(`support op (f:A->B) s`,`t:A->bool`) THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[ITERATE_CLAUSES] THEN
  MESON_TAC[IN_INSERT]);;

let ITERATE_RESTRICT_SET = prove
 (`!op. monoidal op
        ==> !P s f:A->B. iterate op {x | x IN s /\ P x} f =
                         iterate op s (\x. if P x then f x else neutral op)`,
  REPEAT STRIP_TAC THEN
  ONCE_REWRITE_TAC[GSYM ITERATE_SUPPORT] THEN
  REWRITE_TAC[support; IN_ELIM_THM] THEN
  REWRITE_TAC[MESON[] `~((if P x then f x else a) = a) <=> P x /\ ~(f x = a)`;
              GSYM CONJ_ASSOC] THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP ITERATE_EQ) THEN
  SIMP_TAC[IN_ELIM_THM]);;

let ITERATE_EQ_GENERAL = prove
 (`!op. monoidal op
        ==> !s:A->bool t:B->bool f:A->C g h.
                (!y. y IN t ==> ?!x. x IN s /\ h(x) = y) /\
                (!x. x IN s ==> h(x) IN t /\ g(h x) = f x)
                ==> iterate op s f = iterate op t g`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `t = IMAGE (h:A->B) s` SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_IMAGE] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
  MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `iterate op s ((g:B->C) o (h:A->B))` THEN CONJ_TAC THENL
   [ASM_MESON_TAC[ITERATE_EQ; o_THM];
    CONV_TAC SYM_CONV THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP ITERATE_IMAGE) THEN
    ASM_MESON_TAC[]]);;

let ITERATE_EQ_GENERAL_INVERSES = prove
 (`!op. monoidal op
        ==> !s:A->bool t:B->bool f:A->C g h k.
                (!y. y IN t ==> k(y) IN s /\ h(k y) = y) /\
                (!x. x IN s ==> h(x) IN t /\ k(h x) = x /\ g(h x) = f x)
                ==> iterate op s f = iterate op t g`,
  REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP ITERATE_EQ_GENERAL) THEN
  EXISTS_TAC `h:A->B` THEN ASM_MESON_TAC[]);;

let ITERATE_INJECTION = prove
 (`!op. monoidal op
          ==> !f:A->B p:A->A s.
                      FINITE s /\
                      (!x. x IN s ==> p x IN s) /\
                      (!x y. x IN s /\ y IN s /\ p x = p y ==> x = y)
                      ==> iterate op s (f o p) = iterate op s f`,
  REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP ITERATE_BIJECTION) THEN
  MP_TAC(ISPECL [`s:A->bool`; `p:A->A`] SURJECTIVE_IFF_INJECTIVE) THEN
  ASM_REWRITE_TAC[SUBSET; IN_IMAGE] THEN ASM_MESON_TAC[]);;

let ITERATE_UNION_NONZERO = prove
 (`!op. monoidal op
        ==> !f:A->B s t.
                FINITE(s) /\ FINITE(t) /\
                (!x. x IN (s INTER t) ==> f x = neutral(op))
                ==> iterate op (s UNION t) f =
                    op (iterate op s f) (iterate op t f)`,
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM ITERATE_SUPPORT] THEN
  REWRITE_TAC[SUPPORT_CLAUSES] THEN
  FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP ITERATE_UNION) THEN
  ASM_SIMP_TAC[FINITE_SUPPORT; DISJOINT; IN_INTER; IN_SUPPORT; EXTENSION] THEN
  ASM_MESON_TAC[IN_INTER; NOT_IN_EMPTY]);;

let ITERATE_OP = prove
 (`!op. monoidal op
        ==> !f g s. FINITE s
                    ==> iterate op s (\x. op (f x) (g x)) =
                        op (iterate op s f) (iterate op s g)`,
  GEN_TAC THEN DISCH_TAC THEN
  GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  ASM_SIMP_TAC[ITERATE_CLAUSES; MONOIDAL_AC]);;

let ITERATE_SUPERSET = prove
 (`!op. monoidal op
        ==> !f:A->B u v.
                u SUBSET v /\
                (!x. x IN v /\ ~(x IN u) ==> f(x) = neutral op)
                ==> iterate op v f = iterate op u f`,
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM ITERATE_SUPPORT] THEN
  AP_THM_TAC THEN AP_TERM_TAC THEN
  REWRITE_TAC[support; EXTENSION; IN_ELIM_THM] THEN ASM_MESON_TAC[SUBSET]);;

let ITERATE_UNIV = prove
 (`!op. monoidal op
        ==> !f:A->B s. support op f UNIV SUBSET s
                  ==> iterate op s f = iterate op UNIV f`,
  REWRITE_TAC[support; SUBSET; IN_ELIM_THM] THEN
  REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP ITERATE_SUPERSET) THEN
  ASM SET_TAC[]);;

let ITERATE_SWAP = prove
 (`!op. monoidal op
        ==> !f:A->B->C s t.
                FINITE s /\ FINITE t
                ==> iterate op s (\i. iterate op t (f i)) =
                    iterate op t (\j. iterate op s (\i. f i j))`,
  GEN_TAC THEN DISCH_TAC THEN
  GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  ASM_SIMP_TAC[ITERATE_CLAUSES] THEN
  ASM_SIMP_TAC[ITERATE_EQ_NEUTRAL; GSYM ITERATE_OP]);;

let ITERATE_IMAGE_NONZERO = prove
 (`!op. monoidal op
        ==> !g:B->C f:A->B s.
                    FINITE s /\
                    (!x y. x IN s /\ y IN s /\ ~(x = y) /\ f x = f y
                           ==> g(f x) = neutral op)
                    ==> iterate op (IMAGE f s) g = iterate op s (g o f)`,
  GEN_TAC THEN DISCH_TAC THEN
  GEN_TAC THEN GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  ASM_SIMP_TAC[IMAGE_CLAUSES; ITERATE_CLAUSES; FINITE_IMAGE] THEN
  MAP_EVERY X_GEN_TAC [`a:A`; `s:A->bool`] THEN
  REWRITE_TAC[IN_INSERT] THEN REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `iterate op s ((g:B->C) o (f:A->B)) = iterate op (IMAGE f s) g`
  SUBST1_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  REWRITE_TAC[IN_IMAGE] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[o_THM] THEN
  SUBGOAL_THEN `(g:B->C) ((f:A->B) a) = neutral op` SUBST1_TAC THEN
  ASM_MESON_TAC[MONOIDAL_AC]);;

let ITERATE_IMAGE_GEN = prove
 (`!op. monoidal op
        ==> !f:A->B g:A->C s.
                FINITE s
                ==> iterate op s g =
                    iterate op (IMAGE f s)
                       (\y. iterate op {x | x IN s /\ f x = y} g)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
   `iterate op s (\x:A. iterate op {y:B | y IN IMAGE f s /\ (f x = y)}
       (\y. (g:A->C) x))` THEN
  CONJ_TAC THENL
   [FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP ITERATE_EQ) THEN
    ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN
    SUBGOAL_THEN `{y | y IN IMAGE (f:A->B) s /\ f x = y} = {(f x)}`
    SUBST1_TAC THENL [ASM SET_TAC[]; ASM_SIMP_TAC[ITERATE_SING]];
    ASM_SIMP_TAC[ITERATE_RESTRICT_SET] THEN
    FIRST_ASSUM(fun th -> W(MP_TAC o PART_MATCH (lhand o rand)
     (MATCH_MP ITERATE_SWAP th) o lhand o snd)) THEN
    ASM_SIMP_TAC[FINITE_IMAGE]]);;

let ITERATE_CASES = prove
 (`!op. monoidal op
        ==> !s P f g:A->B.
                FINITE s
                ==> iterate op s (\x. if P x then f x else g x) =
                    op (iterate op {x | x IN s /\ P x} f)
                       (iterate op {x | x IN s /\ ~P x} g)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC
   `op (iterate op {x | x IN s /\ P x} (\x. if P x then f x else (g:A->B) x))
       (iterate op {x | x IN s /\ ~P x} (\x. if P x then f x else g x))` THEN
  CONJ_TAC THENL
   [FIRST_ASSUM(fun th -> ASM_SIMP_TAC[GSYM(MATCH_MP ITERATE_UNION th);
      FINITE_RESTRICT;
      SET_RULE `DISJOINT {x | x IN s /\ P x} {x | x IN s /\ ~P x}`]) THEN
    AP_THM_TAC THEN AP_TERM_TAC THEN SET_TAC[];
    BINOP_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP ITERATE_EQ) THEN
    SIMP_TAC[IN_ELIM_THM]]);;

let ITERATE_OP_GEN = prove
 (`!op. monoidal op
        ==> !f g:A->B s.
                FINITE(support op f s) /\ FINITE(support op g s)
                ==> iterate op s (\x. op (f x) (g x)) =
                    op (iterate op s f) (iterate op s g)`,
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM ITERATE_SUPPORT] THEN
  MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `iterate op (support op f s UNION support op g s)
                         (\x. op ((f:A->B) x) (g x))` THEN
  CONJ_TAC THENL
   [CONV_TAC SYM_CONV;
    ASM_SIMP_TAC[ITERATE_OP; FINITE_UNION] THEN BINOP_TAC] THEN
  FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP ITERATE_SUPERSET) THEN
  REWRITE_TAC[support; IN_ELIM_THM; SUBSET; IN_UNION] THEN
  ASM_MESON_TAC[monoidal]);;

let ITERATE_CLAUSES_NUMSEG = prove
 (`!op. monoidal op
        ==> (!m. iterate op (m..0) f = if m = 0 then f(0) else neutral op) /\
            (!m n. iterate op (m..SUC n) f =
                      if m <= SUC n then op (iterate op (m..n) f) (f(SUC n))
                      else iterate op (m..n) f)`,
  REWRITE_TAC[NUMSEG_CLAUSES] THEN REPEAT STRIP_TAC THEN
  COND_CASES_TAC THEN
  ASM_SIMP_TAC[ITERATE_CLAUSES; FINITE_NUMSEG; IN_NUMSEG; FINITE_EMPTY] THEN
  REWRITE_TAC[ARITH_RULE `~(SUC n <= n)`; NOT_IN_EMPTY] THEN
  ASM_MESON_TAC[monoidal]);;

let ITERATE_PAIR = prove
 (`!op. monoidal op
        ==> !f m n. iterate op (2*m..2*n+1) f =
                    iterate op (m..n) (\i. op (f(2*i)) (f(2*i+1)))`,
  GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN GEN_TAC THEN
  INDUCT_TAC THEN CONV_TAC NUM_REDUCE_CONV THENL
   [ASM_SIMP_TAC[num_CONV `1`; ITERATE_CLAUSES_NUMSEG] THEN
    REWRITE_TAC[ARITH_RULE `2 * m <= SUC 0 <=> m = 0`] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[MULT_EQ_0; ARITH];
    REWRITE_TAC[ARITH_RULE `2 * SUC n + 1 = SUC(SUC(2 * n + 1))`] THEN
    ASM_SIMP_TAC[ITERATE_CLAUSES_NUMSEG] THEN
    REWRITE_TAC[ARITH_RULE `2 * m <= SUC(SUC(2 * n + 1)) <=> m <= SUC n`;
                ARITH_RULE `2 * m <= SUC(2 * n + 1) <=> m <= SUC n`] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[ARITH_RULE `2 * SUC n = SUC(2 * n + 1)`;
                ARITH_RULE `2 * SUC n + 1 = SUC(SUC(2 * n + 1))`] THEN
    ASM_MESON_TAC[monoidal]]);;

let ITERATE_REFLECT = prove
 (`!op:A->A->A.
        monoidal op
        ==> !x m n. iterate op (m..n) x =
                    if n < m then neutral op
                    else iterate op (0..n-m) (\i. x(n - i))`,
  REWRITE_TAC[GSYM NUMSEG_EMPTY] THEN REPEAT STRIP_TAC THEN
  COND_CASES_TAC THENL
   [ASM_MESON_TAC[ITERATE_CLAUSES];
    RULE_ASSUM_TAC(REWRITE_RULE[NUMSEG_EMPTY; NOT_LT])] THEN
  FIRST_ASSUM(MP_TAC o
   ISPECL [`\i:num. n - i`; `x:num->A`; `0..n-m`] o
   MATCH_MP (INST_TYPE [`:X`,`:A`] ITERATE_IMAGE)) THEN
  REWRITE_TAC[o_DEF; IN_NUMSEG] THEN
  ANTS_TAC THENL [ARITH_TAC; DISCH_THEN(SUBST1_TAC o SYM)] THEN
  AP_THM_TAC THEN AP_TERM_TAC THEN
  REWRITE_TAC[EXTENSION; IN_IMAGE; IN_NUMSEG] THEN
  REWRITE_TAC[UNWIND_THM2; ARITH_RULE
    `x = n - y /\ 0 <= y /\ y <= n - m <=>
     y = n - x /\ x <= n /\ y <= n - m`] THEN
  ASM_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Sums of natural numbers.                                                  *)
(* ------------------------------------------------------------------------- *)

prioritize_num();;

let nsum = new_definition
  `nsum = iterate (+)`;;

let NEUTRAL_ADD = prove
 (`neutral((+):num->num->num) = 0`,
  REWRITE_TAC[neutral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN
  MESON_TAC[ADD_CLAUSES]);;

let NEUTRAL_MUL = prove
 (`neutral(( * ):num->num->num) = 1`,
  REWRITE_TAC[neutral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN
  MESON_TAC[MULT_CLAUSES; MULT_EQ_1]);;

let MONOIDAL_ADD = prove
 (`monoidal((+):num->num->num)`,
  REWRITE_TAC[monoidal; NEUTRAL_ADD] THEN ARITH_TAC);;

let MONOIDAL_MUL = prove
 (`monoidal(( * ):num->num->num)`,
  REWRITE_TAC[monoidal; NEUTRAL_MUL] THEN ARITH_TAC);;

let NSUM_DEGENERATE = prove
 (`!f s. ~(FINITE {x | x IN s /\ ~(f x = 0)}) ==> nsum s f = 0`,
  REPEAT GEN_TAC THEN REWRITE_TAC[nsum] THEN
  SIMP_TAC[iterate; support; NEUTRAL_ADD]);;

let NSUM_CLAUSES = prove
 (`(!f. nsum {} f = 0) /\
   (!x f s. FINITE(s)
            ==> (nsum (x INSERT s) f =
                 if x IN s then nsum s f else f(x) + nsum s f))`,
  REWRITE_TAC[nsum; GSYM NEUTRAL_ADD] THEN
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
  MATCH_MP_TAC ITERATE_CLAUSES THEN REWRITE_TAC[MONOIDAL_ADD]);;

let NSUM_UNION = prove
 (`!f s t. FINITE s /\ FINITE t /\ DISJOINT s t
           ==> (nsum (s UNION t) f = nsum s f + nsum t f)`,
  SIMP_TAC[nsum; ITERATE_UNION; MONOIDAL_ADD]);;

let NSUM_DIFF = prove
 (`!f s t. FINITE s /\ t SUBSET s
           ==> (nsum (s DIFF t) f = nsum s f - nsum t f)`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(ARITH_RULE `(x + z = y:num) ==> (x = y - z)`) THEN
  ASM_SIMP_TAC[nsum; ITERATE_DIFF; MONOIDAL_ADD]);;

let NSUM_INCL_EXCL = prove
 (`!s t (f:A->num).
     FINITE s /\ FINITE t
     ==> nsum s f + nsum t f = nsum (s UNION t) f + nsum (s INTER t) f`,
  REWRITE_TAC[nsum; GSYM NEUTRAL_ADD] THEN
  MATCH_MP_TAC ITERATE_INCL_EXCL THEN REWRITE_TAC[MONOIDAL_ADD]);;

let NSUM_SUPPORT = prove
 (`!f s. nsum (support (+) f s) f = nsum s f`,
  SIMP_TAC[nsum; iterate; SUPPORT_SUPPORT]);;

let NSUM_ADD = prove
 (`!f g s. FINITE s ==> (nsum s (\x. f(x) + g(x)) = nsum s f + nsum s g)`,
  SIMP_TAC[nsum; ITERATE_OP; MONOIDAL_ADD]);;

let NSUM_ADD_GEN = prove
 (`!f g s.
       FINITE {x | x IN s /\ ~(f x = 0)} /\ FINITE {x | x IN s /\ ~(g x = 0)}
       ==> nsum s (\x. f x + g x) = nsum s f + nsum s g`,
  REWRITE_TAC[GSYM NEUTRAL_ADD; GSYM support; nsum] THEN
  MATCH_MP_TAC ITERATE_OP_GEN THEN ACCEPT_TAC MONOIDAL_ADD);;

let NSUM_EQ_0 = prove
 (`!f s. (!x:A. x IN s ==> (f(x) = 0)) ==> (nsum s f = 0)`,
  REWRITE_TAC[nsum; GSYM NEUTRAL_ADD] THEN
  SIMP_TAC[ITERATE_EQ_NEUTRAL; MONOIDAL_ADD]);;

let NSUM_0 = prove
 (`!s:A->bool. nsum s (\n. 0) = 0`,
  SIMP_TAC[NSUM_EQ_0]);;

let NSUM_LMUL = prove
 (`!f c s:A->bool. nsum s (\x. c * f(x)) = c * nsum s f`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `c = 0` THEN
  ASM_REWRITE_TAC[MULT_CLAUSES; NSUM_0] THEN REWRITE_TAC[nsum] THEN
  ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
  SUBGOAL_THEN `support (+) (\x:A. c * f(x)) s = support (+) f s` SUBST1_TAC
  THENL [ASM_SIMP_TAC[support; MULT_EQ_0; NEUTRAL_ADD]; ALL_TAC] THEN
  COND_CASES_TAC THEN REWRITE_TAC[NEUTRAL_ADD; MULT_CLAUSES] THEN
  UNDISCH_TAC `FINITE (support (+) f (s:A->bool))` THEN
  SPEC_TAC(`support (+) f (s:A->bool)`,`t:A->bool`) THEN
  REWRITE_TAC[GSYM nsum] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[NSUM_CLAUSES; MULT_CLAUSES; LEFT_ADD_DISTRIB]);;

let NSUM_RMUL = prove
 (`!f c s:A->bool. nsum s (\x. f(x) * c) = nsum s f * c`,
  ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[NSUM_LMUL]);;

let NSUM_LE = prove
 (`!f g s. FINITE(s) /\ (!x. x IN s ==> f(x) <= g(x))
           ==> nsum s f <= nsum s g`,
  ONCE_REWRITE_TAC[IMP_CONJ] THEN
  GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[NSUM_CLAUSES; LE_REFL; LE_ADD2; IN_INSERT]);;

let NSUM_LT = prove
 (`!f g s:A->bool.
        FINITE(s) /\ (!x. x IN s ==> f(x) <= g(x)) /\
        (?x. x IN s /\ f(x) < g(x))
         ==> nsum s f < nsum s g`,
  REPEAT GEN_TAC THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN `s = (a:A) INSERT (s DELETE a)` SUBST1_TAC THENL
   [UNDISCH_TAC `a:A IN s` THEN SET_TAC[]; ALL_TAC] THEN
  ASM_SIMP_TAC[NSUM_CLAUSES; FINITE_DELETE; IN_DELETE] THEN
  ASM_SIMP_TAC[LTE_ADD2; NSUM_LE; IN_DELETE; FINITE_DELETE]);;

let NSUM_LT_ALL = prove
 (`!f g s. FINITE s /\ ~(s = {}) /\ (!x. x IN s ==> f(x) < g(x))
           ==> nsum s f < nsum s g`,
  MESON_TAC[MEMBER_NOT_EMPTY; LT_IMP_LE; NSUM_LT]);;

let NSUM_EQ = prove
 (`!f g s. (!x. x IN s ==> (f x = g x)) ==> (nsum s f = nsum s g)`,
  REWRITE_TAC[nsum] THEN
  MATCH_MP_TAC ITERATE_EQ THEN REWRITE_TAC[MONOIDAL_ADD]);;

let NSUM_CONST = prove
 (`!c s. FINITE s ==> (nsum s (\n. c) = (CARD s) * c)`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[NSUM_CLAUSES; CARD_CLAUSES] THEN
  REPEAT STRIP_TAC THEN ARITH_TAC);;

let NSUM_POS_BOUND = prove
 (`!f b s. FINITE s /\ nsum s f <= b ==> !x:A. x IN s ==> f x <= b`,
  GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[NSUM_CLAUSES; NOT_IN_EMPTY; IN_INSERT] THEN
  MESON_TAC[LE_0; ARITH_RULE
   `0 <= x /\ 0 <= y /\ x + y <= b ==> x <= b /\ y <= b`]);;

let NSUM_EQ_0_IFF = prove
 (`!s. FINITE s ==> (nsum s f = 0 <=> !x. x IN s ==> f x = 0)`,
  REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[NSUM_EQ_0] THEN
  ASM_MESON_TAC[ARITH_RULE `n = 0 <=> n <= 0`; NSUM_POS_BOUND]);;

let NSUM_POS_LT = prove
 (`!f s:A->bool.
        FINITE s /\ (?x. x IN s /\ 0 < f x)
        ==> 0 < nsum s f`,
  SIMP_TAC[ARITH_RULE `0 < n <=> ~(n = 0)`; NSUM_EQ_0_IFF] THEN MESON_TAC[]);;

let NSUM_POS_LT_ALL = prove
 (`!s f:A->num.
     FINITE s /\ ~(s = {}) /\ (!i. i IN s ==> 0 < f i) ==> 0 < nsum s f`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC NSUM_POS_LT THEN
  ASM_MESON_TAC[MEMBER_NOT_EMPTY; REAL_LT_IMP_LE]);;

let NSUM_DELETE = prove
 (`!f s a. FINITE s /\ a IN s ==> f(a) + nsum(s DELETE a) f = nsum s f`,
  SIMP_TAC[nsum; ITERATE_DELETE; MONOIDAL_ADD]);;

let NSUM_SING = prove
 (`!f x. nsum {x} f = f(x)`,
  SIMP_TAC[NSUM_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; ADD_CLAUSES]);;

let NSUM_DELTA = prove
 (`!s a. nsum s (\x. if x = a:A then b else 0) = if a IN s then b else 0`,
  REWRITE_TAC[nsum; GSYM NEUTRAL_ADD] THEN
  SIMP_TAC[ITERATE_DELTA; MONOIDAL_ADD]);;

let NSUM_SWAP = prove
 (`!f:A->B->num s t.
      FINITE(s) /\ FINITE(t)
      ==> (nsum s (\i. nsum t (f i)) = nsum t (\j. nsum s (\i. f i j)))`,
  GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[NSUM_CLAUSES; NSUM_0; NSUM_ADD; ETA_AX]);;

let NSUM_IMAGE = prove
 (`!f g s. (!x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y))
           ==> (nsum (IMAGE f s) g = nsum s (g o f))`,
  REWRITE_TAC[nsum; GSYM NEUTRAL_ADD] THEN
  MATCH_MP_TAC ITERATE_IMAGE THEN REWRITE_TAC[MONOIDAL_ADD]);;

let NSUM_SUPERSET = prove
 (`!f:A->num u v.
        u SUBSET v /\ (!x. x IN v /\ ~(x IN u) ==> (f(x) = 0))
        ==> (nsum v f = nsum u f)`,
  SIMP_TAC[nsum; GSYM NEUTRAL_ADD; ITERATE_SUPERSET; MONOIDAL_ADD]);;

let NSUM_UNIV = prove
 (`!f:A->num s. support (+) f (:A) SUBSET s ==> nsum s f = nsum (:A) f`,
  REWRITE_TAC[nsum] THEN MATCH_MP_TAC ITERATE_UNIV THEN
  REWRITE_TAC[MONOIDAL_ADD]);;

let ITERATE_UNIV = prove
 (`!op. monoidal op
        ==> !f s. support op f UNIV SUBSET s
                  ==> iterate op s f = iterate op UNIV f`,
  REWRITE_TAC[support; SUBSET; IN_ELIM_THM] THEN
  REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP ITERATE_SUPERSET) THEN
  ASM SET_TAC[]);;

let NSUM_UNION_RZERO = prove
 (`!f:A->num u v.
        FINITE u /\ (!x. x IN v /\ ~(x IN u) ==> (f(x) = 0))
        ==> (nsum (u UNION v) f = nsum u f)`,
  let lemma = prove(`u UNION v = u UNION (v DIFF u)`,SET_TAC[]) in
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[lemma] THEN
  MATCH_MP_TAC NSUM_SUPERSET THEN ASM_MESON_TAC[IN_UNION; IN_DIFF; SUBSET]);;

let NSUM_UNION_LZERO = prove
 (`!f:A->num u v.
        FINITE v /\ (!x. x IN u /\ ~(x IN v) ==> (f(x) = 0))
        ==> (nsum (u UNION v) f = nsum v f)`,
  MESON_TAC[NSUM_UNION_RZERO; UNION_COMM]);;

let NSUM_RESTRICT = prove
 (`!f s. FINITE s ==> (nsum s (\x. if x IN s then f(x) else 0) = nsum s f)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC NSUM_EQ THEN ASM_SIMP_TAC[]);;

let NSUM_BOUND = prove
 (`!s f b. FINITE s /\ (!x:A. x IN s ==> f(x) <= b)
           ==> nsum s f <= (CARD s) * b`,
  SIMP_TAC[GSYM NSUM_CONST; NSUM_LE]);;

let NSUM_BOUND_GEN = prove
 (`!s f b. FINITE s /\ ~(s = {}) /\ (!x:A. x IN s ==> f(x) <= b DIV (CARD s))
           ==> nsum s f <= b`,
  SIMP_TAC[IMP_CONJ; CARD_EQ_0; LE_RDIV_EQ] THEN REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `nsum s (\x. CARD(s:A->bool) * f x) <= CARD s * b` MP_TAC THENL
   [ASM_SIMP_TAC[NSUM_BOUND];
    ASM_SIMP_TAC[NSUM_LMUL; LE_MULT_LCANCEL; CARD_EQ_0]]);;

let NSUM_BOUND_LT = prove
 (`!s f b. FINITE s /\ (!x:A. x IN s ==> f x <= b) /\ (?x. x IN s /\ f x < b)
           ==> nsum s f < (CARD s) * b`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC LTE_TRANS THEN
  EXISTS_TAC `nsum s (\x:A. b)` THEN CONJ_TAC THENL
   [MATCH_MP_TAC NSUM_LT THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
    ASM_SIMP_TAC[NSUM_CONST; LE_REFL]]);;

let NSUM_BOUND_LT_ALL = prove
 (`!s f b. FINITE s /\ ~(s = {}) /\ (!x. x IN s ==> f(x) < b)
           ==> nsum s f <  (CARD s) * b`,
  MESON_TAC[MEMBER_NOT_EMPTY; LT_IMP_LE; NSUM_BOUND_LT]);;

let NSUM_BOUND_LT_GEN = prove
 (`!s f b. FINITE s /\ ~(s = {}) /\ (!x:A. x IN s ==> f(x) < b DIV (CARD s))
           ==> nsum s f < b`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC LTE_TRANS THEN
  EXISTS_TAC `nsum (s:A->bool) (\a. f(a) + 1)` THEN CONJ_TAC THENL
   [MATCH_MP_TAC NSUM_LT_ALL THEN ASM_SIMP_TAC[] THEN ARITH_TAC;
    MATCH_MP_TAC NSUM_BOUND_GEN THEN
    ASM_REWRITE_TAC[ARITH_RULE `a + 1 <= b <=> a < b`]]);;

let NSUM_UNION_EQ = prove
 (`!s t u. FINITE u /\ (s INTER t = {}) /\ (s UNION t = u)
           ==> (nsum s f + nsum t f = nsum u f)`,
  MESON_TAC[NSUM_UNION; DISJOINT; FINITE_SUBSET; SUBSET_UNION]);;

let NSUM_EQ_SUPERSET = prove
 (`!f s t:A->bool.
        FINITE t /\ t SUBSET s /\
        (!x. x IN t ==> (f x = g x)) /\
        (!x. x IN s /\ ~(x IN t) ==> (f(x) = 0))
        ==> (nsum s f = nsum t g)`,
  MESON_TAC[NSUM_SUPERSET; NSUM_EQ]);;

let NSUM_RESTRICT_SET = prove
 (`!P s f. nsum {x:A | x IN s /\ P x} f = nsum s (\x. if P x then f(x) else 0)`,
  REWRITE_TAC[nsum; GSYM NEUTRAL_ADD] THEN
  MATCH_MP_TAC ITERATE_RESTRICT_SET THEN REWRITE_TAC[MONOIDAL_ADD]);;

let NSUM_NSUM_RESTRICT = prove
 (`!R f s t.
        FINITE s /\ FINITE t
        ==> (nsum s (\x. nsum {y | y IN t /\ R x y} (\y. f x y)) =
             nsum t (\y. nsum {x | x IN s /\ R x y} (\x. f x y)))`,
  REPEAT GEN_TAC THEN SIMP_TAC[NSUM_RESTRICT_SET] THEN
  DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP NSUM_SWAP th]));;

let CARD_EQ_NSUM = prove
 (`!s. FINITE s ==> ((CARD s) = nsum s (\x. 1))`,
  SIMP_TAC[NSUM_CONST; MULT_CLAUSES]);;

let NSUM_MULTICOUNT_GEN = prove
 (`!R:A->B->bool s t k.
        FINITE s /\ FINITE t /\
        (!j. j IN t ==> (CARD {i | i IN s /\ R i j} = k(j)))
        ==> (nsum s (\i. (CARD {j | j IN t /\ R i j})) =
             nsum t (\i. (k i)))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[CONJ_ASSOC] THEN
  DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN
  MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `nsum s (\i:A. nsum {j:B | j IN t /\ R i j} (\j. 1))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC NSUM_EQ THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN
    ASM_SIMP_TAC[CARD_EQ_NSUM; FINITE_RESTRICT];
    FIRST_ASSUM(fun t -> ONCE_REWRITE_TAC[MATCH_MP NSUM_NSUM_RESTRICT t]) THEN
    MATCH_MP_TAC NSUM_EQ THEN ASM_SIMP_TAC[NSUM_CONST; FINITE_RESTRICT] THEN
    REWRITE_TAC[MULT_CLAUSES]]);;

let NSUM_MULTICOUNT = prove
 (`!R:A->B->bool s t k.
        FINITE s /\ FINITE t /\
        (!j. j IN t ==> (CARD {i | i IN s /\ R i j} = k))
        ==> (nsum s (\i. (CARD {j | j IN t /\ R i j})) = (k * CARD t))`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `nsum t (\i:B. k)` THEN CONJ_TAC THENL
   [MATCH_MP_TAC NSUM_MULTICOUNT_GEN THEN ASM_REWRITE_TAC[];
    ASM_SIMP_TAC[NSUM_CONST] THEN REWRITE_TAC[MULT_AC]]);;

let NSUM_IMAGE_GEN = prove
 (`!f:A->B g s.
        FINITE s
        ==> nsum s g =
            nsum (IMAGE f s) (\y. nsum {x | x IN s /\ f x = y} g)`,
  REWRITE_TAC[nsum] THEN MATCH_MP_TAC ITERATE_IMAGE_GEN THEN
  REWRITE_TAC[MONOIDAL_ADD]);;

let NSUM_GROUP = prove
 (`!f:A->B g s t.
        FINITE s /\ IMAGE f s SUBSET t
        ==> nsum t (\y. nsum {x | x IN s /\ f(x) = y} g) = nsum s g`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`f:A->B`; `g:A->num`; `s:A->bool`] NSUM_IMAGE_GEN) THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN
  MATCH_MP_TAC NSUM_SUPERSET THEN ASM_REWRITE_TAC[] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC NSUM_EQ_0 THEN ASM SET_TAC[]);;

let NSUM_GROUP_RELATION = prove
 (`!R:A->B->bool g s t.
         FINITE s /\
         (!x. x IN s ==> ?!y. y IN t /\ R x y)
         ==> nsum t (\y. nsum {x | x IN s /\ R x y} g) = nsum s g`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`\x:A. @y:B. y IN t /\ R x y`; `g:A->num`;
                 `s:A->bool`; `t:B->bool`]
        NSUM_GROUP) THEN
  ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN
  ANTS_TAC THENL [ASM_MESON_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN
  MATCH_MP_TAC NSUM_EQ THEN REPEAT STRIP_TAC THEN REWRITE_TAC[] THEN
  AP_THM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]);;

let NSUM_SUBSET = prove
 (`!u v f. FINITE u /\ FINITE v /\ (!x:A. x IN (u DIFF v) ==> f(x) = 0)
           ==> nsum u f <= nsum v f`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`f:A->num`; `u INTER v :A->bool`] NSUM_UNION) THEN
  DISCH_THEN(fun th -> MP_TAC(SPEC `v DIFF u :A->bool` th) THEN
                       MP_TAC(SPEC `u DIFF v :A->bool` th)) THEN
  REWRITE_TAC[SET_RULE `(u INTER v) UNION (u DIFF v) = u`;
              SET_RULE `(u INTER v) UNION (v DIFF u) = v`] THEN
  ASM_SIMP_TAC[FINITE_DIFF; FINITE_INTER] THEN
  REPEAT(ANTS_TAC THENL [SET_TAC[]; DISCH_THEN SUBST1_TAC]) THEN
  ASM_SIMP_TAC[NSUM_EQ_0] THEN ARITH_TAC);;

let NSUM_SUBSET_SIMPLE = prove
 (`!u v f. FINITE v /\ u SUBSET v ==> nsum u f <= nsum v f`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC NSUM_SUBSET THEN
  ASM_MESON_TAC[IN_DIFF; SUBSET; FINITE_SUBSET]);;

let NSUM_LE_GEN = prove
 (`!f g s. (!x:A. x IN s ==> f x <= g x) /\ FINITE {x | x IN s /\ ~(g x = 0)}
           ==> nsum s f <= nsum s g`,
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM NSUM_SUPPORT] THEN
  REWRITE_TAC[support; NEUTRAL_ADD] THEN
  TRANS_TAC LE_TRANS `nsum {x | x IN s /\ ~(g(x:A) = 0)} f` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC NSUM_SUBSET THEN
    ASM_REWRITE_TAC[IN_ELIM_THM; IN_DIFF] THEN
    CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[LE]] THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ]
      FINITE_SUBSET)) THEN
    REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[LE];
    MATCH_MP_TAC NSUM_LE THEN ASM_SIMP_TAC[IN_ELIM_THM]]);;

let NSUM_MUL_BOUND = prove
 (`!a b s:A->bool.
        FINITE s
        ==> nsum s (\i. a i * b i) <= nsum s a * nsum s b`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM NSUM_LMUL] THEN
  MATCH_MP_TAC NSUM_LE THEN ASM_REWRITE_TAC[LE_MULT_RCANCEL] THEN
  X_GEN_TAC `i:A` THEN DISCH_TAC THEN DISJ1_TAC THEN
  ASM_SIMP_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [GSYM NSUM_SING] THEN
  MATCH_MP_TAC NSUM_SUBSET_SIMPLE THEN
  ASM_SIMP_TAC[SING_SUBSET; IN_DIFF]);;

let NSUM_IMAGE_NONZERO = prove
 (`!d:B->num i:A->B s.
    FINITE s /\
    (!x y. x IN s /\ y IN s /\ ~(x = y) /\ i x = i y ==> d(i x) = 0)
    ==> nsum (IMAGE i s) d = nsum s (d o i)`,
  REWRITE_TAC[GSYM NEUTRAL_ADD; nsum] THEN
  MATCH_MP_TAC ITERATE_IMAGE_NONZERO THEN REWRITE_TAC[MONOIDAL_ADD]);;

let NSUM_BIJECTION = prove
 (`!f p s:A->bool.
                (!x. x IN s ==> p(x) IN s) /\
                (!y. y IN s ==> ?!x. x IN s /\ p(x) = y)
                ==> nsum s f = nsum s (f o p)`,
  REWRITE_TAC[nsum] THEN MATCH_MP_TAC ITERATE_BIJECTION THEN
  REWRITE_TAC[MONOIDAL_ADD]);;

let NSUM_NSUM_PRODUCT = prove
 (`!s:A->bool t:A->B->bool x.
        FINITE s /\ (!i. i IN s ==> FINITE(t i))
        ==> nsum s (\i. nsum (t i) (x i)) =
            nsum {i,j | i IN s /\ j IN t i} (\(i,j). x i j)`,
  REWRITE_TAC[nsum] THEN MATCH_MP_TAC ITERATE_ITERATE_PRODUCT THEN
  REWRITE_TAC[MONOIDAL_ADD]);;

let NSUM_EQ_GENERAL = prove
 (`!s:A->bool t:B->bool f g h.
        (!y. y IN t ==> ?!x. x IN s /\ h(x) = y) /\
        (!x. x IN s ==> h(x) IN t /\ g(h x) = f x)
        ==> nsum s f = nsum t g`,
  REWRITE_TAC[nsum] THEN MATCH_MP_TAC ITERATE_EQ_GENERAL THEN
  REWRITE_TAC[MONOIDAL_ADD]);;

let NSUM_EQ_GENERAL_INVERSES = prove
 (`!s:A->bool t:B->bool f g h k.
        (!y. y IN t ==> k(y) IN s /\ h(k y) = y) /\
        (!x. x IN s ==> h(x) IN t /\ k(h x) = x /\ g(h x) = f x)
        ==> nsum s f = nsum t g`,
  REWRITE_TAC[nsum] THEN MATCH_MP_TAC ITERATE_EQ_GENERAL_INVERSES THEN
  REWRITE_TAC[MONOIDAL_ADD]);;

let NSUM_INJECTION = prove
 (`!f p s. FINITE s /\
           (!x. x IN s ==> p x IN s) /\
           (!x y. x IN s /\ y IN s /\ p x = p y ==> x = y)
           ==> nsum s (f o p) = nsum s f`,
  REWRITE_TAC[nsum] THEN MATCH_MP_TAC ITERATE_INJECTION THEN
  REWRITE_TAC[MONOIDAL_ADD]);;

let NSUM_UNION_NONZERO = prove
 (`!f s t. FINITE s /\ FINITE t /\ (!x. x IN s INTER t ==> f(x) = 0)
           ==> nsum (s UNION t) f = nsum s f + nsum t f`,
  REWRITE_TAC[nsum; GSYM NEUTRAL_ADD] THEN
  MATCH_MP_TAC ITERATE_UNION_NONZERO THEN REWRITE_TAC[MONOIDAL_ADD]);;

let NSUM_UNIONS_NONZERO = prove
 (`!f s. FINITE s /\ (!t:A->bool. t IN s ==> FINITE t) /\
         (!t1 t2 x. t1 IN s /\ t2 IN s /\ ~(t1 = t2) /\ x IN t1 /\ x IN t2
                    ==> f x = 0)
         ==> nsum (UNIONS s) f = nsum s (\t. nsum t f)`,
  GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REWRITE_TAC[UNIONS_0; UNIONS_INSERT; NSUM_CLAUSES; IN_INSERT] THEN
  MAP_EVERY X_GEN_TAC [`t:A->bool`; `s:(A->bool)->bool`] THEN
  DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
  ONCE_REWRITE_TAC[IMP_CONJ] THEN ASM_SIMP_TAC[NSUM_CLAUSES] THEN
  ANTS_TAC THENL  [ASM_MESON_TAC[]; DISCH_THEN(SUBST_ALL_TAC o SYM)] THEN
  STRIP_TAC THEN MATCH_MP_TAC NSUM_UNION_NONZERO THEN
  ASM_SIMP_TAC[FINITE_UNIONS; IN_INTER; IN_UNIONS] THEN ASM_MESON_TAC[]);;

let NSUM_CASES = prove
 (`!s P f g. FINITE s
             ==> nsum s (\x:A. if P x then f x else g x) =
                 nsum {x | x IN s /\ P x} f + nsum {x | x IN s /\ ~P x} g`,
  REWRITE_TAC[nsum; GSYM NEUTRAL_ADD] THEN
  MATCH_MP_TAC ITERATE_CASES THEN REWRITE_TAC[MONOIDAL_ADD]);;

let NSUM_CLOSED = prove
 (`!P f:A->num s.
        P(0) /\ (!x y. P x /\ P y ==> P(x + y)) /\ (!a. a IN s ==> P(f a))
        ==> P(nsum s f)`,
  REPEAT STRIP_TAC THEN MP_TAC(MATCH_MP ITERATE_CLOSED MONOIDAL_ADD) THEN
  DISCH_THEN(MP_TAC o SPEC `P:num->bool`) THEN
  ASM_SIMP_TAC[NEUTRAL_ADD; GSYM nsum]);;

let NSUM_ADD_NUMSEG = prove
 (`!f g m n. nsum(m..n) (\i. f(i) + g(i)) = nsum(m..n) f + nsum(m..n) g`,
  SIMP_TAC[NSUM_ADD; FINITE_NUMSEG]);;

let NSUM_LE_NUMSEG = prove
 (`!f g m n. (!i. m <= i /\ i <= n ==> f(i) <= g(i))
             ==> nsum(m..n) f <= nsum(m..n) g`,
  SIMP_TAC[NSUM_LE; FINITE_NUMSEG; IN_NUMSEG]);;

let NSUM_EQ_NUMSEG = prove
 (`!f g m n. (!i. m <= i /\ i <= n ==> (f(i) = g(i)))
             ==> (nsum(m..n) f = nsum(m..n) g)`,
  MESON_TAC[NSUM_EQ; FINITE_NUMSEG; IN_NUMSEG]);;

let NSUM_CONST_NUMSEG = prove
 (`!c m n. nsum(m..n) (\n. c) = ((n + 1) - m) * c`,
  SIMP_TAC[NSUM_CONST; FINITE_NUMSEG; CARD_NUMSEG]);;

let NSUM_EQ_0_NUMSEG = prove
 (`!f m n. (!i. m <= i /\ i <= n ==> (f(i) = 0)) ==> (nsum(m..n) f = 0)`,
  SIMP_TAC[NSUM_EQ_0; IN_NUMSEG]);;

let NSUM_EQ_0_IFF_NUMSEG = prove
 (`!f m n. nsum (m..n) f = 0 <=> !i. m <= i /\ i <= n ==> f i = 0`,
  SIMP_TAC[NSUM_EQ_0_IFF; FINITE_NUMSEG; IN_NUMSEG]);;

let NSUM_TRIV_NUMSEG = prove
 (`!f m n. n < m ==> (nsum(m..n) f = 0)`,
  MESON_TAC[NSUM_EQ_0_NUMSEG; LE_TRANS; NOT_LT]);;

let NSUM_SING_NUMSEG = prove
 (`!f n. nsum(n..n) f = f(n)`,
  SIMP_TAC[NSUM_SING; NUMSEG_SING]);;

let NSUM_CLAUSES_NUMSEG = prove
 (`(!m. nsum(m..0) f = if m = 0 then f(0) else 0) /\
   (!m n. nsum(m..SUC n) f = if m <= SUC n then nsum(m..n) f + f(SUC n)
                             else nsum(m..n) f)`,
  MP_TAC(MATCH_MP ITERATE_CLAUSES_NUMSEG MONOIDAL_ADD) THEN
  REWRITE_TAC[NEUTRAL_ADD; nsum]);;

let NSUM_SWAP_NUMSEG = prove
 (`!a b c d f.
     nsum(a..b) (\i. nsum(c..d) (f i)) =
     nsum(c..d) (\j. nsum(a..b) (\i. f i j))`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC NSUM_SWAP THEN REWRITE_TAC[FINITE_NUMSEG]);;

let NSUM_ADD_SPLIT = prove
 (`!f m n p.
        m <= n + 1 ==> (nsum (m..(n+p)) f = nsum(m..n) f + nsum(n+1..n+p) f)`,
  SIMP_TAC[NUMSEG_ADD_SPLIT; NSUM_UNION; DISJOINT_NUMSEG; FINITE_NUMSEG;
           ARITH_RULE `x < x + 1`]);;

let NSUM_OFFSET = prove
 (`!p f m n. nsum(m+p..n+p) f = nsum(m..n) (\i. f(i + p))`,
  SIMP_TAC[NUMSEG_OFFSET_IMAGE; NSUM_IMAGE; EQ_ADD_RCANCEL; FINITE_NUMSEG] THEN
  REWRITE_TAC[o_DEF]);;

let NSUM_OFFSET_0 = prove
 (`!f m n. m <= n ==> (nsum(m..n) f = nsum(0..n-m) (\i. f(i + m)))`,
  SIMP_TAC[GSYM NSUM_OFFSET; ADD_CLAUSES; SUB_ADD]);;

let NSUM_CLAUSES_LEFT = prove
 (`!f m n. m <= n ==> nsum(m..n) f = f(m) + nsum(m+1..n) f`,
  SIMP_TAC[GSYM NUMSEG_LREC; NSUM_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
  ARITH_TAC);;

let NSUM_CLAUSES_RIGHT = prove
 (`!f m n. 0 < n /\ m <= n ==> nsum(m..n) f = nsum(m..n-1) f + f(n)`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  SIMP_TAC[LT_REFL; NSUM_CLAUSES_NUMSEG; SUC_SUB1]);;

let NSUM_PAIR = prove
 (`!f m n. nsum(2*m..2*n+1) f = nsum(m..n) (\i. f(2*i) + f(2*i+1))`,
  MP_TAC(MATCH_MP ITERATE_PAIR MONOIDAL_ADD) THEN
  REWRITE_TAC[nsum; NEUTRAL_ADD]);;

let NSUM_REFLECT = prove
 (`!x m n. nsum(m..n) x = if n < m then 0 else nsum(0..n-m) (\i. x(n - i))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[nsum] THEN
  GEN_REWRITE_TAC LAND_CONV [MATCH_MP ITERATE_REFLECT MONOIDAL_ADD] THEN
  REWRITE_TAC[NEUTRAL_ADD]);;

let MOD_NSUM_MOD = prove
 (`!f:A->num n s.
        FINITE s /\ ~(n = 0)
        ==> (nsum s f) MOD n = nsum s (\i. f(i) MOD n) MOD n`,
  GEN_TAC THEN GEN_TAC THEN
  ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[NSUM_CLAUSES] THEN
  REPEAT STRIP_TAC THEN
  W(MP_TAC o PART_MATCH (rand o rand) MOD_ADD_MOD o lhand o snd) THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
  W(MP_TAC o PART_MATCH (rand o rand) MOD_ADD_MOD o rand o snd) THEN
  ASM_SIMP_TAC[MOD_MOD_REFL]);;

let MOD_NSUM_MOD_NUMSEG = prove
 (`!f a b n.
        ~(n = 0)
        ==> (nsum(a..b) f) MOD n = nsum(a..b) (\i. f i MOD n) MOD n`,
  MESON_TAC[MOD_NSUM_MOD; FINITE_NUMSEG]);;

let th = prove
 (`(!f g s.   (!x. x IN s ==> f(x) = g(x))
              ==> nsum s (\i. f(i)) = nsum s g) /\
   (!f g a b. (!i. a <= i /\ i <= b ==> f(i) = g(i))
              ==> nsum(a..b) (\i. f(i)) = nsum(a..b) g) /\
   (!f g p.   (!x. p x ==> f x = g x)
              ==> nsum {y | p y} (\i. f(i)) = nsum {y | p y} g)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC NSUM_EQ THEN
  ASM_SIMP_TAC[IN_ELIM_THM; IN_NUMSEG]) in
  extend_basic_congs (map SPEC_ALL (CONJUNCTS th));;

(* ------------------------------------------------------------------------- *)
(* Thanks to finite sums, we can express cardinality of finite union.        *)
(* ------------------------------------------------------------------------- *)

let CARD_UNIONS = prove
 (`!s:(A->bool)->bool.
        FINITE s /\ (!t. t IN s ==> FINITE t) /\
        (!t u. t IN s /\ u IN s /\ ~(t = u) ==> t INTER u = {})
        ==> CARD(UNIONS s) = nsum s CARD`,
  ONCE_REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REWRITE_TAC[UNIONS_0; UNIONS_INSERT; NOT_IN_EMPTY; IN_INSERT] THEN
  REWRITE_TAC[CARD_CLAUSES; NSUM_CLAUSES] THEN
  MAP_EVERY X_GEN_TAC [`t:A->bool`; `f:(A->bool)->bool`] THEN
  DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
  ASM_SIMP_TAC[NSUM_CLAUSES] THEN
  DISCH_THEN(CONJUNCTS_THEN2 (SUBST1_TAC o SYM) STRIP_ASSUME_TAC) THEN
  CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_UNION_EQ THEN
  ASM_SIMP_TAC[FINITE_UNIONS; FINITE_UNION; INTER_UNIONS] THEN
  REWRITE_TAC[EMPTY_UNIONS; IN_ELIM_THM] THEN ASM MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Sums of real numbers.                                                     *)
(* ------------------------------------------------------------------------- *)

prioritize_real();;

let sum = new_definition
  `sum = iterate (+)`;;

let NEUTRAL_REAL_ADD = prove
 (`neutral((+):real->real->real) = &0`,
  REWRITE_TAC[neutral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN
  MESON_TAC[REAL_ADD_LID; REAL_ADD_RID]);;

let NEUTRAL_REAL_MUL = prove
 (`neutral(( * ):real->real->real) = &1`,
  REWRITE_TAC[neutral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN
  MESON_TAC[REAL_MUL_LID; REAL_MUL_RID]);;

let MONOIDAL_REAL_ADD = prove
 (`monoidal((+):real->real->real)`,
  REWRITE_TAC[monoidal; NEUTRAL_REAL_ADD] THEN REAL_ARITH_TAC);;

let MONOIDAL_REAL_MUL = prove
 (`monoidal(( * ):real->real->real)`,
  REWRITE_TAC[monoidal; NEUTRAL_REAL_MUL] THEN REAL_ARITH_TAC);;

let SUM_DEGENERATE = prove
 (`!f s. ~(FINITE {x | x IN s /\ ~(f x = &0)}) ==> sum s f = &0`,
  REPEAT GEN_TAC THEN REWRITE_TAC[sum] THEN
  SIMP_TAC[iterate; support; NEUTRAL_REAL_ADD]);;

let SUM_CLAUSES = prove
 (`(!f. sum {} f = &0) /\
   (!x f s. FINITE(s)
            ==> (sum (x INSERT s) f =
                 if x IN s then sum s f else f(x) + sum s f))`,
  REWRITE_TAC[sum; GSYM NEUTRAL_REAL_ADD] THEN
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
  MATCH_MP_TAC ITERATE_CLAUSES THEN REWRITE_TAC[MONOIDAL_REAL_ADD]);;

let SUM_UNION = prove
 (`!f s t. FINITE s /\ FINITE t /\ DISJOINT s t
           ==> (sum (s UNION t) f = sum s f + sum t f)`,
  SIMP_TAC[sum; ITERATE_UNION; MONOIDAL_REAL_ADD]);;

let SUM_DIFF = prove
 (`!f s t. FINITE s /\ t SUBSET s ==> (sum (s DIFF t) f = sum s f - sum t f)`,
  SIMP_TAC[REAL_EQ_SUB_LADD; sum; ITERATE_DIFF; MONOIDAL_REAL_ADD]);;

let SUM_INCL_EXCL = prove
 (`!s t (f:A->real).
     FINITE s /\ FINITE t
     ==> sum s f + sum t f = sum (s UNION t) f + sum (s INTER t) f`,
  REWRITE_TAC[sum; GSYM NEUTRAL_REAL_ADD] THEN
  MATCH_MP_TAC ITERATE_INCL_EXCL THEN REWRITE_TAC[MONOIDAL_REAL_ADD]);;

let SUM_SUPPORT = prove
 (`!f s. sum (support (+) f s) f = sum s f`,
  SIMP_TAC[sum; iterate; SUPPORT_SUPPORT]);;

let SUM_ADD = prove
 (`!f g s. FINITE s ==> (sum s (\x. f(x) + g(x)) = sum s f + sum s g)`,
  SIMP_TAC[sum; ITERATE_OP; MONOIDAL_REAL_ADD]);;

let SUM_ADD_GEN = prove
 (`!f g s.
       FINITE {x | x IN s /\ ~(f x = &0)} /\ FINITE {x | x IN s /\ ~(g x = &0)}
       ==> sum s (\x. f x + g x) = sum s f + sum s g`,
  REWRITE_TAC[GSYM NEUTRAL_REAL_ADD; GSYM support; sum] THEN
  MATCH_MP_TAC ITERATE_OP_GEN THEN ACCEPT_TAC MONOIDAL_REAL_ADD);;

let SUM_EQ_0 = prove
 (`!f s. (!x:A. x IN s ==> (f(x) = &0)) ==> (sum s f = &0)`,
  REWRITE_TAC[sum; GSYM NEUTRAL_REAL_ADD] THEN
  SIMP_TAC[ITERATE_EQ_NEUTRAL; MONOIDAL_REAL_ADD]);;

let SUM_0 = prove
 (`!s:A->bool. sum s (\n. &0) = &0`,
  SIMP_TAC[SUM_EQ_0]);;

let SUM_LMUL = prove
 (`!f c s:A->bool. sum s (\x. c * f(x)) = c * sum s f`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `c = &0` THEN
  ASM_REWRITE_TAC[REAL_MUL_LZERO; SUM_0] THEN REWRITE_TAC[sum] THEN
  ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
  SUBGOAL_THEN `support (+) (\x:A. c * f(x)) s = support (+) f s` SUBST1_TAC
  THENL [ASM_SIMP_TAC[support; REAL_ENTIRE; NEUTRAL_REAL_ADD]; ALL_TAC] THEN
  COND_CASES_TAC THEN REWRITE_TAC[NEUTRAL_REAL_ADD; REAL_MUL_RZERO] THEN
  UNDISCH_TAC `FINITE (support (+) f (s:A->bool))` THEN
  SPEC_TAC(`support (+) f (s:A->bool)`,`t:A->bool`) THEN
  REWRITE_TAC[GSYM sum] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[SUM_CLAUSES; REAL_MUL_RZERO; REAL_MUL_LZERO;
           REAL_ADD_LDISTRIB]);;

let SUM_RMUL = prove
 (`!f c s:A->bool. sum s (\x. f(x) * c) = sum s f * c`,
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[SUM_LMUL]);;

let SUM_NEG = prove
 (`!f s. sum s (\x. --(f(x))) = --(sum s f)`,
  ONCE_REWRITE_TAC[REAL_ARITH `--x = --(&1) * x`] THEN
  SIMP_TAC[SUM_LMUL]);;

let SUM_SUB = prove
 (`!f g s. FINITE s ==> (sum s (\x. f(x) - g(x)) = sum s f - sum s g)`,
  ONCE_REWRITE_TAC[real_sub] THEN SIMP_TAC[SUM_NEG; SUM_ADD]);;

let SUM_LE = prove
 (`!f g s. FINITE(s) /\ (!x. x IN s ==> f(x) <= g(x)) ==> sum s f <= sum s g`,
  ONCE_REWRITE_TAC[IMP_CONJ] THEN
  GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[SUM_CLAUSES; REAL_LE_REFL; REAL_LE_ADD2; IN_INSERT]);;

let SUM_LT = prove
 (`!f g s:A->bool.
        FINITE(s) /\ (!x. x IN s ==> f(x) <= g(x)) /\
        (?x. x IN s /\ f(x) < g(x))
         ==> sum s f < sum s g`,
  REPEAT GEN_TAC THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
  DISCH_THEN(X_CHOOSE_THEN `a:A` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN `s = (a:A) INSERT (s DELETE a)` SUBST1_TAC THENL
   [UNDISCH_TAC `a:A IN s` THEN SET_TAC[]; ALL_TAC] THEN
  ASM_SIMP_TAC[SUM_CLAUSES; FINITE_DELETE; IN_DELETE] THEN
  ASM_SIMP_TAC[REAL_LTE_ADD2; SUM_LE; IN_DELETE; FINITE_DELETE]);;

let SUM_LT_ALL = prove
 (`!f g s. FINITE s /\ ~(s = {}) /\ (!x. x IN s ==> f(x) < g(x))
           ==> sum s f < sum s g`,
  MESON_TAC[MEMBER_NOT_EMPTY; REAL_LT_IMP_LE; SUM_LT]);;

let SUM_POS_LT = prove
 (`!f s:A->bool.
        FINITE s /\
        (!x. x IN s ==> &0 <= f x) /\
        (?x. x IN s /\ &0 < f x)
        ==> &0 < sum s f`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC REAL_LET_TRANS THEN
  EXISTS_TAC `sum (s:A->bool) (\i. &0)` THEN CONJ_TAC THENL
   [REWRITE_TAC[SUM_0; REAL_LE_REFL]; MATCH_MP_TAC SUM_LT] THEN
  ASM_MESON_TAC[]);;

let SUM_POS_LT_ALL = prove
 (`!s f:A->real.
     FINITE s /\ ~(s = {}) /\ (!i. i IN s ==> &0 < f i) ==> &0 < sum s f`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_POS_LT THEN
  ASM_MESON_TAC[MEMBER_NOT_EMPTY; REAL_LT_IMP_LE]);;

let SUM_EQ = prove
 (`!f g s. (!x. x IN s ==> (f x = g x)) ==> (sum s f = sum s g)`,
  REWRITE_TAC[sum] THEN
  MATCH_MP_TAC ITERATE_EQ THEN REWRITE_TAC[MONOIDAL_REAL_ADD]);;

let SUM_ABS = prove
 (`!f s. FINITE(s) ==> abs(sum s f) <= sum s (\x. abs(f x))`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[SUM_CLAUSES; REAL_ABS_NUM; REAL_LE_REFL;
           REAL_ARITH `abs(a) <= b ==> abs(x + a) <= abs(x) + b`]);;

let SUM_ABS_LE = prove
 (`!f:A->real g s.
        FINITE s /\ (!x. x IN s ==> abs(f x) <= g x)
        ==> abs(sum s f) <= sum s g`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `sum s (\x:A. abs(f x))` THEN
  ASM_SIMP_TAC[SUM_ABS] THEN MATCH_MP_TAC SUM_LE THEN
  ASM_REWRITE_TAC[]);;

let SUM_CONST = prove
 (`!c s. FINITE s ==> (sum s (\n. c) = &(CARD s) * c)`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[SUM_CLAUSES; CARD_CLAUSES; GSYM REAL_OF_NUM_SUC] THEN
  REPEAT STRIP_TAC THEN REAL_ARITH_TAC);;

let SUM_POS_LE = prove
 (`!s:A->bool. (!x. x IN s ==> &0 <= f x) ==> &0 <= sum s f`,
  REPEAT STRIP_TAC THEN
  ASM_CASES_TAC `FINITE {x:A | x IN s /\ ~(f x = &0)}` THEN
  ASM_SIMP_TAC[SUM_DEGENERATE; REAL_LE_REFL] THEN
  ONCE_REWRITE_TAC[GSYM SUM_SUPPORT] THEN
  REWRITE_TAC[support; NEUTRAL_REAL_ADD] THEN
  MP_TAC(ISPECL [`\x:A. &0`; `f:A->real`; `{x:A | x IN s /\ ~(f x = &0)}`]
        SUM_LE) THEN
  ASM_SIMP_TAC[SUM_0; IN_ELIM_THM]);;

let SUM_POS_BOUND = prove
 (`!f b s. FINITE s /\ (!x. x IN s ==> &0 <= f x) /\ sum s f <= b
           ==> !x:A. x IN s ==> f x <= b`,
  GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[SUM_CLAUSES; NOT_IN_EMPTY; IN_INSERT] THEN
  MESON_TAC[SUM_POS_LE;
   REAL_ARITH `&0 <= x /\ &0 <= y /\ x + y <= b ==> x <= b /\ y <= b`]);;

let SUM_POS_EQ_0 = prove
 (`!f s. FINITE s /\ (!x. x IN s ==> &0 <= f x) /\ (sum s f = &0)
         ==> !x. x IN s ==> f x = &0`,
  REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN
  MESON_TAC[SUM_POS_BOUND; SUM_POS_LE]);;

let SUM_ZERO_EXISTS = prove
 (`!(u:A->real) s.
         FINITE s /\ sum s u = &0
         ==> (!i. i IN s ==> u i = &0) \/
             (?j k. j IN s /\ u j < &0 /\ k IN s /\ u k > &0)`,
  REPEAT STRIP_TAC THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
   (MESON[REAL_ARITH `(&0 <= --u <=> ~(u > &0)) /\ (&0 <= u <=> ~(u < &0))`]
     `(?j k:A. j IN s /\ u j < &0 /\ k IN s /\ u k > &0) \/
      (!i. i IN s ==> &0 <= u i) \/ (!i. i IN s ==> &0 <= --(u i))`) THEN
  ASM_REWRITE_TAC[] THEN DISJ1_TAC THENL
   [ALL_TAC; ONCE_REWRITE_TAC[REAL_ARITH `x = &0 <=> --x = &0`]] THEN
  MATCH_MP_TAC SUM_POS_EQ_0 THEN ASM_REWRITE_TAC[SUM_NEG; REAL_NEG_0]);;

let SUM_DELETE = prove
 (`!f s a. FINITE s /\ a IN s ==> sum (s DELETE a) f = sum s f - f(a)`,
  SIMP_TAC[REAL_ARITH `y = z - x <=> x + y = z:real`; sum; ITERATE_DELETE;
           MONOIDAL_REAL_ADD]);;

let SUM_DELETE_CASES = prove
 (`!f s a. FINITE s
           ==> sum (s DELETE a) f = if a IN s then sum s f - f(a)
                                    else sum s f`,
  REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
  ASM_SIMP_TAC[SET_RULE `~(a IN s) ==> (s DELETE a = s)`; SUM_DELETE]);;

let SUM_SING = prove
 (`!f x. sum {x} f = f(x)`,
  SIMP_TAC[SUM_CLAUSES; FINITE_RULES; NOT_IN_EMPTY; REAL_ADD_RID]);;

let SUM_DELTA = prove
 (`!s a. sum s (\x. if x = a:A then b else &0) = if a IN s then b else &0`,
  REWRITE_TAC[sum; GSYM NEUTRAL_REAL_ADD] THEN
  SIMP_TAC[ITERATE_DELTA; MONOIDAL_REAL_ADD]);;

let SUM_SWAP = prove
 (`!f:A->B->real s t.
      FINITE(s) /\ FINITE(t)
      ==> (sum s (\i. sum t (f i)) = sum t (\j. sum s (\i. f i j)))`,
  GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[SUM_CLAUSES; SUM_0; SUM_ADD; ETA_AX]);;

let SUM_IMAGE = prove
 (`!f g s. (!x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y))
           ==> (sum (IMAGE f s) g = sum s (g o f))`,
  REWRITE_TAC[sum; GSYM NEUTRAL_REAL_ADD] THEN
  MATCH_MP_TAC ITERATE_IMAGE THEN REWRITE_TAC[MONOIDAL_REAL_ADD]);;

let SUM_SUPERSET = prove
 (`!f:A->real u v.
        u SUBSET v /\ (!x. x IN v /\ ~(x IN u) ==> (f(x) = &0))
        ==> (sum v f = sum u f)`,
  SIMP_TAC[sum; GSYM NEUTRAL_REAL_ADD; ITERATE_SUPERSET; MONOIDAL_REAL_ADD]);;

let SUM_UNIV = prove
 (`!f:A->real s. support (+) f (:A) SUBSET s ==> sum s f = sum (:A) f`,
  REWRITE_TAC[sum] THEN MATCH_MP_TAC ITERATE_UNIV THEN
  REWRITE_TAC[MONOIDAL_REAL_ADD]);;

let SUM_UNION_RZERO = prove
 (`!f:A->real u v.
        FINITE u /\ (!x. x IN v /\ ~(x IN u) ==> (f(x) = &0))
        ==> (sum (u UNION v) f = sum u f)`,
  let lemma = prove(`u UNION v = u UNION (v DIFF u)`,SET_TAC[]) in
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[lemma] THEN
  MATCH_MP_TAC SUM_SUPERSET THEN
  ASM_MESON_TAC[IN_UNION; IN_DIFF; SUBSET]);;

let SUM_UNION_LZERO = prove
 (`!f:A->real u v.
        FINITE v /\ (!x. x IN u /\ ~(x IN v) ==> (f(x) = &0))
        ==> (sum (u UNION v) f = sum v f)`,
  MESON_TAC[SUM_UNION_RZERO; UNION_COMM]);;

let SUM_RESTRICT = prove
 (`!f s. FINITE s ==> (sum s (\x. if x IN s then f(x) else &0) = sum s f)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_EQ THEN ASM_SIMP_TAC[]);;

let SUM_BOUND = prove
 (`!s f b. FINITE s /\ (!x:A. x IN s ==> f(x) <= b)
           ==> sum s f <= &(CARD s) * b`,
  SIMP_TAC[GSYM SUM_CONST; SUM_LE]);;

let SUM_BOUND_GEN = prove
 (`!s f b. FINITE s /\ ~(s = {}) /\ (!x:A. x IN s ==> f(x) <= b / &(CARD s))
           ==> sum s f <= b`,
  MESON_TAC[SUM_BOUND; REAL_DIV_LMUL; REAL_OF_NUM_EQ; HAS_SIZE_0;
            HAS_SIZE]);;

let SUM_ABS_BOUND = prove
 (`!s f b. FINITE s /\ (!x:A. x IN s ==> abs(f(x)) <= b)
           ==> abs(sum s f) <= &(CARD s) * b`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `sum s (\x:A. abs(f x))` THEN
  ASM_SIMP_TAC[SUM_BOUND; SUM_ABS]);;

let SUM_BOUND_LT = prove
 (`!s f b. FINITE s /\ (!x:A. x IN s ==> f x <= b) /\ (?x. x IN s /\ f x < b)
           ==> sum s f < &(CARD s) * b`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LTE_TRANS THEN
  EXISTS_TAC `sum s (\x:A. b)` THEN CONJ_TAC THENL
   [MATCH_MP_TAC SUM_LT THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[];
    ASM_SIMP_TAC[SUM_CONST; REAL_LE_REFL]]);;

let SUM_BOUND_LT_ALL = prove
 (`!s f b. FINITE s /\ ~(s = {}) /\ (!x. x IN s ==> f(x) < b)
           ==> sum s f <  &(CARD s) * b`,
  MESON_TAC[MEMBER_NOT_EMPTY; REAL_LT_IMP_LE; SUM_BOUND_LT]);;

let SUM_BOUND_LT_GEN = prove
 (`!s f b. FINITE s /\ ~(s = {}) /\ (!x:A. x IN s ==> f(x) < b / &(CARD s))
           ==> sum s f < b`,
  MESON_TAC[SUM_BOUND_LT_ALL; REAL_DIV_LMUL; REAL_OF_NUM_EQ; HAS_SIZE_0;
            HAS_SIZE]);;

let SUM_UNION_EQ = prove
 (`!s t u. FINITE u /\ (s INTER t = {}) /\ (s UNION t = u)
           ==> (sum s f + sum t f = sum u f)`,
  MESON_TAC[SUM_UNION; DISJOINT; FINITE_SUBSET; SUBSET_UNION]);;

let SUM_EQ_SUPERSET = prove
 (`!f s t:A->bool.
        FINITE t /\ t SUBSET s /\
        (!x. x IN t ==> (f x = g x)) /\
        (!x. x IN s /\ ~(x IN t) ==> (f(x) = &0))
        ==> (sum s f = sum t g)`,
  MESON_TAC[SUM_SUPERSET; SUM_EQ]);;

let SUM_RESTRICT_SET = prove
 (`!P s f. sum {x | x IN s /\ P x} f = sum s (\x. if P x then f x else &0)`,
  REWRITE_TAC[sum; GSYM NEUTRAL_REAL_ADD] THEN
  MATCH_MP_TAC ITERATE_RESTRICT_SET THEN REWRITE_TAC[MONOIDAL_REAL_ADD]);;

let SUM_SUM_RESTRICT = prove
 (`!R f s t.
        FINITE s /\ FINITE t
        ==> (sum s (\x. sum {y | y IN t /\ R x y} (\y. f x y)) =
             sum t (\y. sum {x | x IN s /\ R x y} (\x. f x y)))`,
  REPEAT GEN_TAC THEN SIMP_TAC[SUM_RESTRICT_SET] THEN
  DISCH_THEN(fun th -> REWRITE_TAC[MATCH_MP SUM_SWAP th]));;

let CARD_EQ_SUM = prove
 (`!s. FINITE s ==> (&(CARD s) = sum s (\x. &1))`,
  SIMP_TAC[SUM_CONST; REAL_MUL_RID]);;

let SUM_MULTICOUNT_GEN = prove
 (`!R:A->B->bool s t k.
        FINITE s /\ FINITE t /\
        (!j. j IN t ==> (CARD {i | i IN s /\ R i j} = k(j)))
        ==> (sum s (\i. &(CARD {j | j IN t /\ R i j})) =
             sum t (\i. &(k i)))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[CONJ_ASSOC] THEN
  DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN
  MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `sum s (\i:A. sum {j:B | j IN t /\ R i j} (\j. &1))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC SUM_EQ THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN
    ASM_SIMP_TAC[CARD_EQ_SUM; FINITE_RESTRICT];
    FIRST_ASSUM(fun th ->
      ONCE_REWRITE_TAC[MATCH_MP SUM_SUM_RESTRICT th]) THEN
    MATCH_MP_TAC SUM_EQ THEN
    ASM_SIMP_TAC[SUM_CONST; FINITE_RESTRICT] THEN
    REWRITE_TAC[REAL_MUL_RID]]);;

let SUM_MULTICOUNT = prove
 (`!R:A->B->bool s t k.
        FINITE s /\ FINITE t /\
        (!j. j IN t ==> (CARD {i | i IN s /\ R i j} = k))
        ==> (sum s (\i. &(CARD {j | j IN t /\ R i j})) = &(k * CARD t))`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `sum t (\i:B. &k)` THEN CONJ_TAC THENL
   [MATCH_MP_TAC SUM_MULTICOUNT_GEN THEN ASM_REWRITE_TAC[];
    ASM_SIMP_TAC[SUM_CONST; REAL_OF_NUM_MUL] THEN REWRITE_TAC[MULT_AC]]);;

let SUM_IMAGE_GEN = prove
 (`!f:A->B g s.
        FINITE s
        ==> sum s g =
            sum (IMAGE f s) (\y. sum {x | x IN s /\ f x = y} g)`,
  REWRITE_TAC[sum] THEN MATCH_MP_TAC ITERATE_IMAGE_GEN THEN
  REWRITE_TAC[MONOIDAL_REAL_ADD]);;

let SUM_GROUP = prove
 (`!f:A->B g s t.
        FINITE s /\ IMAGE f s SUBSET t
        ==> sum t (\y. sum {x | x IN s /\ f(x) = y} g) = sum s g`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`f:A->B`; `g:A->real`; `s:A->bool`] SUM_IMAGE_GEN) THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN SUBST1_TAC THEN
  MATCH_MP_TAC SUM_SUPERSET THEN ASM_REWRITE_TAC[] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_EQ_0 THEN ASM SET_TAC[]);;

let SUM_GROUP_RELATION = prove
 (`!R:A->B->bool g s t.
         FINITE s /\
         (!x. x IN s ==> ?!y. y IN t /\ R x y)
         ==> sum t (\y. sum {x | x IN s /\ R x y} g) = sum s g`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`\x:A. @y:B. y IN t /\ R x y`; `g:A->real`;
                 `s:A->bool`; `t:B->bool`]
        SUM_GROUP) THEN
  ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN
  ANTS_TAC THENL [ASM_MESON_TAC[]; DISCH_THEN(SUBST1_TAC o SYM)] THEN
  MATCH_MP_TAC SUM_EQ THEN REPEAT STRIP_TAC THEN REWRITE_TAC[] THEN
  AP_THM_TAC THEN AP_TERM_TAC THEN ASM SET_TAC[]);;

let REAL_OF_NUM_SUM = prove
 (`!f s. FINITE s ==> (&(nsum s f) = sum s (\x. &(f x)))`,
  GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[SUM_CLAUSES; NSUM_CLAUSES; GSYM REAL_OF_NUM_ADD]);;

let SUM_SUBSET = prove
 (`!u v f. FINITE u /\ FINITE v /\
           (!x. x IN (u DIFF v) ==> f(x) <= &0) /\
           (!x:A. x IN (v DIFF u) ==> &0 <= f(x))
           ==> sum u f <= sum v f`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`f:A->real`; `u INTER v :A->bool`] SUM_UNION) THEN
  DISCH_THEN(fun th -> MP_TAC(SPEC `v DIFF u :A->bool` th) THEN
                       MP_TAC(SPEC `u DIFF v :A->bool` th)) THEN
  REWRITE_TAC[SET_RULE `(u INTER v) UNION (u DIFF v) = u`;
              SET_RULE `(u INTER v) UNION (v DIFF u) = v`] THEN
  ASM_SIMP_TAC[FINITE_DIFF; FINITE_INTER] THEN
  REPEAT(ANTS_TAC THENL [SET_TAC[]; DISCH_THEN SUBST1_TAC]) THEN
  MATCH_MP_TAC(REAL_ARITH `&0 <= --x /\ &0 <= y ==> a + x <= a + y`) THEN
  ASM_SIMP_TAC[GSYM SUM_NEG; FINITE_DIFF] THEN CONJ_TAC THEN
  MATCH_MP_TAC SUM_POS_LE THEN
  ASM_SIMP_TAC[FINITE_DIFF; REAL_LE_RNEG; REAL_ADD_LID]);;

let SUM_SUBSET_SIMPLE = prove
 (`!u v f. FINITE v /\ u SUBSET v /\ (!x:A. x IN (v DIFF u) ==> &0 <= f(x))

           ==> sum u f <= sum v f`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_SUBSET THEN
  ASM_MESON_TAC[IN_DIFF; SUBSET; FINITE_SUBSET]);;

let SUM_MUL_BOUND = prove
 (`!a b s:A->bool.
        FINITE s /\ (!i. i IN s ==> &0 <= a i /\ &0 <= b i)
        ==> sum s (\i. a i * b i) <= sum s a * sum s b`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM SUM_LMUL] THEN
  MATCH_MP_TAC SUM_LE THEN ASM_REWRITE_TAC[] THEN
  X_GEN_TAC `i:A` THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LE_RMUL THEN
  ASM_SIMP_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [GSYM SUM_SING] THEN
  MATCH_MP_TAC SUM_SUBSET_SIMPLE THEN
  ASM_SIMP_TAC[SING_SUBSET; IN_DIFF]);;

let SUM_IMAGE_NONZERO = prove
 (`!d:B->real i:A->B s.
    FINITE s /\
    (!x y. x IN s /\ y IN s /\ ~(x = y) /\ i x = i y ==> d(i x) = &0)
    ==> sum (IMAGE i s) d = sum s (d o i)`,
  REWRITE_TAC[GSYM NEUTRAL_REAL_ADD; sum] THEN
  MATCH_MP_TAC ITERATE_IMAGE_NONZERO THEN REWRITE_TAC[MONOIDAL_REAL_ADD]);;

let SUM_BIJECTION = prove
 (`!f p s:A->bool.
                (!x. x IN s ==> p(x) IN s) /\
                (!y. y IN s ==> ?!x. x IN s /\ p(x) = y)
                ==> sum s f = sum s (f o p)`,
  REWRITE_TAC[sum] THEN MATCH_MP_TAC ITERATE_BIJECTION THEN
  REWRITE_TAC[MONOIDAL_REAL_ADD]);;

let SUM_SUM_PRODUCT = prove
 (`!s:A->bool t:A->B->bool x.
        FINITE s /\ (!i. i IN s ==> FINITE(t i))
        ==> sum s (\i. sum (t i) (x i)) =
            sum {i,j | i IN s /\ j IN t i} (\(i,j). x i j)`,
  REWRITE_TAC[sum] THEN MATCH_MP_TAC ITERATE_ITERATE_PRODUCT THEN
  REWRITE_TAC[MONOIDAL_REAL_ADD]);;

let SUM_EQ_GENERAL = prove
 (`!s:A->bool t:B->bool f g h.
        (!y. y IN t ==> ?!x. x IN s /\ h(x) = y) /\
        (!x. x IN s ==> h(x) IN t /\ g(h x) = f x)
        ==> sum s f = sum t g`,
  REWRITE_TAC[sum] THEN MATCH_MP_TAC ITERATE_EQ_GENERAL THEN
  REWRITE_TAC[MONOIDAL_REAL_ADD]);;

let SUM_EQ_GENERAL_INVERSES = prove
 (`!s:A->bool t:B->bool f g h k.
        (!y. y IN t ==> k(y) IN s /\ h(k y) = y) /\
        (!x. x IN s ==> h(x) IN t /\ k(h x) = x /\ g(h x) = f x)
        ==> sum s f = sum t g`,
  REWRITE_TAC[sum] THEN MATCH_MP_TAC ITERATE_EQ_GENERAL_INVERSES THEN
  REWRITE_TAC[MONOIDAL_REAL_ADD]);;

let SUM_INJECTION = prove
 (`!f p s. FINITE s /\
           (!x. x IN s ==> p x IN s) /\
           (!x y. x IN s /\ y IN s /\ p x = p y ==> x = y)
           ==> sum s (f o p) = sum s f`,
  REWRITE_TAC[sum] THEN MATCH_MP_TAC ITERATE_INJECTION THEN
  REWRITE_TAC[MONOIDAL_REAL_ADD]);;

let SUM_UNION_NONZERO = prove
 (`!f s t. FINITE s /\ FINITE t /\ (!x. x IN s INTER t ==> f(x) = &0)
           ==> sum (s UNION t) f = sum s f + sum t f`,
  REWRITE_TAC[sum; GSYM NEUTRAL_REAL_ADD] THEN
  MATCH_MP_TAC ITERATE_UNION_NONZERO THEN REWRITE_TAC[MONOIDAL_REAL_ADD]);;

let SUM_UNIONS_NONZERO = prove
 (`!f s. FINITE s /\ (!t:A->bool. t IN s ==> FINITE t) /\
         (!t1 t2 x. t1 IN s /\ t2 IN s /\ ~(t1 = t2) /\ x IN t1 /\ x IN t2
                    ==> f x = &0)
         ==> sum (UNIONS s) f = sum s (\t. sum t f)`,
  GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  REWRITE_TAC[UNIONS_0; UNIONS_INSERT; SUM_CLAUSES; IN_INSERT] THEN
  MAP_EVERY X_GEN_TAC [`t:A->bool`; `s:(A->bool)->bool`] THEN
  DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
  ONCE_REWRITE_TAC[IMP_CONJ] THEN ASM_SIMP_TAC[SUM_CLAUSES] THEN
  ANTS_TAC THENL  [ASM_MESON_TAC[]; DISCH_THEN(SUBST_ALL_TAC o SYM)] THEN
  STRIP_TAC THEN MATCH_MP_TAC SUM_UNION_NONZERO THEN
  ASM_SIMP_TAC[FINITE_UNIONS; IN_INTER; IN_UNIONS] THEN ASM_MESON_TAC[]);;

let SUM_CASES = prove
 (`!s P f g. FINITE s
             ==> sum s (\x:A. if P x then f x else g x) =
                 sum {x | x IN s /\ P x} f + sum {x | x IN s /\ ~P x} g`,
  REWRITE_TAC[sum; GSYM NEUTRAL_REAL_ADD] THEN
  MATCH_MP_TAC ITERATE_CASES THEN REWRITE_TAC[MONOIDAL_REAL_ADD]);;

let SUM_CASES_1 = prove
 (`!s a. FINITE s /\ a IN s
         ==> sum s (\x. if x = a then y else f(x)) = sum s f + (y - f a)`,
  REPEAT STRIP_TAC THEN ASM_SIMP_TAC[SUM_CASES] THEN
  ASM_SIMP_TAC[GSYM DELETE; SUM_DELETE] THEN
  ASM_SIMP_TAC[SET_RULE `a IN s ==> {x | x IN s /\ x = a} = {a}`] THEN
  REWRITE_TAC[SUM_SING] THEN REAL_ARITH_TAC);;

let SUM_LE_INCLUDED = prove
 (`!f:A->real g:B->real s t i.
        FINITE s /\ FINITE t /\
        (!y. y IN t ==> &0 <= g y) /\
        (!x. x IN s ==> ?y. y IN t /\ i y = x /\ f(x) <= g(y))
        ==> sum s f <= sum t g`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `sum (IMAGE (i:B->A) t) (\y. sum {x | x IN t /\ i x = y} g)` THEN
  CONJ_TAC THENL
   [ALL_TAC;
    MATCH_MP_TAC REAL_EQ_IMP_LE THEN
    MATCH_MP_TAC(GSYM SUM_IMAGE_GEN) THEN ASM_REWRITE_TAC[]] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `sum s (\y. sum {x | x IN t /\ (i:B->A) x = y} g)` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC SUM_LE THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:A` THEN
    DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:A`) THEN
    ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `y:B` THEN
    STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `sum {y:B} g` THEN CONJ_TAC THENL
     [ASM_REWRITE_TAC[SUM_SING]; ALL_TAC];
    ALL_TAC] THEN
  MATCH_MP_TAC SUM_SUBSET_SIMPLE THEN ASM_SIMP_TAC[FINITE_IMAGE] THEN
  ASM_SIMP_TAC[SUM_POS_LE; FINITE_RESTRICT; IN_ELIM_THM] THEN
  ASM SET_TAC[]);;

let SUM_IMAGE_LE = prove
 (`!f:A->B g s.
        FINITE s /\
        (!x. x IN s ==> &0 <= g(f x))
        ==> sum (IMAGE f s) g <= sum s (g o f)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_LE_INCLUDED THEN
  ASM_SIMP_TAC[FINITE_IMAGE; FORALL_IN_IMAGE] THEN
  ASM_REWRITE_TAC[o_THM] THEN EXISTS_TAC `f:A->B` THEN
  MESON_TAC[REAL_LE_REFL]);;

let SUM_CLOSED = prove
 (`!P f:A->real s.
        P(&0) /\ (!x y. P x /\ P y ==> P(x + y)) /\ (!a. a IN s ==> P(f a))
        ==> P(sum s f)`,
  REPEAT STRIP_TAC THEN MP_TAC(MATCH_MP ITERATE_CLOSED MONOIDAL_REAL_ADD) THEN
  DISCH_THEN(MP_TAC o SPEC `P:real->bool`) THEN
  ASM_SIMP_TAC[NEUTRAL_REAL_ADD; GSYM sum]);;

let REAL_OF_NUM_SUM_GEN = prove
 (`!f s:A->bool.
       FINITE {i | i IN s /\ ~(f i = 0)} ==> &(nsum s f) = sum s (\x. &(f x))`,
  REPEAT STRIP_TAC THEN
  ONCE_REWRITE_TAC[GSYM SUM_SUPPORT; GSYM NSUM_SUPPORT] THEN
  REWRITE_TAC[support; NEUTRAL_ADD; NEUTRAL_REAL_ADD; REAL_OF_NUM_EQ] THEN
  ASM_SIMP_TAC[REAL_OF_NUM_SUM]);;

(* ------------------------------------------------------------------------- *)
(* Specialize them to sums over intervals of numbers.                        *)
(* ------------------------------------------------------------------------- *)

let SUM_ADD_NUMSEG = prove
 (`!f g m n. sum(m..n) (\i. f(i) + g(i)) = sum(m..n) f + sum(m..n) g`,
  SIMP_TAC[SUM_ADD; FINITE_NUMSEG]);;

let SUM_SUB_NUMSEG = prove
 (`!f g m n. sum(m..n) (\i. f(i) - g(i)) = sum(m..n) f - sum(m..n) g`,
   SIMP_TAC[SUM_SUB; FINITE_NUMSEG]);;

let SUM_LE_NUMSEG = prove
 (`!f g m n. (!i. m <= i /\ i <= n ==> f(i) <= g(i))
             ==> sum(m..n) f <= sum(m..n) g`,
  SIMP_TAC[SUM_LE; FINITE_NUMSEG; IN_NUMSEG]);;

let SUM_EQ_NUMSEG = prove
 (`!f g m n. (!i. m <= i /\ i <= n ==> (f(i) = g(i)))
             ==> (sum(m..n) f = sum(m..n) g)`,
  MESON_TAC[SUM_EQ; FINITE_NUMSEG; IN_NUMSEG]);;

let SUM_ABS_NUMSEG = prove
 (`!f m n. abs(sum(m..n) f) <= sum(m..n) (\i. abs(f i))`,
  SIMP_TAC[SUM_ABS; FINITE_NUMSEG]);;

let SUM_CONST_NUMSEG = prove
 (`!c m n. sum(m..n) (\n. c) = &((n + 1) - m) * c`,
  SIMP_TAC[SUM_CONST; FINITE_NUMSEG; CARD_NUMSEG]);;

let SUM_EQ_0_NUMSEG = prove
 (`!f m n. (!i. m <= i /\ i <= n ==> (f(i) = &0)) ==> (sum(m..n) f = &0)`,
  SIMP_TAC[SUM_EQ_0; IN_NUMSEG]);;

let SUM_TRIV_NUMSEG = prove
 (`!f m n. n < m ==> (sum(m..n) f = &0)`,
  MESON_TAC[SUM_EQ_0_NUMSEG; LE_TRANS; NOT_LT]);;

let SUM_POS_LE_NUMSEG = prove
 (`!m n f. (!p. m <= p /\ p <= n ==> &0 <= f(p)) ==> &0 <= sum(m..n) f`,
  SIMP_TAC[SUM_POS_LE; FINITE_NUMSEG; IN_NUMSEG]);;

let SUM_POS_EQ_0_NUMSEG = prove
 (`!f m n. (!p. m <= p /\ p <= n ==> &0 <= f(p)) /\ (sum(m..n) f = &0)
           ==> !p. m <= p /\ p <= n ==> (f(p) = &0)`,
  MESON_TAC[SUM_POS_EQ_0; FINITE_NUMSEG; IN_NUMSEG]);;

let SUM_SING_NUMSEG = prove
 (`!f n. sum(n..n) f = f(n)`,
  SIMP_TAC[SUM_SING; NUMSEG_SING]);;

let SUM_CLAUSES_NUMSEG = prove
 (`(!m. sum(m..0) f = if m = 0 then f(0) else &0) /\
   (!m n. sum(m..SUC n) f = if m <= SUC n then sum(m..n) f + f(SUC n)
                            else sum(m..n) f)`,
  MP_TAC(MATCH_MP ITERATE_CLAUSES_NUMSEG MONOIDAL_REAL_ADD) THEN
  REWRITE_TAC[NEUTRAL_REAL_ADD; sum]);;

let SUM_SWAP_NUMSEG = prove
 (`!a b c d f.
     sum(a..b) (\i. sum(c..d) (f i)) = sum(c..d) (\j. sum(a..b) (\i. f i j))`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC SUM_SWAP THEN
  REWRITE_TAC[FINITE_NUMSEG]);;

let SUM_ADD_SPLIT = prove
 (`!f m n p.
        m <= n + 1 ==> (sum (m..(n+p)) f = sum(m..n) f + sum(n+1..n+p) f)`,
  SIMP_TAC[NUMSEG_ADD_SPLIT; SUM_UNION; DISJOINT_NUMSEG; FINITE_NUMSEG;
           ARITH_RULE `x < x + 1`]);;

let SUM_OFFSET = prove
 (`!p f m n. sum(m+p..n+p) f = sum(m..n) (\i. f(i + p))`,
  SIMP_TAC[NUMSEG_OFFSET_IMAGE; SUM_IMAGE;
           EQ_ADD_RCANCEL; FINITE_NUMSEG] THEN
  REWRITE_TAC[o_DEF]);;

let SUM_OFFSET_0 = prove
 (`!f m n. m <= n ==> (sum(m..n) f = sum(0..n-m) (\i. f(i + m)))`,
  SIMP_TAC[GSYM SUM_OFFSET; ADD_CLAUSES; SUB_ADD]);;

let SUM_CLAUSES_LEFT = prove
 (`!f m n. m <= n ==> sum(m..n) f = f(m) + sum(m+1..n) f`,
  SIMP_TAC[GSYM NUMSEG_LREC; SUM_CLAUSES; FINITE_NUMSEG; IN_NUMSEG] THEN
  ARITH_TAC);;

let SUM_CLAUSES_RIGHT = prove
 (`!f m n. 0 < n /\ m <= n ==> sum(m..n) f = sum(m..n-1) f + f(n)`,
  GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  SIMP_TAC[LT_REFL; SUM_CLAUSES_NUMSEG; SUC_SUB1]);;

let SUM_PAIR = prove
 (`!f m n. sum(2*m..2*n+1) f = sum(m..n) (\i. f(2*i) + f(2*i+1))`,
  MP_TAC(MATCH_MP ITERATE_PAIR MONOIDAL_REAL_ADD) THEN
  REWRITE_TAC[sum; NEUTRAL_REAL_ADD]);;

let SUM_REFLECT = prove
 (`!x m n. sum(m..n) x = if n < m then &0 else sum(0..n-m) (\i. x(n - i))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[sum] THEN
  GEN_REWRITE_TAC LAND_CONV [MATCH_MP ITERATE_REFLECT MONOIDAL_REAL_ADD] THEN
  REWRITE_TAC[NEUTRAL_REAL_ADD]);;

let REAL_OF_NUM_SUM_NUMSEG = prove
 (`!f m n. (&(nsum(m..n) f) = sum (m..n) (\i. &(f i)))`,
  SIMP_TAC[REAL_OF_NUM_SUM; FINITE_NUMSEG]);;

(* ------------------------------------------------------------------------- *)
(* Partial summation and other theorems specific to number segments.         *)
(* ------------------------------------------------------------------------- *)

let SUM_PARTIAL_SUC = prove
 (`!f g m n.
        sum (m..n) (\k. f(k) * (g(k + 1) - g(k))) =
            if m <= n then f(n + 1) * g(n + 1) - f(m) * g(m) -
                           sum (m..n) (\k. g(k + 1) * (f(k + 1) - f(k)))
            else &0`,
  GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
  COND_CASES_TAC THEN ASM_SIMP_TAC[SUM_TRIV_NUMSEG; GSYM NOT_LE] THEN
  ASM_REWRITE_TAC[SUM_CLAUSES_NUMSEG] THENL
   [COND_CASES_TAC THEN ASM_SIMP_TAC[] THENL [REAL_ARITH_TAC; ASM_ARITH_TAC];
    ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LE]) THEN
  DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN
  ASM_SIMP_TAC[GSYM NOT_LT; SUM_TRIV_NUMSEG; ARITH_RULE `n < SUC n`] THEN
  ASM_SIMP_TAC[GSYM ADD1; ADD_CLAUSES] THEN REAL_ARITH_TAC);;

let SUM_PARTIAL_PRE = prove
 (`!f g m n.
        sum (m..n) (\k. f(k) * (g(k) - g(k - 1))) =
            if m <= n then f(n + 1) * g(n) - f(m) * g(m - 1) -
                           sum (m..n) (\k. g k * (f(k + 1) - f(k)))
            else &0`,
  REPEAT GEN_TAC THEN
  MP_TAC(ISPECL [`f:num->real`; `\k. (g:num->real)(k - 1)`;
                 `m:num`; `n:num`] SUM_PARTIAL_SUC) THEN
  REWRITE_TAC[ADD_SUB] THEN DISCH_THEN SUBST1_TAC THEN
  COND_CASES_TAC THEN REWRITE_TAC[]);;

let SUM_DIFFS = prove
 (`!m n. sum(m..n) (\k. f(k) - f(k + 1)) =
          if m <= n then f(m) - f(n + 1) else &0`,
  ONCE_REWRITE_TAC[REAL_ARITH `a - b = -- &1 * (b - a)`] THEN
  ONCE_REWRITE_TAC[SUM_PARTIAL_SUC] THEN
  REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_RZERO; SUM_0] THEN
  REAL_ARITH_TAC);;

let SUM_DIFFS_ALT = prove
 (`!m n. sum(m..n) (\k. f(k + 1) - f(k)) =
          if m <= n then f(n + 1) - f(m) else &0`,
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_NEG_SUB] THEN
  SIMP_TAC[SUM_NEG; SUM_DIFFS] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_NEG_SUB; REAL_NEG_0]);;

let SUM_COMBINE_R = prove
 (`!f m n p. m <= n + 1 /\ n <= p
             ==> sum(m..n) f + sum(n+1..p) f = sum(m..p) f`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_UNION_EQ THEN
  REWRITE_TAC[FINITE_NUMSEG; EXTENSION; IN_INTER; IN_UNION; NOT_IN_EMPTY;
              IN_NUMSEG] THEN
  ASM_ARITH_TAC);;

let SUM_COMBINE_L = prove
 (`!f m n p. 0 < n /\ m <= n /\ n <= p + 1
             ==> sum(m..n-1) f + sum(n..p) f = sum(m..p) f`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_UNION_EQ THEN
  REWRITE_TAC[FINITE_NUMSEG; EXTENSION; IN_INTER; IN_UNION; NOT_IN_EMPTY;
              IN_NUMSEG] THEN
  ASM_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Extend congruences to deal with sum. Note that we must have the eta       *)
(* redex or we'll get a loop since f(x) will lambda-reduce recursively.      *)
(* ------------------------------------------------------------------------- *)

let th = prove
 (`(!f g s.   (!x. x IN s ==> f(x) = g(x))
              ==> sum s (\i. f(i)) = sum s g) /\
   (!f g a b. (!i. a <= i /\ i <= b ==> f(i) = g(i))
              ==> sum(a..b) (\i. f(i)) = sum(a..b) g) /\
   (!f g p.   (!x. p x ==> f x = g x)
              ==> sum {y | p y} (\i. f(i)) = sum {y | p y} g)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_EQ THEN
  ASM_SIMP_TAC[IN_ELIM_THM; IN_NUMSEG]) in
  extend_basic_congs (map SPEC_ALL (CONJUNCTS th));;

(* ------------------------------------------------------------------------- *)
(* Expand "sum (m..n) f" where m and n are numerals.                         *)
(* ------------------------------------------------------------------------- *)

let EXPAND_SUM_CONV =
  let [pth_0; pth_1; pth_2] = (CONJUNCTS o prove)
   (`(n < m ==> sum(m..n) f = &0) /\
     sum(m..m) f = f m /\
     (m <= n ==> sum (m..n) f = f m + sum (m + 1..n) f)`,
    REWRITE_TAC[SUM_CLAUSES_LEFT; SUM_SING_NUMSEG; SUM_TRIV_NUMSEG])
  and ns_tm = `..` and f_tm = `f:num->real`
  and m_tm = `m:num` and n_tm = `n:num` in
  let rec conv tm =
    let smn,ftm = dest_comb tm in
    let s,mn = dest_comb smn in
    if not(is_const s && fst(dest_const s) = "sum")
    then failwith "EXPAND_SUM_CONV" else
    let mtm,ntm = dest_binop ns_tm mn in
    let m = dest_numeral mtm and n = dest_numeral ntm in
    if n < m then
      let th1 = INST [ftm,f_tm; mtm,m_tm; ntm,n_tm] pth_0 in
      MP th1 (EQT_ELIM(NUM_LT_CONV(lhand(concl th1))))
    else if n = m then CONV_RULE (RAND_CONV(TRY_CONV BETA_CONV))
                                 (INST [ftm,f_tm; mtm,m_tm] pth_1)
    else
      let th1 = INST [ftm,f_tm; mtm,m_tm; ntm,n_tm] pth_2 in
      let th2 = MP th1 (EQT_ELIM(NUM_LE_CONV(lhand(concl th1)))) in
      CONV_RULE (RAND_CONV(COMB2_CONV (RAND_CONV(TRY_CONV BETA_CONV))
       (LAND_CONV(LAND_CONV NUM_ADD_CONV) THENC conv))) th2 in
  conv;;

(* ------------------------------------------------------------------------- *)
(* Some special algebraic rearrangements.                                    *)
(* ------------------------------------------------------------------------- *)

let REAL_SUB_POW = prove
 (`!x y n.
        1 <= n ==> x pow n - y pow n =
                   (x - y) * sum(0..n-1) (\i. x pow i * y pow (n - 1 - i))`,
  REWRITE_TAC[GSYM SUM_LMUL] THEN
  REWRITE_TAC[REAL_ARITH
   `(x - y) * (a * b):real = (x * a) * b - a * (y * b)`] THEN
  SIMP_TAC[GSYM real_pow; ADD1; ARITH_RULE
    `1 <= n /\ x <= n - 1
     ==> n - 1 - x = n - (x + 1) /\ SUC(n - 1 - x) = n - x`] THEN
  REWRITE_TAC[SUM_DIFFS_ALT; LE_0] THEN
  SIMP_TAC[SUB_0; SUB_ADD; SUB_REFL; real_pow; REAL_MUL_LID; REAL_MUL_RID]);;

let REAL_SUB_POW_R1 = prove
 (`!x n. 1 <= n ==> x pow n - &1 = (x - &1) * sum(0..n-1) (\i. x pow i)`,
  REPEAT GEN_TAC THEN
  DISCH_THEN(MP_TAC o SPECL [`x:real`; `&1`] o MATCH_MP REAL_SUB_POW) THEN
  REWRITE_TAC[REAL_POW_ONE; REAL_MUL_RID]);;

let REAL_SUB_POW_L1 = prove
 (`!x n. 1 <= n ==> &1 - x pow n = (&1 - x) * sum(0..n-1) (\i. x pow i)`,
  ONCE_REWRITE_TAC[GSYM REAL_NEG_SUB] THEN
  SIMP_TAC[REAL_SUB_POW_R1] THEN REWRITE_TAC[REAL_MUL_LNEG]);;

(* ------------------------------------------------------------------------- *)
(* Some useful facts about real polynomial functions.                        *)
(* ------------------------------------------------------------------------- *)

let REAL_SUB_POLYFUN = prove
 (`!a x y n.
    1 <= n
    ==> sum(0..n) (\i. a i * x pow i) - sum(0..n) (\i. a i * y pow i) =
        (x - y) *
        sum(0..n-1) (\j. sum(j+1..n) (\i. a i * y pow (i - j - 1)) * x pow j)`,
  REPEAT STRIP_TAC THEN
  REWRITE_TAC[GSYM SUM_SUB_NUMSEG; GSYM REAL_SUB_LDISTRIB] THEN
  GEN_REWRITE_TAC LAND_CONV [MATCH_MP SUM_CLAUSES_LEFT (SPEC_ALL LE_0)] THEN
  REWRITE_TAC[REAL_SUB_REFL; real_pow; REAL_MUL_RZERO; REAL_ADD_LID] THEN
  SIMP_TAC[REAL_SUB_POW; ADD_CLAUSES] THEN
  ONCE_REWRITE_TAC[REAL_ARITH `a * x * s:real = x * a * s`] THEN
  REWRITE_TAC[SUM_LMUL] THEN AP_TERM_TAC THEN
  SIMP_TAC[GSYM SUM_LMUL; GSYM SUM_RMUL; SUM_SUM_PRODUCT; FINITE_NUMSEG] THEN
  MATCH_MP_TAC SUM_EQ_GENERAL_INVERSES THEN
  REPEAT(EXISTS_TAC `\(x:num,y:num). (y,x)`) THEN
  REWRITE_TAC[FORALL_IN_GSPEC; IN_ELIM_PAIR_THM; IN_NUMSEG] THEN
  REWRITE_TAC[ARITH_RULE `a - b - c:num = a - (b + c)`; ADD_SYM] THEN
  REWRITE_TAC[REAL_MUL_AC] THEN ARITH_TAC);;

let REAL_SUB_POLYFUN_ALT = prove
 (`!a x y n.
    1 <= n
    ==> sum(0..n) (\i. a i * x pow i) - sum(0..n) (\i. a i * y pow i) =
        (x - y) *
        sum(0..n-1) (\j. sum(0..n-j-1) (\k. a(j+k+1) * y pow k) * x pow j)`,
  REPEAT STRIP_TAC THEN ASM_SIMP_TAC[REAL_SUB_POLYFUN] THEN AP_TERM_TAC THEN
  MATCH_MP_TAC SUM_EQ_NUMSEG THEN X_GEN_TAC `j:num` THEN REPEAT STRIP_TAC THEN
  REWRITE_TAC[] THEN AP_THM_TAC THEN AP_TERM_TAC THEN
  MATCH_MP_TAC SUM_EQ_GENERAL_INVERSES THEN
  MAP_EVERY EXISTS_TAC
   [`\i. i - (j + 1)`; `\k. j + k + 1`] THEN
  REWRITE_TAC[IN_NUMSEG] THEN REPEAT STRIP_TAC THEN
  TRY(BINOP_TAC THEN AP_TERM_TAC) THEN ASM_ARITH_TAC);;

let REAL_POLYFUN_ROOTBOUND = prove
 (`!n c. ~(!i. i IN 0..n ==> c i = &0)
         ==> FINITE {x | sum(0..n) (\i. c i * x pow i) = &0} /\
             CARD {x | sum(0..n) (\i. c i * x pow i) = &0} <= n`,
  REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN INDUCT_TAC THENL
   [REWRITE_TAC[NUMSEG_SING; IN_SING; UNWIND_THM2; SUM_CLAUSES_NUMSEG] THEN
    SIMP_TAC[real_pow; REAL_MUL_RID; EMPTY_GSPEC; CARD_CLAUSES; FINITE_EMPTY;
             LE_REFL];
    X_GEN_TAC `c:num->real` THEN REWRITE_TAC[IN_NUMSEG] THEN
    DISCH_TAC THEN ASM_CASES_TAC `(c:num->real) (SUC n) = &0` THENL
     [ASM_SIMP_TAC[SUM_CLAUSES_NUMSEG; LE_0; REAL_MUL_LZERO; REAL_ADD_RID] THEN
      REWRITE_TAC[LE; LEFT_OR_DISTRIB] THEN DISJ2_TAC THEN
      FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[IN_NUMSEG; LE];
      ASM_CASES_TAC `{x | sum (0..SUC n) (\i. c i * x pow i) = &0} = {}` THEN
      ASM_REWRITE_TAC[FINITE_RULES; CARD_CLAUSES; LE_0] THEN
      FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
      REWRITE_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
      X_GEN_TAC `r:real` THEN DISCH_TAC THEN
      MP_TAC(GEN `x:real` (ISPECL [`c:num->real`; `x:real`; `r:real`; `SUC n`]
        REAL_SUB_POLYFUN)) THEN
      ASM_REWRITE_TAC[ARITH_RULE `1 <= SUC n`; REAL_SUB_RZERO] THEN
      DISCH_THEN(fun th -> REWRITE_TAC[th; REAL_ENTIRE; REAL_SUB_0]) THEN
      REWRITE_TAC[SET_RULE `{x | x = c \/ P x} = c INSERT {x | P x}`] THEN
      MATCH_MP_TAC(MESON[FINITE_INSERT; CARD_CLAUSES;
                         ARITH_RULE `x <= n ==> SUC x <= SUC n /\ x <= SUC n`]
        `FINITE s /\ CARD s <= n
         ==> FINITE(r INSERT s) /\ CARD(r INSERT s) <= SUC n`) THEN
      REWRITE_TAC[SUC_SUB1] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
      EXISTS_TAC `n:num` THEN REWRITE_TAC[IN_NUMSEG; ADD1; LE_REFL; LE_0] THEN
      REWRITE_TAC[SUM_SING_NUMSEG; ARITH_RULE `(n + 1) - n - 1 = 0`] THEN
      ASM_REWRITE_TAC[GSYM ADD1; real_pow; REAL_MUL_RID]]]);;

let REAL_POLYFUN_FINITE_ROOTS = prove
 (`!n c. FINITE {x | sum(0..n) (\i. c i * x pow i) = &0} <=>
         ?i. i IN 0..n /\ ~(c i = &0)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[TAUT `a /\ ~b <=> ~(a ==> b)`] THEN
  REWRITE_TAC[GSYM NOT_FORALL_THM] THEN EQ_TAC THEN
  SIMP_TAC[REAL_POLYFUN_ROOTBOUND] THEN
  ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
  SIMP_TAC[REAL_MUL_LZERO; SUM_0] THEN
  REWRITE_TAC[SET_RULE `{x | T} = (:real)`; real_INFINITE; GSYM INFINITE]);;

let REAL_POLYFUN_EQ_0 = prove
 (`!n c. (!x. sum(0..n) (\i. c i * x pow i) = &0) <=>
         (!i. i IN 0..n ==> c i = &0)`,
  REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL
   [GEN_REWRITE_TAC I [TAUT `p <=> ~ ~p`] THEN DISCH_THEN(MP_TAC o MATCH_MP
     REAL_POLYFUN_ROOTBOUND) THEN
    ASM_REWRITE_TAC[real_INFINITE; GSYM INFINITE; DE_MORGAN_THM;
                    SET_RULE `{x | T} = (:real)`];
    ASM_SIMP_TAC[IN_NUMSEG; LE_0; REAL_MUL_LZERO; SUM_0]]);;

let REAL_POLYFUN_EQ_CONST = prove
 (`!n c k. (!x. sum(0..n) (\i. c i * x pow i) = k) <=>
           c 0 = k /\ (!i. i IN 1..n ==> c i = &0)`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
   `!x. sum(0..n) (\i. (if i = 0 then c 0 - k else c i) * x pow i) = &0` THEN
  CONJ_TAC THENL
   [SIMP_TAC[SUM_CLAUSES_LEFT; LE_0; real_pow; REAL_MUL_RID] THEN
    REWRITE_TAC[REAL_ARITH `(c - k) + s = &0 <=> c + s = k`] THEN
    AP_TERM_TAC THEN ABS_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
    AP_TERM_TAC THEN MATCH_MP_TAC SUM_EQ THEN GEN_TAC THEN
    REWRITE_TAC[IN_NUMSEG] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH];
    REWRITE_TAC[REAL_POLYFUN_EQ_0; IN_NUMSEG; LE_0] THEN
    GEN_REWRITE_TAC LAND_CONV [MESON[]
     `(!n. P n) <=> P 0 /\ (!n. ~(n = 0) ==> P n)`] THEN
    SIMP_TAC[LE_0; REAL_SUB_0] THEN MESON_TAC[LE_1]]);;

(* ------------------------------------------------------------------------- *)
(* A general notion of polynomial function.                                  *)
(* ------------------------------------------------------------------------- *)

let polynomial_function = new_definition
 `polynomial_function p <=> ?m c. !x. p x = sum(0..m) (\i. c i * x pow i)`;;

let POLYNOMIAL_FUNCTION_CONST = prove
 (`!c. polynomial_function (\x. c)`,
  GEN_TAC THEN REWRITE_TAC[polynomial_function] THEN
  MAP_EVERY EXISTS_TAC [`0`; `(\i. c):num->real`] THEN
  REWRITE_TAC[SUM_SING_NUMSEG; real_pow; REAL_MUL_RID]);;

let POLYNOMIAL_FUNCTION_ID = prove
 (`polynomial_function (\x. x)`,
  REWRITE_TAC[polynomial_function] THEN
  MAP_EVERY EXISTS_TAC [`SUC 0`; `\i. if i = 1 then &1 else &0`] THEN
  REWRITE_TAC[SUM_CLAUSES_NUMSEG; LE_0; ARITH] THEN REAL_ARITH_TAC);;

let POLYNOMIAL_FUNCTION_I = prove
 (`polynomial_function I`,
  REWRITE_TAC[I_DEF; POLYNOMIAL_FUNCTION_ID]);;

let POLYNOMIAL_FUNCTION_ADD = prove
 (`!p q. polynomial_function p /\ polynomial_function q
         ==> polynomial_function (\x. p x + q x)`,
  REPEAT GEN_TAC THEN
  REWRITE_TAC[IMP_CONJ; polynomial_function; LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC  [`m:num`; `a:num->real`] THEN STRIP_TAC THEN
  MAP_EVERY X_GEN_TAC [`n:num`; `b:num->real`] THEN STRIP_TAC THEN
  ASM_REWRITE_TAC[] THEN EXISTS_TAC `MAX m n` THEN EXISTS_TAC
   `\i:num. (if i <= m then a i else &0) + (if i <= n then b i else &0)` THEN
  GEN_TAC THEN REWRITE_TAC[REAL_ADD_RDISTRIB; SUM_ADD_NUMSEG] THEN
  REWRITE_TAC[COND_RAND; COND_RATOR; REAL_MUL_LZERO] THEN
  REWRITE_TAC[GSYM SUM_RESTRICT_SET] THEN BINOP_TAC THEN
  BINOP_TAC THEN REWRITE_TAC[] THEN
  REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_NUMSEG] THEN ARITH_TAC);;

let POLYNOMIAL_FUNCTION_LMUL = prove
 (`!p c. polynomial_function p ==> polynomial_function (\x. c * p x)`,
  REPEAT GEN_TAC THEN
  REWRITE_TAC[IMP_CONJ; polynomial_function; LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC  [`n:num`; `a:num->real`] THEN STRIP_TAC THEN
  MAP_EVERY EXISTS_TAC [`n:num`; `\i. c * (a:num->real) i`] THEN
  ASM_REWRITE_TAC[SUM_LMUL; GSYM REAL_MUL_ASSOC]);;

let POLYNOMIAL_FUNCTION_RMUL = prove
 (`!p c. polynomial_function p ==> polynomial_function (\x. p x * c)`,
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[POLYNOMIAL_FUNCTION_LMUL]);;

let POLYNOMIAL_FUNCTION_NEG = prove
 (`!p. polynomial_function(\x. --(p x)) <=> polynomial_function p`,
  GEN_TAC THEN EQ_TAC THEN
  DISCH_THEN(MP_TAC o SPEC `--(&1)` o MATCH_MP POLYNOMIAL_FUNCTION_LMUL) THEN
  REWRITE_TAC[REAL_MUL_LNEG; REAL_MUL_LID; ETA_AX; REAL_NEG_NEG]);;

let POLYNOMIAL_FUNCTION_SUB = prove
 (`!p q. polynomial_function p /\ polynomial_function q
         ==> polynomial_function (\x. p x - q x)`,
  SIMP_TAC[real_sub; POLYNOMIAL_FUNCTION_NEG; POLYNOMIAL_FUNCTION_ADD]);;

let POLYNOMIAL_FUNCTION_MUL = prove
 (`!p q. polynomial_function p /\ polynomial_function q
         ==> polynomial_function (\x. p x * q x)`,
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  GEN_TAC THEN DISCH_TAC THEN
  GEN_REWRITE_TAC (BINDER_CONV o LAND_CONV) [polynomial_function] THEN
  SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN
  ONCE_REWRITE_TAC[MESON[] `(!q m c. P q m c) <=> (!m c q. P q m c)`] THEN
  ONCE_REWRITE_TAC[GSYM FUN_EQ_THM] THEN
  REWRITE_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
  INDUCT_TAC THEN
  ASM_SIMP_TAC[SUM_SING_NUMSEG; real_pow; POLYNOMIAL_FUNCTION_RMUL] THEN
  X_GEN_TAC `c:num->real` THEN SIMP_TAC[SUM_CLAUSES_LEFT; LE_0; ADD1] THEN
  REWRITE_TAC[REAL_ADD_LDISTRIB; real_pow] THEN
  MATCH_MP_TAC POLYNOMIAL_FUNCTION_ADD THEN
  ASM_SIMP_TAC[POLYNOMIAL_FUNCTION_RMUL] THEN
  REWRITE_TAC[SPEC `1` SUM_OFFSET] THEN
  REWRITE_TAC[REAL_POW_ADD; REAL_POW_1; REAL_MUL_ASSOC; SUM_RMUL] THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `\i. (c:num->real)(i + 1)`) THEN
  ABBREV_TAC `q = \x. p x * sum (0..m) (\i. c (i + 1) * x pow i)` THEN
  RULE_ASSUM_TAC(REWRITE_RULE[FUN_EQ_THM]) THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[polynomial_function; LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`n:num`; `a:num->real`] THEN STRIP_TAC THEN
  EXISTS_TAC `n + 1` THEN
  EXISTS_TAC `\i. if i = 0 then &0 else (a:num->real)(i - 1)` THEN
  SIMP_TAC[SUM_CLAUSES_LEFT; LE_0] THEN
  ASM_REWRITE_TAC[SPEC `1` SUM_OFFSET; ADD_EQ_0; ARITH_EQ; ADD_SUB] THEN
  REWRITE_TAC[REAL_POW_ADD; REAL_MUL_ASSOC; SUM_RMUL] THEN REAL_ARITH_TAC);;

let POLYNOMIAL_FUNCTION_SUM = prove
 (`!s:A->bool p.
        FINITE s /\ (!i. i IN s ==> polynomial_function(\x. p x i))
        ==> polynomial_function (\x. sum s (p x))`,
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[SUM_CLAUSES; POLYNOMIAL_FUNCTION_CONST] THEN
  SIMP_TAC[FORALL_IN_INSERT; POLYNOMIAL_FUNCTION_ADD]);;

let POLYNOMIAL_FUNCTION_POW = prove
 (`!p n. polynomial_function p ==> polynomial_function (\x. p x pow n)`,
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN
  INDUCT_TAC THEN
  ASM_SIMP_TAC[real_pow; POLYNOMIAL_FUNCTION_CONST; POLYNOMIAL_FUNCTION_MUL]);;

let POLYNOMIAL_FUNCTION_INDUCT = prove
 (`!P. P (\x. x) /\ (!c. P (\x. c)) /\
      (!p q. P p /\ P q ==> P (\x. p x + q x)) /\
      (!p q. P p /\ P q ==> P (\x. p x * q x))
      ==> !p. polynomial_function p ==> P p`,
  GEN_TAC THEN STRIP_TAC THEN
  REWRITE_TAC[polynomial_function; LEFT_IMP_EXISTS_THM] THEN
  ONCE_REWRITE_TAC[MESON[] `(!q m c. P q m c) <=> (!m c q. P q m c)`] THEN
  ONCE_REWRITE_TAC[GSYM FUN_EQ_THM] THEN
  SIMP_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN INDUCT_TAC THEN
  ASM_REWRITE_TAC[SUM_SING_NUMSEG; real_pow] THEN
  GEN_TAC THEN SIMP_TAC[SUM_CLAUSES_LEFT; ADD1; LE_0] THEN
  FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[real_pow] THEN
  REWRITE_TAC[SPEC `1` SUM_OFFSET] THEN
  REWRITE_TAC[REAL_POW_ADD; REAL_POW_1; REAL_MUL_ASSOC; SUM_RMUL] THEN
  ASM_SIMP_TAC[]);;

let POLYNOMIAL_FUNCTION_o = prove
 (`!p q. polynomial_function p /\ polynomial_function q
         ==> polynomial_function (p o q)`,
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
  REWRITE_TAC[IMP_CONJ_ALT; RIGHT_FORALL_IMP_THM] THEN
  GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC POLYNOMIAL_FUNCTION_INDUCT THEN
  SIMP_TAC[o_DEF; POLYNOMIAL_FUNCTION_ADD; POLYNOMIAL_FUNCTION_MUL] THEN
  ASM_REWRITE_TAC[ETA_AX; POLYNOMIAL_FUNCTION_CONST]);;

let POLYNOMIAL_FUNCTION_FINITE_ROOTS = prove
 (`!p a. polynomial_function p
         ==> (FINITE {x | p x = a} <=> ~(!x. p x = a))`,
  ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN
  SUBGOAL_THEN
   `!p. polynomial_function p ==> (FINITE {x | p x = &0} <=> ~(!x. p x = &0))`
   (fun th ->
      SIMP_TAC[th; POLYNOMIAL_FUNCTION_SUB; POLYNOMIAL_FUNCTION_CONST]) THEN
  GEN_TAC THEN REWRITE_TAC[polynomial_function] THEN
  STRIP_TAC THEN EQ_TAC THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THENL
   [SIMP_TAC[UNIV_GSPEC; GSYM INFINITE; real_INFINITE];
    ASM_REWRITE_TAC[REAL_POLYFUN_FINITE_ROOTS] THEN
    SIMP_TAC[NOT_EXISTS_THM; TAUT `~(p /\ ~q) <=> p ==> q`] THEN
    REWRITE_TAC[REAL_MUL_LZERO; SUM_0]]);;

(* ------------------------------------------------------------------------- *)
(* Make natural numbers the default again.                                   *)
(* ------------------------------------------------------------------------- *)

prioritize_num();;