/usr/share/hol-light/define.ml is in hol-light 20170706-0ubuntu4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 | (* ========================================================================= *)
(* Automated support for general recursive definitions. *)
(* *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
needs "cart.ml";;
(* ------------------------------------------------------------------------- *)
(* Constant supporting casewise definitions. *)
(* ------------------------------------------------------------------------- *)
let CASEWISE_DEF = new_recursive_definition list_RECURSION
`(CASEWISE [] f x = @y. T) /\
(CASEWISE (CONS h t) f x =
if ?y. FST h y = x then SND h f (@y. FST h y = x)
else CASEWISE t f x)`;;
let CASEWISE = prove
(`(CASEWISE [] f x = @y. T) /\
(CASEWISE (CONS (s,t) clauses) f x =
if ?y. s y = x then t f (@y. s y = x) else CASEWISE clauses f x)`,
REWRITE_TAC[CASEWISE_DEF]);;
(* ------------------------------------------------------------------------- *)
(* Conditions for all the clauses in a casewise definition to hold. *)
(* ------------------------------------------------------------------------- *)
let CASEWISE_CASES = prove
(`!clauses c x.
(?s t a. MEM (s,t) clauses /\ (s a = x) /\
(CASEWISE clauses c x = t c a)) \/
~(?s t a. MEM (s,t) clauses /\ (s a = x)) /\
(CASEWISE clauses c x = @y. T)`,
MATCH_MP_TAC list_INDUCT THEN
REWRITE_TAC[MEM; CASEWISE; FORALL_PAIR_THM; PAIR_EQ] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_MESON_TAC[]);;
let CASEWISE_WORKS = prove
(`!clauses c:C.
(!s t s' t' x y. MEM (s,t) clauses /\ MEM (s',t') clauses /\ (s x = s' y)
==> (t c x = t' c y))
==> ALL (\(s:P->A,t). !x. CASEWISE clauses c (s x) :B = t c x) clauses`,
REWRITE_TAC[GSYM ALL_MEM; FORALL_PAIR_THM] THEN
MESON_TAC[CASEWISE_CASES]);;
(* ------------------------------------------------------------------------- *)
(* Various notions of admissibility, with tail recursion and preconditions. *)
(* ------------------------------------------------------------------------- *)
let admissible = new_definition
`admissible(<<) p s t <=>
!f g a. p f a /\ p g a /\ (!z. z << s(a) ==> (f z = g z))
==> (t f a = t g a)`;;
let tailadmissible = new_definition
`tailadmissible(<<) p s t <=>
?P G H. (!f a y. P f a /\ y << G f a ==> y << s a) /\
(!f g a. (!z. z << s(a) ==> (f z = g z))
==> (P f a = P g a) /\
(G f a = G g a) /\ (H f a = H g a)) /\
(!f a:P. p f a ==> (t (f:A->B) a =
if P f a then f(G f a) else H f a))`;;
let superadmissible = new_definition
`superadmissible(<<) p s t <=>
admissible(<<) (\f a. T) s p ==> tailadmissible(<<) p s t`;;
(* ------------------------------------------------------------------------- *)
(* A lemma. *)
(* ------------------------------------------------------------------------- *)
let MATCH_SEQPATTERN = prove
(`_MATCH x (_SEQPATTERN r s) =
if ?y. r x y then _MATCH x r else _MATCH x s`,
REWRITE_TAC[_MATCH; _SEQPATTERN] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Admissibility combinators. *)
(* ------------------------------------------------------------------------- *)
let ADMISSIBLE_CONST = prove
(`!p s c. admissible(<<) p s (\f. c)`,
REWRITE_TAC[admissible]);;
let ADMISSIBLE_BASE = prove
(`!(<<) p s t.
(!f a. p f a ==> t a << s a)
==> admissible((<<):A->A->bool) p s (\f:A->B x:P. f(t x))`,
REWRITE_TAC[admissible] THEN MESON_TAC[]);;
let ADMISSIBLE_COMB = prove
(`!(<<) p s:P->A g:(A->B)->P->C->D y:(A->B)->P->C.
admissible(<<) p s g /\ admissible(<<) p s y
==> admissible(<<) p s (\f x. (g f x) (y f x))`,
SIMP_TAC[admissible] THEN MESON_TAC[]);;
let ADMISSIBLE_RAND = prove
(`!(<<) p s:P->A g:P->C->D y:(A->B)->P->C.
admissible(<<) p s y
==> admissible(<<) p s (\f x. (g x) (y f x))`,
SIMP_TAC[admissible] THEN MESON_TAC[]);;
let ADMISSIBLE_LAMBDA = prove
(`!(<<) p s:P->A t:(A->B)->C->P->bool.
admissible(<<) (\f (u,x). p f x) (\(u,x). s x) (\f (u,x). t f u x)
==> admissible(<<) p s (\f x. \u. t f u x)`,
REWRITE_TAC[admissible; FUN_EQ_THM; FORALL_PAIR_THM] THEN MESON_TAC[]);;
let ADMISSIBLE_NEST = prove
(`!(<<) p s t.
admissible(<<) p s t /\
(!f a. p f a ==> t f a << s a)
==> admissible((<<):A->A->bool) p s (\f:A->B x:P. f(t f x))`,
REWRITE_TAC[admissible] THEN MESON_TAC[]);;
let ADMISSIBLE_COND = prove
(`!(<<) p P s h k.
admissible(<<) p s P /\
admissible(<<) (\f x. p f x /\ P f x) s h /\
admissible(<<) (\f x. p f x /\ ~P f x) s k
==> admissible(<<) p s (\f x:P. if P f x then h f x else k f x)`,
REPEAT GEN_TAC THEN
REWRITE_TAC[admissible; AND_FORALL_THM] THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);;
let ADMISSIBLE_MATCH = prove
(`!(<<) p s e c.
admissible(<<) p s e /\ admissible(<<) p s (\f x. c f x (e f x))
==> admissible(<<) p s (\f x:P. _MATCH (e f x) (c f x))`,
REWRITE_TAC[admissible; _MATCH] THEN
REPEAT STRIP_TAC THEN REPEAT COND_CASES_TAC THEN ASM_MESON_TAC[]);;
let ADMISSIBLE_SEQPATTERN = prove
(`!(<<) p s c1 c2 e.
admissible(<<) p s (\f x:P. ?y. c1 f x (e f x) y) /\
admissible(<<) (\f x. p f x /\ ?y. c1 f x (e f x) y) s
(\f x. c1 f x (e f x)) /\
admissible(<<) (\f x. p f x /\ ~(?y. c1 f x (e f x) y)) s
(\f x. c2 f x (e f x))
==> admissible(<<) p s (\f x. _SEQPATTERN (c1 f x) (c2 f x) (e f x))`,
REWRITE_TAC[_SEQPATTERN; admissible] THEN MESON_TAC[]);;
let ADMISSIBLE_UNGUARDED_PATTERN = prove
(`!(<<) p s pat e t y.
admissible (<<) p s pat /\
admissible (<<) p s e /\
admissible (<<) (\f x. p f x /\ pat f x = e f x) s t /\
admissible (<<) (\f x. p f x /\ pat f x = e f x) s y
==> admissible(<<) p s
(\f x:P. _UNGUARDED_PATTERN (GEQ (pat f x) (e f x))
(GEQ (t f x) (y f x)))`,
REPEAT GEN_TAC THEN
REWRITE_TAC[admissible; FORALL_PAIR_THM; _UNGUARDED_PATTERN] THEN
REWRITE_TAC[GEQ_DEF] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC(TAUT `(a <=> a') /\ (a /\ a' ==> (b <=> b'))
==> (a /\ b <=> a' /\ b')`) THEN
ASM_MESON_TAC[]);;
let ADMISSIBLE_GUARDED_PATTERN = prove
(`!(<<) p s pat q e t y.
admissible (<<) p s pat /\
admissible (<<) p s e /\
admissible (<<) (\f x. p f x /\ pat f x = e f x /\ q f x) s t /\
admissible (<<) (\f x. p f x /\ pat f x = e f x) s q /\
admissible (<<) (\f x. p f x /\ pat f x = e f x /\ q f x) s y
==> admissible(<<) p s
(\f x:P. _GUARDED_PATTERN (GEQ (pat f x) (e f x))
(q f x)
(GEQ (t f x) (y f x)))`,
REPEAT GEN_TAC THEN
REWRITE_TAC[admissible; FORALL_PAIR_THM; _GUARDED_PATTERN] THEN
REWRITE_TAC[GEQ_DEF] THEN REPEAT STRIP_TAC THEN
REPEAT(MATCH_MP_TAC(TAUT `(a <=> a') /\ (a /\ a' ==> (b <=> b'))
==> (a /\ b <=> a' /\ b')`) THEN
REPEAT STRIP_TAC) THEN
TRY(MATCH_MP_TAC(MESON[] `x = x' /\ y = y' ==> (x = y <=> x' = y')`)) THEN
ASM_MESON_TAC[]);;
let ADMISSIBLE_NSUM = prove
(`!(<<) p:(B->C)->P->bool s:P->A h a b.
admissible(<<) (\f (k,x). a(x) <= k /\ k <= b(x) /\ p f x)
(\(k,x). s x) (\f (k,x). h f x k)
==> admissible(<<) p s (\f x. nsum(a(x)..b(x)) (h f x))`,
REWRITE_TAC[admissible; FORALL_PAIR_THM] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC NSUM_EQ_NUMSEG THEN ASM_MESON_TAC[]);;
let ADMISSIBLE_SUM = prove
(`!(<<) p:(B->C)->P->bool s:P->A h a b.
admissible(<<) (\f (k,x). a(x) <= k /\ k <= b(x) /\ p f x)
(\(k,x). s x) (\f (k,x). h f x k)
==> admissible(<<) p s (\f x. sum(a(x)..b(x)) (h f x))`,
REWRITE_TAC[admissible; FORALL_PAIR_THM] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC SUM_EQ_NUMSEG THEN ASM_MESON_TAC[]);;
let ADMISSIBLE_MAP = prove
(`!(<<) p s h l.
admissible(<<) p s l /\
admissible (<<) (\f (y,x). p f x /\ MEM y (l f x))
(\(y,x). s x) (\f (y,x). h f x y)
==> admissible (<<) p s (\f:A->B x:P. MAP (h f x) (l f x))`,
REWRITE_TAC[admissible; FORALL_PAIR_THM] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC(MESON[] `x = y /\ MAP f x = MAP g x ==> MAP f x = MAP g y`) THEN
CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC MAP_EQ THEN REWRITE_TAC[GSYM ALL_MEM] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[FORALL_PAIR_THM] THEN ASM_MESON_TAC[]);;
let ADMISSIBLE_MATCH_SEQPATTERN = prove
(`!(<<) p s c1 c2 e.
admissible(<<) p s (\f x. ?y. c1 f x (e f x) y) /\
admissible(<<) (\f x. p f x /\ ?y. c1 f x (e f x) y) s
(\f x. _MATCH (e f x) (c1 f x)) /\
admissible(<<) (\f x. p f x /\ ~(?y. c1 f x (e f x) y)) s
(\f x. _MATCH (e f x) (c2 f x))
==> admissible(<<) p s
(\f x:P. _MATCH (e f x) (_SEQPATTERN (c1 f x) (c2 f x)))`,
REWRITE_TAC[MATCH_SEQPATTERN; ADMISSIBLE_COND]);;
(* ------------------------------------------------------------------------- *)
(* Superadmissible generalizations where applicable. *)
(* *)
(* Note that we can't take the "higher type" route in the simple theorem *)
(* ADMISSIBLE_MATCH because that isn't a context where tail recursion makes *)
(* sense. Instead, we use specific theorems for the two _MATCH instances. *)
(* Note that also, because of some delicacy over assessing welldefinedness *)
(* of patterns, a special well-formedness hypothesis crops up here. (We need *)
(* to separate it from the function f or we lose the "tail" optimization.) *)
(* ------------------------------------------------------------------------- *)
let ADMISSIBLE_IMP_SUPERADMISSIBLE = prove
(`!(<<) p s t:(A->B)->P->B.
admissible(<<) p s t ==> superadmissible(<<) p s t`,
REWRITE_TAC[admissible; superadmissible; tailadmissible] THEN
REPEAT STRIP_TAC THEN
MAP_EVERY EXISTS_TAC
[`\f:A->B x:P. F`;
`\f:A->B. (anything:P->A)`;
`\f:A->B a:P. if p f a then t f a :B else fixed`] THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);;
let SUPERADMISSIBLE_CONST = prove
(`!p s c. superadmissible(<<) p s (\f. c)`,
REPEAT GEN_TAC THEN
MATCH_MP_TAC ADMISSIBLE_IMP_SUPERADMISSIBLE THEN
REWRITE_TAC[ADMISSIBLE_CONST]);;
let SUPERADMISSIBLE_TAIL = prove
(`!(<<) p s t:(A->B)->P->A.
admissible(<<) p s t /\
(!f a. p f a ==> !y. y << t f a ==> y << s a)
==> superadmissible(<<) p s (\f x. f(t f x))`,
REWRITE_TAC[admissible; superadmissible; tailadmissible] THEN
REPEAT STRIP_TAC THEN MAP_EVERY EXISTS_TAC
[`\f:A->B x:P. T`;
`\f:A->B a:P. if p f a then t f a :A else s a`;
`\f:A->B. anything:P->B`] THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);;
let SUPERADMISSIBLE_COND = prove
(`!(<<) p P s h k:(A->B)->P->B.
admissible(<<) p s P /\
superadmissible(<<) (\f x. p f x /\ P f x) s h /\
superadmissible(<<) (\f x. p f x /\ ~P f x) s k
==> superadmissible(<<) p s (\f x. if P f x then h f x else k f x)`,
REWRITE_TAC[superadmissible; admissible] THEN REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(fun th -> DISCH_TAC THEN CONJUNCTS_THEN MP_TAC th) THEN
ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(fun th -> ANTS_TAC THENL [ASM_MESON_TAC[]; MP_TAC th]) THEN
REWRITE_TAC[tailadmissible] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM; RIGHT_IMP_FORALL_THM] THEN
MAP_EVERY X_GEN_TAC
[`P1:(A->B)->P->bool`; `G1:(A->B)->P->A`; `H1:(A->B)->P->B`;
`P2:(A->B)->P->bool`; `G2:(A->B)->P->A`; `H2:(A->B)->P->B`] THEN
REWRITE_TAC[TAUT `(a1 /\ b1 /\ c1 ==> a2 /\ b2 /\ c2 ==> x) <=>
(a1 /\ a2) /\ (b1 /\ b2) /\ (c1 /\ c2) ==> x`] THEN
DISCH_THEN(fun th ->
MAP_EVERY EXISTS_TAC
[`\f:A->B a:P. if p f a then if P f a then P2 f a else P1 f a else F`;
`\f:A->B a:P. if p f a then if P f a then G2 f a else G1 f a else z:A`;
`\f:A->B a:P. if p f a then if P f a then H2 f a else H1 f a else w:B`] THEN
MP_TAC th) THEN
REWRITE_TAC[] THEN REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THENL
[ASM_MESON_TAC[];
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ);
ALL_TAC] THEN
REWRITE_TAC[IMP_IMP; AND_FORALL_THM] THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);;
let SUPERADMISSIBLE_MATCH_SEQPATTERN = prove
(`!(<<) p s c1 c2 e.
admissible(<<) p s (\f x. ?y. c1 f x (e f x) y) /\
superadmissible(<<) (\f x. p f x /\ ?y. c1 f x (e f x) y) s
(\f x. _MATCH (e f x) (c1 f x)) /\
superadmissible(<<) (\f x. p f x /\ ~(?y. c1 f x (e f x) y)) s
(\f x. _MATCH (e f x) (c2 f x))
==> superadmissible(<<) p s
(\f x:P. _MATCH (e f x) (_SEQPATTERN (c1 f x) (c2 f x)))`,
REWRITE_TAC[MATCH_SEQPATTERN; SUPERADMISSIBLE_COND]);;
let SUPERADMISSIBLE_MATCH_UNGUARDED_PATTERN = prove
(`!(<<) p s e:P->D pat:Q->D arg.
(!f a t u. p f a /\ pat t = e a /\ pat u = e a ==> arg a t = arg a u) /\
(!f a t. p f a /\ pat t = e a ==> !y. y << arg a t ==> y << s a)
==> superadmissible(<<) p s
(\f:A->B x. _MATCH (e x)
(\u v. ?t. _UNGUARDED_PATTERN (GEQ (pat t) u)
(GEQ (f(arg x t)) v)))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
REWRITE_TAC[superadmissible] THEN DISCH_TAC THEN
REWRITE_TAC[_UNGUARDED_PATTERN; GEQ_DEF; _MATCH] THEN
REWRITE_TAC[tailadmissible] THEN
SUBGOAL_THEN
`!f:A->B x:P.
p f x ==> ((?!v. ?t:Q. pat t:D = e x /\ f(arg x t) = v) <=>
?t. pat t = e x)`
(fun th -> SIMP_TAC[th]) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
MAP_EVERY EXISTS_TAC
[`\(f:A->B) x:P. p f x /\ ?t:Q. pat t:D = e x`;
`\f:A->B x:P. arg x (@t. (pat:Q->D) t = e x):A`;
`\(f:A->B) x:P. (@z:B. F)`] THEN
RULE_ASSUM_TAC(REWRITE_RULE[admissible]) THEN SIMP_TAC[] THEN
ASM_MESON_TAC[]);;
let SUPERADMISSIBLE_MATCH_GUARDED_PATTERN = prove
(`!(<<) p s e:P->D pat:Q->D q arg.
(!f a t u. p f a /\ pat t = e a /\ q a t /\ pat u = e a /\ q a u
==> arg a t = arg a u) /\
(!f a t. p f a /\ q a t /\ pat t = e a ==> !y. y << arg a t ==> y << s a)
==> superadmissible(<<) p s
(\f:A->B x. _MATCH (e x)
(\u v. ?t. _GUARDED_PATTERN (GEQ (pat t) u)
(q x t)
(GEQ (f(arg x t)) v)))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
REWRITE_TAC[superadmissible] THEN DISCH_TAC THEN
REWRITE_TAC[_GUARDED_PATTERN; GEQ_DEF; _MATCH] THEN
REWRITE_TAC[tailadmissible] THEN
SUBGOAL_THEN
`!f:A->B x:P.
p f x ==> ((?!v. ?t:Q. pat t:D = e x /\ q x t /\ f(arg x t) = v) <=>
?t. pat t = e x /\ q x t)`
(fun th -> SIMP_TAC[th]) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
MAP_EVERY EXISTS_TAC
[`\(f:A->B) x:P. p f x /\ ?t:Q. pat t:D = e x /\ q x t`;
`\f:A->B x:P. arg x (@t. (pat:Q->D) t = e x /\ q x t):A`;
`\(f:A->B) x:P. (@z:B. F)`] THEN
RULE_ASSUM_TAC(REWRITE_RULE[admissible]) THEN SIMP_TAC[] THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Combine general WF/tail recursion theorem with casewise definitions. *)
(* ------------------------------------------------------------------------- *)
let WF_REC_TAIL_GENERAL' = prove
(`!P G H H'.
WF (<<) /\
(!f g x. (!z. z << x ==> (f z = g z))
==> (P f x <=> P g x) /\
(G f x = G g x) /\ (H' f x = H' g x)) /\
(!f x y. P f x /\ y << G f x ==> y << x) /\
(!f x. H f x = if P f x then f(G f x) else H' f x)
==> ?f. !x. f x = H f x`,
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC WF_REC_TAIL_GENERAL THEN ASM_MESON_TAC[]);;
let WF_REC_CASES = prove
(`!(<<) clauses.
WF((<<):A->A->bool) /\
ALL (\(s,t). ?P G H.
(!f a y. P f a /\ y << G f a ==> y << s a) /\
(!f g a. (!z. z << s(a) ==> (f z = g z))
==> (P f a = P g a) /\
(G f a = G g a) /\ (H f a = H g a)) /\
(!f a:P. t f a = if P f a then f(G f a) else H f a))
clauses
==> ?f:A->B. !x. f x = CASEWISE clauses f x`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC WF_REC_TAIL_GENERAL' THEN
FIRST_X_ASSUM(MP_TAC o check(is_binary "ALL" o concl)) THEN
SPEC_TAC(`clauses:((P->A)#((A->B)->P->B))list`,
`clauses:((P->A)#((A->B)->P->B))list`) THEN
ASM_REWRITE_TAC[] THEN POP_ASSUM(K ALL_TAC) THEN
MATCH_MP_TAC list_INDUCT THEN
REWRITE_TAC[ALL; CASEWISE; FORALL_PAIR_THM] THEN CONJ_TAC THENL
[MAP_EVERY EXISTS_TAC
[`\f:A->B x:A. F`; `\f:A->B. anything:A->A`; `\f:A->B x:A. @y:B. T`] THEN
REWRITE_TAC[];
ALL_TAC] THEN
MAP_EVERY X_GEN_TAC
[`s:P->A`; `t:(A->B)->P->B`; `clauses:((P->A)#((A->B)->P->B))list`] THEN
DISCH_THEN(fun th -> DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
MP_TAC th) THEN
ASM_REWRITE_TAC[] THEN POP_ASSUM_LIST(K ALL_TAC) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN
MAP_EVERY X_GEN_TAC
[`P1:(A->B)->A->bool`; `G1:(A->B)->A->A`; `H1:(A->B)->A->B`;
`P2:(A->B)->P->bool`; `G2:(A->B)->P->A`; `H2:(A->B)->P->B`] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
EXISTS_TAC
`\f:A->B x:A. if ?y:P. s y = x then P2 f (@y. s y = x) else P1 f x:bool` THEN
EXISTS_TAC `\f:A->B x:A.
if ?y:P. s y = x then G2 f (@y. s y = x) else G1 f x:A` THEN
EXISTS_TAC `\f:A->B x:A. if ?y:P. s y = x
then H2 f (@y. s y = x) else H1 f x:B` THEN
ASM_MESON_TAC[]);;
let WF_REC_CASES' = prove
(`!(<<) clauses.
WF((<<):A->A->bool) /\
ALL (\(s,t). tailadmissible(<<) (\f a. T) s t) clauses
==> ?f:A->B. !x. f x = CASEWISE clauses f x`,
REWRITE_TAC[WF_REC_CASES; tailadmissible]);;
let RECURSION_CASEWISE = prove
(`!clauses.
(?(<<). WF(<<) /\
ALL (\(s:P->A,t). tailadmissible(<<) (\f a. T) s t) clauses) /\
(!s t s' t' f x y. MEM (s,t) clauses /\ MEM (s',t') clauses
==> (s x = s' y) ==> (t f x = t' f y))
==> ?f:A->B. ALL (\(s,t). !x. f (s x) = t f x) clauses`,
REPEAT GEN_TAC THEN REWRITE_TAC[IMP_IMP; CONJ_ASSOC] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(CHOOSE_THEN (MP_TAC o MATCH_MP WF_REC_CASES')) THEN
MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[CASEWISE_WORKS]);;
let RECURSION_CASEWISE_PAIRWISE = prove
(`!clauses.
(?(<<). WF (<<) /\
ALL (\(s,t). tailadmissible(<<) (\f a. T) s t) clauses) /\
ALL (\(s,t). !f x y. (s x = s y) ==> (t f x = t f y)) clauses /\
PAIRWISE (\(s,t) (s',t'). !f x y. (s x = s' y) ==> (t f x = t' f y))
clauses
==> (?f. ALL (\(s,t). !x. f (s x) = t f x) clauses)`,
let lemma = prove
(`!P. (!x y. P x y ==> P y x)
==> !l. (!x y. MEM x l /\ MEM y l ==> P x y) <=>
ALL (\x. P x x) l /\ PAIRWISE P l`,
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; GSYM ALL_MEM] THEN
REPEAT GEN_TAC THEN DISCH_TAC THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[PAIRWISE; MEM; GSYM ALL_MEM] THEN ASM_MESON_TAC[])
and paired_lambda = prove
(`(\x. P x) = (\(a,b). P (a,b))`,
REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM]) in
let pth = REWRITE_RULE[FORALL_PAIR_THM; paired_lambda] (ISPEC
`\(s,t) (s',t'). !c x:A y:A. (s x = s' y) ==> (t c x = t' c y)` lemma) in
let cth = prove(lhand(concl pth),MESON_TAC[]) in
REWRITE_TAC[GSYM(MATCH_MP pth cth); RIGHT_IMP_FORALL_THM] THEN
REWRITE_TAC[RECURSION_CASEWISE]);;
let SUPERADMISSIBLE_T = prove
(`superadmissible(<<) (\f x. T) s t <=> tailadmissible(<<) (\f x. T) s t`,
REWRITE_TAC[superadmissible; admissible]);;
let RECURSION_SUPERADMISSIBLE = REWRITE_RULE[GSYM SUPERADMISSIBLE_T]
RECURSION_CASEWISE_PAIRWISE;;
(* ------------------------------------------------------------------------- *)
(* The main suite of functions for justifying recursion. *)
(* ------------------------------------------------------------------------- *)
let instantiate_casewise_recursion,
pure_prove_recursive_function_exists,
prove_general_recursive_function_exists =
(* ------------------------------------------------------------------------- *)
(* Make some basic simplification of conjunction of welldefinedness clauses. *)
(* ------------------------------------------------------------------------- *)
let SIMPLIFY_WELLDEFINEDNESS_CONV =
let LSYM =
GEN_ALL o CONV_RULE(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) o SPEC_ALL
and evensimps = prove
(`((2 * m + 2 = 2 * n + 1) <=> F) /\
((2 * m + 1 = 2 * n + 2) <=> F) /\
((2 * m = 2 * n + 1) <=> F) /\
((2 * m + 1 = 2 * n) <=> F) /\
((2 * m = SUC(2 * n)) <=> F) /\
((SUC(2 * m) = 2 * n) <=> F)`,
REWRITE_TAC[] THEN REPEAT CONJ_TAC THEN
DISCH_THEN(MP_TAC o AP_TERM `EVEN`) THEN
REWRITE_TAC[EVEN_MULT; EVEN_ADD; ARITH; EVEN]) in
let allsimps = itlist (mk_rewrites false)
[EQ_ADD_RCANCEL; EQ_ADD_LCANCEL;
EQ_ADD_RCANCEL_0; EQ_ADD_LCANCEL_0;
LSYM EQ_ADD_RCANCEL_0; LSYM EQ_ADD_LCANCEL_0;
EQ_MULT_RCANCEL; EQ_MULT_LCANCEL;
EQT_INTRO(SPEC_ALL EQ_REFL);
ADD_EQ_0; LSYM ADD_EQ_0;
MULT_EQ_0; LSYM MULT_EQ_0;
MULT_EQ_1; LSYM MULT_EQ_1;
ARITH_RULE `(m + n = 1) <=> (m = 1) /\ (n = 0) \/ (m = 0) /\ (n = 1)`;
ARITH_RULE `(1 = m + n) <=> (m = 1) /\ (n = 0) \/ (m = 0) /\ (n = 1)`;
evensimps; ARITH_EQ] []
and [simp1; simp2; simp3] = map MATCH_MP (CONJUNCTS
(TAUT
`((a <=> F) /\ (b <=> b) ==> ((a ==> b) <=> T)) /\
((a <=> a') /\ (a' ==> (b <=> T)) ==> ((a ==> b) <=> T)) /\
((a <=> a') /\ (a' ==> (b <=> b')) ==> ((a ==> b) <=> (a' ==> b')))`))
and false_tm = `F` and and_tm = `(/\)`
and eq_refl = EQT_INTRO(SPEC_ALL EQ_REFL) in
fun tm ->
let net = itlist (net_of_thm false) allsimps (!basic_rectype_net) in
let RECTYPE_ARITH_EQ_CONV =
TOP_SWEEP_CONV(REWRITES_CONV net) THENC
GEN_REWRITE_CONV DEPTH_CONV [AND_CLAUSES; OR_CLAUSES] in
let SIMPLIFY_CASE_DISTINCTNESS_CLAUSE tm =
let avs,bod = strip_forall tm in
let ant,cons = dest_imp bod in
let ath = RECTYPE_ARITH_EQ_CONV ant in
let atm = rand(concl ath) in
let bth = CONJ ath
(if atm = false_tm then REFL cons
else DISCH atm
(PURE_REWRITE_CONV[eq_refl; ASSUME atm] cons)) in
let cth = try simp1 bth with Failure _ -> try simp2 bth
with Failure _ -> simp3 bth in
itlist MK_FORALL avs cth in
(DEPTH_BINOP_CONV and_tm SIMPLIFY_CASE_DISTINCTNESS_CLAUSE THENC
GEN_REWRITE_CONV DEPTH_CONV [FORALL_SIMP; AND_CLAUSES]) tm in
(* ------------------------------------------------------------------------- *)
(* Simplify an existential question about a pattern. *)
(* ------------------------------------------------------------------------- *)
let EXISTS_PAT_CONV =
let pth = prove
(`((?y. _UNGUARDED_PATTERN (GEQ s t) (GEQ z y)) <=> s = t) /\
((?y. _GUARDED_PATTERN (GEQ s t) g (GEQ z y)) <=> g /\ s = t)`,
REWRITE_TAC[_UNGUARDED_PATTERN; _GUARDED_PATTERN; GEQ_DEF] THEN
MESON_TAC[]) in
let basecnv = GEN_REWRITE_CONV I [pth]
and pushcnv = GEN_REWRITE_CONV I [SWAP_EXISTS_THM] in
let rec EXISTS_PAT_CONV tm =
((pushcnv THENC BINDER_CONV EXISTS_PAT_CONV) ORELSEC
basecnv) tm in
fun tm -> if is_exists tm then EXISTS_PAT_CONV tm
else failwith "EXISTS_PAT_CONV" in
(* ------------------------------------------------------------------------- *)
(* Hack a proforma to introduce new pairing or pattern variables. *)
(* ------------------------------------------------------------------------- *)
let HACK_PROFORMA,EACK_PROFORMA =
let elemma0 = prove
(`((!z. GEQ (f z) (g z)) <=> (!x y. GEQ (f(x,y)) (g(x,y)))) /\
((\p. P p) = (\(x,y). P(x,y)))`,
REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM])
and elemma1 = prove
(`(!P. (!t:A->B->C#D->E. P t) <=> (!t. P (\a b (c,d). t a b d c))) /\
(!P. (!t:B->C#D->E. P t) <=> (!t. P (\b (c,d). t b d c))) /\
(!P. (!t:C#D->E. P t) <=> (!t. P (\(c,d). t d c)))`,
REPEAT STRIP_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[] THENL
[FIRST_X_ASSUM(MP_TAC o SPEC `\a b d c. (t:A->B->C#D->E) a b (c,d)`);
FIRST_X_ASSUM(MP_TAC o SPEC `\b d c. (t:B->C#D->E) b (c,d)`);
FIRST_X_ASSUM(MP_TAC o SPEC `\d c. (t:C#D->E) (c,d)`)] THEN
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM]) in
let HACK_PROFORMA n th =
if n <= 1 then th else
let mkname i = "_P"^string_of_int i in
let ty = end_itlist (fun s t -> mk_type("prod",[s;t]))
(map (mk_vartype o mkname) (1--n)) in
let conv i =
let name = "x"^string_of_int i in
let cnv = ALPHA_CONV (mk_var(name,mk_vartype(mkname i))) in
fun tm -> if is_abs tm && name_of(bndvar tm) <> name
then cnv tm else failwith "conv" in
let convs = FIRST_CONV (map conv (1--n)) in
let th1 = INST_TYPE [ty,`:P`] th in
let th2 = REWRITE_RULE[FORALL_PAIR_THM] th1 in
let th3 = REWRITE_RULE[elemma0; elemma1] th2 in
CONV_RULE(REDEPTH_CONV convs) th3
and EACK_PROFORMA n th =
if n <= 1 then th else
let mkname i = "_Q"^string_of_int i in
let ty = end_itlist (fun s t -> mk_type("prod",[s;t]))
(map (mk_vartype o mkname) (1--n)) in
let conv i =
let name = "t"^string_of_int i in
let cnv = ALPHA_CONV (mk_var(name,mk_vartype(mkname i))) in
fun tm -> if is_abs tm && name_of(bndvar tm) <> name
then cnv tm else failwith "conv" in
let convs = FIRST_CONV (map conv (1--n)) in
let th1 = INST_TYPE [ty,`:Q`] th in
let th2 = REWRITE_RULE[EXISTS_PAIR_THM] th1 in
let th3 = REWRITE_RULE[elemma1] th2 in
let th4 = REWRITE_RULE[FORALL_PAIR_THM] th3 in
CONV_RULE(REDEPTH_CONV convs) th4 in
HACK_PROFORMA,EACK_PROFORMA in
(* ------------------------------------------------------------------------- *)
(* Hack and apply. *)
(* ------------------------------------------------------------------------- *)
let APPLY_PROFORMA_TAC th (asl,w as gl) =
let vs = fst(dest_gabs(body(rand w))) in
let n = 1 + length(fst(splitlist dest_pair vs)) in
(MATCH_MP_TAC(HACK_PROFORMA n th) THEN BETA_TAC) gl in
let is_pattern p n tm =
try let f,args = strip_comb(snd(strip_exists (body(body tm)))) in
is_const f && name_of f = p && length args = n
with Failure _ -> false in
let SIMPLIFY_MATCH_WELLDEFINED_TAC =
let pth0 = MESON[]
`(a /\ x = k ==> x = y ==> d) ==> (a /\ x = k /\ y = k ==> d)`
and pth1 = MESON[]
`(a /\ b /\ c /\ x = k ==> x = y ==> d)
==> (a /\ x = k /\ b /\ y = k /\ c ==> d)` in
REPEAT GEN_TAC THEN
(MATCH_MP_TAC pth1 ORELSE MATCH_MP_TAC pth0) THEN
CONV_TAC(RAND_CONV SIMPLIFY_WELLDEFINEDNESS_CONV) THEN
PURE_REWRITE_TAC
[AND_CLAUSES; IMP_CLAUSES; OR_CLAUSES; EQ_CLAUSES; NOT_CLAUSES] in
let rec headonly f tm =
match tm with
Comb(s,t) -> headonly f s && headonly f t && not(t = f)
| Abs(x,t) -> headonly f t
| _ -> true in
let MAIN_ADMISS_TAC (asl,w as gl) =
let had,args = strip_comb w in
if not(is_const had) then failwith "ADMISS_TAC" else
let f,fbod = dest_abs(last args) in
let xtup,bod = dest_gabs fbod in
let hop,args = strip_comb bod in
match (name_of had,name_of hop) with
"superadmissible","COND"
-> APPLY_PROFORMA_TAC SUPERADMISSIBLE_COND gl
| "superadmissible","_MATCH" when
name_of(repeat rator (last args)) = "_SEQPATTERN"
-> (APPLY_PROFORMA_TAC SUPERADMISSIBLE_MATCH_SEQPATTERN THEN
CONV_TAC(ONCE_DEPTH_CONV EXISTS_PAT_CONV)) gl
| "superadmissible","_MATCH" when
is_pattern "_UNGUARDED_PATTERN" 2 (last args)
-> let n = length(fst(strip_exists(body(body(last args))))) in
let th = EACK_PROFORMA n SUPERADMISSIBLE_MATCH_UNGUARDED_PATTERN in
(APPLY_PROFORMA_TAC th THEN CONJ_TAC THENL
[SIMPLIFY_MATCH_WELLDEFINED_TAC; ALL_TAC]) gl
| "superadmissible","_MATCH" when
is_pattern "_GUARDED_PATTERN" 3 (last args)
-> let n = length(fst(strip_exists(body(body(last args))))) in
let th = EACK_PROFORMA n SUPERADMISSIBLE_MATCH_GUARDED_PATTERN in
(APPLY_PROFORMA_TAC th THEN CONJ_TAC THENL
[SIMPLIFY_MATCH_WELLDEFINED_TAC; ALL_TAC]) gl
| "superadmissible",_ when is_comb bod && rator bod = f
-> APPLY_PROFORMA_TAC SUPERADMISSIBLE_TAIL gl
| "admissible","sum"
-> APPLY_PROFORMA_TAC ADMISSIBLE_SUM gl
| "admissible","nsum"
-> APPLY_PROFORMA_TAC ADMISSIBLE_NSUM gl
| "admissible","MAP"
-> APPLY_PROFORMA_TAC ADMISSIBLE_MAP gl
| "admissible","_MATCH" when
name_of(repeat rator (last args)) = "_SEQPATTERN"
-> (APPLY_PROFORMA_TAC ADMISSIBLE_MATCH_SEQPATTERN THEN
CONV_TAC(ONCE_DEPTH_CONV EXISTS_PAT_CONV)) gl
| "admissible","_MATCH"
-> APPLY_PROFORMA_TAC ADMISSIBLE_MATCH gl
| "admissible","_UNGUARDED_PATTERN"
-> APPLY_PROFORMA_TAC ADMISSIBLE_UNGUARDED_PATTERN gl
| "admissible","_GUARDED_PATTERN"
-> APPLY_PROFORMA_TAC ADMISSIBLE_GUARDED_PATTERN gl
| "admissible",_ when is_abs bod
-> APPLY_PROFORMA_TAC ADMISSIBLE_LAMBDA gl
| "admissible",_ when is_comb bod && rator bod = f
-> if free_in f (rand bod) then
APPLY_PROFORMA_TAC ADMISSIBLE_NEST gl
else
APPLY_PROFORMA_TAC ADMISSIBLE_BASE gl
| "admissible",_ when is_comb bod && headonly f bod
-> APPLY_PROFORMA_TAC ADMISSIBLE_COMB gl
| _ -> failwith "MAIN_ADMISS_TAC" in
let ADMISS_TAC =
CONJ_TAC ORELSE
MATCH_ACCEPT_TAC ADMISSIBLE_CONST ORELSE
MATCH_ACCEPT_TAC SUPERADMISSIBLE_CONST ORELSE
MAIN_ADMISS_TAC ORELSE
MATCH_MP_TAC ADMISSIBLE_IMP_SUPERADMISSIBLE in
(* ------------------------------------------------------------------------- *)
(* Instantiate the casewise recursion theorem for existential claim. *)
(* Also make a first attempt to simplify the distinctness clause. This may *)
(* yield a theorem with just the wellfoundedness "?(<<)" assumption, or it *)
(* may be that and an additional distinctness one. *)
(* ------------------------------------------------------------------------- *)
let instantiate_casewise_recursion =
let EXPAND_PAIRED_ALL_CONV =
let pth0,pth1 = (CONJ_PAIR o prove)
(`(ALL (\(s,t). P s t) [a,b] <=> P a b) /\
(ALL (\(s,t). P s t) (CONS (a,b) l) <=>
P a b /\ ALL (\(s,t). P s t) l)`,
REWRITE_TAC[ALL]) in
let conv0 = REWR_CONV pth0 and conv1 = REWR_CONV pth1 in
let rec conv tm =
try conv0 tm with Failure _ ->
let th = conv1 tm in CONV_RULE (funpow 2 RAND_CONV conv) th in
conv
and LAMBDA_PAIR_CONV =
let rewr1 = GEN_REWRITE_RULE I [GSYM FORALL_PAIR_THM]
and rewr2 = GEN_REWRITE_CONV I [FUN_EQ_THM] in
fun parms tm ->
let parm = end_itlist (curry mk_pair) parms in
let x,bod = dest_abs tm in
let tm' = mk_gabs(parm,vsubst[parm,x] bod) in
let th1 = BETA_CONV(mk_comb(tm,parm))
and th2 = GEN_BETA_CONV (mk_comb(tm',parm)) in
let th3 = TRANS th1 (SYM th2) in
let th4 = itlist (fun v th -> rewr1 (GEN v th))
(butlast parms) (GEN (last parms) th3) in
EQ_MP (SYM(rewr2(mk_eq(tm,tm')))) th4
and FORALL_PAIR_CONV =
let rule = GEN_REWRITE_RULE RAND_CONV [GSYM FORALL_PAIR_THM] in
let rec depair l t =
match l with
[v] -> REFL t
| v::vs -> rule(BINDER_CONV (depair vs) t) in
fun parm parms ->
let p = mk_var("P",mk_fun_ty (type_of parm) bool_ty) in
let tm = list_mk_forall(parms,mk_comb(p,parm)) in
GEN p (SYM(depair parms tm)) in
let ELIM_LISTOPS_CONV =
PURE_REWRITE_CONV[PAIRWISE; ALL; GSYM CONJ_ASSOC; AND_CLAUSES] THENC
TOP_DEPTH_CONV GEN_BETA_CONV in
let tuple_function_existence tm =
let f,def = dest_exists tm in
let domtys0,ranty0 = splitlist dest_fun_ty (type_of f) in
let nargs =
itlist
(max o length o snd o strip_comb o lhs o snd o strip_forall)
(conjuncts(snd(strip_forall def))) 0 in
let domtys,midtys = chop_list nargs domtys0 in
let ranty = itlist mk_fun_ty midtys ranty0 in
if length domtys <= 1 then ASSUME tm else
let dty = end_itlist (fun ty1 ty2 -> mk_type("prod",[ty1;ty2])) domtys in
let f' = variant (frees tm)
(mk_var(fst(dest_var f),mk_fun_ty dty ranty)) in
let gvs = map genvar domtys in
let f'' = list_mk_abs(gvs,mk_comb(f',end_itlist (curry mk_pair) gvs)) in
let def' = subst [f'',f] def in
let th1 = EXISTS (tm,f'') (ASSUME def')
and bth = BETAS_CONV (list_mk_comb(f'',gvs)) in
let th2 = GEN_REWRITE_CONV TOP_DEPTH_CONV [bth] (hd(hyp th1)) in
SIMPLE_CHOOSE f' (PROVE_HYP (UNDISCH(snd(EQ_IMP_RULE th2))) th1) in
let pinstantiate_casewise_recursion def =
try PART_MATCH I EXISTS_REFL def with Failure _ ->
let f,bod = dest_exists def in
let cjs = conjuncts bod in
let eqs = map (snd o strip_forall) cjs in
let lefts,rights = unzip(map dest_eq eqs) in
let arglists = map (snd o strip_comb) lefts in
let parms0 = freesl(unions arglists) in
let parms = if parms0 <> [] then parms0 else [genvar aty] in
let parm = end_itlist (curry mk_pair) parms in
let ss = map (fun a -> mk_gabs(parm,end_itlist (curry mk_pair) a))
arglists
and ts = map (fun a -> mk_abs(f,mk_gabs(parm,a))) rights in
let clauses = mk_flist(map2 (curry mk_pair) ss ts) in
let pth = ISPEC clauses RECURSION_SUPERADMISSIBLE in
let FIDDLE_CONV =
(LAND_CONV o LAND_CONV o BINDER_CONV o RAND_CONV o LAND_CONV o
GABS_CONV o RATOR_CONV o LAND_CONV o ABS_CONV) in
let th0 = UNDISCH(CONV_RULE(FIDDLE_CONV(LAMBDA_PAIR_CONV parms)) pth) in
let th1 = EQ_MP (GEN_ALPHA_CONV f (concl th0)) th0 in
let rewr_forall_th = REWR_CONV(FORALL_PAIR_CONV parm parms) in
let th2 = CONV_RULE (BINDER_CONV
(LAND_CONV(GABS_CONV rewr_forall_th) THENC
EXPAND_PAIRED_ALL_CONV)) th1 in
let f2,bod2 = dest_exists(concl th2) in
let ths3 = map
(CONV_RULE (COMB2_CONV (funpow 2 RAND_CONV GEN_BETA_CONV)
(RATOR_CONV BETA_CONV THENC GEN_BETA_CONV)) o SPEC_ALL)
(CONJUNCTS(ASSUME bod2)) in
let ths4 = map2
(fun th t -> let avs,tbod = strip_forall t in
itlist GEN avs (PART_MATCH I th tbod)) ths3 cjs in
let th5 = SIMPLE_EXISTS f (end_itlist CONJ ths4) in
let th6 = PROVE_HYP th2 (SIMPLE_CHOOSE f th5) in
let th7 =
(RAND_CONV(COMB2_CONV
(RAND_CONV (LAND_CONV (GABS_CONV(BINDER_CONV
(BINDER_CONV(rewr_forall_th) THENC rewr_forall_th)))))
(LAND_CONV (funpow 2 GABS_CONV(BINDER_CONV
(BINDER_CONV(rewr_forall_th) THENC
rewr_forall_th))))) THENC
ELIM_LISTOPS_CONV) (hd(hyp th6)) in
let th8 = PROVE_HYP (UNDISCH(snd(EQ_IMP_RULE th7))) th6 in
let wfasm,cdasm = dest_conj(hd(hyp th8)) in
let th9 = PROVE_HYP (CONJ (ASSUME wfasm) (ASSUME cdasm)) th8 in
let th10 = SIMPLIFY_WELLDEFINEDNESS_CONV cdasm in
let th11 = PROVE_HYP (UNDISCH(snd(EQ_IMP_RULE th10))) th9 in
PROVE_HYP TRUTH th11 in
fun etm ->
let eth = tuple_function_existence etm in
let dtm = hd(hyp eth) in
let dth = pinstantiate_casewise_recursion dtm in
PROVE_HYP dth eth in
(* ------------------------------------------------------------------------- *)
(* Justify existence assertion and try to simplify/remove side-conditions. *)
(* ------------------------------------------------------------------------- *)
let pure_prove_recursive_function_exists =
let break_down_admissibility th1 =
if hyp th1 = [] then th1 else
let def = concl th1 in
let f,bod = dest_exists def in
let cjs = conjuncts bod in
let eqs = map (snd o strip_forall) cjs in
let lefts,rights = unzip(map dest_eq eqs) in
let arglists = map (snd o strip_comb) lefts in
let parms0 = freesl(unions arglists) in
let parms = if parms0 <> [] then parms0 else [genvar aty] in
let wfasm = find is_exists (hyp th1) in
let ord,bod = dest_exists wfasm in
let SIMP_ADMISS_TAC =
REWRITE_TAC[LET_DEF; LET_END_DEF] THEN
REPEAT ADMISS_TAC THEN
TRY(W(fun (asl,w) -> let v = fst(dest_forall w) in
X_GEN_TAC v THEN
MAP_EVERY
(fun v -> TRY(GEN_REWRITE_TAC I [FORALL_PAIR_THM]) THEN
X_GEN_TAC v)
parms THEN
CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN
MAP_EVERY (fun v -> SPEC_TAC(v,v)) (rev parms @ [v]))) THEN
PURE_REWRITE_TAC[FORALL_SIMP] THEN
W(fun (asl,w) -> MAP_EVERY (fun t -> SPEC_TAC(t,t))
(subtract (frees w) [ord])) THEN
W(fun (asl,w) -> ACCEPT_TAC(ASSUME w)) in
let th2 = prove(bod,SIMP_ADMISS_TAC) in
let th3 = SIMPLE_EXISTS ord th2 in
let allasms = hyp th3 and wfasm = lhand(concl th2) in
let th4 = ASSUME(list_mk_conj(wfasm::subtract allasms [wfasm])) in
let th5 = SIMPLE_CHOOSE ord (itlist PROVE_HYP (CONJUNCTS th4) th3) in
PROVE_HYP th5 th1 in
fun dtm ->
let th = break_down_admissibility(instantiate_casewise_recursion dtm) in
if concl th = dtm then th
else failwith "prove_general_recursive_function_exists: sanity" in
(* ------------------------------------------------------------------------- *)
(* Same, but attempt to prove the wellfoundedness hyp by good guesses. *)
(* ------------------------------------------------------------------------- *)
let prove_general_recursive_function_exists =
let prove_depth_measure_exists =
let num_ty = `:num` in
fun tyname ->
let _,_,sth = assoc tyname (!inductive_type_store) in
let ty,zty = dest_fun_ty
(type_of(fst(dest_exists(snd(strip_forall(concl sth)))))) in
let rth = INST_TYPE [num_ty,zty] sth in
let avs,bod = strip_forall(concl rth) in
let ev,cbod = dest_exists bod in
let process_clause k t =
let avs,eq = strip_forall t in
let l,r = dest_eq eq in
let fn,cargs = dest_comb l in
let con,args = strip_comb cargs in
let bargs = filter (fun t -> type_of t = ty) args in
let r' = list_mk_binop `(+):num->num->num`
(mk_small_numeral k :: map (curry mk_comb fn) bargs) in
list_mk_forall(avs,mk_eq(l,r')) in
let cjs = conjuncts cbod in
let def = map2 process_clause (1--length cjs) cjs in
prove_recursive_functions_exist sth (list_mk_conj def) in
let INDUCTIVE_MEASURE_THEN tac (asl,w) =
let ev,bod = dest_exists w in
let ty = fst(dest_type(fst(dest_fun_ty(type_of ev)))) in
let th = prove_depth_measure_exists ty in
let ev',bod' = dest_exists(concl th) in
let th' = INST_TYPE(type_match (type_of ev') (type_of ev) []) th in
(MP_TAC th' THEN MATCH_MP_TAC MONO_EXISTS THEN
GEN_TAC THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN tac) (asl,w) in
let CONSTANT_MEASURE_THEN =
let one_tm = `1` in
fun tac (asl,w) ->
let ev,bod = dest_exists w in
let ty = fst(dest_fun_ty(type_of ev)) in
(EXISTS_TAC(mk_abs(genvar ty,one_tm)) THEN tac) (asl,w) in
let GUESS_MEASURE_THEN tac =
(EXISTS_TAC `\n. n + 1` THEN tac) ORELSE
(INDUCTIVE_MEASURE_THEN tac) ORELSE
CONSTANT_MEASURE_THEN tac in
let pth_lexleft = prove
(`(?r. WF(r) /\
?s. WF(s) /\
P(\(x1,y1) (x2,y2). r x1 x2 \/ (x1 = x2) /\ s y1 y2))
==> ?t:A#B->A#B->bool. WF(t) /\ P t`,
REPEAT STRIP_TAC THEN EXISTS_TAC
`\(x1:A,y1:B) (x2:A,y2:B). r x1 x2 \/ (x1 = x2) /\ s y1 y2` THEN
ASM_SIMP_TAC[WF_LEX]) in
let pth_lexright = prove
(`(?r. WF(r) /\
?s. WF(s) /\
P(\(x1,y1) (x2,y2). r y1 y2 \/ (y1 = y2) /\ s x1 x2))
==> ?t:A#B->A#B->bool. WF(t) /\ P t`,
REPEAT STRIP_TAC THEN
EXISTS_TAC `\u:A#B v:A#B.
(\(x1:B,y1:A) (x2:B,y2:A). r x1 x2 \/ (x1 = x2) /\ s y1 y2)
((\(a,b). b,a) u) ((\(a,b). b,a) v)` THEN
ASM_SIMP_TAC[ISPEC `\(a,b). b,a` WF_MEASURE_GEN; WF_LEX; ETA_AX] THEN
FIRST_X_ASSUM(fun th -> MP_TAC th THEN
MATCH_MP_TAC EQ_IMP THEN
AP_TERM_TAC) THEN
REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM]) in
let pth_measure = prove
(`(?m:A->num. P(MEASURE m)) ==> ?r:A->A->bool. WF(r) /\ P r`,
MESON_TAC[WF_MEASURE]) in
let rec GUESS_WF_THEN tac (asl,w) =
((MATCH_MP_TAC pth_lexleft THEN GUESS_WF_THEN (GUESS_WF_THEN tac)) ORELSE
(MATCH_MP_TAC pth_lexright THEN GUESS_WF_THEN (GUESS_WF_THEN tac)) ORELSE
(MATCH_MP_TAC pth_measure THEN
REWRITE_TAC[MEASURE; MEASURE_LE] THEN
REWRITE_TAC[FORALL_PAIR_THM] THEN
GUESS_MEASURE_THEN tac)) (asl,w) in
let PRE_GUESS_TAC =
CONV_TAC(BINDER_CONV(DEPTH_BINOP_CONV `(/\)`
(TRY_CONV SIMPLIFY_WELLDEFINEDNESS_CONV THENC
TRY_CONV FORALL_UNWIND_CONV))) in
let GUESS_ORDERING_TAC =
let false_tm = `\x:A y:A. F` in
W(fun (asl,w) ->
let ty = fst(dest_fun_ty(type_of(fst(dest_exists w)))) in
EXISTS_TAC(inst [ty,aty] false_tm) THEN
REWRITE_TAC[WF_FALSE] THEN NO_TAC) ORELSE
GUESS_WF_THEN
(REWRITE_TAC[FORALL_PAIR_THM] THEN ARITH_TAC) in
fun etm ->
let th = pure_prove_recursive_function_exists etm in
try let wtm = find is_exists (hyp th) in
let wth = prove(wtm,PRE_GUESS_TAC THEN GUESS_ORDERING_TAC) in
PROVE_HYP wth th
with Failure _ -> th in
instantiate_casewise_recursion,
pure_prove_recursive_function_exists,
prove_general_recursive_function_exists;;
(* ------------------------------------------------------------------------- *)
(* Simple "define" function. *)
(* ------------------------------------------------------------------------- *)
let define =
let close_definition_clauses tm =
let avs,bod = strip_forall tm in
let cjs = conjuncts bod in
let fs =
try map (repeat rator o lhs o snd o strip_forall) cjs
with Failure _ -> failwith "close_definition_clauses: non-equation" in
if length (setify fs) <> 1
then failwith "close_definition_clauses: defining multiple functions" else
let f = hd fs in
if mem f avs then failwith "close_definition_clauses: fn quantified" else
let do_clause t =
let lvs,bod = strip_forall t in
let fvs = subtract (frees(lhs bod)) (f::lvs) in
SPECL fvs (ASSUME(list_mk_forall(fvs,t))) in
let ths = map do_clause cjs in
let ajs = map (hd o hyp) ths in
let th = ASSUME(list_mk_conj ajs) in
f,itlist GEN avs (itlist PROVE_HYP (CONJUNCTS th) (end_itlist CONJ ths)) in
fun tm ->
let tm' = snd(strip_forall tm) in
try let th,th' = tryfind (fun th -> th,PART_MATCH I th tm')
(!the_definitions) in
if can (PART_MATCH I th') (concl th) then
(warn true "Benign redefinition"; th')
else failwith ""
with Failure _ ->
let f,th = close_definition_clauses tm in
let etm = mk_exists(f,hd(hyp th)) in
let th1 = prove_general_recursive_function_exists etm in
let th2 = new_specification[fst(dest_var f)] th1 in
let g = mk_mconst(dest_var f) in
let th3 = PROVE_HYP th2 (INST [g,f] th) in
the_definitions := th3::(!the_definitions); th3;;
|