This file is indexed.

/usr/share/hol-light/define.ml is in hol-light 20170706-0ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
(* ========================================================================= *)
(* Automated support for general recursive definitions.                      *)
(*                                                                           *)
(*              (c) Copyright, John Harrison 1998-2007                       *)
(* ========================================================================= *)

needs "cart.ml";;

(* ------------------------------------------------------------------------- *)
(* Constant supporting casewise definitions.                                 *)
(* ------------------------------------------------------------------------- *)

let CASEWISE_DEF = new_recursive_definition list_RECURSION
 `(CASEWISE [] f x = @y. T) /\
  (CASEWISE (CONS h t) f x =
        if ?y. FST h y = x then SND h f (@y. FST h y = x)
        else CASEWISE t f x)`;;

let CASEWISE = prove
 (`(CASEWISE [] f x = @y. T) /\
   (CASEWISE (CONS (s,t) clauses) f x =
        if ?y. s y = x then t f (@y. s y = x) else CASEWISE clauses f x)`,
  REWRITE_TAC[CASEWISE_DEF]);;

(* ------------------------------------------------------------------------- *)
(* Conditions for all the clauses in a casewise definition to hold.          *)
(* ------------------------------------------------------------------------- *)

let CASEWISE_CASES = prove
 (`!clauses c x.
    (?s t a. MEM (s,t) clauses /\ (s a = x) /\
             (CASEWISE clauses c x = t c a)) \/
    ~(?s t a. MEM (s,t) clauses /\ (s a = x)) /\
    (CASEWISE clauses c x = @y. T)`,
  MATCH_MP_TAC list_INDUCT THEN
  REWRITE_TAC[MEM; CASEWISE; FORALL_PAIR_THM; PAIR_EQ] THEN
  REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_MESON_TAC[]);;

let CASEWISE_WORKS = prove
 (`!clauses c:C.
     (!s t s' t' x y. MEM (s,t) clauses /\ MEM (s',t') clauses /\ (s x = s' y)
                      ==> (t c x = t' c y))
     ==> ALL (\(s:P->A,t). !x. CASEWISE clauses c (s x) :B = t c x) clauses`,
  REWRITE_TAC[GSYM ALL_MEM; FORALL_PAIR_THM] THEN
  MESON_TAC[CASEWISE_CASES]);;

(* ------------------------------------------------------------------------- *)
(* Various notions of admissibility, with tail recursion and preconditions.  *)
(* ------------------------------------------------------------------------- *)

let admissible = new_definition
 `admissible(<<) p s t <=>
        !f g a. p f a /\ p g a /\ (!z. z << s(a) ==> (f z = g z))
                ==> (t f a = t g a)`;;

let tailadmissible = new_definition
 `tailadmissible(<<) p s t <=>
        ?P G H. (!f a y. P f a /\ y << G f a ==> y << s a) /\
                (!f g a. (!z. z << s(a) ==> (f z = g z))
                         ==> (P f a = P g a) /\
                             (G f a = G g a) /\ (H f a = H g a)) /\
                (!f a:P. p f a ==> (t (f:A->B) a =
                                    if P f a then f(G f a) else H f a))`;;

let superadmissible = new_definition
 `superadmissible(<<) p s t <=>
        admissible(<<) (\f a. T) s p ==> tailadmissible(<<) p s t`;;

(* ------------------------------------------------------------------------- *)
(* A lemma.                                                                  *)
(* ------------------------------------------------------------------------- *)

let MATCH_SEQPATTERN = prove
 (`_MATCH x (_SEQPATTERN r s) =
   if ?y. r x y then _MATCH x r else _MATCH x s`,
  REWRITE_TAC[_MATCH; _SEQPATTERN] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Admissibility combinators.                                                *)
(* ------------------------------------------------------------------------- *)

let ADMISSIBLE_CONST = prove
 (`!p s c. admissible(<<) p s (\f. c)`,
  REWRITE_TAC[admissible]);;

let ADMISSIBLE_BASE = prove
 (`!(<<) p s t.
        (!f a. p f a ==> t a << s a)
        ==> admissible((<<):A->A->bool) p s (\f:A->B x:P. f(t x))`,
  REWRITE_TAC[admissible] THEN MESON_TAC[]);;

let ADMISSIBLE_COMB = prove
 (`!(<<) p s:P->A g:(A->B)->P->C->D y:(A->B)->P->C.
        admissible(<<) p s g /\ admissible(<<) p s y
        ==> admissible(<<) p s (\f x. (g f x) (y f x))`,
  SIMP_TAC[admissible] THEN MESON_TAC[]);;

let ADMISSIBLE_RAND = prove
 (`!(<<) p s:P->A g:P->C->D y:(A->B)->P->C.
        admissible(<<) p s y
        ==> admissible(<<) p s (\f x. (g x) (y f x))`,
  SIMP_TAC[admissible] THEN MESON_TAC[]);;

let ADMISSIBLE_LAMBDA = prove
 (`!(<<) p s:P->A t:(A->B)->C->P->bool.
     admissible(<<) (\f (u,x). p f x) (\(u,x). s x) (\f (u,x). t f u x)
     ==> admissible(<<) p s (\f x. \u. t f u x)`,
  REWRITE_TAC[admissible; FUN_EQ_THM; FORALL_PAIR_THM] THEN MESON_TAC[]);;

let ADMISSIBLE_NEST = prove
 (`!(<<) p s t.
        admissible(<<) p s t /\
        (!f a. p f a ==> t f a << s a)
        ==> admissible((<<):A->A->bool) p s (\f:A->B x:P. f(t f x))`,
  REWRITE_TAC[admissible] THEN MESON_TAC[]);;

let ADMISSIBLE_COND = prove
 (`!(<<) p P s h k.
        admissible(<<) p s P /\
        admissible(<<) (\f x. p f x /\ P f x) s h /\
        admissible(<<) (\f x. p f x /\ ~P f x) s k
        ==> admissible(<<) p s (\f x:P. if P f x then h f x else k f x)`,
  REPEAT GEN_TAC THEN
  REWRITE_TAC[admissible; AND_FORALL_THM] THEN
  REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
  DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
  ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);;

let ADMISSIBLE_MATCH = prove
 (`!(<<) p s e c.
        admissible(<<) p s e /\ admissible(<<) p s (\f x. c f x (e f x))
        ==> admissible(<<) p s (\f x:P. _MATCH (e f x) (c f x))`,
  REWRITE_TAC[admissible; _MATCH] THEN
  REPEAT STRIP_TAC THEN REPEAT COND_CASES_TAC THEN ASM_MESON_TAC[]);;

let ADMISSIBLE_SEQPATTERN = prove
 (`!(<<) p s c1 c2 e.
        admissible(<<) p s (\f x:P. ?y. c1 f x (e f x) y) /\
        admissible(<<) (\f x. p f x /\ ?y. c1 f x (e f x) y) s
                       (\f x. c1 f x (e f x)) /\
        admissible(<<) (\f x. p f x /\ ~(?y. c1 f x (e f x) y)) s
                       (\f x. c2 f x (e f x))
        ==> admissible(<<) p s (\f x. _SEQPATTERN (c1 f x) (c2 f x) (e f x))`,
  REWRITE_TAC[_SEQPATTERN; admissible] THEN MESON_TAC[]);;

let ADMISSIBLE_UNGUARDED_PATTERN = prove
 (`!(<<) p s pat e t y.
      admissible (<<) p s pat /\
      admissible (<<) p s e /\
      admissible (<<) (\f x. p f x /\ pat f x = e f x) s t /\
      admissible (<<) (\f x. p f x /\ pat f x = e f x) s y
        ==> admissible(<<) p s
             (\f x:P. _UNGUARDED_PATTERN (GEQ (pat f x) (e f x))
                                         (GEQ (t f x) (y f x)))`,
  REPEAT GEN_TAC THEN
  REWRITE_TAC[admissible; FORALL_PAIR_THM; _UNGUARDED_PATTERN] THEN
  REWRITE_TAC[GEQ_DEF] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(TAUT `(a <=> a') /\ (a /\ a' ==> (b <=> b'))
                     ==> (a /\ b <=> a' /\ b')`) THEN
  ASM_MESON_TAC[]);;

let ADMISSIBLE_GUARDED_PATTERN = prove
 (`!(<<) p s pat q e t y.
      admissible (<<) p s pat /\
      admissible (<<) p s e /\
      admissible (<<) (\f x. p f x /\ pat f x = e f x /\ q f x) s t /\
      admissible (<<) (\f x. p f x /\ pat f x = e f x) s q /\
      admissible (<<) (\f x. p f x /\ pat f x = e f x /\ q f x) s y
        ==> admissible(<<) p s
             (\f x:P. _GUARDED_PATTERN (GEQ (pat f x) (e f x))
                                       (q f x)
                                       (GEQ (t f x) (y f x)))`,
  REPEAT GEN_TAC THEN
  REWRITE_TAC[admissible; FORALL_PAIR_THM; _GUARDED_PATTERN] THEN
  REWRITE_TAC[GEQ_DEF] THEN REPEAT STRIP_TAC THEN
  REPEAT(MATCH_MP_TAC(TAUT `(a <=> a') /\ (a /\ a' ==> (b <=> b'))
                            ==> (a /\ b <=> a' /\ b')`) THEN
         REPEAT STRIP_TAC) THEN
  TRY(MATCH_MP_TAC(MESON[] `x = x' /\ y = y' ==> (x = y <=> x' = y')`)) THEN
  ASM_MESON_TAC[]);;

let ADMISSIBLE_NSUM = prove
 (`!(<<) p:(B->C)->P->bool s:P->A h a b.
        admissible(<<) (\f (k,x). a(x) <= k /\ k <= b(x) /\ p f x)
                       (\(k,x). s x) (\f (k,x). h f x k)
   ==> admissible(<<) p s (\f x. nsum(a(x)..b(x)) (h f x))`,
  REWRITE_TAC[admissible; FORALL_PAIR_THM] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC NSUM_EQ_NUMSEG THEN ASM_MESON_TAC[]);;

let ADMISSIBLE_SUM = prove
 (`!(<<) p:(B->C)->P->bool s:P->A h a b.
        admissible(<<) (\f (k,x). a(x) <= k /\ k <= b(x) /\ p f x)
                       (\(k,x). s x) (\f (k,x). h f x k)
   ==> admissible(<<) p s (\f x. sum(a(x)..b(x)) (h f x))`,
  REWRITE_TAC[admissible; FORALL_PAIR_THM] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC SUM_EQ_NUMSEG THEN ASM_MESON_TAC[]);;

let ADMISSIBLE_MAP = prove
 (`!(<<) p s h l.
        admissible(<<) p s l /\
        admissible (<<) (\f (y,x). p f x /\ MEM y (l f x))
                        (\(y,x). s x) (\f (y,x). h f x y)
   ==> admissible (<<) p s (\f:A->B x:P. MAP (h f x) (l f x))`,
  REWRITE_TAC[admissible; FORALL_PAIR_THM] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(MESON[] `x = y /\ MAP f x = MAP g x ==> MAP f x = MAP g y`) THEN
  CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  MATCH_MP_TAC MAP_EQ THEN REWRITE_TAC[GSYM ALL_MEM] THEN
  REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
  ASM_REWRITE_TAC[FORALL_PAIR_THM] THEN ASM_MESON_TAC[]);;

let ADMISSIBLE_MATCH_SEQPATTERN = prove
 (`!(<<) p s c1 c2 e.
        admissible(<<) p s (\f x. ?y. c1 f x (e f x) y) /\
        admissible(<<) (\f x. p f x /\ ?y. c1 f x (e f x) y) s
                       (\f x. _MATCH (e f x) (c1 f x)) /\
        admissible(<<) (\f x. p f x /\ ~(?y. c1 f x (e f x) y)) s
                       (\f x. _MATCH (e f x) (c2 f x))
        ==> admissible(<<) p s
              (\f x:P. _MATCH (e f x) (_SEQPATTERN (c1 f x) (c2 f x)))`,
  REWRITE_TAC[MATCH_SEQPATTERN; ADMISSIBLE_COND]);;

(* ------------------------------------------------------------------------- *)
(* Superadmissible generalizations where applicable.                         *)
(*                                                                           *)
(* Note that we can't take the "higher type" route in the simple theorem     *)
(* ADMISSIBLE_MATCH because that isn't a context where tail recursion makes  *)
(* sense. Instead, we use specific theorems for the two _MATCH instances.    *)
(* Note that also, because of some delicacy over assessing welldefinedness   *)
(* of patterns, a special well-formedness hypothesis crops up here. (We need *)
(* to separate it from the function f or we lose the "tail" optimization.)   *)
(* ------------------------------------------------------------------------- *)

let ADMISSIBLE_IMP_SUPERADMISSIBLE = prove
 (`!(<<) p s t:(A->B)->P->B.
      admissible(<<) p s t ==> superadmissible(<<) p s t`,
  REWRITE_TAC[admissible; superadmissible; tailadmissible] THEN
  REPEAT STRIP_TAC THEN
  MAP_EVERY EXISTS_TAC
   [`\f:A->B x:P. F`;
    `\f:A->B. (anything:P->A)`;
    `\f:A->B a:P. if p f a then t f a :B else fixed`] THEN
  ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);;

let SUPERADMISSIBLE_CONST = prove
 (`!p s c. superadmissible(<<) p s (\f. c)`,
  REPEAT GEN_TAC THEN
  MATCH_MP_TAC ADMISSIBLE_IMP_SUPERADMISSIBLE THEN
  REWRITE_TAC[ADMISSIBLE_CONST]);;

let SUPERADMISSIBLE_TAIL = prove
 (`!(<<) p s t:(A->B)->P->A.
      admissible(<<) p s t /\
      (!f a. p f a ==> !y. y << t f a ==> y << s a)
      ==> superadmissible(<<) p s (\f x. f(t f x))`,
  REWRITE_TAC[admissible; superadmissible; tailadmissible] THEN
  REPEAT STRIP_TAC THEN MAP_EVERY EXISTS_TAC
   [`\f:A->B x:P. T`;
    `\f:A->B a:P. if p f a then t f a :A else s a`;
    `\f:A->B. anything:P->B`] THEN
  ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);;

let SUPERADMISSIBLE_COND = prove
 (`!(<<) p P s h k:(A->B)->P->B.
        admissible(<<) p s P /\
        superadmissible(<<) (\f x. p f x /\ P f x) s h /\
        superadmissible(<<) (\f x. p f x /\ ~P f x) s k
        ==> superadmissible(<<) p s (\f x. if P f x then h f x else k f x)`,
  REWRITE_TAC[superadmissible; admissible] THEN REPEAT GEN_TAC THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  DISCH_THEN(fun th -> DISCH_TAC THEN CONJUNCTS_THEN MP_TAC th) THEN
  ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  DISCH_THEN(fun th -> ANTS_TAC THENL [ASM_MESON_TAC[]; MP_TAC th]) THEN
  REWRITE_TAC[tailadmissible] THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM; RIGHT_IMP_FORALL_THM] THEN
  MAP_EVERY X_GEN_TAC
   [`P1:(A->B)->P->bool`; `G1:(A->B)->P->A`; `H1:(A->B)->P->B`;
    `P2:(A->B)->P->bool`; `G2:(A->B)->P->A`; `H2:(A->B)->P->B`] THEN
  REWRITE_TAC[TAUT `(a1 /\ b1 /\ c1 ==> a2 /\ b2 /\ c2 ==> x) <=>
                    (a1 /\ a2) /\ (b1 /\ b2) /\ (c1 /\ c2) ==> x`] THEN
  DISCH_THEN(fun th ->
   MAP_EVERY EXISTS_TAC
   [`\f:A->B a:P. if p f a then if P f a then P2 f a else P1 f a else F`;
   `\f:A->B a:P. if p f a then if P f a then G2 f a else G1 f a else z:A`;
   `\f:A->B a:P. if p f a then if P f a then H2 f a else H1 f a else w:B`] THEN
   MP_TAC th) THEN
  REWRITE_TAC[] THEN REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THENL
   [ASM_MESON_TAC[];
    POP_ASSUM_LIST(MP_TAC o end_itlist CONJ);
    ALL_TAC] THEN
  REWRITE_TAC[IMP_IMP; AND_FORALL_THM] THEN
  REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
  DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
  ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);;

let SUPERADMISSIBLE_MATCH_SEQPATTERN = prove
 (`!(<<) p s c1 c2 e.
        admissible(<<) p s (\f x. ?y. c1 f x (e f x) y) /\
        superadmissible(<<) (\f x. p f x /\ ?y. c1 f x (e f x) y) s
                            (\f x. _MATCH (e f x) (c1 f x)) /\
        superadmissible(<<) (\f x. p f x /\ ~(?y. c1 f x (e f x) y)) s
                            (\f x. _MATCH (e f x) (c2 f x))
        ==> superadmissible(<<) p s
              (\f x:P. _MATCH (e f x) (_SEQPATTERN (c1 f x) (c2 f x)))`,
  REWRITE_TAC[MATCH_SEQPATTERN; SUPERADMISSIBLE_COND]);;

let SUPERADMISSIBLE_MATCH_UNGUARDED_PATTERN = prove
 (`!(<<) p s e:P->D pat:Q->D arg.
      (!f a t u. p f a /\ pat t = e a /\ pat u = e a ==> arg a t = arg a u) /\
      (!f a t. p f a /\ pat t = e a ==> !y. y << arg a t ==> y << s a)
      ==> superadmissible(<<) p s
           (\f:A->B x. _MATCH (e x)
                    (\u v. ?t. _UNGUARDED_PATTERN (GEQ (pat t) u)
                                                  (GEQ (f(arg x t)) v)))`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  REWRITE_TAC[superadmissible] THEN DISCH_TAC THEN
  REWRITE_TAC[_UNGUARDED_PATTERN; GEQ_DEF; _MATCH] THEN
  REWRITE_TAC[tailadmissible] THEN
  SUBGOAL_THEN
   `!f:A->B x:P.
     p f x ==> ((?!v. ?t:Q. pat t:D = e x /\ f(arg x t) = v) <=>
                ?t. pat t = e x)`
   (fun th -> SIMP_TAC[th]) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  MAP_EVERY EXISTS_TAC
   [`\(f:A->B) x:P. p f x /\ ?t:Q. pat t:D = e x`;
    `\f:A->B x:P. arg x (@t. (pat:Q->D) t = e x):A`;
    `\(f:A->B) x:P. (@z:B. F)`] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[admissible]) THEN SIMP_TAC[] THEN
  ASM_MESON_TAC[]);;

let SUPERADMISSIBLE_MATCH_GUARDED_PATTERN = prove
 (`!(<<) p s e:P->D pat:Q->D q arg.
      (!f a t u. p f a /\ pat t = e a /\ q a t /\ pat u = e a /\ q a u
                 ==> arg a t = arg a u) /\
      (!f a t. p f a /\ q a t /\ pat t = e a ==> !y. y << arg a t ==> y << s a)
      ==> superadmissible(<<) p s
           (\f:A->B x. _MATCH (e x)
                    (\u v. ?t. _GUARDED_PATTERN (GEQ (pat t) u)
                                                (q x t)
                                                (GEQ (f(arg x t)) v)))`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  REWRITE_TAC[superadmissible] THEN DISCH_TAC THEN
  REWRITE_TAC[_GUARDED_PATTERN; GEQ_DEF; _MATCH] THEN
  REWRITE_TAC[tailadmissible] THEN
  SUBGOAL_THEN
   `!f:A->B x:P.
     p f x ==> ((?!v. ?t:Q. pat t:D = e x /\ q x t /\ f(arg x t) = v) <=>
                ?t. pat t = e x /\ q x t)`
   (fun th -> SIMP_TAC[th]) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  MAP_EVERY EXISTS_TAC
   [`\(f:A->B) x:P. p f x /\ ?t:Q. pat t:D = e x /\ q x t`;
    `\f:A->B x:P. arg x (@t. (pat:Q->D) t = e x /\ q x t):A`;
    `\(f:A->B) x:P. (@z:B. F)`] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[admissible]) THEN SIMP_TAC[] THEN
  ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Combine general WF/tail recursion theorem with casewise definitions.      *)
(* ------------------------------------------------------------------------- *)

let WF_REC_TAIL_GENERAL' = prove
 (`!P G H H'.
         WF (<<) /\
         (!f g x. (!z. z << x ==> (f z = g z))
                  ==> (P f x <=> P g x) /\
                      (G f x = G g x) /\ (H' f x = H' g x)) /\
         (!f x y. P f x /\ y << G f x ==> y << x) /\
         (!f x. H f x = if P f x then f(G f x) else H' f x)
         ==> ?f. !x. f x = H f x`,
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC WF_REC_TAIL_GENERAL THEN ASM_MESON_TAC[]);;

let WF_REC_CASES = prove
 (`!(<<) clauses.
        WF((<<):A->A->bool) /\
        ALL (\(s,t). ?P G H.
                     (!f a y. P f a /\ y << G f a ==> y << s a) /\
                     (!f g a. (!z. z << s(a) ==> (f z = g z))
                              ==> (P f a = P g a) /\
                                  (G f a = G g a) /\ (H f a = H g a)) /\
                     (!f a:P. t f a = if P f a then f(G f a) else H f a))
            clauses
        ==> ?f:A->B. !x. f x = CASEWISE clauses f x`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC WF_REC_TAIL_GENERAL' THEN
  FIRST_X_ASSUM(MP_TAC o check(is_binary "ALL" o concl)) THEN
  SPEC_TAC(`clauses:((P->A)#((A->B)->P->B))list`,
           `clauses:((P->A)#((A->B)->P->B))list`) THEN
  ASM_REWRITE_TAC[] THEN POP_ASSUM(K ALL_TAC) THEN
  MATCH_MP_TAC list_INDUCT THEN
  REWRITE_TAC[ALL; CASEWISE; FORALL_PAIR_THM] THEN CONJ_TAC THENL
   [MAP_EVERY EXISTS_TAC
     [`\f:A->B x:A. F`; `\f:A->B. anything:A->A`; `\f:A->B x:A. @y:B. T`] THEN
    REWRITE_TAC[];
    ALL_TAC] THEN
  MAP_EVERY X_GEN_TAC
    [`s:P->A`; `t:(A->B)->P->B`; `clauses:((P->A)#((A->B)->P->B))list`] THEN
  DISCH_THEN(fun th -> DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
                       MP_TAC th) THEN
  ASM_REWRITE_TAC[] THEN POP_ASSUM_LIST(K ALL_TAC) THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN
  MAP_EVERY X_GEN_TAC
   [`P1:(A->B)->A->bool`; `G1:(A->B)->A->A`; `H1:(A->B)->A->B`;
    `P2:(A->B)->P->bool`; `G2:(A->B)->P->A`; `H2:(A->B)->P->B`] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  EXISTS_TAC
   `\f:A->B x:A. if ?y:P. s y = x then P2 f (@y. s y = x) else P1 f x:bool` THEN
  EXISTS_TAC `\f:A->B x:A.
     if ?y:P. s y = x then G2 f (@y. s y = x) else G1 f x:A` THEN
  EXISTS_TAC `\f:A->B x:A. if ?y:P. s y = x
                           then H2 f (@y. s y = x) else H1 f x:B` THEN
  ASM_MESON_TAC[]);;

let WF_REC_CASES' = prove
 (`!(<<) clauses.
        WF((<<):A->A->bool) /\
        ALL (\(s,t). tailadmissible(<<) (\f a. T) s t) clauses
        ==> ?f:A->B. !x. f x = CASEWISE clauses f x`,
  REWRITE_TAC[WF_REC_CASES; tailadmissible]);;

let RECURSION_CASEWISE = prove
 (`!clauses.
   (?(<<). WF(<<) /\
           ALL (\(s:P->A,t). tailadmissible(<<) (\f a. T) s t) clauses) /\
   (!s t s' t' f x y. MEM (s,t) clauses /\ MEM (s',t') clauses
                      ==> (s x = s' y) ==> (t f x = t' f y))
   ==> ?f:A->B. ALL (\(s,t). !x. f (s x) = t f x) clauses`,
  REPEAT GEN_TAC THEN REWRITE_TAC[IMP_IMP; CONJ_ASSOC] THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  DISCH_THEN(CHOOSE_THEN (MP_TAC o MATCH_MP WF_REC_CASES')) THEN
  MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN
  ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[CASEWISE_WORKS]);;

let RECURSION_CASEWISE_PAIRWISE = prove
 (`!clauses.
        (?(<<). WF (<<) /\
                ALL (\(s,t). tailadmissible(<<) (\f a. T) s t) clauses) /\
        ALL (\(s,t). !f x y. (s x = s y) ==> (t f x = t f y)) clauses /\
        PAIRWISE (\(s,t) (s',t'). !f x y. (s x = s' y) ==> (t f x = t' f y))
                 clauses
        ==> (?f. ALL (\(s,t). !x. f (s x) = t f x) clauses)`,
  let lemma = prove
   (`!P. (!x y. P x y ==> P y x)
         ==> !l. (!x y. MEM x l /\ MEM y l ==> P x y) <=>
                 ALL (\x. P x x) l /\ PAIRWISE P l`,
    REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; GSYM ALL_MEM] THEN
    REPEAT GEN_TAC THEN DISCH_TAC THEN LIST_INDUCT_TAC THEN
    REWRITE_TAC[PAIRWISE; MEM; GSYM ALL_MEM] THEN ASM_MESON_TAC[])
  and paired_lambda = prove
   (`(\x. P x) = (\(a,b). P (a,b))`,
    REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM]) in
  let pth = REWRITE_RULE[FORALL_PAIR_THM; paired_lambda] (ISPEC
    `\(s,t) (s',t'). !c x:A y:A. (s x = s' y) ==> (t c x = t' c y)` lemma) in
  let cth = prove(lhand(concl pth),MESON_TAC[]) in
  REWRITE_TAC[GSYM(MATCH_MP pth cth); RIGHT_IMP_FORALL_THM] THEN
  REWRITE_TAC[RECURSION_CASEWISE]);;

let SUPERADMISSIBLE_T = prove
 (`superadmissible(<<) (\f x. T) s t <=> tailadmissible(<<) (\f x. T) s t`,
  REWRITE_TAC[superadmissible; admissible]);;

let RECURSION_SUPERADMISSIBLE = REWRITE_RULE[GSYM SUPERADMISSIBLE_T]
        RECURSION_CASEWISE_PAIRWISE;;

(* ------------------------------------------------------------------------- *)
(* The main suite of functions for justifying recursion.                     *)
(* ------------------------------------------------------------------------- *)

let instantiate_casewise_recursion,
    pure_prove_recursive_function_exists,
    prove_general_recursive_function_exists =

(* ------------------------------------------------------------------------- *)
(* Make some basic simplification of conjunction of welldefinedness clauses. *)
(* ------------------------------------------------------------------------- *)

  let SIMPLIFY_WELLDEFINEDNESS_CONV =
    let LSYM =
      GEN_ALL o CONV_RULE(LAND_CONV(ONCE_DEPTH_CONV SYM_CONV)) o SPEC_ALL
    and evensimps = prove
     (`((2 * m + 2 = 2 * n + 1) <=> F) /\
       ((2 * m + 1 = 2 * n + 2) <=> F) /\
       ((2 * m = 2 * n + 1) <=> F) /\
       ((2 * m + 1 = 2 * n) <=> F) /\
       ((2 * m = SUC(2 * n)) <=> F) /\
       ((SUC(2 * m) = 2 * n) <=> F)`,
      REWRITE_TAC[] THEN REPEAT CONJ_TAC THEN
      DISCH_THEN(MP_TAC o AP_TERM `EVEN`) THEN
      REWRITE_TAC[EVEN_MULT; EVEN_ADD; ARITH; EVEN]) in
    let allsimps = itlist (mk_rewrites false)
     [EQ_ADD_RCANCEL; EQ_ADD_LCANCEL;
      EQ_ADD_RCANCEL_0; EQ_ADD_LCANCEL_0;
      LSYM EQ_ADD_RCANCEL_0; LSYM EQ_ADD_LCANCEL_0;
      EQ_MULT_RCANCEL; EQ_MULT_LCANCEL;
      EQT_INTRO(SPEC_ALL EQ_REFL);
      ADD_EQ_0; LSYM ADD_EQ_0;
      MULT_EQ_0; LSYM MULT_EQ_0;
      MULT_EQ_1; LSYM MULT_EQ_1;
      ARITH_RULE `(m + n = 1) <=> (m = 1) /\ (n = 0) \/ (m = 0) /\ (n = 1)`;
      ARITH_RULE `(1 = m + n) <=> (m = 1) /\ (n = 0) \/ (m = 0) /\ (n = 1)`;
      evensimps; ARITH_EQ] []
    and [simp1; simp2; simp3] = map MATCH_MP (CONJUNCTS
      (TAUT
       `((a <=> F) /\ (b <=> b) ==> ((a ==> b) <=> T)) /\
        ((a <=> a') /\ (a' ==> (b <=> T)) ==> ((a ==> b) <=> T)) /\
        ((a <=> a') /\ (a' ==> (b <=> b')) ==> ((a ==> b) <=> (a' ==> b')))`))
    and false_tm = `F` and and_tm = `(/\)`
    and eq_refl = EQT_INTRO(SPEC_ALL EQ_REFL) in
    fun tm ->
      let net = itlist (net_of_thm false) allsimps (!basic_rectype_net) in
      let RECTYPE_ARITH_EQ_CONV =
        TOP_SWEEP_CONV(REWRITES_CONV net) THENC
        GEN_REWRITE_CONV DEPTH_CONV [AND_CLAUSES; OR_CLAUSES] in
      let SIMPLIFY_CASE_DISTINCTNESS_CLAUSE tm =
        let avs,bod = strip_forall tm in
        let ant,cons = dest_imp bod in
        let ath = RECTYPE_ARITH_EQ_CONV ant in
        let atm = rand(concl ath) in
        let bth = CONJ ath
          (if atm = false_tm then REFL cons
                    else DISCH atm
                          (PURE_REWRITE_CONV[eq_refl; ASSUME atm] cons)) in
        let cth = try simp1 bth with Failure _ -> try simp2 bth
                  with Failure _ -> simp3 bth in
        itlist MK_FORALL avs cth in
      (DEPTH_BINOP_CONV and_tm SIMPLIFY_CASE_DISTINCTNESS_CLAUSE THENC
       GEN_REWRITE_CONV DEPTH_CONV [FORALL_SIMP; AND_CLAUSES]) tm in

(* ------------------------------------------------------------------------- *)
(* Simplify an existential question about a pattern.                         *)
(* ------------------------------------------------------------------------- *)

  let EXISTS_PAT_CONV =
    let pth = prove
     (`((?y. _UNGUARDED_PATTERN (GEQ s t) (GEQ z y)) <=> s = t) /\
       ((?y. _GUARDED_PATTERN (GEQ s t) g (GEQ z y)) <=> g /\ s = t)`,
      REWRITE_TAC[_UNGUARDED_PATTERN; _GUARDED_PATTERN; GEQ_DEF] THEN
      MESON_TAC[]) in
    let basecnv = GEN_REWRITE_CONV I [pth]
    and pushcnv = GEN_REWRITE_CONV I [SWAP_EXISTS_THM] in
    let rec EXISTS_PAT_CONV tm =
     ((pushcnv THENC BINDER_CONV EXISTS_PAT_CONV) ORELSEC
      basecnv) tm in
    fun tm -> if is_exists tm then EXISTS_PAT_CONV tm
              else failwith "EXISTS_PAT_CONV" in

(* ------------------------------------------------------------------------- *)
(* Hack a proforma to introduce new pairing or pattern variables.            *)
(* ------------------------------------------------------------------------- *)

  let HACK_PROFORMA,EACK_PROFORMA =
    let elemma0 = prove
     (`((!z. GEQ (f z) (g z)) <=> (!x y. GEQ (f(x,y)) (g(x,y)))) /\
       ((\p. P p) = (\(x,y). P(x,y)))`,
      REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM])
    and elemma1 = prove
     (`(!P. (!t:A->B->C#D->E. P t) <=> (!t. P (\a b (c,d). t a b d c))) /\
       (!P. (!t:B->C#D->E. P t) <=> (!t. P (\b (c,d). t b d c))) /\
       (!P. (!t:C#D->E. P t) <=> (!t. P (\(c,d). t d c)))`,
      REPEAT STRIP_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THEN
      ASM_REWRITE_TAC[] THENL
       [FIRST_X_ASSUM(MP_TAC o SPEC `\a b d c. (t:A->B->C#D->E) a b (c,d)`);
        FIRST_X_ASSUM(MP_TAC o SPEC `\b d c. (t:B->C#D->E) b (c,d)`);
        FIRST_X_ASSUM(MP_TAC o SPEC `\d c. (t:C#D->E) (c,d)`)] THEN
      MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN
      REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM]) in
    let HACK_PROFORMA n th =
      if n <= 1 then th else
      let mkname i = "_P"^string_of_int i in
      let ty = end_itlist (fun s t -> mk_type("prod",[s;t]))
                          (map (mk_vartype o mkname) (1--n)) in
      let conv i =
        let name = "x"^string_of_int i in
        let cnv = ALPHA_CONV (mk_var(name,mk_vartype(mkname i))) in
        fun tm -> if is_abs tm && name_of(bndvar tm) <> name
                  then cnv tm else failwith "conv" in
      let convs = FIRST_CONV (map conv (1--n)) in
      let th1 = INST_TYPE [ty,`:P`] th in
      let th2 = REWRITE_RULE[FORALL_PAIR_THM] th1 in
      let th3 = REWRITE_RULE[elemma0; elemma1] th2 in
      CONV_RULE(REDEPTH_CONV convs) th3
    and EACK_PROFORMA n th =
      if n <= 1 then th else
      let mkname i = "_Q"^string_of_int i in
      let ty = end_itlist (fun s t -> mk_type("prod",[s;t]))
                          (map (mk_vartype o mkname) (1--n)) in
      let conv i =
        let name = "t"^string_of_int i in
        let cnv = ALPHA_CONV (mk_var(name,mk_vartype(mkname i))) in
        fun tm -> if is_abs tm && name_of(bndvar tm) <> name
                  then cnv tm else failwith "conv" in
      let convs = FIRST_CONV (map conv (1--n)) in
      let th1 = INST_TYPE [ty,`:Q`] th in
      let th2 = REWRITE_RULE[EXISTS_PAIR_THM] th1 in
      let th3 = REWRITE_RULE[elemma1] th2 in
      let th4 = REWRITE_RULE[FORALL_PAIR_THM] th3 in
      CONV_RULE(REDEPTH_CONV convs) th4 in
    HACK_PROFORMA,EACK_PROFORMA in

(* ------------------------------------------------------------------------- *)
(* Hack and apply.                                                           *)
(* ------------------------------------------------------------------------- *)

  let APPLY_PROFORMA_TAC th (asl,w as gl) =
    let vs = fst(dest_gabs(body(rand w))) in
    let n = 1 + length(fst(splitlist dest_pair vs)) in
    (MATCH_MP_TAC(HACK_PROFORMA n th) THEN BETA_TAC) gl in

  let is_pattern p n tm =
    try let f,args = strip_comb(snd(strip_exists (body(body tm)))) in
        is_const f && name_of f = p && length args = n
    with Failure _ -> false in

  let SIMPLIFY_MATCH_WELLDEFINED_TAC =
    let pth0 = MESON[]
     `(a /\ x = k ==> x = y ==> d) ==> (a /\ x = k /\ y = k ==> d)`
    and pth1 = MESON[]
     `(a /\ b /\ c /\ x = k ==> x = y ==> d)
      ==> (a /\ x = k /\ b /\ y = k /\ c ==> d)` in
    REPEAT GEN_TAC THEN
    (MATCH_MP_TAC pth1 ORELSE MATCH_MP_TAC pth0) THEN
    CONV_TAC(RAND_CONV SIMPLIFY_WELLDEFINEDNESS_CONV) THEN
    PURE_REWRITE_TAC
      [AND_CLAUSES; IMP_CLAUSES; OR_CLAUSES; EQ_CLAUSES; NOT_CLAUSES] in

  let rec headonly f tm =
    match tm with
      Comb(s,t) -> headonly f s && headonly f t && not(t = f)
    | Abs(x,t) -> headonly f t
    | _ -> true in

  let MAIN_ADMISS_TAC (asl,w as gl) =
    let had,args = strip_comb w in
    if not(is_const had) then failwith "ADMISS_TAC" else
    let f,fbod = dest_abs(last args) in
    let xtup,bod = dest_gabs fbod in
    let hop,args = strip_comb bod in
    match (name_of had,name_of hop) with
      "superadmissible","COND"
          -> APPLY_PROFORMA_TAC SUPERADMISSIBLE_COND gl
    | "superadmissible","_MATCH" when
          name_of(repeat rator (last args)) = "_SEQPATTERN"
          -> (APPLY_PROFORMA_TAC SUPERADMISSIBLE_MATCH_SEQPATTERN THEN
              CONV_TAC(ONCE_DEPTH_CONV EXISTS_PAT_CONV)) gl
    | "superadmissible","_MATCH" when
         is_pattern "_UNGUARDED_PATTERN" 2 (last args)
          -> let n = length(fst(strip_exists(body(body(last args))))) in
             let th = EACK_PROFORMA n SUPERADMISSIBLE_MATCH_UNGUARDED_PATTERN in
             (APPLY_PROFORMA_TAC th THEN CONJ_TAC THENL
               [SIMPLIFY_MATCH_WELLDEFINED_TAC; ALL_TAC]) gl
    | "superadmissible","_MATCH" when
         is_pattern "_GUARDED_PATTERN" 3 (last args)
          -> let n = length(fst(strip_exists(body(body(last args))))) in
             let th = EACK_PROFORMA n SUPERADMISSIBLE_MATCH_GUARDED_PATTERN in
             (APPLY_PROFORMA_TAC th THEN CONJ_TAC THENL
               [SIMPLIFY_MATCH_WELLDEFINED_TAC; ALL_TAC]) gl
    | "superadmissible",_ when is_comb bod && rator bod = f
          -> APPLY_PROFORMA_TAC SUPERADMISSIBLE_TAIL gl
    | "admissible","sum"
          -> APPLY_PROFORMA_TAC ADMISSIBLE_SUM gl
    | "admissible","nsum"
          -> APPLY_PROFORMA_TAC ADMISSIBLE_NSUM gl
    | "admissible","MAP"
          -> APPLY_PROFORMA_TAC ADMISSIBLE_MAP gl
    | "admissible","_MATCH" when
          name_of(repeat rator (last args)) = "_SEQPATTERN"
          -> (APPLY_PROFORMA_TAC ADMISSIBLE_MATCH_SEQPATTERN THEN
              CONV_TAC(ONCE_DEPTH_CONV EXISTS_PAT_CONV)) gl
    | "admissible","_MATCH"
          -> APPLY_PROFORMA_TAC ADMISSIBLE_MATCH gl
    | "admissible","_UNGUARDED_PATTERN"
          -> APPLY_PROFORMA_TAC ADMISSIBLE_UNGUARDED_PATTERN gl
    | "admissible","_GUARDED_PATTERN"
          -> APPLY_PROFORMA_TAC ADMISSIBLE_GUARDED_PATTERN gl
    | "admissible",_ when is_abs bod
          -> APPLY_PROFORMA_TAC ADMISSIBLE_LAMBDA gl
    | "admissible",_ when is_comb bod && rator bod = f
          -> if free_in f (rand bod) then
               APPLY_PROFORMA_TAC ADMISSIBLE_NEST gl
             else
               APPLY_PROFORMA_TAC ADMISSIBLE_BASE gl
    | "admissible",_ when is_comb bod && headonly f bod
          -> APPLY_PROFORMA_TAC ADMISSIBLE_COMB gl
    | _ -> failwith "MAIN_ADMISS_TAC" in

  let ADMISS_TAC =
    CONJ_TAC ORELSE
    MATCH_ACCEPT_TAC ADMISSIBLE_CONST ORELSE
    MATCH_ACCEPT_TAC SUPERADMISSIBLE_CONST ORELSE
    MAIN_ADMISS_TAC ORELSE
    MATCH_MP_TAC ADMISSIBLE_IMP_SUPERADMISSIBLE in

(* ------------------------------------------------------------------------- *)
(* Instantiate the casewise recursion theorem for existential claim.         *)
(* Also make a first attempt to simplify the distinctness clause. This may   *)
(* yield a theorem with just the wellfoundedness "?(<<)" assumption, or it   *)
(* may be that and an additional distinctness one.                           *)
(* ------------------------------------------------------------------------- *)

  let instantiate_casewise_recursion =
    let EXPAND_PAIRED_ALL_CONV =
      let pth0,pth1 = (CONJ_PAIR o prove)
       (`(ALL (\(s,t). P s t) [a,b] <=> P a b) /\
         (ALL (\(s,t). P s t) (CONS (a,b) l) <=>
          P a b /\ ALL (\(s,t). P s t) l)`,
        REWRITE_TAC[ALL]) in
      let conv0 = REWR_CONV pth0 and conv1 = REWR_CONV pth1 in
      let rec conv tm =
        try conv0 tm with Failure _ ->
        let th = conv1 tm in CONV_RULE (funpow 2 RAND_CONV conv) th in
      conv
    and LAMBDA_PAIR_CONV =
      let rewr1 =  GEN_REWRITE_RULE I [GSYM FORALL_PAIR_THM]
      and rewr2 = GEN_REWRITE_CONV I [FUN_EQ_THM] in
      fun parms tm ->
        let parm = end_itlist (curry mk_pair) parms in
        let x,bod = dest_abs tm in
        let tm' = mk_gabs(parm,vsubst[parm,x] bod) in
        let th1 = BETA_CONV(mk_comb(tm,parm))
        and th2 = GEN_BETA_CONV (mk_comb(tm',parm)) in
        let th3 = TRANS th1 (SYM th2) in
        let th4 = itlist (fun v th -> rewr1 (GEN v th))
                         (butlast parms) (GEN (last parms) th3) in
        EQ_MP (SYM(rewr2(mk_eq(tm,tm')))) th4
    and FORALL_PAIR_CONV =
      let rule = GEN_REWRITE_RULE RAND_CONV [GSYM FORALL_PAIR_THM] in
      let rec depair l t =
        match l with
          [v] -> REFL t
        | v::vs -> rule(BINDER_CONV (depair vs) t) in
      fun parm parms ->
        let p = mk_var("P",mk_fun_ty (type_of parm) bool_ty) in
        let tm = list_mk_forall(parms,mk_comb(p,parm)) in
        GEN p (SYM(depair parms tm)) in
    let ELIM_LISTOPS_CONV =
      PURE_REWRITE_CONV[PAIRWISE; ALL; GSYM CONJ_ASSOC; AND_CLAUSES] THENC
      TOP_DEPTH_CONV GEN_BETA_CONV in
    let tuple_function_existence tm =
      let f,def = dest_exists tm in
      let domtys0,ranty0 = splitlist dest_fun_ty (type_of f) in
      let nargs =
        itlist
         (max o length o snd o strip_comb o lhs o snd o strip_forall)
         (conjuncts(snd(strip_forall def))) 0 in
      let domtys,midtys = chop_list nargs domtys0 in
      let ranty = itlist mk_fun_ty midtys ranty0 in
      if length domtys <= 1 then ASSUME tm else
      let dty = end_itlist (fun ty1 ty2 -> mk_type("prod",[ty1;ty2])) domtys in
      let f' = variant (frees tm)
                       (mk_var(fst(dest_var f),mk_fun_ty dty ranty)) in
      let gvs = map genvar domtys in
      let f'' = list_mk_abs(gvs,mk_comb(f',end_itlist (curry mk_pair) gvs)) in
      let def' = subst [f'',f] def in
      let th1 = EXISTS (tm,f'') (ASSUME def')
      and bth = BETAS_CONV (list_mk_comb(f'',gvs)) in
      let th2 = GEN_REWRITE_CONV TOP_DEPTH_CONV [bth] (hd(hyp th1)) in
      SIMPLE_CHOOSE f' (PROVE_HYP (UNDISCH(snd(EQ_IMP_RULE th2))) th1) in
    let pinstantiate_casewise_recursion def =
      try PART_MATCH I EXISTS_REFL def with Failure _ ->
      let f,bod = dest_exists def in
      let cjs = conjuncts bod in
      let eqs = map (snd o strip_forall) cjs in
      let lefts,rights = unzip(map dest_eq eqs) in
      let arglists = map (snd o strip_comb) lefts in
      let parms0 = freesl(unions arglists) in
      let parms = if parms0 <> [] then parms0 else [genvar aty] in
      let parm = end_itlist (curry mk_pair) parms in
      let ss = map (fun a -> mk_gabs(parm,end_itlist (curry mk_pair) a))
                   arglists
      and ts = map (fun a -> mk_abs(f,mk_gabs(parm,a))) rights in
      let clauses = mk_flist(map2 (curry mk_pair) ss ts) in
      let pth = ISPEC clauses RECURSION_SUPERADMISSIBLE in
      let FIDDLE_CONV =
        (LAND_CONV o LAND_CONV o BINDER_CONV o RAND_CONV o LAND_CONV o
         GABS_CONV o RATOR_CONV o LAND_CONV o ABS_CONV) in
      let th0 = UNDISCH(CONV_RULE(FIDDLE_CONV(LAMBDA_PAIR_CONV parms)) pth) in
      let th1 = EQ_MP (GEN_ALPHA_CONV f (concl th0)) th0 in
      let rewr_forall_th = REWR_CONV(FORALL_PAIR_CONV parm parms) in
      let th2 = CONV_RULE (BINDER_CONV
                    (LAND_CONV(GABS_CONV rewr_forall_th) THENC
                     EXPAND_PAIRED_ALL_CONV)) th1 in
      let f2,bod2 = dest_exists(concl th2) in
      let ths3 = map
       (CONV_RULE (COMB2_CONV (funpow 2 RAND_CONV GEN_BETA_CONV)
                  (RATOR_CONV BETA_CONV THENC GEN_BETA_CONV)) o SPEC_ALL)
       (CONJUNCTS(ASSUME bod2)) in
      let ths4 = map2
       (fun th t -> let avs,tbod = strip_forall t in
                    itlist GEN avs (PART_MATCH I th tbod)) ths3 cjs in
      let th5 = SIMPLE_EXISTS f (end_itlist CONJ ths4) in
      let th6 = PROVE_HYP th2 (SIMPLE_CHOOSE f th5) in
      let th7 =
       (RAND_CONV(COMB2_CONV
            (RAND_CONV (LAND_CONV (GABS_CONV(BINDER_CONV
                     (BINDER_CONV(rewr_forall_th) THENC rewr_forall_th)))))
            (LAND_CONV (funpow 2 GABS_CONV(BINDER_CONV
                     (BINDER_CONV(rewr_forall_th) THENC
                      rewr_forall_th))))) THENC
        ELIM_LISTOPS_CONV) (hd(hyp th6)) in
      let th8 = PROVE_HYP (UNDISCH(snd(EQ_IMP_RULE th7))) th6 in
      let wfasm,cdasm = dest_conj(hd(hyp th8)) in
      let th9 = PROVE_HYP (CONJ (ASSUME wfasm) (ASSUME cdasm)) th8 in
      let th10 = SIMPLIFY_WELLDEFINEDNESS_CONV cdasm in
      let th11 = PROVE_HYP (UNDISCH(snd(EQ_IMP_RULE th10))) th9 in
      PROVE_HYP TRUTH th11 in
    fun etm ->
      let eth = tuple_function_existence etm in
      let dtm = hd(hyp eth) in
      let dth = pinstantiate_casewise_recursion dtm in
      PROVE_HYP dth eth in

(* ------------------------------------------------------------------------- *)
(* Justify existence assertion and try to simplify/remove side-conditions.   *)
(* ------------------------------------------------------------------------- *)

  let pure_prove_recursive_function_exists =
    let break_down_admissibility th1 =
      if hyp th1 = [] then th1 else
      let def = concl th1 in
      let f,bod = dest_exists def in
      let cjs = conjuncts bod in
      let eqs = map (snd o strip_forall) cjs in
      let lefts,rights = unzip(map dest_eq eqs) in
      let arglists = map (snd o strip_comb) lefts in
      let parms0 = freesl(unions arglists) in
      let parms = if parms0 <> [] then parms0 else [genvar aty] in
      let wfasm = find is_exists (hyp th1) in
      let ord,bod = dest_exists wfasm in
      let SIMP_ADMISS_TAC =
        REWRITE_TAC[LET_DEF; LET_END_DEF] THEN
        REPEAT ADMISS_TAC THEN
        TRY(W(fun (asl,w) -> let v = fst(dest_forall w) in
                X_GEN_TAC v THEN
                MAP_EVERY
                  (fun v -> TRY(GEN_REWRITE_TAC I [FORALL_PAIR_THM]) THEN
                            X_GEN_TAC v)
                  parms THEN
                CONV_TAC(TOP_DEPTH_CONV GEN_BETA_CONV) THEN
                MAP_EVERY (fun v -> SPEC_TAC(v,v)) (rev parms @ [v]))) THEN
        PURE_REWRITE_TAC[FORALL_SIMP] THEN
        W(fun (asl,w) -> MAP_EVERY (fun t -> SPEC_TAC(t,t))
                                   (subtract (frees w) [ord])) THEN
        W(fun (asl,w) -> ACCEPT_TAC(ASSUME w)) in
      let th2 = prove(bod,SIMP_ADMISS_TAC) in
      let th3 = SIMPLE_EXISTS ord th2 in
      let allasms = hyp th3 and wfasm = lhand(concl th2) in
      let th4 = ASSUME(list_mk_conj(wfasm::subtract allasms [wfasm])) in
      let th5 = SIMPLE_CHOOSE ord (itlist PROVE_HYP (CONJUNCTS th4) th3) in
      PROVE_HYP th5 th1 in
    fun dtm ->
      let th =  break_down_admissibility(instantiate_casewise_recursion dtm) in
      if concl th = dtm then th
      else failwith "prove_general_recursive_function_exists: sanity" in

(* ------------------------------------------------------------------------- *)
(* Same, but attempt to prove the wellfoundedness hyp by good guesses.       *)
(* ------------------------------------------------------------------------- *)

  let prove_general_recursive_function_exists =
    let prove_depth_measure_exists =
      let num_ty = `:num` in
      fun tyname ->
        let _,_,sth = assoc tyname (!inductive_type_store) in
        let ty,zty = dest_fun_ty
         (type_of(fst(dest_exists(snd(strip_forall(concl sth)))))) in
        let rth = INST_TYPE [num_ty,zty] sth in
        let avs,bod = strip_forall(concl rth) in
        let ev,cbod = dest_exists bod in
        let process_clause k t =
          let avs,eq = strip_forall t in
          let l,r = dest_eq eq in
          let fn,cargs = dest_comb l in
          let con,args = strip_comb cargs in
          let bargs = filter (fun t -> type_of t = ty) args in
          let r' = list_mk_binop `(+):num->num->num`
                    (mk_small_numeral k :: map (curry mk_comb fn) bargs) in
          list_mk_forall(avs,mk_eq(l,r')) in
        let cjs = conjuncts cbod in
        let def = map2 process_clause (1--length cjs) cjs in
        prove_recursive_functions_exist sth (list_mk_conj def) in
    let INDUCTIVE_MEASURE_THEN tac (asl,w) =
      let ev,bod = dest_exists w in
      let ty = fst(dest_type(fst(dest_fun_ty(type_of ev)))) in
      let th = prove_depth_measure_exists ty in
      let ev',bod' = dest_exists(concl th) in
      let th' = INST_TYPE(type_match (type_of ev') (type_of ev) []) th in
      (MP_TAC th' THEN MATCH_MP_TAC MONO_EXISTS THEN
       GEN_TAC THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN tac) (asl,w) in
    let CONSTANT_MEASURE_THEN =
      let one_tm = `1` in
      fun tac (asl,w) ->
        let ev,bod = dest_exists w in
        let ty = fst(dest_fun_ty(type_of ev)) in
        (EXISTS_TAC(mk_abs(genvar ty,one_tm)) THEN tac) (asl,w) in
    let GUESS_MEASURE_THEN tac =
      (EXISTS_TAC `\n. n + 1` THEN tac) ORELSE
      (INDUCTIVE_MEASURE_THEN tac) ORELSE
      CONSTANT_MEASURE_THEN tac in
    let pth_lexleft = prove
     (`(?r. WF(r) /\
            ?s. WF(s) /\
                P(\(x1,y1) (x2,y2). r x1 x2 \/ (x1 = x2) /\ s y1 y2))
       ==> ?t:A#B->A#B->bool. WF(t) /\ P t`,
      REPEAT STRIP_TAC THEN EXISTS_TAC
       `\(x1:A,y1:B) (x2:A,y2:B). r x1 x2 \/ (x1 = x2) /\ s y1 y2` THEN
      ASM_SIMP_TAC[WF_LEX]) in
    let pth_lexright = prove
     (`(?r. WF(r) /\
            ?s. WF(s) /\
                P(\(x1,y1) (x2,y2). r y1 y2 \/ (y1 = y2) /\ s x1 x2))
       ==> ?t:A#B->A#B->bool. WF(t) /\ P t`,
      REPEAT STRIP_TAC THEN
      EXISTS_TAC `\u:A#B v:A#B.
                    (\(x1:B,y1:A) (x2:B,y2:A). r x1 x2 \/ (x1 = x2) /\ s y1 y2)
                     ((\(a,b). b,a) u) ((\(a,b). b,a) v)` THEN
      ASM_SIMP_TAC[ISPEC `\(a,b). b,a` WF_MEASURE_GEN; WF_LEX; ETA_AX] THEN
      FIRST_X_ASSUM(fun th -> MP_TAC th THEN
                              MATCH_MP_TAC EQ_IMP THEN
                              AP_TERM_TAC) THEN
      REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM]) in
    let pth_measure = prove
     (`(?m:A->num. P(MEASURE m)) ==> ?r:A->A->bool. WF(r) /\ P r`,
      MESON_TAC[WF_MEASURE]) in
    let rec GUESS_WF_THEN tac (asl,w) =
     ((MATCH_MP_TAC pth_lexleft THEN GUESS_WF_THEN (GUESS_WF_THEN tac)) ORELSE
      (MATCH_MP_TAC pth_lexright THEN GUESS_WF_THEN (GUESS_WF_THEN tac)) ORELSE
      (MATCH_MP_TAC pth_measure THEN
       REWRITE_TAC[MEASURE; MEASURE_LE] THEN
       REWRITE_TAC[FORALL_PAIR_THM] THEN
       GUESS_MEASURE_THEN tac)) (asl,w) in
    let PRE_GUESS_TAC =
      CONV_TAC(BINDER_CONV(DEPTH_BINOP_CONV `(/\)`
       (TRY_CONV SIMPLIFY_WELLDEFINEDNESS_CONV THENC
        TRY_CONV FORALL_UNWIND_CONV))) in
    let GUESS_ORDERING_TAC =
      let false_tm = `\x:A y:A. F` in
      W(fun (asl,w) ->
            let ty = fst(dest_fun_ty(type_of(fst(dest_exists w)))) in
            EXISTS_TAC(inst [ty,aty] false_tm) THEN
            REWRITE_TAC[WF_FALSE] THEN NO_TAC) ORELSE
      GUESS_WF_THEN
       (REWRITE_TAC[FORALL_PAIR_THM] THEN ARITH_TAC) in
    fun etm ->
      let th = pure_prove_recursive_function_exists etm in
      try let wtm = find is_exists (hyp th) in
          let wth = prove(wtm,PRE_GUESS_TAC THEN GUESS_ORDERING_TAC) in
          PROVE_HYP wth th
      with Failure _ -> th in

  instantiate_casewise_recursion,
  pure_prove_recursive_function_exists,
  prove_general_recursive_function_exists;;

(* ------------------------------------------------------------------------- *)
(* Simple "define" function.                                                 *)
(* ------------------------------------------------------------------------- *)

let define =
  let close_definition_clauses tm =
    let avs,bod = strip_forall tm in
    let cjs = conjuncts bod in
    let fs =
      try map (repeat rator o lhs o snd o strip_forall) cjs
      with Failure _ -> failwith "close_definition_clauses: non-equation" in
    if length (setify fs) <> 1
    then failwith "close_definition_clauses: defining multiple functions" else
    let f = hd fs in
    if mem f avs then failwith "close_definition_clauses: fn quantified" else
    let do_clause t =
      let lvs,bod = strip_forall t in
      let fvs = subtract (frees(lhs bod)) (f::lvs) in
      SPECL fvs (ASSUME(list_mk_forall(fvs,t))) in
    let ths = map do_clause cjs in
    let ajs = map (hd o hyp) ths in
    let th = ASSUME(list_mk_conj ajs) in
    f,itlist GEN avs (itlist PROVE_HYP (CONJUNCTS th) (end_itlist CONJ ths)) in
  fun tm ->
    let tm' = snd(strip_forall tm) in
    try let th,th' = tryfind (fun th -> th,PART_MATCH I th tm')
                             (!the_definitions) in
        if can (PART_MATCH I th') (concl th) then
         (warn true "Benign redefinition"; th')
        else failwith ""
    with Failure _ ->
      let f,th = close_definition_clauses tm in
      let etm = mk_exists(f,hd(hyp th)) in
      let th1 = prove_general_recursive_function_exists etm in
      let th2 = new_specification[fst(dest_var f)] th1 in
      let g = mk_mconst(dest_var f) in
      let th3 = PROVE_HYP th2 (INST [g,f] th) in
      the_definitions := th3::(!the_definitions); th3;;