This file is indexed.

/usr/share/hol-light/bool.ml is in hol-light 20170706-0ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
(* ========================================================================= *)
(* Boolean theory including (intuitionistic) defs of logical connectives.    *)
(*                                                                           *)
(*       John Harrison, University of Cambridge Computer Laboratory          *)
(*                                                                           *)
(*            (c) Copyright, University of Cambridge 1998                    *)
(*              (c) Copyright, John Harrison 1998-2007                       *)
(* ========================================================================= *)

needs "equal.ml";;

(* ------------------------------------------------------------------------- *)
(* Set up parse status of basic and derived logical constants.               *)
(* ------------------------------------------------------------------------- *)

parse_as_prefix "~";;

parse_as_binder "\\";;
parse_as_binder "!";;
parse_as_binder "?";;
parse_as_binder "?!";;

parse_as_infix ("==>",(4,"right"));;
parse_as_infix ("\\/",(6,"right"));;
parse_as_infix ("/\\",(8,"right"));;

(* ------------------------------------------------------------------------- *)
(* Set up more orthodox notation for equations and equivalence.              *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("<=>",(2,"right"));;
override_interface ("<=>",`(=):bool->bool->bool`);;
parse_as_infix("=",(12,"right"));;

(* ------------------------------------------------------------------------- *)
(* Special syntax for Boolean equations (IFF).                               *)
(* ------------------------------------------------------------------------- *)

let is_iff tm =
  match tm with
    Comb(Comb(Const("=",Tyapp("fun",[Tyapp("bool",[]);_])),l),r) -> true
  | _ -> false;;

let dest_iff tm =
  match tm with
    Comb(Comb(Const("=",Tyapp("fun",[Tyapp("bool",[]);_])),l),r) -> (l,r)
  | _ -> failwith "dest_iff";;

let mk_iff =
  let eq_tm = `(<=>)` in
  fun (l,r) -> mk_comb(mk_comb(eq_tm,l),r);;

(* ------------------------------------------------------------------------- *)
(* Rule allowing easy instantiation of polymorphic proformas.                *)
(* ------------------------------------------------------------------------- *)

let PINST tyin tmin =
  let iterm_fn = INST (map (I F_F (inst tyin)) tmin)
  and itype_fn = INST_TYPE tyin in
  fun th -> try iterm_fn (itype_fn th)
            with Failure _ -> failwith "PINST";;

(* ------------------------------------------------------------------------- *)
(* Useful derived deductive rule.                                            *)
(* ------------------------------------------------------------------------- *)

let PROVE_HYP ath bth =
  if exists (aconv (concl ath)) (hyp bth)
  then EQ_MP (DEDUCT_ANTISYM_RULE ath bth) ath
  else bth;;

(* ------------------------------------------------------------------------- *)
(* Rules for T                                                               *)
(* ------------------------------------------------------------------------- *)

let T_DEF = new_basic_definition
 `T = ((\p:bool. p) = (\p:bool. p))`;;

let TRUTH = EQ_MP (SYM T_DEF) (REFL `\p:bool. p`);;

let EQT_ELIM th =
  try EQ_MP (SYM th) TRUTH
  with Failure _ -> failwith "EQT_ELIM";;

let EQT_INTRO =
  let t = `t:bool` in
  let pth =
    let th1 = DEDUCT_ANTISYM_RULE (ASSUME t) TRUTH in
    let th2 = EQT_ELIM(ASSUME(concl th1)) in
    DEDUCT_ANTISYM_RULE th2 th1 in
  fun th -> EQ_MP (INST[concl th,t] pth) th;;

(* ------------------------------------------------------------------------- *)
(* Rules for /\                                                              *)
(* ------------------------------------------------------------------------- *)

let AND_DEF = new_basic_definition
 `(/\) = \p q. (\f:bool->bool->bool. f p q) = (\f. f T T)`;;

let mk_conj = mk_binary "/\\";;
let list_mk_conj = end_itlist (curry mk_conj);;

let CONJ =
  let f = `f:bool->bool->bool`
  and p = `p:bool`
  and q = `q:bool` in
  let pth1 =
    let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM AND_DEF p) in
    let th2 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM th1 q) in
    let th3 = EQ_MP th2 (ASSUME(mk_conj(p,q))) in
    EQT_ELIM(BETA_RULE (AP_THM th3 `\(p:bool) (q:bool). q`))
  and pth2 =
    let pth = ASSUME p
    and qth = ASSUME q in
    let th1 = MK_COMB(AP_TERM f (EQT_INTRO pth),EQT_INTRO qth) in
    let th2 = ABS f th1 in
    let th3 = BETA_RULE (AP_THM (AP_THM AND_DEF p) q) in
    EQ_MP (SYM th3) th2 in
  let pth = DEDUCT_ANTISYM_RULE pth1 pth2 in
  fun th1 th2 ->
    let th = INST [concl th1,p; concl th2,q] pth in
    EQ_MP (PROVE_HYP th1 th) th2;;

let CONJUNCT1 =
  let P = `P:bool` and Q = `Q:bool` in
  let pth =
    let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM AND_DEF P) in
    let th2 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM th1 Q) in
    let th3 = EQ_MP th2 (ASSUME(mk_conj(P,Q))) in
    EQT_ELIM(BETA_RULE (AP_THM th3 `\(p:bool) (q:bool). p`)) in
  fun th ->
    try let l,r = dest_conj(concl th) in
        PROVE_HYP th (INST [l,P; r,Q] pth)
    with Failure _ -> failwith "CONJUNCT1";;

let CONJUNCT2 =
  let P = `P:bool` and Q = `Q:bool` in
  let pth =
    let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM AND_DEF P) in
    let th2 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM th1 Q) in
    let th3 = EQ_MP th2 (ASSUME(mk_conj(P,Q))) in
    EQT_ELIM(BETA_RULE (AP_THM th3 `\(p:bool) (q:bool). q`)) in
  fun th ->
    try let l,r = dest_conj(concl th) in
        PROVE_HYP th (INST [l,P; r,Q] pth)
    with Failure _ -> failwith "CONJUNCT2";;

let CONJ_PAIR th =
  try CONJUNCT1 th,CONJUNCT2 th
  with Failure _ -> failwith "CONJ_PAIR: Not a conjunction";;

let CONJUNCTS = striplist CONJ_PAIR;;

(* ------------------------------------------------------------------------- *)
(* Rules for ==>                                                             *)
(* ------------------------------------------------------------------------- *)

let IMP_DEF = new_basic_definition
  `(==>) = \p q. p /\ q <=> p`;;

let mk_imp = mk_binary "==>";;

let MP =
  let p = `p:bool` and q = `q:bool` in
  let pth =
    let th1 = BETA_RULE (AP_THM (AP_THM IMP_DEF p) q)
    and th2 = CONJ (ASSUME p) (ASSUME q)
    and th3 = CONJUNCT1(ASSUME(mk_conj(p,q))) in
    EQ_MP (SYM th1) (DEDUCT_ANTISYM_RULE th2 th3)
  and qth =
    let th1 = BETA_RULE (AP_THM (AP_THM IMP_DEF p) q) in
    let th2 = EQ_MP th1 (ASSUME(mk_imp(p,q))) in
    CONJUNCT2 (EQ_MP (SYM th2) (ASSUME p)) in
  let rth = DEDUCT_ANTISYM_RULE pth qth in
  fun ith th ->
    let ant,con = dest_imp (concl ith) in
    if aconv ant (concl th) then
      EQ_MP (PROVE_HYP th (INST [ant,p; con,q] rth)) ith
    else failwith "MP: theorems do not agree";;

let DISCH =
  let p = `p:bool`
  and q = `q:bool` in
  let pth = SYM(BETA_RULE (AP_THM (AP_THM IMP_DEF p) q)) in
  fun a th ->
    let th1 = CONJ (ASSUME a) th in
    let th2 = CONJUNCT1 (ASSUME (concl th1)) in
    let th3 = DEDUCT_ANTISYM_RULE th1 th2 in
    let th4 = INST [a,p; concl th,q] pth in
    EQ_MP th4 th3;;

let rec DISCH_ALL th =
  try DISCH_ALL (DISCH (hd (hyp th)) th)
  with Failure _ -> th;;

let UNDISCH th =
  try MP th (ASSUME(rand(rator(concl th))))
  with Failure _ -> failwith "UNDISCH";;

let rec UNDISCH_ALL th =
  if is_imp (concl th) then UNDISCH_ALL (UNDISCH th)
  else th;;

let IMP_ANTISYM_RULE =
  let p = `p:bool` and q = `q:bool` and imp_tm = `(==>)` in
  let pq = mk_imp(p,q) and qp = mk_imp(q,p) in
  let pth1,pth2 = CONJ_PAIR(ASSUME(mk_conj(pq,qp))) in
  let pth3 = DEDUCT_ANTISYM_RULE (UNDISCH pth2) (UNDISCH pth1) in
  let pth4 = DISCH_ALL(ASSUME q) and pth5 = ASSUME(mk_eq(p,q)) in
  let pth6 = CONJ (EQ_MP (SYM(AP_THM (AP_TERM imp_tm pth5) q)) pth4)
                  (EQ_MP (SYM(AP_TERM (mk_comb(imp_tm,q)) pth5)) pth4) in
  let pth = DEDUCT_ANTISYM_RULE pth6 pth3 in
  fun th1 th2 ->
    let p1,q1 = dest_imp(concl th1) in
    EQ_MP (INST [p1,p; q1,q] pth) (CONJ th1 th2);;

let ADD_ASSUM tm th = MP (DISCH tm th) (ASSUME tm);;

let EQ_IMP_RULE =
  let peq = `p <=> q` in
  let p,q = dest_iff peq in
  let pth1 = DISCH peq (DISCH p (EQ_MP (ASSUME peq) (ASSUME p)))
  and pth2 = DISCH peq (DISCH q (EQ_MP (SYM(ASSUME peq)) (ASSUME q))) in
  fun th -> let l,r = dest_iff(concl th) in
            MP (INST [l,p; r,q] pth1) th,MP (INST [l,p; r,q] pth2) th;;

let IMP_TRANS =
  let pq = `p ==> q`
  and qr = `q ==> r` in
  let p,q = dest_imp pq and r = rand qr in
  let pth =
    itlist DISCH [pq; qr; p] (MP (ASSUME qr) (MP (ASSUME pq) (ASSUME p))) in
  fun th1 th2 ->
        let x,y = dest_imp(concl th1)
        and y',z = dest_imp(concl th2) in
        if y <> y' then failwith "IMP_TRANS" else
        MP (MP (INST [x,p; y,q; z,r] pth) th1) th2;;

(* ------------------------------------------------------------------------- *)
(* Rules for !                                                               *)
(* ------------------------------------------------------------------------- *)

let FORALL_DEF = new_basic_definition
 `(!) = \P:A->bool. P = \x. T`;;

let mk_forall = mk_binder "!";;
let list_mk_forall(vs,bod) = itlist (curry mk_forall) vs bod;;

let SPEC =
  let P = `P:A->bool`
  and x = `x:A` in
  let pth =
    let th1 = EQ_MP(AP_THM FORALL_DEF `P:A->bool`) (ASSUME `(!)(P:A->bool)`) in
    let th2 = AP_THM (CONV_RULE BETA_CONV th1) `x:A` in
    let th3 = CONV_RULE (RAND_CONV BETA_CONV) th2 in
    DISCH_ALL (EQT_ELIM th3) in
  fun tm th ->
    try let abs = rand(concl th) in
        CONV_RULE BETA_CONV
         (MP (PINST [snd(dest_var(bndvar abs)),aty] [abs,P; tm,x] pth) th)
    with Failure _ -> failwith "SPEC";;

let SPECL tms th =
  try rev_itlist SPEC tms th
  with Failure _ -> failwith "SPECL";;

let SPEC_VAR th =
  let bv = variant (thm_frees th) (bndvar(rand(concl th))) in
  bv,SPEC bv th;;

let rec SPEC_ALL th =
  if is_forall(concl th) then SPEC_ALL(snd(SPEC_VAR th)) else th;;

let ISPEC t th =
  let x,_ = try dest_forall(concl th) with Failure _ ->
    failwith "ISPEC: input theorem not universally quantified" in
  let tyins = try type_match (snd(dest_var x)) (type_of t) [] with Failure _ ->
    failwith "ISPEC can't type-instantiate input theorem" in
  try SPEC t (INST_TYPE tyins th)
  with Failure _ -> failwith "ISPEC: type variable(s) free in assumptions";;

let ISPECL tms th =
  try if tms = [] then th else
      let avs = fst (chop_list (length tms) (fst(strip_forall(concl th)))) in
      let tyins = itlist2 type_match (map (snd o dest_var) avs)
                          (map type_of tms) [] in
      SPECL tms (INST_TYPE tyins th)
  with Failure _ -> failwith "ISPECL";;

let GEN =
  let pth = SYM(CONV_RULE (RAND_CONV BETA_CONV)
                          (AP_THM FORALL_DEF `P:A->bool`)) in
  fun x ->
    let qth = INST_TYPE[snd(dest_var x),aty] pth in
    let ptm = rand(rand(concl qth)) in
    fun th ->
        let th' = ABS x (EQT_INTRO th) in
        let phi = lhand(concl th') in
        let rth = INST[phi,ptm] qth in
        EQ_MP rth th';;

let GENL = itlist GEN;;

let GEN_ALL th =
  let asl,c = dest_thm th in
  let vars = subtract (frees c) (freesl asl) in
  GENL vars th;;

(* ------------------------------------------------------------------------- *)
(* Rules for ?                                                               *)
(* ------------------------------------------------------------------------- *)

let EXISTS_DEF = new_basic_definition
 `(?) = \P:A->bool. !q. (!x. P x ==> q) ==> q`;;

let mk_exists =  mk_binder "?";;
let list_mk_exists(vs,bod) =  itlist (curry mk_exists) vs bod;;

let EXISTS =
  let P = `P:A->bool` and x = `x:A` in
  let pth =
    let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM EXISTS_DEF P) in
    let th2 = SPEC `x:A` (ASSUME `!x:A. P x ==> Q`) in
    let th3 = DISCH `!x:A. P x ==> Q` (MP th2 (ASSUME `(P:A->bool) x`)) in
    EQ_MP (SYM th1) (GEN `Q:bool` th3) in
  fun (etm,stm) th ->
    try let qf,abs = dest_comb etm in
        let bth = BETA_CONV(mk_comb(abs,stm)) in
        let cth = PINST [type_of stm,aty] [abs,P; stm,x] pth in
        PROVE_HYP (EQ_MP (SYM bth) th) cth
    with Failure _ -> failwith "EXISTS";;

let SIMPLE_EXISTS v th =
  EXISTS (mk_exists(v,concl th),v) th;;

let CHOOSE =
  let P = `P:A->bool` and Q = `Q:bool` in
  let pth =
    let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM EXISTS_DEF P) in
    let th2 = SPEC `Q:bool` (UNDISCH(fst(EQ_IMP_RULE th1))) in
    DISCH_ALL (DISCH `(?) (P:A->bool)` (UNDISCH th2)) in
  fun (v,th1) th2 ->
    try let abs = rand(concl th1) in
        let bv,bod = dest_abs abs in
        let cmb = mk_comb(abs,v) in
        let pat = vsubst[v,bv] bod in
        let th3 = CONV_RULE BETA_CONV (ASSUME cmb) in
        let th4 = GEN v (DISCH cmb (MP (DISCH pat th2) th3)) in
        let th5 = PINST [snd(dest_var v),aty] [abs,P; concl th2,Q] pth in
        MP (MP th5 th4) th1
    with Failure _ -> failwith "CHOOSE";;

let SIMPLE_CHOOSE v th =
  CHOOSE(v,ASSUME (mk_exists(v,hd(hyp th)))) th;;

(* ------------------------------------------------------------------------- *)
(* Rules for \/                                                              *)
(* ------------------------------------------------------------------------- *)

let OR_DEF = new_basic_definition
 `(\/) = \p q. !r. (p ==> r) ==> (q ==> r) ==> r`;;

let mk_disj = mk_binary "\\/";;
let list_mk_disj = end_itlist (curry mk_disj);;

let DISJ1 =
  let P = `P:bool` and Q = `Q:bool` in
  let pth =
    let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM OR_DEF `P:bool`) in
    let th2 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM th1 `Q:bool`) in
    let th3 = MP (ASSUME `P ==> t`) (ASSUME `P:bool`) in
    let th4 = GEN `t:bool` (DISCH `P ==> t` (DISCH `Q ==> t` th3)) in
    EQ_MP (SYM th2) th4 in
  fun th tm ->
    try PROVE_HYP th (INST [concl th,P; tm,Q] pth)
    with Failure _ -> failwith "DISJ1";;

let DISJ2 =
  let P = `P:bool` and Q = `Q:bool` in
  let pth =
    let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM OR_DEF `P:bool`) in
    let th2 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM th1 `Q:bool`) in
    let th3 = MP (ASSUME `Q ==> t`) (ASSUME `Q:bool`) in
    let th4 = GEN `t:bool` (DISCH `P ==> t` (DISCH `Q ==> t` th3)) in
    EQ_MP (SYM th2) th4 in
  fun tm th ->
    try PROVE_HYP th (INST [tm,P; concl th,Q] pth)
    with Failure _ -> failwith "DISJ2";;

let DISJ_CASES =
  let P = `P:bool` and Q = `Q:bool` and R = `R:bool` in
  let pth =
    let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM OR_DEF `P:bool`) in
    let th2 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM th1 `Q:bool`) in
    let th3 = SPEC `R:bool` (EQ_MP th2 (ASSUME `P \/ Q`)) in
    UNDISCH (UNDISCH th3) in
  fun th0 th1 th2 ->
    try let c1 = concl th1 and c2 = concl th2 in
        if not (aconv c1 c2) then failwith "DISJ_CASES" else
        let l,r = dest_disj (concl th0) in
        let th = INST [l,P; r,Q; c1,R] pth in
        PROVE_HYP (DISCH r th2) (PROVE_HYP (DISCH l th1) (PROVE_HYP th0 th))
    with Failure _ -> failwith "DISJ_CASES";;

let SIMPLE_DISJ_CASES th1 th2 =
  DISJ_CASES (ASSUME(mk_disj(hd(hyp th1),hd(hyp th2)))) th1 th2;;

(* ------------------------------------------------------------------------- *)
(* Rules for negation and falsity.                                           *)
(* ------------------------------------------------------------------------- *)

let F_DEF = new_basic_definition
 `F = !p:bool. p`;;

let NOT_DEF = new_basic_definition
 `(~) = \p. p ==> F`;;

let mk_neg =
  let neg_tm = `(~)` in
  fun tm -> try mk_comb(neg_tm,tm)
            with Failure _ -> failwith "mk_neg";;

let NOT_ELIM =
  let P = `P:bool` in
  let pth = CONV_RULE(RAND_CONV BETA_CONV) (AP_THM NOT_DEF P) in
  fun th ->
    try EQ_MP (INST [rand(concl th),P] pth) th
    with Failure _ -> failwith "NOT_ELIM";;

let NOT_INTRO =
  let P = `P:bool` in
  let pth = SYM(CONV_RULE(RAND_CONV BETA_CONV) (AP_THM NOT_DEF P)) in
  fun th ->
    try EQ_MP (INST [rand(rator(concl th)),P] pth) th
    with Failure _ -> failwith "NOT_INTRO";;

let EQF_INTRO =
  let P = `P:bool` in
  let pth =
    let th1 = NOT_ELIM (ASSUME `~ P`)
    and th2 = DISCH `F` (SPEC P (EQ_MP F_DEF (ASSUME `F`))) in
    DISCH_ALL (IMP_ANTISYM_RULE th1 th2) in
  fun th ->
    try MP (INST [rand(concl th),P] pth) th
    with Failure _ -> failwith "EQF_INTRO";;

let EQF_ELIM =
  let P = `P:bool` in
  let pth =
    let th1 = EQ_MP (ASSUME `P = F`) (ASSUME `P:bool`) in
    let th2 = DISCH P (SPEC `F` (EQ_MP F_DEF th1)) in
    DISCH_ALL (NOT_INTRO th2) in
  fun th ->
    try MP (INST [rand(rator(concl th)),P] pth) th
    with Failure _ -> failwith "EQF_ELIM";;

let CONTR =
  let P = `P:bool` and f_tm = `F` in
  let pth = SPEC P (EQ_MP F_DEF (ASSUME `F`)) in
  fun tm th ->
    if concl th <> f_tm then failwith "CONTR"
    else PROVE_HYP th (INST [tm,P] pth);;

(* ------------------------------------------------------------------------- *)
(* Rules for unique existence.                                               *)
(* ------------------------------------------------------------------------- *)

let EXISTS_UNIQUE_DEF = new_basic_definition
 `(?!) = \P:A->bool. ((?) P) /\ (!x y. P x /\ P y ==> x = y)`;;

let mk_uexists = mk_binder "?!";;

let EXISTENCE =
  let P = `P:A->bool` in
  let pth =
    let th1 = CONV_RULE (RAND_CONV BETA_CONV) (AP_THM EXISTS_UNIQUE_DEF P) in
    let th2 = UNDISCH (fst(EQ_IMP_RULE th1)) in
    DISCH_ALL (CONJUNCT1 th2) in
  fun th ->
    try let abs = rand(concl th) in
        let ty = snd(dest_var(bndvar abs)) in
        MP (PINST [ty,aty] [abs,P] pth) th
    with Failure _ -> failwith "EXISTENCE";;