/usr/include/glusterfs/list.h is in glusterfs-common 3.13.2-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 | /*
Copyright (c) 2008-2012 Red Hat, Inc. <http://www.redhat.com>
This file is part of GlusterFS.
This file is licensed to you under your choice of the GNU Lesser
General Public License, version 3 or any later version (LGPLv3 or
later), or the GNU General Public License, version 2 (GPLv2), in all
cases as published by the Free Software Foundation.
*/
#ifndef _LLIST_H
#define _LLIST_H
struct list_head {
struct list_head *next;
struct list_head *prev;
};
#define INIT_LIST_HEAD(head) do { \
(head)->next = (head)->prev = head; \
} while (0)
static inline void
list_add (struct list_head *new, struct list_head *head)
{
new->prev = head;
new->next = head->next;
new->prev->next = new;
new->next->prev = new;
}
static inline void
list_add_tail (struct list_head *new, struct list_head *head)
{
new->next = head;
new->prev = head->prev;
new->prev->next = new;
new->next->prev = new;
}
/* This function will insert the element to the list in a order.
Order will be based on the compare function provided as a input.
If element to be inserted in ascending order compare should return:
0: if both the arguments are equal
>0: if first argument is greater than second argument
<0: if first argument is less than second argument */
static inline void
list_add_order (struct list_head *new, struct list_head *head,
int (*compare)(struct list_head *, struct list_head *))
{
struct list_head *pos = head->prev;
while ( pos != head ) {
if (compare(new, pos) >= 0)
break;
/* Iterate the list in the reverse order. This will have
better efficiency if the elements are inserted in the
ascending order */
pos = pos->prev;
}
list_add (new, pos);
}
static inline void
list_del (struct list_head *old)
{
old->prev->next = old->next;
old->next->prev = old->prev;
old->next = (void *)0xbabebabe;
old->prev = (void *)0xcafecafe;
}
static inline void
list_del_init (struct list_head *old)
{
old->prev->next = old->next;
old->next->prev = old->prev;
old->next = old;
old->prev = old;
}
static inline void
list_move (struct list_head *list, struct list_head *head)
{
list_del (list);
list_add (list, head);
}
static inline void
list_move_tail (struct list_head *list, struct list_head *head)
{
list_del (list);
list_add_tail (list, head);
}
static inline int
list_empty (struct list_head *head)
{
return (head->next == head);
}
static inline void
__list_splice (struct list_head *list, struct list_head *head)
{
(list->prev)->next = (head->next);
(head->next)->prev = (list->prev);
(head)->next = (list->next);
(list->next)->prev = (head);
}
static inline void
list_splice (struct list_head *list, struct list_head *head)
{
if (list_empty (list))
return;
__list_splice (list, head);
}
/* Splice moves @list to the head of the list at @head. */
static inline void
list_splice_init (struct list_head *list, struct list_head *head)
{
if (list_empty (list))
return;
__list_splice (list, head);
INIT_LIST_HEAD (list);
}
static inline void
__list_append (struct list_head *list, struct list_head *head)
{
(head->prev)->next = (list->next);
(list->next)->prev = (head->prev);
(head->prev) = (list->prev);
(list->prev)->next = head;
}
static inline void
list_append (struct list_head *list, struct list_head *head)
{
if (list_empty (list))
return;
__list_append (list, head);
}
/* Append moves @list to the end of @head */
static inline void
list_append_init (struct list_head *list, struct list_head *head)
{
if (list_empty (list))
return;
__list_append (list, head);
INIT_LIST_HEAD (list);
}
static inline int
list_is_last (struct list_head *list, struct list_head *head)
{
return (list->next == head);
}
static inline int
list_is_singular(struct list_head *head)
{
return !list_empty(head) && (head->next == head->prev);
}
/**
* list_replace - replace old entry by new one
* @old : the element to be replaced
* @new : the new element to insert
*
* If @old was empty, it will be overwritten.
*/
static inline void list_replace(struct list_head *old,
struct list_head *new)
{
new->next = old->next;
new->next->prev = new;
new->prev = old->prev;
new->prev->next = new;
}
static inline void list_replace_init(struct list_head *old,
struct list_head *new)
{
list_replace(old, new);
INIT_LIST_HEAD(old);
}
/**
* list_rotate_left - rotate the list to the left
* @head: the head of the list
*/
static inline void list_rotate_left (struct list_head *head)
{
struct list_head *first;
if (!list_empty (head)) {
first = head->next;
list_move_tail (first, head);
}
}
#define list_entry(ptr, type, member) \
((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member)))
#define list_first_entry(ptr, type, member) \
list_entry((ptr)->next, type, member)
#define list_last_entry(ptr, type, member) \
list_entry((ptr)->prev, type, member)
#define list_next_entry(pos, member) \
list_entry((pos)->member.next, typeof(*(pos)), member)
#define list_prev_entry(pos, member) \
list_entry((pos)->member.prev, typeof(*(pos)), member)
#define list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)
#define list_for_each_entry(pos, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member); \
&pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member))
#define list_for_each_entry_safe(pos, n, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member), \
n = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, typeof(*n), member))
#define list_for_each_entry_reverse(pos, head, member) \
for (pos = list_entry((head)->prev, typeof(*pos), member); \
&pos->member != (head); \
pos = list_entry(pos->member.prev, typeof(*pos), member))
#define list_for_each_entry_safe_reverse(pos, n, head, member) \
for (pos = list_entry((head)->prev, typeof(*pos), member), \
n = list_entry(pos->member.prev, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.prev, typeof(*n), member))
/*
* This list implementation has some advantages, but one disadvantage: you
* can't use NULL to check whether you're at the head or tail. Thus, the
* address of the head has to be an argument for these macros.
*/
#define list_next(ptr, head, type, member) \
(((ptr)->member.next == head) ? NULL \
: list_entry((ptr)->member.next, type, member))
#define list_prev(ptr, head, type, member) \
(((ptr)->member.prev == head) ? NULL \
: list_entry((ptr)->member.prev, type, member))
#endif /* _LLIST_H */
|