This file is indexed.

/usr/share/common-lisp/source/clx/dep-allegro.lisp is in cl-clx-sbcl 0.7.4.20160323-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
;;; -*- Mode: Lisp; Package: Xlib; Log: clx.log -*-

;; This file contains some of the system dependent code for CLX

;;;
;;;			 TEXAS INSTRUMENTS INCORPORATED
;;;				  P.O. BOX 2909
;;;			       AUSTIN, TEXAS 78769
;;;
;;; Copyright (C) 1987 Texas Instruments Incorporated.
;;;
;;; Permission is granted to any individual or institution to use, copy, modify,
;;; and distribute this software, provided that this complete copyright and
;;; permission notice is maintained, intact, in all copies and supporting
;;; documentation.
;;;
;;; Texas Instruments Incorporated provides this software "as is" without
;;; express or implied warranty.
;;;

(in-package :xlib)

(proclaim '(declaration array-register))

;;; The size of the output buffer.  Must be a multiple of 4.
(defparameter *output-buffer-size* 8192)

;;; Number of seconds to wait for a reply to a server request
(defparameter *reply-timeout* nil)

#-(or clx-overlapping-arrays (not clx-little-endian))
(progn
  (defconstant +word-0+ 0)
  (defconstant +word-1+ 1)

  (defconstant +long-0+ 0)
  (defconstant +long-1+ 1)
  (defconstant +long-2+ 2)
  (defconstant +long-3+ 3))

#-(or clx-overlapping-arrays clx-little-endian)
(progn
  (defconstant +word-0+ 1)
  (defconstant +word-1+ 0)

  (defconstant +long-0+ 3)
  (defconstant +long-1+ 2)
  (defconstant +long-2+ 1)
  (defconstant +long-3+ 0))

;;; Set some compiler-options for often used code

(eval-when (:compile-toplevel :load-toplevel :execute)
  (defconstant +buffer-speed+ #+clx-debugging 1 #-clx-debugging 3
    "Speed compiler option for buffer code.")
  (defconstant +buffer-safety+ #+clx-debugging 3 #-clx-debugging 0
    "Safety compiler option for buffer code.")
  (defconstant +buffer-debug+ #+clx-debugging 2 #-clx-debugging 1
    "Debug compiler option for buffer code>")
  (defun declare-bufmac ()
    `(declare (optimize
	       (speed ,+buffer-speed+)
	       (safety ,+buffer-safety+)
	       (debug ,+buffer-debug+))))
  ;; It's my impression that in lucid there's some way to make a
  ;; declaration called fast-entry or something that causes a function
  ;; to not do some checking on args. Sadly, we have no lucid manuals
  ;; here.  If such a declaration is available, it would be a good
  ;; idea to make it here when +buffer-speed+ is 3 and +buffer-safety+
  ;; is 0.
  (defun declare-buffun ()
    `(declare (optimize
	       (speed ,+buffer-speed+)
	       (safety ,+buffer-safety+)
	       (debug ,+buffer-debug+)))))

(declaim (inline card8->int8 int8->card8
		 card16->int16 int16->card16
		 card32->int32 int32->card32))

#-Genera
(progn

(defun card8->int8 (x)
  (declare (type card8 x))
  (declare (clx-values int8))
  #.(declare-buffun)
  (the int8 (if (logbitp 7 x)
		(the int8 (- x #x100))
	      x)))

(defun int8->card8 (x)
  (declare (type int8 x))
  (declare (clx-values card8))
  #.(declare-buffun)
  (the card8 (ldb (byte 8 0) x)))

(defun card16->int16 (x)
  (declare (type card16 x))
  (declare (clx-values int16))
  #.(declare-buffun)
  (the int16 (if (logbitp 15 x)
		 (the int16 (- x #x10000))
		 x)))

(defun int16->card16 (x)
  (declare (type int16 x))
  (declare (clx-values card16))
  #.(declare-buffun)
  (the card16 (ldb (byte 16 0) x)))

(defun card32->int32 (x)
  (declare (type card32 x))
  (declare (clx-values int32))
  #.(declare-buffun)
  (the int32 (if (logbitp 31 x)
		 (the int32 (- x #x100000000))
		 x)))

(defun int32->card32 (x)
  (declare (type int32 x))
  (declare (clx-values card32))
  #.(declare-buffun)
  (the card32 (ldb (byte 32 0) x)))

)

(declaim (inline aref-card8 aset-card8 aref-int8 aset-int8))

#+(or excl lcl3.0 clx-overlapping-arrays)
(declaim (inline aref-card16 aref-int16 aref-card32 aref-int32 aref-card29
		 aset-card16 aset-int16 aset-card32 aset-int32 aset-card29))

#+(and clx-overlapping-arrays (not Genera))
(progn

(defun aref-card16 (a i)
  (aref a i))

(defun aset-card16 (v a i)
  (setf (aref a i) v))

(defun aref-int16 (a i)
  (card16->int16 (aref a i)))

(defun aset-int16 (v a i)
  (setf (aref a i) (int16->card16 v))
  v)

(defun aref-card32 (a i)
  (aref a i))

(defun aset-card32 (v a i)
  (setf (aref a i) v))

(defun aref-int32 (a i)
  (card32->int32 (aref a i)))

(defun aset-int32 (v a i)
  (setf (aref a i) (int32->card32 v))
  v)

(defun aref-card29 (a i)
  (aref a i))

(defun aset-card29 (v a i)
  (setf (aref a i) v))

)

#+excl
(progn
  
(defun aref-card8 (a i)
  (declare (type buffer-bytes a)
	   (type array-index i))
  (declare (clx-values card8))
  #.(declare-buffun)
  (the card8 (sys:memref a #.(sys::mdparam 'comp::md-lvector-data0-norm) i
			 :unsigned-byte)))

(defun aset-card8 (v a i)
  (declare (type card8 v)
	   (type buffer-bytes a)
	   (type array-index i))
  #.(declare-buffun)
  (setf (sys:memref a #.(sys::mdparam 'comp::md-lvector-data0-norm) i
		    :unsigned-byte) v))

(defun aref-int8 (a i)
  (declare (type buffer-bytes a)
	   (type array-index i))
  (declare (clx-values int8))
  #.(declare-buffun)
  (the int8 (sys:memref a #.(sys::mdparam 'comp::md-lvector-data0-norm) i
			:signed-byte)))

(defun aset-int8 (v a i)
  (declare (type int8 v)
	   (type buffer-bytes a)
	   (type array-index i))
  #.(declare-buffun)
  (setf (sys:memref a #.(sys::mdparam 'comp::md-lvector-data0-norm) i
		    :signed-byte) v))

(defun aref-card16 (a i)
  (declare (type buffer-bytes a)
	   (type array-index i))
  (declare (clx-values card16))
  #.(declare-buffun)
  (the card16 (sys:memref a #.(sys::mdparam 'comp::md-lvector-data0-norm) i
			  :unsigned-word)))
  
(defun aset-card16 (v a i)
  (declare (type card16 v)
	   (type buffer-bytes a)
	   (type array-index i))
  #.(declare-buffun)
  (setf (sys:memref a #.(sys::mdparam 'comp::md-lvector-data0-norm) i
		    :unsigned-word) v))
  
(defun aref-int16 (a i)
  (declare (type buffer-bytes a)
	   (type array-index i))
  (declare (clx-values int16))
  #.(declare-buffun)
  (the int16 (sys:memref a #.(sys::mdparam 'comp::md-lvector-data0-norm) i
			 :signed-word)))
  
(defun aset-int16 (v a i)
  (declare (type int16 v)
	   (type buffer-bytes a)
	   (type array-index i))
  #.(declare-buffun)
  (setf (sys:memref a #.(sys::mdparam 'comp::md-lvector-data0-norm) i
		    :signed-word) v))
  
(defun aref-card32 (a i)
  (declare (type buffer-bytes a)
	   (type array-index i))
  (declare (clx-values card32))
  #.(declare-buffun)
  (the card32 (sys:memref a #.(sys::mdparam 'comp::md-lvector-data0-norm) i
			  :unsigned-long)))
    
(defun aset-card32 (v a i)
  (declare (type card32 v)
	   (type buffer-bytes a)
	   (type array-index i))
  #.(declare-buffun)
  (setf (sys:memref a #.(sys::mdparam 'comp::md-lvector-data0-norm) i
		    :unsigned-long) v))

(defun aref-int32 (a i)
  (declare (type buffer-bytes a)
	   (type array-index i))
  (declare (clx-values int32))
  #.(declare-buffun)
  (the int32 (sys:memref a #.(sys::mdparam 'comp::md-lvector-data0-norm) i
			 :signed-long)))
    
(defun aset-int32 (v a i)
  (declare (type int32 v)
	   (type buffer-bytes a)
	   (type array-index i))
  #.(declare-buffun)
  (setf (sys:memref a #.(sys::mdparam 'comp::md-lvector-data0-norm) i
		    :signed-long) v))

(defun aref-card29 (a i)
  (declare (type buffer-bytes a)
	   (type array-index i))
  (declare (clx-values card29))
  #.(declare-buffun)
  (the card29 (sys:memref a #.(sys::mdparam 'comp::md-lvector-data0-norm) i
			  :unsigned-long)))

(defun aset-card29 (v a i)
  (declare (type card29 v)
	   (type buffer-bytes a)
	   (type array-index i))
  #.(declare-buffun)
  (setf (sys:memref a #.(sys::mdparam 'comp::md-lvector-data0-norm) i
		    :unsigned-long) v))
  
)

(defsetf aref-card8 (a i) (v)
  `(aset-card8 ,v ,a ,i))

(defsetf aref-int8 (a i) (v)
  `(aset-int8 ,v ,a ,i))

(defsetf aref-card16 (a i) (v)
  `(aset-card16 ,v ,a ,i))

(defsetf aref-int16 (a i) (v)
  `(aset-int16 ,v ,a ,i))

(defsetf aref-card32 (a i) (v)
  `(aset-card32 ,v ,a ,i))

(defsetf aref-int32 (a i) (v)
  `(aset-int32 ,v ,a ,i))

(defsetf aref-card29 (a i) (v)
  `(aset-card29 ,v ,a ,i))

;;; Other random conversions

(defun rgb-val->card16 (value)
  ;; Short floats are good enough
  (declare (type rgb-val value))
  (declare (clx-values card16))
  #.(declare-buffun)
  ;; Convert VALUE from float to card16
  (the card16 (values (round (the rgb-val value) #.(/ 1.0s0 #xffff)))))

(defun card16->rgb-val (value) 
  ;; Short floats are good enough
  (declare (type card16 value))
  (declare (clx-values short-float))
  #.(declare-buffun)
  ;; Convert VALUE from card16 to float
  (the short-float (* (the card16 value) #.(/ 1.0s0 #xffff))))

(defun radians->int16 (value)
  ;; Short floats are good enough
  (declare (type angle value))
  (declare (clx-values int16))
  #.(declare-buffun)
  (the int16 (values (round (the angle value) #.(float (/ pi 180.0s0 64.0s0) 0.0s0)))))

(defun int16->radians (value)
  ;; Short floats are good enough
  (declare (type int16 value))
  (declare (clx-values short-float))
  #.(declare-buffun)
  (the short-float (* (the int16 value) #.(coerce (/ pi 180.0 64.0) 'short-float))))


#+(or cmu sbcl) (progn

;;; This overrides the (probably incorrect) definition in clx.lisp.  Since PI
;;; is irrational, there can't be a precise rational representation.  In
;;; particular, the different float approximations will always be /=.  This
;;; causes problems with type checking, because people might compute an
;;; argument in any precision.  What we do is discard all the excess precision
;;; in the value, and see if the protocol encoding falls in the desired range
;;; (64'ths of a degree.)
;;;
(deftype angle () '(satisfies anglep))

(defun anglep (x)
  (and (typep x 'real)
       (<= (* -360 64) (radians->int16 x) (* 360 64))))

)


;;-----------------------------------------------------------------------------
;; Character transformation
;;-----------------------------------------------------------------------------


;;; This stuff transforms chars to ascii codes in card8's and back.
;;; You might have to hack it a little to get it to work for your machine.

(declaim (inline char->card8 card8->char))

(macrolet ((char-translators ()
	     (let ((alist
		     `(#-lispm
		       ;; The normal ascii codes for the control characters.
		       ,@`((#\Return . 13)
			   (#\Linefeed . 10)
			   (#\Rubout . 127)
			   (#\Page . 12)
			   (#\Tab . 9)
			   (#\Backspace . 8)
			   (#\Newline . 10)
			   (#\Space . 32))
		       ;; One the lispm, #\Newline is #\Return, but we'd really like
		       ;; #\Newline to translate to ascii code 10, so we swap the
		       ;; Ascii codes for #\Return and #\Linefeed. We also provide
		       ;; mappings from the counterparts of these control characters
		       ;; so that the character mapping from the lisp machine
		       ;; character set to ascii is invertible.
		       #+lispm
		       ,@`((#\Return . 10)   (,(code-char  10) . ,(char-code #\Return))
			   (#\Linefeed . 13) (,(code-char  13) . ,(char-code #\Linefeed))
			   (#\Rubout . 127)  (,(code-char 127) . ,(char-code #\Rubout))
			   (#\Page . 12)     (,(code-char  12) . ,(char-code #\Page))
			   (#\Tab . 9)       (,(code-char   9) . ,(char-code #\Tab))
			   (#\Backspace . 8) (,(code-char   8) . ,(char-code #\Backspace))
			   (#\Newline . 10)  (,(code-char  10) . ,(char-code #\Newline))
			   (#\Space . 32)    (,(code-char  32) . ,(char-code #\Space)))
		       ;; The rest of the common lisp charater set with the normal
		       ;; ascii codes for them.
		       (#\! . 33) (#\" . 34) (#\# . 35) (#\$ . 36)
		       (#\% . 37) (#\& . 38) (#\' . 39) (#\( . 40)
		       (#\) . 41) (#\* . 42) (#\+ . 43) (#\, . 44)
		       (#\- . 45) (#\. . 46) (#\/ . 47) (#\0 . 48)
		       (#\1 . 49) (#\2 . 50) (#\3 . 51) (#\4 . 52)
		       (#\5 . 53) (#\6 . 54) (#\7 . 55) (#\8 . 56)
		       (#\9 . 57) (#\: . 58) (#\; . 59) (#\< . 60)
		       (#\= . 61) (#\> . 62) (#\? . 63) (#\@ . 64)
		       (#\A . 65) (#\B . 66) (#\C . 67) (#\D . 68)
		       (#\E . 69) (#\F . 70) (#\G . 71) (#\H . 72)
		       (#\I . 73) (#\J . 74) (#\K . 75) (#\L . 76)
		       (#\M . 77) (#\N . 78) (#\O . 79) (#\P . 80)
		       (#\Q . 81) (#\R . 82) (#\S . 83) (#\T . 84)
		       (#\U . 85) (#\V . 86) (#\W . 87) (#\X . 88)
		       (#\Y . 89) (#\Z . 90) (#\[ . 91) (#\\ . 92)
		       (#\] . 93) (#\^ . 94) (#\_ . 95) (#\` . 96)
		       (#\a . 97) (#\b . 98) (#\c . 99) (#\d . 100)
		       (#\e . 101) (#\f . 102) (#\g . 103) (#\h . 104)
		       (#\i . 105) (#\j . 106) (#\k . 107) (#\l . 108)
		       (#\m . 109) (#\n . 110) (#\o . 111) (#\p . 112)
		       (#\q . 113) (#\r . 114) (#\s . 115) (#\t . 116)
		       (#\u . 117) (#\v . 118) (#\w . 119) (#\x . 120)
		       (#\y . 121) (#\z . 122) (#\{ . 123) (#\| . 124)
		       (#\} . 125) (#\~ . 126))))
	       (cond ((dolist (pair alist nil)
			(when (not (= (char-code (car pair)) (cdr pair)))
			  (return t)))
		      `(progn
			 (defconstant *char-to-card8-translation-table*
				      ',(let ((array (make-array
						       (let ((max-char-code 255))
							 (dolist (pair alist)
							   (setq max-char-code
								 (max max-char-code
								      (char-code (car pair)))))
							 (1+ max-char-code))
						       :element-type 'card8)))
					  (dotimes (i (length array))
					    (setf (aref array i) (mod i 256)))
					  (dolist (pair alist)
					    (setf (aref array (char-code (car pair)))
						  (cdr pair)))
					  array))
			 (defconstant *card8-to-char-translation-table*
				      ',(let ((array (make-array 256)))
					  (dotimes (i (length array))
					    (setf (aref array i) (code-char i)))
					  (dolist (pair alist)
					    (setf (aref array (cdr pair)) (car pair)))
					  array))
			 #-Genera
			 (progn
  			   (defun char->card8 (char)
			     (declare (type base-char char))
			     #.(declare-buffun)
			     (the card8 (aref (the (simple-array card8 (*))
						   *char-to-card8-translation-table*)
					      (the array-index (char-code char)))))
			   (defun card8->char (card8)
			     (declare (type card8 card8))
			     #.(declare-buffun)
			     (the base-char
				  (or (aref (the simple-vector *card8-to-char-translation-table*)
					    card8)
				      (error "Invalid CHAR code ~D." card8))))
			   )
			 #+Genera
			 (progn
			   (defun char->card8 (char)
			     (declare lt:(side-effects reader reducible))
			     (aref *char-to-card8-translation-table* (char-code char)))
			   (defun card8->char (card8)
			     (declare lt:(side-effects reader reducible))
			     (aref *card8-to-char-translation-table* card8))
			   )
			 #-Minima
			 (dotimes (i 256)
			   (unless (= i (char->card8 (card8->char i)))
			     (warn "The card8->char mapping is not invertible through char->card8.  Info:~%~S"
				   (list i
					 (card8->char i)
					 (char->card8 (card8->char i))))
			     (return nil)))
			 #-Minima
			 (dotimes (i (length *char-to-card8-translation-table*))
			   (let ((char (code-char i)))
			     (unless (eql char (card8->char (char->card8 char)))
			       (warn "The char->card8 mapping is not invertible through card8->char.  Info:~%~S"
				     (list char
					   (char->card8 char)
					   (card8->char (char->card8 char))))
			       (return nil))))))
		     (t
		      `(progn
			 (defun char->card8 (char)
			   (declare (type base-char char))
			   #.(declare-buffun)
			   (the card8 (char-code char)))
			 (defun card8->char (card8)
			   (declare (type card8 card8))
			   #.(declare-buffun)
			   (the base-char (code-char card8)))
			 ))))))
  (char-translators))

;;-----------------------------------------------------------------------------
;; Process Locking
;;
;;	Common-Lisp doesn't provide process locking primitives, so we define
;;	our own here, based on Zetalisp primitives.  Holding-Lock is very
;;	similar to with-lock on The TI Explorer, and a little more efficient
;;	than with-process-lock on a Symbolics.
;;-----------------------------------------------------------------------------

;;; MAKE-PROCESS-LOCK: Creating a process lock.

#+excl
(defun make-process-lock (name)
  (mp:make-process-lock :name name))

;;; HOLDING-LOCK: Execute a body of code with a lock held.

;;; The holding-lock macro takes a timeout keyword argument.  EVENT-LISTEN
;;; passes its timeout to the holding-lock macro, so any timeout you want to
;;; work for event-listen you should do for holding-lock.

;; If you're not sharing DISPLAY objects within a multi-processing
;; shared-memory environment, this is sufficient

;;; HOLDING-LOCK for CMU Common Lisp.
;;;
;;; We are not multi-processing, but we use this macro to try to protect
;;; against re-entering request functions.  This can happen if an interrupt
;;; occurs and the handler attempts to use X over the same display connection.
;;; This can happen if the GC hooks are used to notify the user over the same
;;; display connection.  We inhibit GC notifications since display of them
;;; could cause recursive entry into CLX.
;;;

;;; HOLDING-LOCK for CMU Common Lisp with multi-processes.
;;;
#+excl
(defmacro holding-lock ((locator display &optional whostate &key timeout)
			&body body)
  (declare (ignore display))
  `(let (.hl-lock. .hl-obtained-lock. .hl-curproc.)
     (unwind-protect
	 (block .hl-doit.
	   (when (sys:scheduler-running-p) ; fast test for scheduler running
	     (setq .hl-lock. ,locator
		   .hl-curproc. mp::*current-process*)
	     (when (and .hl-curproc.	; nil if in process-wait fun
			(not (eq (mp::process-lock-locker .hl-lock.)
				 .hl-curproc.)))
	       ;; Then we need to grab the lock.
	       ,(if timeout
		    `(if (not (mp::process-lock .hl-lock. .hl-curproc.
						,whostate ,timeout))
			 (return-from .hl-doit. nil))
		  `(mp::process-lock .hl-lock. .hl-curproc.
				     ,@(when whostate `(,whostate))))
	       ;; There is an apparent race condition here.  However, there is
	       ;; no actual race condition -- our implementation of mp:process-
	       ;; lock guarantees that the lock will still be held when it
	       ;; returns, and no interrupt can happen between that and the
	       ;; execution of the next form.  -- jdi 2/27/91
	       (setq .hl-obtained-lock. t)))
	   ,@body)
       (if (and .hl-obtained-lock.
		;; Note -- next form added to allow error handler inside
		;; body to unlock the lock prematurely if it knows that
		;; the current process cannot possibly continue but will
		;; throw out (or is it throw up?).
		(eq (mp::process-lock-locker .hl-lock.) .hl-curproc.))
	   (mp::process-unlock .hl-lock. .hl-curproc.)))))

;;; WITHOUT-ABORTS

;;; If you can inhibit asynchronous keyboard aborts inside the body of this
;;; macro, then it is a good idea to do this.  This macro is wrapped around
;;; request writing and reply reading to ensure that requests are atomically
;;; written and replies are atomically read from the stream.

#+excl
(defmacro without-aborts (&body body)
  `(without-interrupts ,@body))
    
;;; PROCESS-BLOCK: Wait until a given predicate returns a non-NIL value.
;;; Caller guarantees that PROCESS-WAKEUP will be called after the predicate's
;;; value changes.

#+excl
(defun process-block (whostate predicate &rest predicate-args)
  (if (sys:scheduler-running-p)
      (apply #'mp::process-wait whostate predicate predicate-args)
      (or (apply predicate predicate-args)
	  (error "Program tried to wait with no scheduler."))))

;;; PROCESS-WAKEUP: Check some other process' wait function.

(declaim (inline process-wakeup))

#+excl
(defun process-wakeup (process)
  (let ((curproc mp::*current-process*))
    (when (and curproc process)
      (unless (mp::process-p curproc)
	(error "~s is not a process" curproc))
      (unless (mp::process-p process)
	(error "~s is not a process" process))
      (if (> (mp::process-priority process) (mp::process-priority curproc))
	  (mp::process-allow-schedule process)))))


;;; CURRENT-PROCESS: Return the current process object for input locking and
;;; for calling PROCESS-WAKEUP.

(declaim (inline current-process))

;;; Default return NIL, which is acceptable even if there is a scheduler.

#+excl
(defun current-process ()
  (and (sys:scheduler-running-p)
       mp::*current-process*))

;;; WITHOUT-INTERRUPTS -- provide for atomic operations.

;;; CONDITIONAL-STORE:

;; This should use GET-SETF-METHOD to avoid evaluating subforms multiple times.
;; It doesn't because CLtL doesn't pass the environment to GET-SETF-METHOD.
#-sbcl
(defmacro conditional-store (place old-value new-value)
  `(without-interrupts
     (cond ((eq ,place ,old-value)
	    (setf ,place ,new-value)
	    t))))

;;;----------------------------------------------------------------------------
;;; IO Error Recovery
;;;	All I/O operations are done within a WRAP-BUF-OUTPUT macro.
;;;	It prevents multiple mindless errors when the network craters.
;;;
;;;----------------------------------------------------------------------------

#-Genera
(defmacro wrap-buf-output ((buffer) &body body)
  ;; Error recovery wrapper
  `(unless (buffer-dead ,buffer)
     ,@body))

#-Genera
(defmacro wrap-buf-input ((buffer) &body body)
  (declare (ignore buffer))
  ;; Error recovery wrapper
  `(progn ,@body))


;;;----------------------------------------------------------------------------
;;; System dependent IO primitives
;;;	Functions for opening, reading writing forcing-output and closing 
;;;	the stream to the server.
;;;----------------------------------------------------------------------------

;;; OPEN-X-STREAM - create a stream for communicating to the appropriate X
;;; server


;;
;; Note that since we don't use the CL i/o facilities to do i/o, the display
;; input and output "stream" is really a file descriptor (fixnum).
;;
#+excl
(defun open-x-stream (host display protocol)
  (declare (ignore protocol)) ;; assume TCP
  (let ((stream (socket:make-socket :remote-host (string host)
				    :remote-port (+ *x-tcp-port* display)
				    :format :binary)))
    (if (streamp stream)
	stream
      (error "Cannot connect to server: ~A:~D" host display))))


;;; BUFFER-READ-DEFAULT - read data from the X stream


;;
;; Rewritten 10/89 to not use foreign function interface to do I/O.
;;
#+excl
(defun buffer-read-default (display vector start end timeout)
  (declare (type display display)
	   (type buffer-bytes vector)
	   (type array-index start end)
	   (type (or null (real 0 *)) timeout))
  #.(declare-buffun)
    
  (let* ((howmany (- end start))
	 (fd (display-input-stream display)))
    (declare (type array-index howmany))
    (or (cond ((fd-char-avail-p fd) nil)
	      ((and timeout (= timeout 0)) :timeout)
	      ((buffer-input-wait-default display timeout)))
	(fd-read-bytes fd vector start howmany))))


;;; WARNING:
;;;	CLX performance will suffer if your lisp uses read-byte for
;;;	receiving all data from the X Window System server.
;;;	You are encouraged to write a specialized version of
;;;	buffer-read-default that does block transfers.


;;; BUFFER-WRITE-DEFAULT - write data to the X stream

#+excl
(defun buffer-write-default (vector display start end)
  (declare (type buffer-bytes vector)
	   (type display display)
	   (type array-index start end))
  #.(declare-buffun)
  (let ((stream (display-output-stream display)))
    (unless (null stream)
      (write-sequence vector stream :start start :end end)))
  )
  
;;; WARNING:
;;;	CLX performance will be severely degraded if your lisp uses
;;;	write-byte to send all data to the X Window System server.
;;;	You are STRONGLY encouraged to write a specialized version
;;;	of buffer-write-default that does block transfers.

;;; buffer-force-output-default - force output to the X stream

#+excl
(defun buffer-force-output-default (display)
  ;; The default buffer force-output function for use with common-lisp streams
  (declare (type display display))
  (let ((stream (display-output-stream display)))
    (declare (type (or null stream) stream))
    (unless (null stream)
      (force-output stream))))


;;; BUFFER-CLOSE-DEFAULT - close the X stream

#+excl
(defun buffer-close-default (display &key abort)
  ;; The default buffer close function for use with common-lisp streams
  (declare (type display display))
  #.(declare-buffun)
  (let ((stream (display-output-stream display)))
    (declare (type (or null stream) stream))
    (unless (null stream)
      (close stream :abort abort))))


;;; BUFFER-INPUT-WAIT-DEFAULT - wait for for input to be available for the
;;; buffer.  This is called in read-input between requests, so that a process
;;; waiting for input is abortable when between requests.  Should return
;;; :TIMEOUT if it times out, NIL otherwise.

;;; The default implementation


;;
;; This is used so an 'eq' test may be used to find out whether or not we can
;; safely throw this process out of the CLX read loop.
;;
#+excl
(defparameter *read-whostate* "waiting for input from X server")

;;
;; Note that this function returns nil on error if the scheduler is running,
;; t on error if not.  This is ok since buffer-read will detect the error.
;;
#+excl
(defun buffer-input-wait-default (display timeout)
  (declare (type display display)
	   (type (or null (real 0 *)) timeout))
  (declare (clx-values timeout))
  (let ((fd (display-input-stream display)))
    (when (streamp fd)
      (cond ((fd-char-avail-p fd)
	     nil)
	    
	    ;; Otherwise no bytes were available on the socket
	    ((and timeout (= timeout 0))
	     ;; If there aren't enough and timeout == 0, timeout.
	     :timeout)
	  
	    ;; If the scheduler is running let it do timeouts.
	    ((sys:scheduler-running-p)
	     (if (not
		  (mp:wait-for-input-available fd :whostate *read-whostate*
					       :wait-function #'fd-char-avail-p
					       :timeout timeout))
		 (return-from buffer-input-wait-default :timeout))
	     )
	    
	    ;; Otherwise we have to handle timeouts by hand, and call select()
	    ;; to block until input is available.  Note we don't really handle
	    ;; the interaction of interrupts and (numberp timeout) here.  XX
	    (t
	     #+mswindows
	     (error "scheduler must be running to use CLX on MS Windows")
	     #-mswindows
	     (let ((res 0))
	       (declare (fixnum res))
	       (with-interrupt-checking-on
		(loop
		  (setq res (fd-wait-for-input fd (if (null timeout) 0
						    (truncate timeout))))
		  (cond ((plusp res)	; success
			 (return nil))
			((eq res 0)	; timeout
			 (return :timeout))
			((eq res -1)	; error
			 (return t))
			;; Otherwise we got an interrupt -- go around again.
			)))))))))

	   
;;; BUFFER-LISTEN-DEFAULT - returns T if there is input available for the
;;; buffer. This should never block, so it can be called from the scheduler.

;;; The default implementation is to just use listen.
#+excl 
#+(and excl clx-use-allegro-streams)
(defun buffer-listen-default (display)
  (declare (type display display))
  (let ((stream (display-input-stream display)))
    (declare (type (or null stream) stream))
    (if (null stream)
	t
      (listen stream))))

#+(and excl (not clx-use-allegro-streams))
(defun buffer-listen-default (display)
  (declare (type display display))
  (let ((fd (display-input-stream display)))
    (declare (type fixnum fd))
    (if (= fd -1)
	t
      (fd-char-avail-p fd))))


;;;----------------------------------------------------------------------------
;;; System dependent speed hacks
;;;----------------------------------------------------------------------------

;;
;; WITH-STACK-LIST is used by WITH-STATE as a memory saving feature.
;; If your lisp doesn't have stack-lists, and you're worried about
;; consing garbage, you may want to re-write this to allocate and
;; initialize lists from a resource.
;;
#-lispm
(defmacro with-stack-list ((var &rest elements) &body body)
  ;; SYNTAX: (WITH-STACK-LIST (var exp1 ... expN) body)
  ;; Equivalent to (LET ((var (MAPCAR #'EVAL '(exp1 ... expN)))) body)
  ;; except that the list produced by MAPCAR resides on the stack and
  ;; therefore DISAPPEARS when WITH-STACK-LIST is exited.
  `(let ((,var (list ,@elements)))
     (declare (type cons ,var)
	      #+clx-ansi-common-lisp (dynamic-extent ,var))
     ,@body))

#-lispm
(defmacro with-stack-list* ((var &rest elements) &body body)
  ;; SYNTAX: (WITH-STACK-LIST* (var exp1 ... expN) body)
  ;; Equivalent to (LET ((var (APPLY #'LIST* (MAPCAR #'EVAL '(exp1 ... expN))))) body)
  ;; except that the list produced by MAPCAR resides on the stack and
  ;; therefore DISAPPEARS when WITH-STACK-LIST is exited.
  `(let ((,var (list* ,@elements)))
     (declare (type cons ,var)
	      #+clx-ansi-common-lisp (dynamic-extent ,var))
     ,@body))

(declaim (inline buffer-replace))

#+excl
(defun buffer-replace (target-sequence source-sequence target-start
				       target-end &optional (source-start 0))
  (declare (type buffer-bytes target-sequence source-sequence)
	   (type array-index target-start target-end source-start)
	   (optimize (speed 3) (safety 0)))
  
  (let ((source-end (length source-sequence)))
    (declare (type array-index source-end))
    
    (excl:if* (and (eq target-sequence source-sequence)
		   (> target-start source-start))
       then (let ((nelts (min (- target-end target-start)
			      (- source-end source-start))))
	      (do ((target-index (+ target-start nelts -1) (1- target-index))
		   (source-index (+ source-start nelts -1) (1- source-index)))
		  ((= target-index (1- target-start)) target-sequence)
		(declare (type array-index target-index source-index))
		
		(setf (aref target-sequence target-index)
		  (aref source-sequence source-index))))
       else (do ((target-index target-start (1+ target-index))
		 (source-index source-start (1+ source-index)))
		((or (= target-index target-end) (= source-index source-end))
		 target-sequence)
	      (declare (type array-index target-index source-index))

	      (setf (aref target-sequence target-index)
		(aref source-sequence source-index))))))

#-lispm
(defmacro with-gcontext-bindings ((gc saved-state indexes ts-index temp-mask temp-gc)
				  &body body)
  (let ((local-state (gensym))
	(resets nil))
    (dolist (index indexes)
      (push `(setf (svref ,local-state ,index) (svref ,saved-state ,index))
	    resets))
    `(unwind-protect
	 (progn
	   ,@body)
       (let ((,local-state (gcontext-local-state ,gc)))
	 (declare (type gcontext-state ,local-state))
	 ,@resets
	 (setf (svref ,local-state ,ts-index) 0))
       (when ,temp-gc
	 (restore-gcontext-temp-state ,gc ,temp-mask ,temp-gc))
       (deallocate-gcontext-state ,saved-state))))

;;;----------------------------------------------------------------------------
;;; How much error detection should CLX do?
;;; Several levels are possible:
;;;
;;; 1. Do the equivalent of check-type on every argument.
;;; 
;;; 2. Simply report TYPE-ERROR.  This eliminates overhead of all the format
;;;    strings generated by check-type.
;;; 
;;; 3. Do error checking only on arguments that are likely to have errors
;;;    (like keyword names)
;;; 
;;; 4. Do error checking only where not doing so may dammage the envirnment
;;;    on a non-tagged machine (i.e. when storing into a structure that has
;;;    been passed in)
;;; 
;;; 5. No extra error detection code.  On lispm's, ASET may barf trying to
;;;    store a non-integer into a number array. 
;;; 
;;; How extensive should the error checking be?  For example, if the server
;;; expects a CARD16, is is sufficient for CLX to check for integer, or
;;; should it also check for non-negative and less than 65536?
;;;----------------------------------------------------------------------------
 
;; The +TYPE-CHECK?+ constant controls how much error checking is done.
;; Possible values are:
;;    NIL      - Don't do any error checking
;;    t        - Do the equivalent of checktype on every argument
;;    :minimal - Do error checking only where errors are likely

;;; This controls macro expansion, and isn't changable at run-time You will
;;; probably want to set this to nil if you want good performance at
;;; production time.
(defconstant +type-check?+
  #+(or Genera Minima CMU sbcl) nil
  #-(or Genera Minima CMU sbcl) t)

;; TYPE? is used to allow the code to do error checking at a different level from
;; the declarations.  It also does some optimizations for systems that don't have
;; good compiler support for TYPEP.  The definitions for CARD32, CARD16, INT16, etc.
;; include range checks.  You can modify TYPE? to do less extensive checking
;; for these types if you desire.

;;
;; ### This comment is a lie!  TYPE? is really also used for run-time type
;; dispatching, not just type checking.  -- Ram.

(defmacro type? (object type)
  #+(or cmu sbcl)
  `(typep ,object ,type)
  #-(or cmu sbcl)
  (if (not (constantp type))
      `(typep ,object ,type)
    (progn
      (setq type (eval type))
      #+(or Genera explorer Minima)
      (if +type-check?+
	  `(locally (declare (optimize safety)) (typep ,object ',type))
	`(typep ,object ',type))
      #-(or Genera explorer Minima)
      (let ((predicate (assoc type
			      '((drawable drawable-p) (window window-p)
				(pixmap pixmap-p) (cursor cursor-p)
				(font font-p) (gcontext gcontext-p)
				(colormap colormap-p) (null null)
				(integer integerp)))))
	(cond (predicate
	       `(,(second predicate) ,object))
	      ((eq type 'generalized-boolean)
	       't)			; Everything is a generalized-boolean.
	      (+type-check?+
	       `(locally (declare (optimize safety)) (typep ,object ',type)))
	      (t
	       `(typep ,object ',type)))))))

;; X-TYPE-ERROR is the function called for type errors.
;; If you want lots of checking, but are concerned about code size,
;; this can be made into a macro that ignores some parameters.

(defun x-type-error (object type &optional error-string)
  (x-error 'x-type-error
	   :datum object
	   :expected-type type
	   :type-string error-string))


;;-----------------------------------------------------------------------------
;; Error handlers
;;    Hack up KMP error signaling using zetalisp until the real thing comes 
;;    along
;;-----------------------------------------------------------------------------

(defun default-error-handler (display error-key &rest key-vals
			      &key asynchronous &allow-other-keys)
  (declare (type generalized-boolean asynchronous)
	   (dynamic-extent key-vals))
  ;; The default display-error-handler.
  ;; It signals the conditions listed in the DISPLAY file.
  (if asynchronous
      (apply #'x-cerror "Ignore" error-key :display display :error-key error-key key-vals)
      (apply #'x-error error-key :display display :error-key error-key key-vals)))

#+(or clx-ansi-common-lisp excl lcl3.0 (and CMU mp))
(defun x-error (condition &rest keyargs)
  (declare (dynamic-extent keyargs))
  (apply #'error condition keyargs))

#+(or clx-ansi-common-lisp excl lcl3.0 CMU)
(defun x-cerror (proceed-format-string condition &rest keyargs)
  (declare (dynamic-extent keyargs))
  (apply #'cerror proceed-format-string condition keyargs))

;;; X-ERROR for CMU Common Lisp
;;;
;;; We detect a couple condition types for which we disable event handling in
;;; our system.  This prevents going into the debugger or returning to a
;;; command prompt with CLX repeatedly seeing the same condition.  This occurs
;;; because CMU Common Lisp provides for all events (that is, X, input on file
;;; descriptors, Mach messages, etc.) to come through one routine anyone can
;;; use to wait for input.
;;;
#+(and CMU (not mp)) 
(defun x-error (condition &rest keyargs)
  (let ((condx (apply #'make-condition condition keyargs)))
    (when (eq condition 'closed-display)
      (let ((disp (closed-display-display condx)))
	(warn "Disabled event handling on ~S." disp)
	(ext::disable-clx-event-handling disp)))
    (error condx)))

#-(or lispm ansi-common-lisp excl lcl3.0 CMU sbcl)
(defun x-error (condition &rest keyargs)
  (error "X-Error: ~a"
	 (princ-to-string (apply #'make-condition condition keyargs))))

#-(or lispm clx-ansi-common-lisp excl lcl3.0 CMU sbcl)
(defun x-cerror (proceed-format-string condition &rest keyargs)
  (cerror proceed-format-string "X-Error: ~a"
	 (princ-to-string (apply #'make-condition condition keyargs))))

;; version 15 of Pitman error handling defines the syntax for define-condition to be:
;; DEFINE-CONDITION name (parent-type) [({slot}*) {option}*]
;; Where option is one of: (:documentation doc-string) (:conc-name symbol-or-string)
;; or (:report exp)

#+(and excl (not clx-ansi-common-lisp))
(defmacro define-condition (name parent-types &optional slots &rest args)
  `(excl::define-condition
     ,name (,(first parent-types))
     ,(mapcar #'(lambda (slot) (if (consp slot) (car slot) slot))
	      slots)
     ,@args))

#+(or clx-ansi-common-lisp excl lcl3.0 CMU sbcl)
(define-condition x-error (error) ())



;;-----------------------------------------------------------------------------
;;  HOST hacking
;;-----------------------------------------------------------------------------

#+(and allegro-version>= (version>= 5 0))
(eval-when (compile eval load)
  #+(version>= 6 0)
  (progn
    (require :sock)
    #-(version>= 7 0)
    (require :gray-compat))
  #-(version>= 6 0)
  (require :sock))

#+(and allegro-version>= (version>= 5 0))
(defun host-address (host &optional (family :internet))
  (ecase family
    (:internet
     (cons :internet
	   (multiple-value-list
	    (socket::ipaddr-to-dotted (socket::lookup-hostname host)
				      :values t))))))

#+(and allegro-version>= (not (version>= 5 0)))
(defun host-address (host &optional (family :internet))
  ;; Return a list whose car is the family keyword (:internet :DECnet :Chaos)
  ;; and cdr is a list of network address bytes.
  (declare (type stringable host)
	   (type (or null (member :internet :decnet :chaos) card8) family))
  (declare (clx-values list))
  (labels ((no-host-error ()
	     (error "Unknown host ~S" host))
	   (no-address-error ()
	     (error "Host ~S has no ~S address" host family)))
    (let ((hostent 0))
      (unwind-protect
	   (progn
	     (setf hostent (ipc::gethostbyname (string host)))
	     (when (zerop hostent)
	       (no-host-error))
	     (ecase family
	       ((:internet nil 0)
		(unless (= (ipc::hostent-addrtype hostent) 2)
		  (no-address-error))
		(assert (= (ipc::hostent-length hostent) 4))
		(let ((addr (ipc::hostent-addr hostent)))
		   (when (or (member comp::.target.
				     '(:hp :sgi4d :sony :dec3100)
				     :test #'eq)
			     (probe-file "/lib/ld.so"))
		     ;; BSD 4.3 based systems require an extra indirection
		     (setq addr (si:memref-int addr 0 0 :unsigned-long)))
		  (list :internet
			(si:memref-int addr 0 0 :unsigned-byte)
			(si:memref-int addr 1 0 :unsigned-byte)
			(si:memref-int addr 2 0 :unsigned-byte)
			(si:memref-int addr 3 0 :unsigned-byte))))))
	(ff:free-cstruct hostent)))))


;;-----------------------------------------------------------------------------
;; Whether to use closures for requests or not.
;;-----------------------------------------------------------------------------

;;; If this macro expands to non-NIL, then request and locking code is
;;; compiled in a much more compact format, as the common code is shared, and
;;; the specific code is built into a closure that is funcalled by the shared
;;; code.  If your compiler makes efficient use of closures then you probably
;;; want to make this expand to T, as it makes the code more compact.

(defmacro use-closures ()
  #+(or lispm Minima) t
  #-(or lispm Minima) nil)

#-(or Genera Minima)
(defun clx-macroexpand (form env)
  (macroexpand form env))


;;-----------------------------------------------------------------------------
;; Resource stuff
;;-----------------------------------------------------------------------------


;;; Utilities 

(defun getenv (name)
  #+excl (sys:getenv name)
  )

(defun get-host-name ()
  "Return the same hostname as gethostname(3) would"
  ;; resources-pathname was using short-site-name for this purpose
  #+excl (short-site-name)
  )

(defun homedir-file-pathname (name)
  (and #-(or unix mach) (search "Unix" (software-type) :test #'char-equal)
       (merge-pathnames (user-homedir-pathname) (pathname name))))

;;; DEFAULT-RESOURCES-PATHNAME - The pathname of the resources file to load if
;;; a resource manager isn't running.

(defun default-resources-pathname ()
  (homedir-file-pathname ".Xdefaults"))

;;; RESOURCES-PATHNAME - The pathname of the resources file to load after the
;;; defaults have been loaded.

(defun resources-pathname ()
  (or (let ((string (getenv "XENVIRONMENT")))
	(and string
	     (pathname string)))
      (homedir-file-pathname
       (concatenate 'string ".Xdefaults-" (get-host-name)))))

;;; AUTHORITY-PATHNAME - The pathname of the authority file.

(defun authority-pathname ()
  (or (let ((xauthority (getenv "XAUTHORITY")))
	(and xauthority
	     (pathname xauthority)))
      (homedir-file-pathname ".Xauthority")))

;;; this particular defaulting behaviour is typical to most Unices, I think
#+unix
(defun get-default-display (&optional display-name)
  "Parse the argument DISPLAY-NAME, or the environment variable $DISPLAY
if it is NIL.  Display names have the format

  [protocol/] [hostname] : [:] displaynumber [.screennumber]

There are two special cases in parsing, to match that done in the Xlib
C language bindings

 - If the hostname is ``unix'' or the empty string, any supplied
   protocol is ignored and a connection is made using the :local
   transport.

 - If a double colon separates hostname from displaynumber, the
   protocol is assumed to be decnet.

Returns a list of (host display-number screen protocol)."
  (let* ((name (or display-name
		   (getenv "DISPLAY")
		   (error "DISPLAY environment variable is not set")))
	 (slash-i (or (position #\/ name) -1))
	 (colon-i (position #\: name :start (1+ slash-i)))
	 (decnet-colon-p (eql (elt name (1+ colon-i)) #\:))
	 (host (subseq name (1+ slash-i) colon-i))
	 (dot-i (and colon-i (position #\. name :start colon-i)))
	 (display (when colon-i
		    (parse-integer name
				   :start (if decnet-colon-p
					      (+ colon-i 2)
					      (1+ colon-i))
				   :end dot-i)))
	 (screen (when dot-i
		   (parse-integer name :start (1+ dot-i))))
	 (protocol
	  (cond ((or (string= host "") (string-equal host "unix")) :local)
		(decnet-colon-p :decnet)
		((> slash-i -1) (intern
				 (string-upcase (subseq name 0 slash-i))
				 :keyword))
		(t :internet))))
    (list host (or display 0) (or screen 0) protocol)))


;;-----------------------------------------------------------------------------
;; GC stuff
;;-----------------------------------------------------------------------------

(defun gc-cleanup ()
  (declare (special *event-free-list*
		    *pending-command-free-list*
		    *reply-buffer-free-lists*
		    *gcontext-local-state-cache*
		    *temp-gcontext-cache*))
  (setq *event-free-list* nil)
  (setq *pending-command-free-list* nil)
  (when (boundp '*reply-buffer-free-lists*)
    (fill *reply-buffer-free-lists* nil))
  (setq *gcontext-local-state-cache* nil)
  (setq *temp-gcontext-cache* nil)
  nil)



;;-----------------------------------------------------------------------------
;; WITH-STANDARD-IO-SYNTAX equivalent, used in (SETF WM-COMMAND)
;;-----------------------------------------------------------------------------

#-(or clx-ansi-common-lisp Genera CMU sbcl)
(defun with-standard-io-syntax-function (function)
  (declare #+lispm
	   (sys:downward-funarg function))
  (let ((*package* (find-package :user))
	(*print-array* t)
	(*print-base* 10)
	(*print-case* :upcase)
	(*print-circle* nil)
	(*print-escape* t)
	(*print-gensym* t)
	(*print-length* nil)
	(*print-level* nil)
	(*print-pretty* nil)
	(*print-radix* nil)
	(*read-base* 10)
	(*read-default-float-format* 'single-float)
	(*read-suppress* nil)
	)
    (funcall function)))

#-(or clx-ansi-common-lisp Genera CMU sbcl)
(defmacro with-standard-io-syntax (&body body)
  `(flet ((.with-standard-io-syntax-body. () ,@body))
     (with-standard-io-syntax-function #'.with-standard-io-syntax-body.)))


;;-----------------------------------------------------------------------------
;; DEFAULT-KEYSYM-TRANSLATE
;;-----------------------------------------------------------------------------

;;; If object is a character, char-bits are set from state.
;;;
;;; [the following isn't implemented (should it be?)]
;;; If object is a list, it is an alist with entries:
;;; (base-char [modifiers] [mask-modifiers])
;;; When MODIFIERS are specified, this character translation
;;; will only take effect when the specified modifiers are pressed.
;;; MASK-MODIFIERS can be used to specify a set of modifiers to ignore.
;;; When MASK-MODIFIERS is missing, all other modifiers are ignored.
;;; In ambiguous cases, the most specific translation is used.

#-(or (and clx-ansi-common-lisp (not lispm) (not allegro)) CMU sbcl)
(defun default-keysym-translate (display state object)
  (declare (type display display)
	   (type card16 state)
	   (type t object)
	   (clx-values t)
	   (special left-meta-keysym right-meta-keysym
		    left-super-keysym right-super-keysym
		    left-hyper-keysym right-hyper-keysym))
  (when (characterp object)
    (when (logbitp (position :control +state-mask-vector+) state)
      (setf (char-bit object :control) 1))
    (when (or (state-keysymp display state left-meta-keysym)
	      (state-keysymp display state right-meta-keysym))
      (setf (char-bit object :meta) 1))
    (when (or (state-keysymp display state left-super-keysym)
	      (state-keysymp display state right-super-keysym))
      (setf (char-bit object :super) 1))
    (when (or (state-keysymp display state left-hyper-keysym)
	      (state-keysymp display state right-hyper-keysym))
      (setf (char-bit object :hyper) 1)))
  object)


;;-----------------------------------------------------------------------------
;; Image stuff
;;-----------------------------------------------------------------------------

;;; Types

(deftype pixarray-1-element-type ()
  'bit)

(deftype pixarray-4-element-type ()
  '(unsigned-byte 4))

(deftype pixarray-8-element-type ()
  '(unsigned-byte 8))

(deftype pixarray-16-element-type ()
  '(unsigned-byte 16))

(deftype pixarray-24-element-type ()
  '(unsigned-byte 24))

(deftype pixarray-32-element-type ()
  #-(or Genera Minima) '(unsigned-byte 32)
  #+(or Genera Minima) 'fixnum)

(deftype pixarray-1  ()
  '(#+(or cmu sbcl) simple-array
    #-(or cmu sbcl) array pixarray-1-element-type (* *)))

(deftype pixarray-4  ()
  '(#+(or cmu sbcl) simple-array
    #-(or cmu sbcl) array pixarray-4-element-type (* *)))

(deftype pixarray-8  ()
  '(#+(or cmu sbcl) simple-array
    #-(or cmu sbcl) array pixarray-8-element-type (* *)))

(deftype pixarray-16 ()
  '(#+(or cmu sbcl) simple-array
    #-(or cmu sbcl) array pixarray-16-element-type (* *)))

(deftype pixarray-24 ()
  '(#+(or cmu sbcl) simple-array
    #-(or cmu sbcl) array pixarray-24-element-type (* *)))

(deftype pixarray-32 ()
  '(#+(or cmu sbcl) simple-array #-(or cmu sbcl) array pixarray-32-element-type (* *)))

(deftype pixarray ()
  '(or pixarray-1 pixarray-4 pixarray-8 pixarray-16 pixarray-24 pixarray-32))

(deftype bitmap ()
  'pixarray-1)

;;; WITH-UNDERLYING-SIMPLE-VECTOR 

#+excl
(defmacro with-underlying-simple-vector
	  ((variable element-type pixarray) &body body)
  `(let ((,variable (cdr (excl::ah_data ,pixarray))))
     (declare (type (simple-array ,element-type (*)) ,variable))
     ,@body))

;;; These are used to read and write pixels from and to CARD8s.

;;; READ-IMAGE-LOAD-BYTE is used to extract 1 and 4 bit pixels from CARD8s.

(defmacro read-image-load-byte (size position integer)
  (unless +image-bit-lsb-first-p+ (setq position (- 7 position)))
  `(the (unsigned-byte ,size)
	(#-Genera ldb #+Genera sys:%logldb
	 (byte ,size ,position)
	 (the card8 ,integer))))

;;; READ-IMAGE-ASSEMBLE-BYTES is used to build 16, 24 and 32 bit pixels from
;;; the appropriate number of CARD8s.

(defmacro read-image-assemble-bytes (&rest bytes)
  (unless +image-byte-lsb-first-p+ (setq bytes (reverse bytes)))
  (let ((it (first bytes))
	(count 0))
    (dolist (byte (rest bytes))
      (setq it
	    `(#-Genera dpb #+Genera sys:%logdpb 
	      (the card8 ,byte)
	      (byte 8 ,(incf count 8))
	      (the (unsigned-byte ,count) ,it))))
    #-Genera `(the (unsigned-byte ,(* (length bytes) 8)) ,it)
    #+Genera it))

;;; WRITE-IMAGE-LOAD-BYTE is used to extract a CARD8 from a 16, 24 or 32 bit
;;; pixel.

(defmacro write-image-load-byte (position integer integer-size)
  integer-size
  (unless +image-byte-lsb-first-p+ (setq position (- integer-size 8 position)))
  `(the card8
	(#-Genera ldb #+Genera sys:%logldb
	 (byte 8 ,position)
	 #-Genera (the (unsigned-byte ,integer-size) ,integer)
	 #+Genera ,integer
	 )))

;;; WRITE-IMAGE-ASSEMBLE-BYTES is used to build a CARD8 from 1 or 4 bit
;;; pixels.

(defmacro write-image-assemble-bytes (&rest bytes)
  (unless +image-bit-lsb-first-p+ (setq bytes (reverse bytes)))
  (let ((size (floor 8 (length bytes)))
	(it (first bytes))
	(count 0))
    (dolist (byte (rest bytes))
      (setq it `(#-Genera dpb #+Genera sys:%logdpb
		 (the (unsigned-byte ,size) ,byte)
		 (byte ,size ,(incf count size))
		 (the (unsigned-byte ,count) ,it))))
    `(the card8 ,it)))

#+(or Genera lcl3.0 excl)
(defvar *computed-image-byte-lsb-first-p* +image-byte-lsb-first-p+)

#+(or Genera lcl3.0 excl)
(defvar *computed-image-bit-lsb-first-p* +image-bit-lsb-first-p+)

;;; The following table gives the bit ordering within bytes (when accessed
;;; sequentially) for a scanline containing 32 bits, with bits numbered 0 to
;;; 31, where bit 0 should be leftmost on the display.  For a given byte
;;; labelled A-B, A is for the most significant bit of the byte, and B is
;;; for the least significant bit.
;;; 
;;; legend:
;;; 	1   scanline-unit = 8
;;; 	2   scanline-unit = 16
;;; 	4   scanline-unit = 32
;;; 	M   byte-order = MostSignificant
;;; 	L   byte-order = LeastSignificant
;;; 	m   bit-order = MostSignificant
;;; 	l   bit-order = LeastSignificant
;;; 
;;; 
;;; format	ordering
;;; 
;;; 1Mm	00-07 08-15 16-23 24-31
;;; 2Mm	00-07 08-15 16-23 24-31
;;; 4Mm	00-07 08-15 16-23 24-31
;;; 1Ml	07-00 15-08 23-16 31-24
;;; 2Ml	15-08 07-00 31-24 23-16
;;; 4Ml	31-24 23-16 15-08 07-00
;;; 1Lm	00-07 08-15 16-23 24-31
;;; 2Lm	08-15 00-07 24-31 16-23
;;; 4Lm	24-31 16-23 08-15 00-07
;;; 1Ll	07-00 15-08 23-16 31-24
;;; 2Ll	07-00 15-08 23-16 31-24
;;; 4Ll	07-00 15-08 23-16 31-24

#+(or Genera lcl3.0 excl) 
(defconstant
  *image-bit-ordering-table*
  '(((1 (00 07) (08 15) (16 23) (24 31)) (nil nil))
    ((2 (00 07) (08 15) (16 23) (24 31)) (nil nil))
    ((4 (00 07) (08 15) (16 23) (24 31)) (nil nil))
    ((1 (07 00) (15 08) (23 16) (31 24)) (nil t))
    ((2 (15 08) (07 00) (31 24) (23 16)) (nil t))
    ((4 (31 24) (23 16) (15 08) (07 00)) (nil t))
    ((1 (00 07) (08 15) (16 23) (24 31)) (t   nil))
    ((2 (08 15) (00 07) (24 31) (16 23)) (t   nil))
    ((4 (24 31) (16 23) (08 15) (00 07)) (t   nil))
    ((1 (07 00) (15 08) (23 16) (31 24)) (t   t))
    ((2 (07 00) (15 08) (23 16) (31 24)) (t   t))
    ((4 (07 00) (15 08) (23 16) (31 24)) (t   t))))
  
#+(or Genera lcl3.0 excl) 
(defun compute-image-byte-and-bit-ordering ()
  (declare (clx-values image-byte-lsb-first-p image-bit-lsb-first-p))
  ;; First compute the ordering 
  (let ((ordering nil)
	(a (make-array '(1 32) :element-type 'bit :initial-element 0)))
    (dotimes (i 4)
      (push (flet ((bitpos (a i n)
		     (declare (optimize (speed 3) (safety 0) (space 0)))
		     (declare (type (simple-array bit (* *)) a)
			      (type fixnum i n))
		     (with-underlying-simple-vector (v (unsigned-byte 8) a)
		       (prog2
			 (setf (aref v i) n)
			 (dotimes (i 32)
			   (unless (zerop (aref a 0 i))
			     (return i)))
			 (setf (aref v i) 0)))))
	      (list (bitpos a i #b10000000)
		    (bitpos a i #b00000001)))
	    ordering))
    (setq ordering (cons (floor +image-unit+ 8) (nreverse ordering)))
    ;; Now from the ordering, compute byte-lsb-first-p and bit-lsb-first-p
    (let ((byte-and-bit-ordering
	    (second (assoc ordering *image-bit-ordering-table*
			   :test #'equal))))
      (unless byte-and-bit-ordering
	(error "Couldn't determine image byte and bit ordering~@
                measured image ordering = ~A"
	       ordering))
      (values-list byte-and-bit-ordering))))

#+(or Genera lcl3.0 excl) 
(multiple-value-setq
  (*computed-image-byte-lsb-first-p* *computed-image-bit-lsb-first-p*)
  (compute-image-byte-and-bit-ordering))

;;; If you can write fast routines that can read and write pixarrays out of a
;;; buffer-bytes, do it!  It makes the image code a lot faster.  The
;;; FAST-READ-PIXARRAY, FAST-WRITE-PIXARRAY and FAST-COPY-PIXARRAY routines
;;; return T if they can do it, NIL if they can't.

;;; FIXME: though we have some #+sbcl -conditionalized routines in
;;; here, they would appear not to work, and so are commented out in
;;; the the FAST-xxx-PIXARRAY routines themseleves.  Investigate
;;; whether the unoptimized routines are often used, and also whether
;;; speeding them up while maintaining correctness is possible.

;;; FAST-READ-PIXARRAY - fill part of a pixarray from a buffer of card8s

#+(or lcl3.0 excl)
(defun fast-read-pixarray-1 (buffer-bbuf index array x y width height  
			     padded-bytes-per-line bits-per-pixel)
  (declare (type buffer-bytes buffer-bbuf)
	   (type pixarray-1 array)
	   (type card16 x y width height)
	   (type array-index index padded-bytes-per-line)
	   (type (member 1 4 8 16 24 32) bits-per-pixel)
	   (ignore bits-per-pixel))
  #.(declare-buffun)
  (with-vector (buffer-bbuf buffer-bytes)
    (with-underlying-simple-vector (vector pixarray-1-element-type array)
      (do* ((start (index+ index
			   (index* y padded-bytes-per-line)
			   (index-ceiling x 8))
		   (index+ start padded-bytes-per-line))
	    (y 0 (index1+ y))
	    (left-bits (the array-index (mod (the fixnum (- x)) 8)))
	    (right-bits (index-mod (index- width left-bits) 8))
	    (middle-bits (the fixnum (- (the fixnum (- width left-bits))
					right-bits)))
	    (middle-bytes (index-floor middle-bits 8)))
	   ((index>= y height))
	(declare (type array-index start y
		       left-bits right-bits middle-bytes)
		 (fixnum middle-bits))
	(cond ((< middle-bits 0)
	       (let ((byte (aref buffer-bbuf (index1- start)))
		     (x (array-row-major-index array y left-bits)))
		 (declare (type card8 byte)
			  (type array-index x))
		 (when (index> right-bits 6)
		   (setf (aref vector (index- x 1))
			 (read-image-load-byte 1 7 byte)))
		 (when (and (index> left-bits 1)
			    (index> right-bits 5))
		   (setf (aref vector (index- x 2))
			 (read-image-load-byte 1 6 byte)))
		 (when (and (index> left-bits 2)
			    (index> right-bits 4))
		   (setf (aref vector (index- x 3))
			 (read-image-load-byte 1 5 byte)))
		 (when (and (index> left-bits 3)
			    (index> right-bits 3))
		   (setf (aref vector (index- x 4))
			 (read-image-load-byte 1 4 byte)))
		 (when (and (index> left-bits 4)
			    (index> right-bits 2))
		   (setf (aref vector (index- x 5))
			 (read-image-load-byte 1 3 byte)))
		 (when (and (index> left-bits 5)
			    (index> right-bits 1))
		   (setf (aref vector (index- x 6))
			 (read-image-load-byte 1 2 byte)))
		 (when (index> left-bits 6)
		   (setf (aref vector (index- x 7))
			 (read-image-load-byte 1 1 byte)))))
	      (t
	       (unless (index-zerop left-bits)
		 (let ((byte (aref buffer-bbuf (index1- start)))
		       (x (array-row-major-index array y left-bits)))
		   (declare (type card8 byte)
			    (type array-index x))
		   (setf (aref vector (index- x 1))
			 (read-image-load-byte 1 7 byte))
		   (when (index> left-bits 1)
		     (setf (aref vector (index- x 2))
			   (read-image-load-byte 1 6 byte))
		     (when (index> left-bits 2)
		       (setf (aref vector (index- x 3))
			     (read-image-load-byte 1 5 byte))
		       (when (index> left-bits 3)
			 (setf (aref vector (index- x 4))
			       (read-image-load-byte 1 4 byte))
			 (when (index> left-bits 4)
			   (setf (aref vector (index- x 5))
				 (read-image-load-byte 1 3 byte))
			   (when (index> left-bits 5)
			     (setf (aref vector (index- x 6))
				   (read-image-load-byte 1 2 byte))
			     (when (index> left-bits 6)
			       (setf (aref vector (index- x 7))
				     (read-image-load-byte 1 1 byte))
			       ))))))))
	       (do* ((end (index+ start middle-bytes))
		     (i start (index1+ i))
		     (x (array-row-major-index array y left-bits) (index+ x 8)))
		    ((index>= i end)
		     (unless (index-zerop right-bits)
		       (let ((byte (aref buffer-bbuf end))
			     (x (array-row-major-index
				 array y (index+ left-bits middle-bits))))
			 (declare (type card8 byte)
				  (type array-index x))
			 (setf (aref vector (index+ x 0))
			       (read-image-load-byte 1 0 byte))
			 (when (index> right-bits 1)
			   (setf (aref vector (index+ x 1))
				 (read-image-load-byte 1 1 byte))
			   (when (index> right-bits 2)
			     (setf (aref vector (index+ x 2))
				   (read-image-load-byte 1 2 byte))
			     (when (index> right-bits 3)
			       (setf (aref vector (index+ x 3))
				     (read-image-load-byte 1 3 byte))
			       (when (index> right-bits 4)
				 (setf (aref vector (index+ x 4))
				       (read-image-load-byte 1 4 byte))
				 (when (index> right-bits 5)
				   (setf (aref vector (index+ x 5))
					 (read-image-load-byte 1 5 byte))
				   (when (index> right-bits 6)
				     (setf (aref vector (index+ x 6))
					   (read-image-load-byte 1 6 byte))
				     )))))))))
		 (declare (type array-index end i x))
		 (let ((byte (aref buffer-bbuf i)))
		   (declare (type card8 byte))
		   (setf (aref vector (index+ x 0))
			 (read-image-load-byte 1 0 byte))
		   (setf (aref vector (index+ x 1))
			 (read-image-load-byte 1 1 byte))
		   (setf (aref vector (index+ x 2))
			 (read-image-load-byte 1 2 byte))
		   (setf (aref vector (index+ x 3))
			 (read-image-load-byte 1 3 byte))
		   (setf (aref vector (index+ x 4))
			 (read-image-load-byte 1 4 byte))
		   (setf (aref vector (index+ x 5))
			 (read-image-load-byte 1 5 byte))
		   (setf (aref vector (index+ x 6))
			 (read-image-load-byte 1 6 byte))
		   (setf (aref vector (index+ x 7))
			 (read-image-load-byte 1 7 byte))))
	       )))))
    t)

#+(or lcl3.0 excl)
(defun fast-read-pixarray-4 (buffer-bbuf index array x y width height 
			     padded-bytes-per-line bits-per-pixel)
  (declare (type buffer-bytes buffer-bbuf)
	   (type pixarray-4 array)
	   (type card16 x y width height)
	   (type array-index index padded-bytes-per-line)
	   (type (member 1 4 8 16 24 32) bits-per-pixel)
	   (ignore bits-per-pixel))
  #.(declare-buffun)
  (with-vector (buffer-bbuf buffer-bytes)
    (with-underlying-simple-vector (vector pixarray-4-element-type array)
      (do* ((start (index+ index
			   (index* y padded-bytes-per-line)
			   (index-ceiling x 2))
		   (index+ start padded-bytes-per-line))
	    (y 0 (index1+ y))
	    (left-nibbles (the array-index (mod (the fixnum (- (the fixnum x)))
						2)))
	    (right-nibbles (index-mod (index- width left-nibbles) 2))
	    (middle-nibbles (index- width left-nibbles right-nibbles))
	    (middle-bytes (index-floor middle-nibbles 2)))
	   ((index>= y height))
	(declare (type array-index start y
		       left-nibbles right-nibbles middle-nibbles middle-bytes))
	(unless (index-zerop left-nibbles)
	  (setf (aref array y 0)
		(read-image-load-byte
		  4 4 (aref buffer-bbuf (index1- start)))))
	(do* ((end (index+ start middle-bytes))
	      (i start (index1+ i))
	      (x (array-row-major-index array y left-nibbles) (index+ x 2)))
	     ((index>= i end)
	      (unless (index-zerop right-nibbles)
		(setf (aref array y (index+ left-nibbles middle-nibbles))
		      (read-image-load-byte 4 0 (aref buffer-bbuf end)))))
	  (declare (type array-index end i x))
	  (let ((byte (aref buffer-bbuf i)))
	    (declare (type card8 byte))
	    (setf (aref vector (index+ x 0))
		  (read-image-load-byte 4 0 byte))
	    (setf (aref vector (index+ x 1))
		  (read-image-load-byte 4 4 byte))))
	)))
  t)

#+(or Genera lcl3.0 excl CMU sbcl)
(defun fast-read-pixarray-24 (buffer-bbuf index array x y width height 
			      padded-bytes-per-line bits-per-pixel)
  (declare (type buffer-bytes buffer-bbuf)
	   (type pixarray-24 array)
	   (type card16 width height)
	   (type array-index index padded-bytes-per-line)
	   (type (member 1 4 8 16 24 32) bits-per-pixel)
	   (ignore bits-per-pixel))
  #.(declare-buffun)
  (with-vector (buffer-bbuf buffer-bytes)
    (with-underlying-simple-vector (vector pixarray-24-element-type array)
      (do* ((start (index+ index
			   (index* y padded-bytes-per-line)
			   (index* x 3))
		   (index+ start padded-bytes-per-line))
	    (y 0 (index1+ y)))
	   ((index>= y height))
	(declare (type array-index start y))
	(do* ((end (index+ start (index* width 3)))
	      (i start (index+ i 3))
	      (x (array-row-major-index array y 0) (index1+ x)))
	     ((index>= i end))
	  (declare (type array-index end i x))
	  (setf (aref vector x)
		(read-image-assemble-bytes
		  (aref buffer-bbuf (index+ i 0))
		  (aref buffer-bbuf (index+ i 1))
		  (aref buffer-bbuf (index+ i 2))))))))
  t)

;;; COPY-BIT-RECT  --  Internal
;;;
;;;    This is the classic BITBLT operation, copying a rectangular subarray
;;; from one array to another (but source and destination must not overlap.)
;;; Widths are specified in bits.  Neither array can have a non-zero
;;; displacement.  We allow extra random bit-offset to be thrown into the X.
;;;
#+(or Genera lcl3.0 excl)
(defun fast-read-pixarray-with-swap
       (bbuf boffset pixarray x y width height padded-bytes-per-line
	bits-per-pixel unit byte-lsb-first-p bit-lsb-first-p)
  (declare (type buffer-bytes bbuf)
	   (type array-index boffset
		 padded-bytes-per-line)
	   (type pixarray pixarray)
	   (type card16 x y width height)
	   (type (member 1 4 8 16 24 32) bits-per-pixel)
	   (type (member 8 16 32) unit)
	   (type generalized-boolean byte-lsb-first-p bit-lsb-first-p))
  (unless (index= bits-per-pixel 24)
    (let ((pixarray-padded-bits-per-line
	    (if (index= height 1) 0
	      (index* (index- (array-row-major-index pixarray 1 0)
			      (array-row-major-index pixarray 0 0))
		      bits-per-pixel)))
	  (x-bits (index* x bits-per-pixel)))
      (declare (type array-index pixarray-padded-bits-per-line x-bits))
      (when (if (eq *computed-image-byte-lsb-first-p* *computed-image-bit-lsb-first-p*)
		(and (index-zerop (index-mod pixarray-padded-bits-per-line 8))
		     (index-zerop (index-mod x-bits 8)))
	      (and (index-zerop (index-mod pixarray-padded-bits-per-line +image-unit+))
		   (index-zerop (index-mod x-bits +image-unit+))))
	(multiple-value-bind (image-swap-function image-swap-lsb-first-p)
	    (image-swap-function
	      bits-per-pixel 
	      unit byte-lsb-first-p bit-lsb-first-p
	      +image-unit+ *computed-image-byte-lsb-first-p*
	      *computed-image-bit-lsb-first-p*)
	  (declare (type symbol image-swap-function)
		   (type generalized-boolean image-swap-lsb-first-p))
	  (with-underlying-simple-vector (dst card8 pixarray)
	    (funcall
	      (symbol-function image-swap-function) bbuf dst
	      (index+ boffset
		      (index* y padded-bytes-per-line)
		      (index-floor x-bits 8))
	      0 (index-ceiling (index* width bits-per-pixel) 8)
	      padded-bytes-per-line
	      (index-floor pixarray-padded-bits-per-line 8)
	      height image-swap-lsb-first-p)))
	t))))

(defun fast-read-pixarray (bbuf boffset pixarray
			   x y width height padded-bytes-per-line
			   bits-per-pixel
			   unit byte-lsb-first-p bit-lsb-first-p)
  (declare (type buffer-bytes bbuf)
	   (type array-index boffset
		 padded-bytes-per-line)
	   (type pixarray pixarray)
	   (type card16 x y width height)
	   (type (member 1 4 8 16 24 32) bits-per-pixel)
	   (type (member 8 16 32) unit)
	   (type generalized-boolean byte-lsb-first-p bit-lsb-first-p))
  (progn bbuf boffset pixarray x y width height padded-bytes-per-line
	 bits-per-pixel unit byte-lsb-first-p bit-lsb-first-p)
  (or
    #+(or Genera lcl3.0 excl)
    (fast-read-pixarray-with-swap
      bbuf boffset pixarray x y width height padded-bytes-per-line
      bits-per-pixel unit byte-lsb-first-p bit-lsb-first-p)
    (let ((function
	    (or #+lispm
		(and (= (sys:array-element-size pixarray) bits-per-pixel)
		     (zerop (index-mod padded-bytes-per-line 4))
		     (zerop (index-mod
			      (* #+Genera (sys:array-row-span pixarray)
				 #-Genera (array-dimension pixarray 1)
				 bits-per-pixel)
			      32))
		     #'fast-read-pixarray-using-bitblt)
		#+(or CMU)
		(and (index= (pixarray-element-size pixarray) bits-per-pixel)
		     #'fast-read-pixarray-using-bitblt)
		#+(or lcl3.0 excl)
		(and (index= bits-per-pixel 1)
		     #'fast-read-pixarray-1)
		#+(or lcl3.0 excl)
		(and (index= bits-per-pixel 4)
		     #'fast-read-pixarray-4)
		#+(or Genera lcl3.0 excl CMU)
		(and (index= bits-per-pixel 24)
		     #'fast-read-pixarray-24))))
      (when function
	(read-pixarray-internal
	  bbuf boffset pixarray x y width height padded-bytes-per-line
	  bits-per-pixel function
	  unit byte-lsb-first-p bit-lsb-first-p
	  +image-unit+ +image-byte-lsb-first-p+ +image-bit-lsb-first-p+)))))

;;; FAST-WRITE-PIXARRAY - copy part of a pixarray into an array of CARD8s

#+(or lcl3.0 excl)
(defun fast-write-pixarray-1 (buffer-bbuf index array x y width height
			      padded-bytes-per-line bits-per-pixel)
  (declare (type buffer-bytes buffer-bbuf)
	   (type pixarray-1 array)
	   (type card16 x y width height)
	   (type array-index index padded-bytes-per-line)
	   (type (member 1 4 8 16 24 32) bits-per-pixel)
	   (ignore bits-per-pixel))
  #.(declare-buffun)
  (with-vector (buffer-bbuf buffer-bytes)
    (with-underlying-simple-vector (vector pixarray-1-element-type array)
      (do* ((h 0 (index1+ h))
	    (y y (index1+ y))
	    (right-bits (index-mod width 8))
	    (middle-bits (index- width right-bits))
	    (middle-bytes (index-ceiling middle-bits 8))
	    (start index (index+ start padded-bytes-per-line)))
	   ((index>= h height))
	(declare (type array-index h y right-bits middle-bits
		       middle-bytes start))
	(do* ((end (index+ start middle-bytes))
	      (i start (index1+ i))
	      (start-x x)
	      (x (array-row-major-index array y start-x) (index+ x 8)))
	     ((index>= i end)
	      (unless (index-zerop right-bits)
		(let ((x (array-row-major-index
			   array y (index+ start-x middle-bits))))
		  (declare (type array-index x))
		  (setf (aref buffer-bbuf end)
			(write-image-assemble-bytes
			  (aref vector (index+ x 0))
			  (if (index> right-bits 1)
			      (aref vector (index+ x 1))
			    0)
			  (if (index> right-bits 2)
			      (aref vector (index+ x 2))
			    0)
			  (if (index> right-bits 3)
			      (aref vector (index+ x 3))
			    0)
			  (if (index> right-bits 4)
			      (aref vector (index+ x 4))
			    0)
			  (if (index> right-bits 5)
			      (aref vector (index+ x 5))
			    0)
			  (if (index> right-bits 6)
			      (aref vector (index+ x 6))
			    0)
			  0)))))
	  (declare (type array-index end i start-x x))
	  (setf (aref buffer-bbuf i)
		(write-image-assemble-bytes
		  (aref vector (index+ x 0))
		  (aref vector (index+ x 1))
		  (aref vector (index+ x 2))
		  (aref vector (index+ x 3))
		  (aref vector (index+ x 4))
		  (aref vector (index+ x 5))
		  (aref vector (index+ x 6))
		  (aref vector (index+ x 7))))))))
  t)

#+(or lcl3.0 excl)
(defun fast-write-pixarray-4 (buffer-bbuf index array x y width height
			      padded-bytes-per-line bits-per-pixel)
  (declare (type buffer-bytes buffer-bbuf)
	   (type pixarray-4 array)
	   (type int16 x y)
	   (type card16 width height)
	   (type array-index index padded-bytes-per-line)
	   (type (member 1 4 8 16 24 32) bits-per-pixel)
	   (ignore bits-per-pixel))
  #.(declare-buffun)
  (with-vector (buffer-bbuf buffer-bytes)
    (with-underlying-simple-vector (vector pixarray-4-element-type array)
      (do* ((h 0 (index1+ h))
	    (y y (index1+ y))
	    (right-nibbles (index-mod width 2))
	    (middle-nibbles (index- width right-nibbles))
	    (middle-bytes (index-ceiling middle-nibbles 2))
	    (start index (index+ start padded-bytes-per-line)))
	   ((index>= h height))
	(declare (type array-index h y right-nibbles middle-nibbles
		       middle-bytes start))
	(do* ((end (index+ start middle-bytes))
	      (i start (index1+ i))
	      (start-x x)
	      (x (array-row-major-index array y start-x) (index+ x 2)))
	     ((index>= i end)
	      (unless (index-zerop right-nibbles)
		(setf (aref buffer-bbuf end)
		      (write-image-assemble-bytes
			(aref array y (index+ start-x middle-nibbles))
			0))))
	  (declare (type array-index end i start-x x))
	  (setf (aref buffer-bbuf i)
		(write-image-assemble-bytes
		  (aref vector (index+ x 0))
		  (aref vector (index+ x 1))))))))
  t)

#+(or Genera lcl3.0 excl CMU sbcl)
(defun fast-write-pixarray-24 (buffer-bbuf index array x y width height
			       padded-bytes-per-line bits-per-pixel)
  (declare (type buffer-bytes buffer-bbuf)
	   (type pixarray-24 array)
	   (type int16 x y)
	   (type card16 width height)
	   (type array-index index padded-bytes-per-line)
	   (type (member 1 4 8 16 24 32) bits-per-pixel)
	   (ignore bits-per-pixel))
  #.(declare-buffun)
  (with-vector (buffer-bbuf buffer-bytes)
    (with-underlying-simple-vector (vector pixarray-24-element-type array)
      (do* ((h 0 (index1+ h))
	    (y y (index1+ y))
	    (start index (index+ start padded-bytes-per-line)))
	   ((index>= h height))
	(declare (type array-index y start))
	(do* ((end (index+ start (index* width 3)))
	      (i start (index+ i 3))
	      (x (array-row-major-index array y x) (index1+ x)))
	     ((index>= i end))
	  (declare (type array-index end i x))
	  (let ((pixel (aref vector x)))
	    (declare (type pixarray-24-element-type pixel))
	    (setf (aref buffer-bbuf (index+ i 0))
		  (write-image-load-byte 0 pixel 24))
	    (setf (aref buffer-bbuf (index+ i 1))
		  (write-image-load-byte 8 pixel 24))
	    (setf (aref buffer-bbuf (index+ i 2))
		  (write-image-load-byte 16 pixel 24)))))))
  t)

#+(or Genera lcl3.0 excl)
(defun fast-write-pixarray-with-swap
       (bbuf boffset pixarray x y width height padded-bytes-per-line
	bits-per-pixel unit byte-lsb-first-p bit-lsb-first-p)
  (declare (type buffer-bytes bbuf)
	   (type pixarray pixarray)
	   (type card16 x y width height)
	   (type array-index boffset padded-bytes-per-line)
	   (type (member 1 4 8 16 24 32) bits-per-pixel)
	   (type (member 8 16 32) unit)
	   (type generalized-boolean byte-lsb-first-p bit-lsb-first-p))
  (unless (index= bits-per-pixel 24)
    (let ((pixarray-padded-bits-per-line
	    (if (index= height 1) 0
	      (index* (index- (array-row-major-index pixarray 1 0)
			      (array-row-major-index pixarray 0 0))
		      bits-per-pixel)))
	  (pixarray-start-bit-offset
	    (index* (array-row-major-index pixarray y x)
		    bits-per-pixel)))
      (declare (type array-index pixarray-padded-bits-per-line
		     pixarray-start-bit-offset))
      (when (if (eq *computed-image-byte-lsb-first-p* *computed-image-bit-lsb-first-p*)
		(and (index-zerop (index-mod pixarray-padded-bits-per-line 8))
		     (index-zerop (index-mod pixarray-start-bit-offset 8)))
	      (and (index-zerop (index-mod pixarray-padded-bits-per-line +image-unit+))
		   (index-zerop (index-mod pixarray-start-bit-offset +image-unit+))))
	(multiple-value-bind (image-swap-function image-swap-lsb-first-p)
	    (image-swap-function
	      bits-per-pixel
	      +image-unit+ *computed-image-byte-lsb-first-p*
	      *computed-image-bit-lsb-first-p*
	      unit byte-lsb-first-p bit-lsb-first-p)
	  (declare (type symbol image-swap-function)
		   (type generalized-boolean image-swap-lsb-first-p))
	  (with-underlying-simple-vector (src card8 pixarray)
	    (funcall
	      (symbol-function image-swap-function)
	      src bbuf (index-floor pixarray-start-bit-offset 8) boffset
	      (index-ceiling (index* width bits-per-pixel) 8)
	      (index-floor pixarray-padded-bits-per-line 8)
	      padded-bytes-per-line height image-swap-lsb-first-p))
	  t)))))

(defun fast-write-pixarray (bbuf boffset pixarray x y width height
			    padded-bytes-per-line bits-per-pixel
			    unit byte-lsb-first-p bit-lsb-first-p)
  (declare (type buffer-bytes bbuf)
	   (type pixarray pixarray)
	   (type card16 x y width height)
	   (type array-index boffset padded-bytes-per-line)
	   (type (member 1 4 8 16 24 32) bits-per-pixel)
	   (type (member 8 16 32) unit)
	   (type generalized-boolean byte-lsb-first-p bit-lsb-first-p))
  (progn bbuf boffset pixarray x y width height padded-bytes-per-line
	 bits-per-pixel unit byte-lsb-first-p bit-lsb-first-p)
  (or
    #+(or Genera lcl3.0 excl)
    (fast-write-pixarray-with-swap
      bbuf boffset pixarray x y width height padded-bytes-per-line
      bits-per-pixel unit byte-lsb-first-p bit-lsb-first-p)
    (let ((function
	    (or #+lispm
		(and (= (sys:array-element-size pixarray) bits-per-pixel)
		     (zerop (index-mod padded-bytes-per-line 4))
		     (zerop (index-mod
			      (* #+Genera (sys:array-row-span pixarray)
				 #-Genera (array-dimension pixarray 1)
				 bits-per-pixel)
			      32))
		     #'fast-write-pixarray-using-bitblt)
		#+(or CMU)
		(and (index= (pixarray-element-size pixarray) bits-per-pixel)
		     #'fast-write-pixarray-using-bitblt)
		#+(or lcl3.0 excl)
		(and (index= bits-per-pixel 1)
		     #'fast-write-pixarray-1)
		#+(or lcl3.0 excl)
		(and (index= bits-per-pixel 4)
		     #'fast-write-pixarray-4)
		#+(or Genera lcl3.0 excl CMU)
		(and (index= bits-per-pixel 24)
		     #'fast-write-pixarray-24))))
      (when function
	(write-pixarray-internal
	  bbuf boffset pixarray x y width height padded-bytes-per-line
	  bits-per-pixel function
	  +image-unit+ +image-byte-lsb-first-p+ +image-bit-lsb-first-p+
	  unit byte-lsb-first-p bit-lsb-first-p)))))

;;; FAST-COPY-PIXARRAY - copy part of a pixarray into another

(defun fast-copy-pixarray (pixarray copy x y width height bits-per-pixel)
  (declare (type pixarray pixarray copy)
	   (type card16 x y width height)
	   (type (member 1 4 8 16 24 32) bits-per-pixel))
  (progn pixarray copy x y width height bits-per-pixel nil)
  (or
    #+(or lispm CMU)
    (let* ((pixarray-padded-pixels-per-line
	     #+Genera (sys:array-row-span pixarray)
	     #-Genera (array-dimension pixarray 1))
	   (pixarray-padded-bits-per-line
	     (* pixarray-padded-pixels-per-line bits-per-pixel))
	   (copy-padded-pixels-per-line
	     #+Genera (sys:array-row-span copy)
	     #-Genera (array-dimension copy 1))
	   (copy-padded-bits-per-line
	     (* copy-padded-pixels-per-line bits-per-pixel)))
      #-(or CMU)
      (when (and (= (sys:array-element-size pixarray) bits-per-pixel)
		 (zerop (index-mod pixarray-padded-bits-per-line 32))
		 (zerop (index-mod copy-padded-bits-per-line 32)))
	(sys:bitblt boole-1 width height pixarray x y copy 0 0)
	t)
      #+(or CMU)
      (when (index= (pixarray-element-size pixarray)
		    (pixarray-element-size copy)
		    bits-per-pixel)
	(copy-bit-rect pixarray pixarray-padded-bits-per-line x y
		       copy copy-padded-bits-per-line 0 0
		       height
		       (index* width bits-per-pixel))
	t))
	
    #+(or lcl3.0 excl)
    (unless (index= bits-per-pixel 24)
      (let ((pixarray-padded-bits-per-line
	      (if (index= height 1) 0
		(index* (index- (array-row-major-index pixarray 1 0)
				(array-row-major-index pixarray 0 0))
			bits-per-pixel)))
	    (copy-padded-bits-per-line
	      (if (index= height 1) 0
		(index* (index- (array-row-major-index copy 1 0)
				(array-row-major-index copy 0 0))
			bits-per-pixel)))
	    (pixarray-start-bit-offset
	      (index* (array-row-major-index pixarray y x)
		      bits-per-pixel)))
	(declare (type array-index pixarray-padded-bits-per-line
		       copy-padded-bits-per-line pixarray-start-bit-offset))
	(when (if (eq *computed-image-byte-lsb-first-p* *computed-image-bit-lsb-first-p*)
		  (and (index-zerop (index-mod pixarray-padded-bits-per-line 8))
		       (index-zerop (index-mod copy-padded-bits-per-line 8))
		       (index-zerop (index-mod pixarray-start-bit-offset 8)))
		(and (index-zerop (index-mod pixarray-padded-bits-per-line +image-unit+))
		     (index-zerop (index-mod copy-padded-bits-per-line +image-unit+))
		     (index-zerop (index-mod pixarray-start-bit-offset +image-unit+))))
	  (with-underlying-simple-vector (src card8 pixarray)
	    (with-underlying-simple-vector (dst card8 copy)
	      (image-noswap
		src dst
		(index-floor pixarray-start-bit-offset 8) 0
		(index-ceiling (index* width bits-per-pixel) 8)
		(index-floor pixarray-padded-bits-per-line 8)
		(index-floor copy-padded-bits-per-line 8)
		height nil)))
	  t)))
    #+(or lcl3.0 excl)
    (macrolet
      ((copy (type element-type)
	 `(let ((pixarray pixarray)
		(copy copy))
	    (declare (type ,type pixarray copy))
	    #.(declare-buffun)
	    (with-underlying-simple-vector (src ,element-type pixarray)
	      (with-underlying-simple-vector (dst ,element-type copy)
		(do* ((dst-y 0 (index1+ dst-y))
		      (src-y y (index1+ src-y)))
		     ((index>= dst-y height))
		  (declare (type card16 dst-y src-y))
		  (do* ((dst-idx (array-row-major-index copy dst-y 0)
				 (index1+ dst-idx))
			(dst-end (index+ dst-idx width))
			(src-idx (array-row-major-index pixarray src-y x)
				 (index1+ src-idx)))
		       ((index>= dst-idx dst-end))
		    (declare (type array-index dst-idx src-idx dst-end))
		    (setf (aref dst dst-idx)
			  (the ,element-type (aref src src-idx))))))))))
      (ecase bits-per-pixel
	(1  (copy pixarray-1  pixarray-1-element-type))
	(4  (copy pixarray-4  pixarray-4-element-type))
	(8  (copy pixarray-8  pixarray-8-element-type))
	(16 (copy pixarray-16 pixarray-16-element-type))
	(24 (copy pixarray-24 pixarray-24-element-type))
	(32 (copy pixarray-32 pixarray-32-element-type)))
      t)))