This file is indexed.

/usr/include/xtensor-python/pycontainer.hpp is in xtensor-python-dev 0.12.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/***************************************************************************
* Copyright (c) 2016, Johan Mabille and Sylvain Corlay                     *
*                                                                          *
* Distributed under the terms of the BSD 3-Clause License.                 *
*                                                                          *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/

#ifndef PY_CONTAINER_HPP
#define PY_CONTAINER_HPP

#include <cmath>
#include <functional>
#include <numeric>

#include "pybind11/common.h"
#include "pybind11/complex.h"
#include "pybind11/pybind11.h"

#ifndef FORCE_IMPORT_ARRAY
#define NO_IMPORT_ARRAY
#endif
#ifndef PY_ARRAY_UNIQUE_SYMBOL
#define PY_ARRAY_UNIQUE_SYMBOL xtensor_python_ARRAY_API
#endif
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION

#include "numpy/arrayobject.h"

#include "xtensor/xcontainer.hpp"

namespace xt
{

    inline void import_numpy();

    /**
     * @class pycontainer
     * @brief Base class for xtensor containers wrapping numpy arryays.
     *
     * The pycontainer class should not be instantiated directly. Instead, used should
     * use pytensor and pyarray instancs.
     *
     * @tparam D The derived type, i.e. the inheriting class for which pycontainer
     *           provides the interface.
     */
    template <class D>
    class pycontainer : public pybind11::object,
                        public xcontainer<D>
    {
    public:

        using derived_type = D;

        using base_type = xcontainer<D>;
        using inner_types = xcontainer_inner_types<D>;
        using container_type = typename inner_types::container_type;
        using value_type = typename container_type::value_type;
        using reference = typename container_type::reference;
        using const_reference = typename container_type::const_reference;
        using pointer = typename container_type::pointer;
        using const_pointer = typename container_type::const_pointer;
        using size_type = typename container_type::size_type;
        using difference_type = typename container_type::difference_type;

        using shape_type = typename inner_types::shape_type;
        using strides_type = typename inner_types::strides_type;
        using backstrides_type = typename inner_types::backstrides_type;
        using inner_shape_type = typename inner_types::inner_shape_type;
        using inner_strides_type = typename inner_types::inner_strides_type;

        using iterable_base = xiterable<D>;

        using iterator = typename iterable_base::iterator;
        using const_iterator = typename iterable_base::const_iterator;

        using stepper = typename iterable_base::stepper;
        using const_stepper = typename iterable_base::const_stepper;

        static constexpr layout_type static_layout = layout_type::dynamic;
        static constexpr bool contiguous_layout = false;

        void reshape(const shape_type& shape);
        void reshape(const shape_type& shape, layout_type l);
        void reshape(const shape_type& shape, const strides_type& strides);

        layout_type layout() const;

        using base_type::operator();
        using base_type::operator[];
        using base_type::begin;
        using base_type::end;

    protected:

        pycontainer();
        ~pycontainer() = default;

        pycontainer(pybind11::handle h, borrowed_t);
        pycontainer(pybind11::handle h, stolen_t);
        pycontainer(const pybind11::object& o);

        pycontainer(const pycontainer&) = default;
        pycontainer& operator=(const pycontainer&) = default;

        pycontainer(pycontainer&&) = default;
        pycontainer& operator=(pycontainer&&) = default;

        static derived_type ensure(pybind11::handle h);
        static bool check_(pybind11::handle h);
        static PyObject* raw_array_t(PyObject* ptr);

        PyArrayObject* python_array() const;
        size_type get_min_stride() const;
    };

    namespace detail
    {

        template <typename T, typename SFINAE = void>
        struct is_fmt_numeric
        {
            static constexpr bool value = false;
        };

        constexpr int log2(size_t n, int k = 0)
        {
            return (n <= 1) ? k : log2(n >> 1, k + 1);
        }

        template <typename T>
        struct is_fmt_numeric<T, std::enable_if_t<std::is_arithmetic<T>::value>>
        {
            static constexpr bool value = true;
            static constexpr int index = std::is_same<T, bool>::value ? 0 : 1 + (
                 std::is_integral<T>::value ? log2(sizeof(T)) * 2 + std::is_unsigned<T>::value : 8 + (
                     std::is_same<T, double>::value ? 1 : std::is_same<T, long double>::value ? 2 : 0));
        };

        template <class T>
        struct is_fmt_numeric<std::complex<T>>
        {
            static constexpr bool value = true;
            static constexpr int index = is_fmt_numeric<T>::index + 3;
        };

        template <class T>
        struct numpy_traits
        {
        private:

            constexpr static const int value_list[15] = {
                NPY_BOOL,
                NPY_BYTE, NPY_UBYTE, NPY_SHORT, NPY_USHORT,
                NPY_INT, NPY_UINT, NPY_LONGLONG, NPY_ULONGLONG,
                NPY_FLOAT, NPY_DOUBLE, NPY_LONGDOUBLE,
                NPY_CFLOAT, NPY_CDOUBLE, NPY_CLONGDOUBLE};

        public:

            using value_type = std::remove_const_t<T>;

            static constexpr int type_num = value_list[is_fmt_numeric<value_type>::index];
        };
    }

    /******************************
     * pycontainer implementation *
     ******************************/

    template <class D>
    inline pycontainer<D>::pycontainer()
        : pybind11::object()
    {
    }

    template <class D>
    inline pycontainer<D>::pycontainer(pybind11::handle h, borrowed_t b)
        : pybind11::object(h, b)
    {
    }

    template <class D>
    inline pycontainer<D>::pycontainer(pybind11::handle h, stolen_t s)
        : pybind11::object(h, s)
    {
    }

    template <class D>
    inline pycontainer<D>::pycontainer(const pybind11::object& o)
        : pybind11::object(raw_array_t(o.ptr()), pybind11::object::stolen_t{})
    {
        if (!this->m_ptr)
        {
            throw pybind11::error_already_set();
        }
    }

    template <class D>
    inline auto pycontainer<D>::ensure(pybind11::handle h) -> derived_type
    {
        auto result = pybind11::reinterpret_steal<derived_type>(raw_array_t(h.ptr()));
        if (result.ptr() == nullptr)
        {
            PyErr_Clear();
        }
        return result;
    }

    template <class D>
    inline bool pycontainer<D>::check_(pybind11::handle h)
    {
        int type_num = detail::numpy_traits<value_type>::type_num;
        return PyArray_Check(h.ptr()) &&
            PyArray_EquivTypenums(PyArray_TYPE(reinterpret_cast<PyArrayObject*>(h.ptr())), type_num);
    }

    template <class D>
    inline PyObject* pycontainer<D>::raw_array_t(PyObject* ptr)
    {
        if (ptr == nullptr)
        {
            return nullptr;
        }
        int type_num = detail::numpy_traits<value_type>::type_num;
        auto res = PyArray_FromAny(ptr, PyArray_DescrFromType(type_num), 0, 0,
                                   NPY_ARRAY_ENSUREARRAY | NPY_ARRAY_FORCECAST, nullptr);
        return res;
    }

    template <class D>
    inline PyArrayObject* pycontainer<D>::python_array() const
    {
        return reinterpret_cast<PyArrayObject*>(this->m_ptr);
    }

    template <class D>
    inline auto pycontainer<D>::get_min_stride() const -> size_type
    {
        const size_type& (*min)(const size_type&, const size_type&) = std::min<size_type>;
        return std::max(size_type(1), std::accumulate(this->strides().cbegin(), this->strides().cend(), std::numeric_limits<size_type>::max(), min));
    }

    /**
     * Reshapes the container.
     * @param shape the new shape
     */
    template <class D>
    inline void pycontainer<D>::reshape(const shape_type& shape)
    {
        if (shape.size() != this->dimension() || !std::equal(shape.begin(), shape.end(), this->shape().begin()))
        {
            reshape(shape, layout_type::row_major);
        }
    }

    /**
     * Reshapes the container.
     * @param shape the new shape
     * @param l the new layout
     */
    template <class D>
    inline void pycontainer<D>::reshape(const shape_type& shape, layout_type l)
    {
        strides_type strides = make_sequence<strides_type>(shape.size(), size_type(1));
        compute_strides(shape, l, strides);
        reshape(shape, strides);
    }

    /**
     * Reshapes the container.
     * @param shape the new shape
     * @param strides the new strides
     */
    template <class D>
    inline void pycontainer<D>::reshape(const shape_type& shape, const strides_type& strides)
    {
        derived_type tmp(shape, strides);
        *static_cast<derived_type*>(this) = std::move(tmp);
    }

    /**
     * Return the layout_type of the container
     * @return layout_type of the container
     */
    template <class D>
    inline layout_type pycontainer<D>::layout() const
    {
        if (PyArray_CHKFLAGS(python_array(), NPY_ARRAY_C_CONTIGUOUS))
            return layout_type::row_major;
        else if (PyArray_CHKFLAGS(python_array(), NPY_ARRAY_F_CONTIGUOUS))
            return layout_type::column_major;
        else
            return layout_type::dynamic;
    }

    /**
     * Import the numpy Python module.
     */
    inline void import_numpy()
    {
#ifdef FORCE_IMPORT_ARRAY
        if (_import_array() < 0)
        {
            PyErr_Print();
            PyErr_SetString(PyExc_ImportError, "numpy.core.multiarray failed to import");
        }
#endif
    }
}

#endif