/usr/include/xtensor-python/pycontainer.hpp is in xtensor-python-dev 0.12.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 | /***************************************************************************
* Copyright (c) 2016, Johan Mabille and Sylvain Corlay *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#ifndef PY_CONTAINER_HPP
#define PY_CONTAINER_HPP
#include <cmath>
#include <functional>
#include <numeric>
#include "pybind11/common.h"
#include "pybind11/complex.h"
#include "pybind11/pybind11.h"
#ifndef FORCE_IMPORT_ARRAY
#define NO_IMPORT_ARRAY
#endif
#ifndef PY_ARRAY_UNIQUE_SYMBOL
#define PY_ARRAY_UNIQUE_SYMBOL xtensor_python_ARRAY_API
#endif
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include "numpy/arrayobject.h"
#include "xtensor/xcontainer.hpp"
namespace xt
{
inline void import_numpy();
/**
* @class pycontainer
* @brief Base class for xtensor containers wrapping numpy arryays.
*
* The pycontainer class should not be instantiated directly. Instead, used should
* use pytensor and pyarray instancs.
*
* @tparam D The derived type, i.e. the inheriting class for which pycontainer
* provides the interface.
*/
template <class D>
class pycontainer : public pybind11::object,
public xcontainer<D>
{
public:
using derived_type = D;
using base_type = xcontainer<D>;
using inner_types = xcontainer_inner_types<D>;
using container_type = typename inner_types::container_type;
using value_type = typename container_type::value_type;
using reference = typename container_type::reference;
using const_reference = typename container_type::const_reference;
using pointer = typename container_type::pointer;
using const_pointer = typename container_type::const_pointer;
using size_type = typename container_type::size_type;
using difference_type = typename container_type::difference_type;
using shape_type = typename inner_types::shape_type;
using strides_type = typename inner_types::strides_type;
using backstrides_type = typename inner_types::backstrides_type;
using inner_shape_type = typename inner_types::inner_shape_type;
using inner_strides_type = typename inner_types::inner_strides_type;
using iterable_base = xiterable<D>;
using iterator = typename iterable_base::iterator;
using const_iterator = typename iterable_base::const_iterator;
using stepper = typename iterable_base::stepper;
using const_stepper = typename iterable_base::const_stepper;
static constexpr layout_type static_layout = layout_type::dynamic;
static constexpr bool contiguous_layout = false;
void reshape(const shape_type& shape);
void reshape(const shape_type& shape, layout_type l);
void reshape(const shape_type& shape, const strides_type& strides);
layout_type layout() const;
using base_type::operator();
using base_type::operator[];
using base_type::begin;
using base_type::end;
protected:
pycontainer();
~pycontainer() = default;
pycontainer(pybind11::handle h, borrowed_t);
pycontainer(pybind11::handle h, stolen_t);
pycontainer(const pybind11::object& o);
pycontainer(const pycontainer&) = default;
pycontainer& operator=(const pycontainer&) = default;
pycontainer(pycontainer&&) = default;
pycontainer& operator=(pycontainer&&) = default;
static derived_type ensure(pybind11::handle h);
static bool check_(pybind11::handle h);
static PyObject* raw_array_t(PyObject* ptr);
PyArrayObject* python_array() const;
size_type get_min_stride() const;
};
namespace detail
{
template <typename T, typename SFINAE = void>
struct is_fmt_numeric
{
static constexpr bool value = false;
};
constexpr int log2(size_t n, int k = 0)
{
return (n <= 1) ? k : log2(n >> 1, k + 1);
}
template <typename T>
struct is_fmt_numeric<T, std::enable_if_t<std::is_arithmetic<T>::value>>
{
static constexpr bool value = true;
static constexpr int index = std::is_same<T, bool>::value ? 0 : 1 + (
std::is_integral<T>::value ? log2(sizeof(T)) * 2 + std::is_unsigned<T>::value : 8 + (
std::is_same<T, double>::value ? 1 : std::is_same<T, long double>::value ? 2 : 0));
};
template <class T>
struct is_fmt_numeric<std::complex<T>>
{
static constexpr bool value = true;
static constexpr int index = is_fmt_numeric<T>::index + 3;
};
template <class T>
struct numpy_traits
{
private:
constexpr static const int value_list[15] = {
NPY_BOOL,
NPY_BYTE, NPY_UBYTE, NPY_SHORT, NPY_USHORT,
NPY_INT, NPY_UINT, NPY_LONGLONG, NPY_ULONGLONG,
NPY_FLOAT, NPY_DOUBLE, NPY_LONGDOUBLE,
NPY_CFLOAT, NPY_CDOUBLE, NPY_CLONGDOUBLE};
public:
using value_type = std::remove_const_t<T>;
static constexpr int type_num = value_list[is_fmt_numeric<value_type>::index];
};
}
/******************************
* pycontainer implementation *
******************************/
template <class D>
inline pycontainer<D>::pycontainer()
: pybind11::object()
{
}
template <class D>
inline pycontainer<D>::pycontainer(pybind11::handle h, borrowed_t b)
: pybind11::object(h, b)
{
}
template <class D>
inline pycontainer<D>::pycontainer(pybind11::handle h, stolen_t s)
: pybind11::object(h, s)
{
}
template <class D>
inline pycontainer<D>::pycontainer(const pybind11::object& o)
: pybind11::object(raw_array_t(o.ptr()), pybind11::object::stolen_t{})
{
if (!this->m_ptr)
{
throw pybind11::error_already_set();
}
}
template <class D>
inline auto pycontainer<D>::ensure(pybind11::handle h) -> derived_type
{
auto result = pybind11::reinterpret_steal<derived_type>(raw_array_t(h.ptr()));
if (result.ptr() == nullptr)
{
PyErr_Clear();
}
return result;
}
template <class D>
inline bool pycontainer<D>::check_(pybind11::handle h)
{
int type_num = detail::numpy_traits<value_type>::type_num;
return PyArray_Check(h.ptr()) &&
PyArray_EquivTypenums(PyArray_TYPE(reinterpret_cast<PyArrayObject*>(h.ptr())), type_num);
}
template <class D>
inline PyObject* pycontainer<D>::raw_array_t(PyObject* ptr)
{
if (ptr == nullptr)
{
return nullptr;
}
int type_num = detail::numpy_traits<value_type>::type_num;
auto res = PyArray_FromAny(ptr, PyArray_DescrFromType(type_num), 0, 0,
NPY_ARRAY_ENSUREARRAY | NPY_ARRAY_FORCECAST, nullptr);
return res;
}
template <class D>
inline PyArrayObject* pycontainer<D>::python_array() const
{
return reinterpret_cast<PyArrayObject*>(this->m_ptr);
}
template <class D>
inline auto pycontainer<D>::get_min_stride() const -> size_type
{
const size_type& (*min)(const size_type&, const size_type&) = std::min<size_type>;
return std::max(size_type(1), std::accumulate(this->strides().cbegin(), this->strides().cend(), std::numeric_limits<size_type>::max(), min));
}
/**
* Reshapes the container.
* @param shape the new shape
*/
template <class D>
inline void pycontainer<D>::reshape(const shape_type& shape)
{
if (shape.size() != this->dimension() || !std::equal(shape.begin(), shape.end(), this->shape().begin()))
{
reshape(shape, layout_type::row_major);
}
}
/**
* Reshapes the container.
* @param shape the new shape
* @param l the new layout
*/
template <class D>
inline void pycontainer<D>::reshape(const shape_type& shape, layout_type l)
{
strides_type strides = make_sequence<strides_type>(shape.size(), size_type(1));
compute_strides(shape, l, strides);
reshape(shape, strides);
}
/**
* Reshapes the container.
* @param shape the new shape
* @param strides the new strides
*/
template <class D>
inline void pycontainer<D>::reshape(const shape_type& shape, const strides_type& strides)
{
derived_type tmp(shape, strides);
*static_cast<derived_type*>(this) = std::move(tmp);
}
/**
* Return the layout_type of the container
* @return layout_type of the container
*/
template <class D>
inline layout_type pycontainer<D>::layout() const
{
if (PyArray_CHKFLAGS(python_array(), NPY_ARRAY_C_CONTIGUOUS))
return layout_type::row_major;
else if (PyArray_CHKFLAGS(python_array(), NPY_ARRAY_F_CONTIGUOUS))
return layout_type::column_major;
else
return layout_type::dynamic;
}
/**
* Import the numpy Python module.
*/
inline void import_numpy()
{
#ifdef FORCE_IMPORT_ARRAY
if (_import_array() < 0)
{
PyErr_Print();
PyErr_SetString(PyExc_ImportError, "numpy.core.multiarray failed to import");
}
#endif
}
}
#endif
|