/usr/include/xtensor-python/pyarray.hpp is in xtensor-python-dev 0.12.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 | /***************************************************************************
* Copyright (c) 2016, Johan Mabille and Sylvain Corlay *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#ifndef PY_ARRAY_HPP
#define PY_ARRAY_HPP
#include <algorithm>
#include <cstddef>
#include <vector>
#include "xtensor/xbuffer_adaptor.hpp"
#include "xtensor/xiterator.hpp"
#include "xtensor/xsemantic.hpp"
#include "pycontainer.hpp"
#include "pystrides_adaptor.hpp"
namespace xt
{
template <class T>
class pyarray;
}
namespace pybind11
{
namespace detail
{
template <class T>
struct handle_type_name<xt::pyarray<T>>
{
static PYBIND11_DESCR name()
{
return _("numpy.ndarray[") + make_caster<T>::name() + _("]");
}
};
template <typename T>
struct pyobject_caster<xt::pyarray<T>>
{
using type = xt::pyarray<T>;
bool load(handle src, bool convert)
{
if (!convert)
{
if (!PyArray_Check(src.ptr()))
{
return false;
}
int type_num = xt::detail::numpy_traits<T>::type_num;
if (PyArray_TYPE(reinterpret_cast<PyArrayObject*>(src.ptr())) != type_num)
{
return false;
}
}
value = type::ensure(src);
return static_cast<bool>(value);
}
static handle cast(const handle& src, return_value_policy, handle)
{
return src.inc_ref();
}
PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name());
};
}
}
namespace xt
{
template <class A>
class pyarray_backstrides
{
public:
using array_type = A;
using value_type = typename array_type::size_type;
using size_type = typename array_type::size_type;
pyarray_backstrides() = default;
pyarray_backstrides(const array_type& a);
value_type operator[](size_type i) const;
size_type size() const;
private:
const array_type* p_a;
};
template <class T>
struct xiterable_inner_types<pyarray<T>>
: xcontainer_iterable_types<pyarray<T>>
{
};
template <class T>
struct xcontainer_inner_types<pyarray<T>>
{
using container_type = xbuffer_adaptor<T>;
using shape_type = std::vector<typename container_type::size_type>;
using strides_type = shape_type;
using backstrides_type = pyarray_backstrides<pyarray<T>>;
using inner_shape_type = xbuffer_adaptor<std::size_t>;
using inner_strides_type = pystrides_adaptor<sizeof(T)>;
using inner_backstrides_type = backstrides_type;
using temporary_type = pyarray<T>;
};
/**
* @class pyarray
* @brief Multidimensional container providing the xtensor container semantics to a numpy array.
*
* pyarray is similar to the xarray container in that it has a dynamic dimensionality. Reshapes of
* a pyarray container are reflected in the underlying numpy array.
*
* @tparam T The type of the element stored in the pyarray.
* @sa pytensor
*/
template <class T>
class pyarray : public pycontainer<pyarray<T>>,
public xcontainer_semantic<pyarray<T>>
{
public:
using self_type = pyarray<T>;
using semantic_base = xcontainer_semantic<self_type>;
using base_type = pycontainer<self_type>;
using container_type = typename base_type::container_type;
using value_type = typename base_type::value_type;
using reference = typename base_type::reference;
using const_reference = typename base_type::const_reference;
using pointer = typename base_type::pointer;
using size_type = typename base_type::size_type;
using shape_type = typename base_type::shape_type;
using strides_type = typename base_type::strides_type;
using backstrides_type = typename base_type::backstrides_type;
using inner_shape_type = typename base_type::inner_shape_type;
using inner_strides_type = typename base_type::inner_strides_type;
using inner_backstrides_type = typename base_type::inner_backstrides_type;
pyarray();
pyarray(const value_type& t);
pyarray(nested_initializer_list_t<T, 1> t);
pyarray(nested_initializer_list_t<T, 2> t);
pyarray(nested_initializer_list_t<T, 3> t);
pyarray(nested_initializer_list_t<T, 4> t);
pyarray(nested_initializer_list_t<T, 5> t);
pyarray(pybind11::handle h, pybind11::object::borrowed_t);
pyarray(pybind11::handle h, pybind11::object::stolen_t);
pyarray(const pybind11::object& o);
explicit pyarray(const shape_type& shape, layout_type l = layout_type::row_major);
explicit pyarray(const shape_type& shape, const_reference value, layout_type l = layout_type::row_major);
explicit pyarray(const shape_type& shape, const strides_type& strides, const_reference value);
explicit pyarray(const shape_type& shape, const strides_type& strides);
pyarray(const self_type& rhs);
self_type& operator=(const self_type& rhs);
pyarray(self_type&&) = default;
self_type& operator=(self_type&& e) = default;
template <class E>
pyarray(const xexpression<E>& e);
template <class E>
self_type& operator=(const xexpression<E>& e);
using base_type::begin;
using base_type::end;
static self_type ensure(pybind11::handle h);
static bool check_(pybind11::handle h);
private:
inner_shape_type m_shape;
inner_strides_type m_strides;
mutable inner_backstrides_type m_backstrides;
container_type m_data;
void init_array(const shape_type& shape, const strides_type& strides);
void init_from_python();
const inner_shape_type& shape_impl() const noexcept;
const inner_strides_type& strides_impl() const noexcept;
const inner_backstrides_type& backstrides_impl() const noexcept;
container_type& data_impl() noexcept;
const container_type& data_impl() const noexcept;
friend class xcontainer<pyarray<T>>;
};
/**************************************
* pyarray_backstrides implementation *
**************************************/
template <class A>
inline pyarray_backstrides<A>::pyarray_backstrides(const array_type& a)
: p_a(&a)
{
}
template <class A>
inline auto pyarray_backstrides<A>::size() const -> size_type
{
return p_a->dimension();
}
template <class A>
inline auto pyarray_backstrides<A>::operator[](size_type i) const -> value_type
{
value_type sh = p_a->shape()[i];
value_type res = sh == 1 ? 0 : (sh - 1) * p_a->strides()[i];
return res;
}
/**************************
* pyarray implementation *
**************************/
/**
* @name Constructors
*/
//@{
template <class T>
inline pyarray<T>::pyarray()
: base_type()
{
// TODO: avoid allocation
shape_type shape = make_sequence<shape_type>(0, size_type(1));
strides_type strides = make_sequence<strides_type>(0, size_type(0));
init_array(shape, strides);
m_data[0] = T();
}
/**
* Allocates a pyarray with nested initializer lists.
*/
template <class T>
inline pyarray<T>::pyarray(const value_type& t)
: base_type()
{
base_type::reshape(xt::shape<shape_type>(t), layout_type::row_major);
nested_copy(m_data.begin(), t);
}
template <class T>
inline pyarray<T>::pyarray(nested_initializer_list_t<T, 1> t)
: base_type()
{
base_type::reshape(xt::shape<shape_type>(t), layout_type::row_major);
nested_copy(m_data.begin(), t);
}
template <class T>
inline pyarray<T>::pyarray(nested_initializer_list_t<T, 2> t)
: base_type()
{
base_type::reshape(xt::shape<shape_type>(t), layout_type::row_major);
nested_copy(m_data.begin(), t);
}
template <class T>
inline pyarray<T>::pyarray(nested_initializer_list_t<T, 3> t)
: base_type()
{
base_type::reshape(xt::shape<shape_type>(t), layout_type::row_major);
nested_copy(m_data.begin(), t);
}
template <class T>
inline pyarray<T>::pyarray(nested_initializer_list_t<T, 4> t)
: base_type()
{
base_type::reshape(xt::shape<shape_type>(t), layout_type::row_major);
nested_copy(m_data.begin(), t);
}
template <class T>
inline pyarray<T>::pyarray(nested_initializer_list_t<T, 5> t)
: base_type()
{
base_type::reshape(xt::shape<shape_type>(t), layout_type::row_major);
nested_copy(m_data.begin(), t);
}
template <class T>
inline pyarray<T>::pyarray(pybind11::handle h, pybind11::object::borrowed_t b)
: base_type(h, b)
{
init_from_python();
}
template <class T>
inline pyarray<T>::pyarray(pybind11::handle h, pybind11::object::stolen_t s)
: base_type(h, s)
{
init_from_python();
}
template <class T>
inline pyarray<T>::pyarray(const pybind11::object& o)
: base_type(o)
{
init_from_python();
}
/**
* Allocates an uninitialized pyarray with the specified shape and
* layout.
* @param shape the shape of the pyarray
* @param l the layout of the pyarray
*/
template <class T>
inline pyarray<T>::pyarray(const shape_type& shape, layout_type l)
: base_type()
{
strides_type strides(shape.size());
compute_strides(shape, l, strides);
init_array(shape, strides);
}
/**
* Allocates a pyarray with the specified shape and layout. Elements
* are initialized to the specified value.
* @param shape the shape of the pyarray
* @param value the value of the elements
* @param l the layout of the pyarray
*/
template <class T>
inline pyarray<T>::pyarray(const shape_type& shape, const_reference value, layout_type l)
: base_type()
{
strides_type strides(shape.size());
compute_strides(shape, l, strides);
init_array(shape, strides);
std::fill(m_data.begin(), m_data.end(), value);
}
/**
* Allocates an uninitialized pyarray with the specified shape and strides.
* Elements are initialized to the specified value.
* @param shape the shape of the pyarray
* @param strides the strides of the pyarray
* @param value the value of the elements
*/
template <class T>
inline pyarray<T>::pyarray(const shape_type& shape, const strides_type& strides, const_reference value)
: base_type()
{
init_array(shape, strides);
std::fill(m_data.begin(), m_data.end(), value);
}
/**
* Allocates an uninitialized pyarray with the specified shape and strides.
* @param shape the shape of the pyarray
* @param strides the strides of the pyarray
*/
template <class T>
inline pyarray<T>::pyarray(const shape_type& shape, const strides_type& strides)
: base_type()
{
init_array(shape, strides);
}
//@}
/**
* @name Copy semantic
*/
//@{
/**
* The copy constructor.
*/
template <class T>
inline pyarray<T>::pyarray(const self_type& rhs)
: base_type()
{
auto tmp = pybind11::reinterpret_steal<pybind11::object>(
PyArray_NewLikeArray(rhs.python_array(), NPY_KEEPORDER, nullptr, 1));
if (!tmp)
{
throw std::runtime_error("NumPy: unable to create ndarray");
}
this->m_ptr = tmp.release().ptr();
init_from_python();
std::copy(rhs.data().cbegin(), rhs.data().cend(), this->data().begin());
}
/**
* The assignment operator.
*/
template <class T>
inline auto pyarray<T>::operator=(const self_type& rhs) -> self_type&
{
self_type tmp(rhs);
*this = std::move(tmp);
return *this;
}
//@}
/**
* @name Extended copy semantic
*/
//@{
/**
* The extended copy constructor.
*/
template <class T>
template <class E>
inline pyarray<T>::pyarray(const xexpression<E>& e)
: base_type()
{
// TODO: prevent intermediary shape allocation
shape_type shape = forward_sequence<shape_type>(e.derived_cast().shape());
strides_type strides = make_sequence<strides_type>(shape.size(), size_type(0));
compute_strides(shape, layout_type::row_major, strides);
init_array(shape, strides);
semantic_base::assign(e);
}
/**
* The extended assignment operator.
*/
template <class T>
template <class E>
inline auto pyarray<T>::operator=(const xexpression<E>& e) -> self_type&
{
return semantic_base::operator=(e);
}
//@}
template <class T>
inline auto pyarray<T>::ensure(pybind11::handle h) -> self_type
{
return base_type::ensure(h);
}
template <class T>
inline bool pyarray<T>::check_(pybind11::handle h)
{
return base_type::check_(h);
}
template <class T>
inline void pyarray<T>::init_array(const shape_type& shape, const strides_type& strides)
{
strides_type adapted_strides(strides);
std::transform(strides.begin(), strides.end(), adapted_strides.begin(),
[](auto v) { return sizeof(T) * v; });
int flags = NPY_ARRAY_ALIGNED;
if (!std::is_const<T>::value)
{
flags |= NPY_ARRAY_WRITEABLE;
}
int type_num = detail::numpy_traits<T>::type_num;
npy_intp* shape_data = reinterpret_cast<npy_intp*>(const_cast<size_type*>(shape.data()));
npy_intp* strides_data = reinterpret_cast<npy_intp*>(adapted_strides.data());
auto tmp = pybind11::reinterpret_steal<pybind11::object>(
PyArray_New(&PyArray_Type, static_cast<int>(shape.size()), shape_data, type_num, strides_data,
nullptr, static_cast<int>(sizeof(T)), flags, nullptr));
if (!tmp)
{
throw std::runtime_error("NumPy: unable to create ndarray");
}
this->m_ptr = tmp.release().ptr();
init_from_python();
}
template <class T>
inline void pyarray<T>::init_from_python()
{
m_shape = inner_shape_type(reinterpret_cast<size_type*>(PyArray_SHAPE(this->python_array())),
static_cast<size_type>(PyArray_NDIM(this->python_array())));
m_strides = inner_strides_type(reinterpret_cast<size_type*>(PyArray_STRIDES(this->python_array())),
static_cast<size_type>(PyArray_NDIM(this->python_array())));
m_backstrides = backstrides_type(*this);
m_data = container_type(reinterpret_cast<pointer>(PyArray_DATA(this->python_array())),
this->get_min_stride() * static_cast<size_type>(PyArray_SIZE(this->python_array())));
}
template <class T>
inline auto pyarray<T>::shape_impl() const noexcept -> const inner_shape_type&
{
return m_shape;
}
template <class T>
inline auto pyarray<T>::strides_impl() const noexcept -> const inner_strides_type&
{
return m_strides;
}
template <class T>
inline auto pyarray<T>::backstrides_impl() const noexcept -> const inner_backstrides_type&
{
// m_backstrides wraps the numpy array backstrides, which is a raw pointer.
// The address of the raw pointer stored in the wrapper would be invalidated when the pyarray is copied.
// Hence, we build a new backstrides object (cheap wrapper around the underlying pointer) upon access.
m_backstrides = backstrides_type(*this);
return m_backstrides;
}
template <class T>
inline auto pyarray<T>::data_impl() noexcept -> container_type&
{
return m_data;
}
template <class T>
inline auto pyarray<T>::data_impl() const noexcept -> const container_type&
{
return m_data;
}
}
#endif
|