This file is indexed.

/usr/include/xtensor-python/pyarray.hpp is in xtensor-python-dev 0.12.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/***************************************************************************
* Copyright (c) 2016, Johan Mabille and Sylvain Corlay                     *
*                                                                          *
* Distributed under the terms of the BSD 3-Clause License.                 *
*                                                                          *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/

#ifndef PY_ARRAY_HPP
#define PY_ARRAY_HPP

#include <algorithm>
#include <cstddef>
#include <vector>

#include "xtensor/xbuffer_adaptor.hpp"
#include "xtensor/xiterator.hpp"
#include "xtensor/xsemantic.hpp"

#include "pycontainer.hpp"
#include "pystrides_adaptor.hpp"

namespace xt
{
    template <class T>
    class pyarray;
}

namespace pybind11
{
    namespace detail
    {
        template <class T>
        struct handle_type_name<xt::pyarray<T>>
        {
            static PYBIND11_DESCR name()
            {
                return _("numpy.ndarray[") + make_caster<T>::name() + _("]");
            }
        };

        template <typename T>
        struct pyobject_caster<xt::pyarray<T>>
        {
            using type = xt::pyarray<T>;

            bool load(handle src, bool convert)
            {
                if (!convert)
                {
                    if (!PyArray_Check(src.ptr()))
                    {
                        return false;
                    }
                    int type_num = xt::detail::numpy_traits<T>::type_num;
                    if (PyArray_TYPE(reinterpret_cast<PyArrayObject*>(src.ptr())) != type_num)
                    {
                        return false;
                    }
                }
                value = type::ensure(src);
                return static_cast<bool>(value);
            }

            static handle cast(const handle& src, return_value_policy, handle)
            {
                return src.inc_ref();
            }

            PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name());
        };
    }
}

namespace xt
{

    template <class A>
    class pyarray_backstrides
    {
    public:

        using array_type = A;
        using value_type = typename array_type::size_type;
        using size_type = typename array_type::size_type;

        pyarray_backstrides() = default;
        pyarray_backstrides(const array_type& a);

        value_type operator[](size_type i) const;

        size_type size() const;

    private:

        const array_type* p_a;
    };

    template <class T>
    struct xiterable_inner_types<pyarray<T>>
        : xcontainer_iterable_types<pyarray<T>>
    {
    };

    template <class T>
    struct xcontainer_inner_types<pyarray<T>>
    {
        using container_type = xbuffer_adaptor<T>;
        using shape_type = std::vector<typename container_type::size_type>;
        using strides_type = shape_type;
        using backstrides_type = pyarray_backstrides<pyarray<T>>;
        using inner_shape_type = xbuffer_adaptor<std::size_t>;
        using inner_strides_type = pystrides_adaptor<sizeof(T)>;
        using inner_backstrides_type = backstrides_type;
        using temporary_type = pyarray<T>;
    };

    /**
     * @class pyarray
     * @brief Multidimensional container providing the xtensor container semantics to a numpy array.
     *
     * pyarray is similar to the xarray container in that it has a dynamic dimensionality. Reshapes of
     * a pyarray container are reflected in the underlying numpy array.
     *
     * @tparam T The type of the element stored in the pyarray.
     * @sa pytensor
     */
    template <class T>
    class pyarray : public pycontainer<pyarray<T>>,
                    public xcontainer_semantic<pyarray<T>>
    {
    public:

        using self_type = pyarray<T>;
        using semantic_base = xcontainer_semantic<self_type>;
        using base_type = pycontainer<self_type>;
        using container_type = typename base_type::container_type;
        using value_type = typename base_type::value_type;
        using reference = typename base_type::reference;
        using const_reference = typename base_type::const_reference;
        using pointer = typename base_type::pointer;
        using size_type = typename base_type::size_type;
        using shape_type = typename base_type::shape_type;
        using strides_type = typename base_type::strides_type;
        using backstrides_type = typename base_type::backstrides_type;
        using inner_shape_type = typename base_type::inner_shape_type;
        using inner_strides_type = typename base_type::inner_strides_type;
        using inner_backstrides_type = typename base_type::inner_backstrides_type;

        pyarray();
        pyarray(const value_type& t);
        pyarray(nested_initializer_list_t<T, 1> t);
        pyarray(nested_initializer_list_t<T, 2> t);
        pyarray(nested_initializer_list_t<T, 3> t);
        pyarray(nested_initializer_list_t<T, 4> t);
        pyarray(nested_initializer_list_t<T, 5> t);

        pyarray(pybind11::handle h, pybind11::object::borrowed_t);
        pyarray(pybind11::handle h, pybind11::object::stolen_t);
        pyarray(const pybind11::object& o);

        explicit pyarray(const shape_type& shape, layout_type l = layout_type::row_major);
        explicit pyarray(const shape_type& shape, const_reference value, layout_type l = layout_type::row_major);
        explicit pyarray(const shape_type& shape, const strides_type& strides, const_reference value);
        explicit pyarray(const shape_type& shape, const strides_type& strides);

        pyarray(const self_type& rhs);
        self_type& operator=(const self_type& rhs);

        pyarray(self_type&&) = default;
        self_type& operator=(self_type&& e) = default;

        template <class E>
        pyarray(const xexpression<E>& e);

        template <class E>
        self_type& operator=(const xexpression<E>& e);

        using base_type::begin;
        using base_type::end;

        static self_type ensure(pybind11::handle h);
        static bool check_(pybind11::handle h);

    private:

        inner_shape_type m_shape;
        inner_strides_type m_strides;
        mutable inner_backstrides_type m_backstrides;
        container_type m_data;

        void init_array(const shape_type& shape, const strides_type& strides);
        void init_from_python();

        const inner_shape_type& shape_impl() const noexcept;
        const inner_strides_type& strides_impl() const noexcept;
        const inner_backstrides_type& backstrides_impl() const noexcept;

        container_type& data_impl() noexcept;
        const container_type& data_impl() const noexcept;

        friend class xcontainer<pyarray<T>>;
    };

    /**************************************
     * pyarray_backstrides implementation *
     **************************************/

    template <class A>
    inline pyarray_backstrides<A>::pyarray_backstrides(const array_type& a)
        : p_a(&a)
    {
    }

    template <class A>
    inline auto pyarray_backstrides<A>::size() const -> size_type
    {
        return p_a->dimension();
    }

    template <class A>
    inline auto pyarray_backstrides<A>::operator[](size_type i) const -> value_type
    {
        value_type sh = p_a->shape()[i];
        value_type res = sh == 1 ? 0 : (sh - 1) * p_a->strides()[i];
        return res;
    }

    /**************************
     * pyarray implementation *
     **************************/

    /**
     * @name Constructors
     */
    //@{
    template <class T>
    inline pyarray<T>::pyarray()
        : base_type()
    {
        // TODO: avoid allocation
        shape_type shape = make_sequence<shape_type>(0, size_type(1));
        strides_type strides = make_sequence<strides_type>(0, size_type(0));
        init_array(shape, strides);
        m_data[0] = T();
    }

    /**
     * Allocates a pyarray with nested initializer lists.
     */
    template <class T>
    inline pyarray<T>::pyarray(const value_type& t)
        : base_type()
    {
        base_type::reshape(xt::shape<shape_type>(t), layout_type::row_major);
        nested_copy(m_data.begin(), t);
    }

    template <class T>
    inline pyarray<T>::pyarray(nested_initializer_list_t<T, 1> t)
        : base_type()
    {
        base_type::reshape(xt::shape<shape_type>(t), layout_type::row_major);
        nested_copy(m_data.begin(), t);
    }

    template <class T>
    inline pyarray<T>::pyarray(nested_initializer_list_t<T, 2> t)
        : base_type()
    {
        base_type::reshape(xt::shape<shape_type>(t), layout_type::row_major);
        nested_copy(m_data.begin(), t);
    }

    template <class T>
    inline pyarray<T>::pyarray(nested_initializer_list_t<T, 3> t)
        : base_type()
    {
        base_type::reshape(xt::shape<shape_type>(t), layout_type::row_major);
        nested_copy(m_data.begin(), t);
    }

    template <class T>
    inline pyarray<T>::pyarray(nested_initializer_list_t<T, 4> t)
        : base_type()
    {
        base_type::reshape(xt::shape<shape_type>(t), layout_type::row_major);
        nested_copy(m_data.begin(), t);
    }

    template <class T>
    inline pyarray<T>::pyarray(nested_initializer_list_t<T, 5> t)
        : base_type()
    {
        base_type::reshape(xt::shape<shape_type>(t), layout_type::row_major);
        nested_copy(m_data.begin(), t);
    }

    template <class T>
    inline pyarray<T>::pyarray(pybind11::handle h, pybind11::object::borrowed_t b)
        : base_type(h, b)
    {
        init_from_python();
    }

    template <class T>
    inline pyarray<T>::pyarray(pybind11::handle h, pybind11::object::stolen_t s)
        : base_type(h, s)
    {
        init_from_python();
    }

    template <class T>
    inline pyarray<T>::pyarray(const pybind11::object& o)
        : base_type(o)
    {
        init_from_python();
    }

    /**
     * Allocates an uninitialized pyarray with the specified shape and
     * layout.
     * @param shape the shape of the pyarray
     * @param l the layout of the pyarray
     */
    template <class T>
    inline pyarray<T>::pyarray(const shape_type& shape, layout_type l)
        : base_type()
    {
        strides_type strides(shape.size());
        compute_strides(shape, l, strides);
        init_array(shape, strides);
    }

    /**
     * Allocates a pyarray with the specified shape and layout. Elements
     * are initialized to the specified value.
     * @param shape the shape of the pyarray
     * @param value the value of the elements
     * @param l the layout of the pyarray
     */
    template <class T>
    inline pyarray<T>::pyarray(const shape_type& shape, const_reference value, layout_type l)
        : base_type()
    {
        strides_type strides(shape.size());
        compute_strides(shape, l, strides);
        init_array(shape, strides);
        std::fill(m_data.begin(), m_data.end(), value);
    }

    /**
     * Allocates an uninitialized pyarray with the specified shape and strides.
     * Elements are initialized to the specified value.
     * @param shape the shape of the pyarray
     * @param strides the strides of the pyarray
     * @param value the value of the elements
     */
    template <class T>
    inline pyarray<T>::pyarray(const shape_type& shape, const strides_type& strides, const_reference value)
        : base_type()
    {
        init_array(shape, strides);
        std::fill(m_data.begin(), m_data.end(), value);
    }

    /**
     * Allocates an uninitialized pyarray with the specified shape and strides.
     * @param shape the shape of the pyarray
     * @param strides the strides of the pyarray
     */
    template <class T>
    inline pyarray<T>::pyarray(const shape_type& shape, const strides_type& strides)
        : base_type()
    {
        init_array(shape, strides);
    }
    //@}

    /**
     * @name Copy semantic
     */
    //@{
    /**
     * The copy constructor.
     */
    template <class T>
    inline pyarray<T>::pyarray(const self_type& rhs)
        : base_type()
    {
        auto tmp = pybind11::reinterpret_steal<pybind11::object>(
            PyArray_NewLikeArray(rhs.python_array(), NPY_KEEPORDER, nullptr, 1));

        if (!tmp)
        {
            throw std::runtime_error("NumPy: unable to create ndarray");
        }

        this->m_ptr = tmp.release().ptr();
        init_from_python();
        std::copy(rhs.data().cbegin(), rhs.data().cend(), this->data().begin());
    }

    /**
     * The assignment operator.
     */
    template <class T>
    inline auto pyarray<T>::operator=(const self_type& rhs) -> self_type&
    {
        self_type tmp(rhs);
        *this = std::move(tmp);
        return *this;
    }

    //@}

    /**
     * @name Extended copy semantic
     */
    //@{
    /**
     * The extended copy constructor.
     */
    template <class T>
    template <class E>
    inline pyarray<T>::pyarray(const xexpression<E>& e)
        : base_type()
    {
        // TODO: prevent intermediary shape allocation
        shape_type shape = forward_sequence<shape_type>(e.derived_cast().shape());
        strides_type strides = make_sequence<strides_type>(shape.size(), size_type(0));
        compute_strides(shape, layout_type::row_major, strides);
        init_array(shape, strides);
        semantic_base::assign(e);
    }

    /**
     * The extended assignment operator.
     */
    template <class T>
    template <class E>
    inline auto pyarray<T>::operator=(const xexpression<E>& e) -> self_type&
    {
        return semantic_base::operator=(e);
    }
    //@}

    template <class T>
    inline auto pyarray<T>::ensure(pybind11::handle h) -> self_type
    {
        return base_type::ensure(h);
    }

    template <class T>
    inline bool pyarray<T>::check_(pybind11::handle h)
    {
        return base_type::check_(h);
    }

    template <class T>
    inline void pyarray<T>::init_array(const shape_type& shape, const strides_type& strides)
    {
        strides_type adapted_strides(strides);

        std::transform(strides.begin(), strides.end(), adapted_strides.begin(),
                       [](auto v) { return sizeof(T) * v; });

        int flags = NPY_ARRAY_ALIGNED;
        if (!std::is_const<T>::value)
        {
            flags |= NPY_ARRAY_WRITEABLE;
        }
        int type_num = detail::numpy_traits<T>::type_num;

        npy_intp* shape_data = reinterpret_cast<npy_intp*>(const_cast<size_type*>(shape.data()));
        npy_intp* strides_data = reinterpret_cast<npy_intp*>(adapted_strides.data());
        auto tmp = pybind11::reinterpret_steal<pybind11::object>(
            PyArray_New(&PyArray_Type, static_cast<int>(shape.size()), shape_data, type_num, strides_data,
                        nullptr, static_cast<int>(sizeof(T)), flags, nullptr));

        if (!tmp)
        {
            throw std::runtime_error("NumPy: unable to create ndarray");
        }

        this->m_ptr = tmp.release().ptr();
        init_from_python();
    }

    template <class T>
    inline void pyarray<T>::init_from_python()
    {
        m_shape = inner_shape_type(reinterpret_cast<size_type*>(PyArray_SHAPE(this->python_array())),
                                   static_cast<size_type>(PyArray_NDIM(this->python_array())));
        m_strides = inner_strides_type(reinterpret_cast<size_type*>(PyArray_STRIDES(this->python_array())),
                                       static_cast<size_type>(PyArray_NDIM(this->python_array())));
        m_backstrides = backstrides_type(*this);
        m_data = container_type(reinterpret_cast<pointer>(PyArray_DATA(this->python_array())),
                                this->get_min_stride() * static_cast<size_type>(PyArray_SIZE(this->python_array())));
    }

    template <class T>
    inline auto pyarray<T>::shape_impl() const noexcept -> const inner_shape_type&
    {
        return m_shape;
    }

    template <class T>
    inline auto pyarray<T>::strides_impl() const noexcept -> const inner_strides_type&
    {
        return m_strides;
    }

    template <class T>
    inline auto pyarray<T>::backstrides_impl() const noexcept -> const inner_backstrides_type&
    {
        // m_backstrides wraps the numpy array backstrides, which is a raw pointer.
        // The address of the raw pointer stored in the wrapper would be invalidated when the pyarray is copied.
        // Hence, we build a new backstrides object (cheap wrapper around the underlying pointer) upon access.
        m_backstrides = backstrides_type(*this);
        return m_backstrides;
    }

    template <class T>
    inline auto pyarray<T>::data_impl() noexcept -> container_type&
    {
        return m_data;
    }

    template <class T>
    inline auto pyarray<T>::data_impl() const noexcept -> const container_type&
    {
        return m_data;
    }
}

#endif