This file is indexed.

/usr/include/xtensor/xutils.hpp is in xtensor-dev 0.10.11-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
/***************************************************************************
* Copyright (c) 2016, Johan Mabille, Sylvain Corlay and Wolf Vollprecht    *
*                                                                          *
* Distributed under the terms of the BSD 3-Clause License.                 *
*                                                                          *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/

#ifndef XUTILS_HPP
#define XUTILS_HPP

#include <algorithm>
#include <array>
#include <complex>
#include <cstddef>
#include <initializer_list>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>

#include "xtensor_config.hpp"

namespace xt
{
    /****************
     * declarations *
     ****************/

    template <class T>
    struct remove_class;

    template <class F, class... T>
    void for_each(F&& f, std::tuple<T...>& t) noexcept(noexcept(std::declval<F>()));

    template <class F, class R, class... T>
    R accumulate(F&& f, R init, const std::tuple<T...>& t) noexcept(noexcept(std::declval<F>()));

    template <class... T>
    struct or_;

    template <class... T>
    struct and_;

    template <bool... B>
    struct or_c;

    template <bool... B>
    struct and_c;

    template <std::size_t I, class... Args>
    constexpr decltype(auto) argument(Args&&... args) noexcept;

    template <class R, class F, class... S>
    R apply(std::size_t index, F&& func, const std::tuple<S...>& s) noexcept(noexcept(std::declval<F>()));

    template <class T, class S>
    void nested_copy(T&& iter, const S& s);

    template <class T, class S>
    void nested_copy(T&& iter, std::initializer_list<S> s);

    template <class U>
    struct initializer_dimension;

    template <class R, class T>
    constexpr R shape(T t);

    template <class T, class S>
    constexpr bool check_shape(T t, S first, S last);

    template <class C>
    bool resize_container(C& c, typename C::size_type size);

    template <class T, std::size_t N>
    bool resize_container(std::array<T, N>& a, typename std::array<T, N>::size_type size);

    template <class S>
    S make_sequence(typename S::size_type size, typename S::value_type v);

    template <class R, class A>
    decltype(auto) forward_sequence(A&& s);

    // equivalent to std::size(c) in c++17
    template <class C>
    constexpr auto sequence_size(const C& c) -> decltype(c.size());

    // equivalent to std::size(a) in c++17
    template <class T, std::size_t N>
    constexpr std::size_t sequence_size(const T (&a)[N]);

    /*******************************
     * remove_class implementation *
     *******************************/

    template <class T>
    struct remove_class
    {
    };

    template <class C, class R, class... Args>
    struct remove_class<R (C::*)(Args...)>
    {
        typedef R type(Args...);
    };

    template <class C, class R, class... Args>
    struct remove_class<R (C::*)(Args...) const>
    {
        typedef R type(Args...);
    };

    template <class T>
    using remove_class_t = typename remove_class<T>::type;

    /***************************
     * for_each implementation *
     ***************************/

    namespace detail
    {
        template <std::size_t I, class F, class... T>
        inline typename std::enable_if<I == sizeof...(T), void>::type
        for_each_impl(F&& /*f*/, std::tuple<T...>& /*t*/) noexcept(noexcept(std::declval<F>()))
        {
        }

        template <std::size_t I, class F, class... T>
        inline typename std::enable_if<I < sizeof...(T), void>::type
        for_each_impl(F&& f, std::tuple<T...>& t) noexcept(noexcept(std::declval<F>()))
        {
            f(std::get<I>(t));
            for_each_impl<I + 1, F, T...>(std::forward<F>(f), t);
        }
    }

    template <class F, class... T>
    inline void for_each(F&& f, std::tuple<T...>& t) noexcept(noexcept(std::declval<F>()))
    {
        detail::for_each_impl<0, F, T...>(std::forward<F>(f), t);
    }

    /*****************************
     * accumulate implementation *
     *****************************/

    namespace detail
    {
        template <std::size_t I, class F, class R, class... T>
        inline std::enable_if_t<I == sizeof...(T), R>
        accumulate_impl(F&& /*f*/, R init, const std::tuple<T...>& /*t*/) noexcept(noexcept(std::declval<F>()))
        {
            return init;
        }

        template <std::size_t I, class F, class R, class... T>
        inline std::enable_if_t<I < sizeof...(T), R>
        accumulate_impl(F&& f, R init, const std::tuple<T...>& t) noexcept(noexcept(std::declval<F>()))
        {
            R res = f(init, std::get<I>(t));
            return accumulate_impl<I + 1, F, R, T...>(std::forward<F>(f), res, t);
        }
    }

    template <class F, class R, class... T>
    inline R accumulate(F&& f, R init, const std::tuple<T...>& t) noexcept(noexcept(std::declval<F>()))
    {
        return detail::accumulate_impl<0, F, R, T...>(f, init, t);
    }

    /**********************
     * or_ implementation *
     **********************/

    template <>
    struct or_<> : std::integral_constant<bool, false>
    {
    };

    template <class T, class... Ts>
    struct or_<T, Ts...>
        : std::integral_constant<bool, T::value || or_<Ts...>::value>
    {
    };

    /***********************
     * and_ implementation *
     ***********************/

    template <>
    struct and_<> : std::integral_constant<bool, true>
    {
    };

    template <class T, class... Ts>
    struct and_<T, Ts...>
        : std::integral_constant<bool, T::value && and_<Ts...>::value>
    {
    };

    /**********************************
     * or_c and and_c implementations *
     **********************************/

    template <bool... B>
    struct or_c : or_<std::integral_constant<bool, B>...>
    {
    };

    template <bool... B>
    struct and_c : and_<std::integral_constant<bool, B>...>
    {
    };

    /***************************
     * argument implementation *
     ***************************/

    namespace detail
    {
        template <std::size_t I>
        struct getter
        {
            template <class Arg, class... Args>
            static constexpr decltype(auto) get(Arg&& /*arg*/, Args&&... args) noexcept
            {
                return getter<I - 1>::get(std::forward<Args>(args)...);
            }
        };

        template <>
        struct getter<0>
        {
            template <class Arg, class... Args>
            static constexpr Arg&& get(Arg&& arg, Args&&... /*args*/) noexcept
            {
                return std::forward<Arg>(arg);
            }
        };
    }

    template <std::size_t I, class... Args>
    constexpr decltype(auto) argument(Args&&... args) noexcept
    {
        static_assert(I < sizeof...(Args), "I should be lesser than sizeof...(Args)");
        return detail::getter<I>::get(std::forward<Args>(args)...);
    }

    /************************
     * apply implementation *
     ************************/

    namespace detail
    {
        template <class R, class F, std::size_t I, class... S>
        R apply_one(F&& func, const std::tuple<S...>& s) noexcept(noexcept(std::declval<F>()))
        {
            return func(std::get<I>(s));
        }

        template <class R, class F, std::size_t... I, class... S>
        R apply(std::size_t index, F&& func, std::index_sequence<I...> /*seq*/, const std::tuple<S...>& s) noexcept(noexcept(std::declval<F>()))
        {
            using FT = std::add_pointer_t<R(F&&, const std::tuple<S...>&)>;
            static const std::array<FT, sizeof...(I)> ar = {{&apply_one<R, F, I, S...>...}};
            return ar[index](std::forward<F>(func), s);
        }
    }

    template <class R, class F, class... S>
    inline R apply(std::size_t index, F&& func, const std::tuple<S...>& s) noexcept(noexcept(std::declval<F>()))
    {
        return detail::apply<R>(index, std::forward<F>(func), std::make_index_sequence<sizeof...(S)>(), s);
    }

    /***************************
     * nested_initializer_list *
     ***************************/

    template <class T, std::size_t I>
    struct nested_initializer_list
    {
        using type = std::initializer_list<typename nested_initializer_list<T, I - 1>::type>;
    };

    template <class T>
    struct nested_initializer_list<T, 0>
    {
        using type = T;
    };

    template <class T, std::size_t I>
    using nested_initializer_list_t = typename nested_initializer_list<T, I>::type;

    /******************************
     * nested_copy implementation *
     ******************************/

    template <class T, class S>
    inline void nested_copy(T&& iter, const S& s)
    {
        *iter++ = s;
    }

    template <class T, class S>
    inline void nested_copy(T&& iter, std::initializer_list<S> s)
    {
        for (auto it = s.begin(); it != s.end(); ++it)
        {
            nested_copy(std::forward<T>(iter), *it);
        }
    }

    /****************************************
     * initializer_dimension implementation *
     ****************************************/

    namespace detail
    {
        template <class U>
        struct initializer_depth_impl
        {
            static constexpr std::size_t value = 0;
        };

        template <class T>
        struct initializer_depth_impl<std::initializer_list<T>>
        {
            static constexpr std::size_t value = 1 + initializer_depth_impl<T>::value;
        };
    }

    template <class U>
    struct initializer_dimension
    {
        static constexpr std::size_t value = detail::initializer_depth_impl<U>::value;
    };

    /************************************
     * initializer_shape implementation *
     ************************************/

    namespace detail
    {
        template <std::size_t I>
        struct initializer_shape_impl
        {
            template <class T>
            static constexpr std::size_t value(T t)
            {
                return t.size() == 0 ? 0 : initializer_shape_impl<I - 1>::value(*t.begin());
            }
        };

        template <>
        struct initializer_shape_impl<0>
        {
            template <class T>
            static constexpr std::size_t value(T t)
            {
                return t.size();
            }
        };

        template <class R, class U, std::size_t... I>
        constexpr R initializer_shape(U t, std::index_sequence<I...>)
        {
            using size_type = typename R::value_type;
            return {size_type(initializer_shape_impl<I>::value(t))...};
        }
    }

    template <class R, class T>
    constexpr R shape(T t)
    {
        return detail::initializer_shape<R, decltype(t)>(t, std::make_index_sequence<initializer_dimension<decltype(t)>::value>());
    }

    /******************************
     * check_shape implementation *
     ******************************/

    namespace detail
    {
        template <class T, class S>
        struct predshape
        {
            constexpr predshape(S first, S last)
                : m_first(first), m_last(last)
            {
            }

            constexpr bool operator()(const T&) const
            {
                return m_first == m_last;
            }

            S m_first;
            S m_last;
        };

        template <class T, class S>
        struct predshape<std::initializer_list<T>, S>
        {
            constexpr predshape(S first, S last)
                : m_first(first), m_last(last)
            {
            }

            constexpr bool operator()(std::initializer_list<T> t) const
            {
                return *m_first == t.size() && std::all_of(t.begin(), t.end(), predshape<T, S>(m_first + 1, m_last));
            }

            S m_first;
            S m_last;
        };
    }

    template <class T, class S>
    constexpr bool check_shape(T t, S first, S last)
    {
        return detail::predshape<decltype(t), S>(first, last)(t);
    }

    /***********************************
     * resize_container implementation *
     ***********************************/

    template <class C>
    inline bool resize_container(C& c, typename C::size_type size)
    {
        c.resize(size);
        return true;
    }

    template <class T, std::size_t N>
    inline bool resize_container(std::array<T, N>& /*a*/, typename std::array<T, N>::size_type size)
    {
        return size == N;
    }

    /********************************
     * make_sequence implementation *
     ********************************/

    namespace detail
    {
        template <class S>
        struct sequence_builder
        {
            using value_type = typename S::value_type;
            using size_type = typename S::size_type;

            inline static S make(size_type size, value_type v)
            {
                return S(size, v);
            }
        };

        template <class T, std::size_t N>
        struct sequence_builder<std::array<T, N>>
        {
            using sequence_type = std::array<T, N>;
            using value_type = typename sequence_type::value_type;
            using size_type = typename sequence_type::size_type;

            inline static sequence_type make(size_type /*size*/, value_type v)
            {
                sequence_type s;
                s.fill(v);
                return s;
            }
        };
    }

    template <class S>
    inline S make_sequence(typename S::size_type size, typename S::value_type v)
    {
        return detail::sequence_builder<S>::make(size, v);
    }

    /***********************************
     * forward_sequence implementation *
     ***********************************/

    namespace detail
    {
        template <class R, class A, class E = void>
        struct sequence_forwarder
        {
            template <class T>
            static inline R forward(const T& r)
            {
                return R(std::begin(r), std::end(r));
            }
        };

        template <class I, std::size_t L, class A>
        struct sequence_forwarder<std::array<I, L>, A,
                                  std::enable_if_t<!std::is_same<std::array<I, L>, A>::value>>
        {
            using R = std::array<I, L>;

            template <class T>
            static inline R forward(const T& r)
            {
                R ret;
                std::copy(std::begin(r), std::end(r), std::begin(ret));
                return ret;
            }
        };

        template <class R>
        struct sequence_forwarder<R, R>
        {
            template <class T>
            static inline T&& forward(typename std::remove_reference<T>::type& t) noexcept
            {
                return static_cast<T&&>(t);
            }

            template <class T>
            static inline T&& forward(typename std::remove_reference<T>::type&& t) noexcept
            {
                return static_cast<T&&>(t);
            }
        };
    }

    template <class R, class A>
    inline decltype(auto) forward_sequence(A&& s)
    {
        using forwarder = detail::sequence_forwarder<
            std::decay_t<R>,
            std::remove_cv_t<std::remove_reference_t<A>>
        >;
        return forwarder::template forward<A>(s);
    }

    /*************************************
     * promote_shape and promote_strides *
     *************************************/

    namespace detail
    {
        template <class T1, class T2>
        constexpr std::common_type_t<T1, T2> imax(const T1& a, const T2& b)
        {
            return a > b ? a : b;
        }

        // Variadic meta-function returning the maximal size of std::arrays.
        template <class... T>
        struct max_array_size;

        template <>
        struct max_array_size<>
        {
            static constexpr std::size_t value = 0;
        };

        template <class T, class... Ts>
        struct max_array_size<T, Ts...> : std::integral_constant<std::size_t, imax(std::tuple_size<T>::value, max_array_size<Ts...>::value)>
        {
        };

        // Simple is_array and only_array meta-functions
        template <class S>
        struct is_array
        {
            static constexpr bool value = false;
        };

        template <class T, std::size_t N>
        struct is_array<std::array<T, N>>
        {
            static constexpr bool value = true;
        };

        template <class... S>
        using only_array = and_<is_array<S>...>;

        // The promote_index meta-function returns std::vector<promoted_value_type> in the
        // general case and an array of the promoted value type and maximal size if all
        // arguments are of type std::array

        template <bool A, class... S>
        struct promote_index_impl;

        template <class... S>
        struct promote_index_impl<false, S...>
        {
            using type = std::vector<typename std::common_type<typename S::value_type...>::type>;
        };

        template <class... S>
        struct promote_index_impl<true, S...>
        {
            using type = std::array<typename std::common_type<typename S::value_type...>::type, max_array_size<S...>::value>;
        };

        template <>
        struct promote_index_impl<true>
        {
            using type = std::array<std::size_t, 0>;
        };

        template <class... S>
        struct promote_index
        {
            using type = typename promote_index_impl<only_array<S...>::value, S...>::type;
        };
    }

    template <class... S>
    using promote_shape_t = typename detail::promote_index<S...>::type;

    template <class... S>
    using promote_strides_t = typename detail::promote_index<S...>::type;


    /**************************
     * closure implementation *
     **************************/

    template <class S>
    struct closure
    {
        using underlying_type = std::conditional_t<std::is_const<std::remove_reference_t<S>>::value,
                                                   const std::decay_t<S>,
                                                   std::decay_t<S>>;
        using type = typename std::conditional<std::is_lvalue_reference<S>::value,
                                               underlying_type&,
                                               underlying_type>::type;
    };

    template <class S>
    using closure_t = typename closure<S>::type;

    template <class S>
    struct const_closure
    {
        using underlying_type = const std::decay_t<S>;
        using type = typename std::conditional<std::is_lvalue_reference<S>::value,
                                               underlying_type&,
                                               underlying_type>::type;
    };

    template <class S>
    using const_closure_t = typename const_closure<S>::type;

    /******************************
     * ptr_closure implementation *
     ******************************/

    template <class S>
    struct ptr_closure
    {
        using underlying_type = std::conditional_t<std::is_const<std::remove_reference_t<S>>::value,
                                                   const std::decay_t<S>,
                                                   std::decay_t<S>>;
        using type = std::conditional_t<std::is_lvalue_reference<S>::value,
                                        underlying_type*,
                                        underlying_type>;
    };

    template <class S>
    using ptr_closure_t = typename ptr_closure<S>::type;

    template <class S>
    struct const_ptr_closure
    {
        using underlying_type = const std::decay_t<S>;
        using type = std::conditional_t<std::is_lvalue_reference<S>::value,
                                        underlying_type*,
                                        underlying_type>;
    };

    template <class S>
    using const_ptr_closure_t = typename const_ptr_closure<S>::type;

    /***************************
     * apply_cv implementation *
     ***************************/

    namespace detail
    {
        template <class T, class U, bool = std::is_const<std::remove_reference_t<T>>::value,
                  bool = std::is_volatile<std::remove_reference_t<T>>::value>
        struct apply_cv_impl
        {
            using type = U;
        };

        template <class T, class U>
        struct apply_cv_impl<T, U, true, false>
        {
            using type = const U;
        };

        template <class T, class U>
        struct apply_cv_impl<T, U, false, true>
        {
            using type = volatile U;
        };

        template <class T, class U>
        struct apply_cv_impl<T, U, true, true>
        {
            using type = const volatile U;
        };

        template <class T, class U>
        struct apply_cv_impl<T&, U, false, false>
        {
            using type = U&;
        };

        template <class T, class U>
        struct apply_cv_impl<T&, U, true, false>
        {
            using type = const U&;
        };

        template <class T, class U>
        struct apply_cv_impl<T&, U, false, true>
        {
            using type = volatile U&;
        };

        template <class T, class U>
        struct apply_cv_impl<T&, U, true, true>
        {
            using type = const volatile U&;
        };
    }

    template <class T, class U>
    struct apply_cv
    {
        using type = typename detail::apply_cv_impl<T, U>::type;
    };

    template <class T, class U>
    using apply_cv_t = typename apply_cv<T, U>::type;

    /*****************************
     * is_complex implementation *
     *****************************/

    namespace detail
    {
        template <typename T>
        struct is_complex : public std::false_type
        {
        };

        template <typename T>
        struct is_complex<std::complex<T>> : public std::true_type
        {
        };
    }

    template <class T>
    struct is_complex
    {
        static constexpr bool value = detail::is_complex<std::decay_t<T>>::value;
    };

    /*************************************
     * complex_value_type implementation *
     *************************************/

    template <typename T>
    struct complex_value_type
    {
        using type = T;
    };

    template <typename T>
    struct complex_value_type<std::complex<T>>
    {
        using type = T;
    };

    template <class T>
    using complex_value_type_t = typename complex_value_type<T>::type;

    /*********************************
     * forward_offset implementation *
     *********************************/

    namespace detail
    {

        template <class T, class M>
        struct forward_type
        {
            using type = apply_cv_t<T, M>&&;
        };

        template <class T, class M>
        struct forward_type<T&, M>
        {
            using type = apply_cv_t<T, M>&;
        };

        template <class T, class M>
        using forward_type_t = typename forward_type<T, M>::type;
    }

    template <class M, std::size_t I, class T>
    constexpr detail::forward_type_t<T, M> forward_offset(T&& v) noexcept
    {
        using forward_type = detail::forward_type_t<T, M>;
        using cv_value_type = std::remove_reference_t<forward_type>;
        using byte_type = apply_cv_t<std::remove_reference_t<T>, char>;

        return static_cast<forward_type>(
            *reinterpret_cast<cv_value_type*>(
                reinterpret_cast<byte_type*>(&v) + I
            )
        );
    }

    /**********************************************
     * forward_real & forward_imag implementation *
     **********************************************/

    // forward_real

    template <class T>
    auto forward_real(T&& v)
        -> std::enable_if_t<!is_complex<T>::value, detail::forward_type_t<T, T>>  // real case -> forward
    {
        return static_cast<detail::forward_type_t<T, T>>(v);
    }

    template <class T>
    auto forward_real(T&& v)
        -> std::enable_if_t<is_complex<T>::value, detail::forward_type_t<T, typename std::decay_t<T>::value_type>>  // complex case -> forward the real part
    {
        return forward_offset<typename std::decay_t<T>::value_type, 0>(v);
    }

    // forward_imag

    template <class T>
    auto forward_imag(T &&)
        -> std::enable_if_t<!is_complex<T>::value, std::decay_t<T>>  // real case -> always return 0 by value
    {
        return 0;
    }

    template <class T>
    auto forward_imag(T&& v)
        -> std::enable_if_t<is_complex<T>::value, detail::forward_type_t<T, typename std::decay_t<T>::value_type>>  // complex case -> forwards the imaginary part
    {
        using real_type = typename std::decay_t<T>::value_type;
        return forward_offset<real_type, sizeof(real_type)>(v);
    }

    /**************************
    * to_array implementation *
    ***************************/

    namespace detail
    {
        template <class T, std::size_t N, std::size_t... I>
        constexpr std::array<std::remove_cv_t<T>, N> to_array_impl(T (&a)[N], std::index_sequence<I...>)
        {
            return {{a[I]...}};
        }
    }

    template <class T, std::size_t N>
    constexpr std::array<std::remove_cv_t<T>, N> to_array(T (&a)[N])
    {
        return detail::to_array_impl(a, std::make_index_sequence<N>{});
    }

    /********************************
     * sequence_size implementation *
     ********************************/

    // equivalent to std::size(c) in c++17
    template <class C>
    constexpr auto sequence_size(const C& c) -> decltype(c.size())
    {
        return c.size();
    }

    // equivalent to std::size(a) in c++17
    template <class T, std::size_t N>
    constexpr std::size_t sequence_size(const T (&)[N])
    {
        return N;
    }

    /*****************************************
     * has_raw_data_interface implementation *
     *****************************************/

    template <typename T>
    class has_raw_data_interface
    {
        template <typename C>
        static std::true_type test(decltype(std::declval<C>().raw_data_offset()));

        template <typename C>
        static std::false_type test(...);

    public:

        constexpr static bool value = decltype(test<T>(std::size_t(0)))::value == true;
    };

    /******************************
     * is_complete implementation * 
     ******************************/

    namespace detail
    {
        template <typename T>
        struct is_complete_impl
        {
            template <typename U>
            static auto test(U*)  -> std::integral_constant<bool, sizeof(U) == sizeof(U)>;
            static auto test(...) -> std::false_type;
            using type = decltype(test((T*)0));
        };
    }

    template <typename T>
    struct is_complete : detail::is_complete_impl<T>::type {};

    /*********************************************
     * xtrivial_default_construct implementation * 
     *********************************************/

#if defined(__clang__)
#if !(defined(__APPLE__))
// CLANG && LINUX
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"

}
namespace std { template <class T> struct is_trivially_default_constructible; }
namespace std { template <class T> struct has_trivial_default_constructor; }
namespace xt
{

    namespace detail
    {
        template <bool C, class T>
        struct xtrivial_default_construct_impl;

        template <class T>
        struct xtrivial_default_construct_impl<true, T> : std::is_trivially_default_constructible<T> {};

        template <class T>
        struct xtrivial_default_construct_impl<false, T> : std::has_trivial_default_constructor<T> {};
    }

    template <class T> 
    using xtrivially_default_constructible = detail::xtrivial_default_construct_impl<is_complete<std::is_trivially_default_constructible<double>>::value, T>;

#pragma clang diagnostic pop
#else
// CLANG && APPLE

    template <class T> 
    using xtrivially_default_constructible = std::is_trivially_default_constructible<T>;

#endif
#else
// NOT CLANG
    #if defined(__GNUC__) && (__GNUC__ < 5 || (__GNUC__ == 5 && __GNUC_MINOR__ < 1))
    // OLD GCC

    template <class T> 
    using xtrivially_default_constructible = std::has_trivial_default_constructor<T>;

    #else

    template <class T> 
    using xtrivially_default_constructible = std::is_trivially_default_constructible<T>;

    #endif

#endif
    
}

#endif