/usr/src/spl-0.7.5/module/spl/spl-kmem.c is in spl-dkms 0.7.5-1ubuntu2.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 | /*
* Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
* Copyright (C) 2007 The Regents of the University of California.
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
* Written by Brian Behlendorf <behlendorf1@llnl.gov>.
* UCRL-CODE-235197
*
* This file is part of the SPL, Solaris Porting Layer.
* For details, see <http://zfsonlinux.org/>.
*
* The SPL is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* The SPL is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with the SPL. If not, see <http://www.gnu.org/licenses/>.
*/
#include <sys/debug.h>
#include <sys/sysmacros.h>
#include <sys/kmem.h>
#include <sys/vmem.h>
#include <linux/mm.h>
#include <linux/ratelimit.h>
/*
* As a general rule kmem_alloc() allocations should be small, preferably
* just a few pages since they must by physically contiguous. Therefore, a
* rate limited warning will be printed to the console for any kmem_alloc()
* which exceeds a reasonable threshold.
*
* The default warning threshold is set to sixteen pages but capped at 64K to
* accommodate systems using large pages. This value was selected to be small
* enough to ensure the largest allocations are quickly noticed and fixed.
* But large enough to avoid logging any warnings when a allocation size is
* larger than optimal but not a serious concern. Since this value is tunable,
* developers are encouraged to set it lower when testing so any new largish
* allocations are quickly caught. These warnings may be disabled by setting
* the threshold to zero.
*/
unsigned int spl_kmem_alloc_warn = MIN(16 * PAGE_SIZE, 64 * 1024);
module_param(spl_kmem_alloc_warn, uint, 0644);
MODULE_PARM_DESC(spl_kmem_alloc_warn,
"Warning threshold in bytes for a kmem_alloc()");
EXPORT_SYMBOL(spl_kmem_alloc_warn);
/*
* Large kmem_alloc() allocations will fail if they exceed KMALLOC_MAX_SIZE.
* Allocations which are marginally smaller than this limit may succeed but
* should still be avoided due to the expense of locating a contiguous range
* of free pages. Therefore, a maximum kmem size with reasonable safely
* margin of 4x is set. Kmem_alloc() allocations larger than this maximum
* will quickly fail. Vmem_alloc() allocations less than or equal to this
* value will use kmalloc(), but shift to vmalloc() when exceeding this value.
*/
unsigned int spl_kmem_alloc_max = (KMALLOC_MAX_SIZE >> 2);
module_param(spl_kmem_alloc_max, uint, 0644);
MODULE_PARM_DESC(spl_kmem_alloc_max,
"Maximum size in bytes for a kmem_alloc()");
EXPORT_SYMBOL(spl_kmem_alloc_max);
int
kmem_debugging(void)
{
return (0);
}
EXPORT_SYMBOL(kmem_debugging);
char *
kmem_vasprintf(const char *fmt, va_list ap)
{
va_list aq;
char *ptr;
do {
va_copy(aq, ap);
ptr = kvasprintf(kmem_flags_convert(KM_SLEEP), fmt, aq);
va_end(aq);
} while (ptr == NULL);
return (ptr);
}
EXPORT_SYMBOL(kmem_vasprintf);
char *
kmem_asprintf(const char *fmt, ...)
{
va_list ap;
char *ptr;
do {
va_start(ap, fmt);
ptr = kvasprintf(kmem_flags_convert(KM_SLEEP), fmt, ap);
va_end(ap);
} while (ptr == NULL);
return (ptr);
}
EXPORT_SYMBOL(kmem_asprintf);
static char *
__strdup(const char *str, int flags)
{
char *ptr;
int n;
n = strlen(str);
ptr = kmalloc(n + 1, kmem_flags_convert(flags));
if (ptr)
memcpy(ptr, str, n + 1);
return (ptr);
}
char *
strdup(const char *str)
{
return (__strdup(str, KM_SLEEP));
}
EXPORT_SYMBOL(strdup);
void
strfree(char *str)
{
kfree(str);
}
EXPORT_SYMBOL(strfree);
/*
* Limit the number of large allocation stack traces dumped to not more than
* 5 every 60 seconds to prevent denial-of-service attacks from debug code.
*/
DEFINE_RATELIMIT_STATE(kmem_alloc_ratelimit_state, 60 * HZ, 5);
/*
* General purpose unified implementation of kmem_alloc(). It is an
* amalgamation of Linux and Illumos allocator design. It should never be
* exported to ensure that code using kmem_alloc()/kmem_zalloc() remains
* relatively portable. Consumers may only access this function through
* wrappers that enforce the common flags to ensure portability.
*/
inline void *
spl_kmem_alloc_impl(size_t size, int flags, int node)
{
gfp_t lflags = kmem_flags_convert(flags);
int use_vmem = 0;
void *ptr;
/*
* Log abnormally large allocations and rate limit the console output.
* Allocations larger than spl_kmem_alloc_warn should be performed
* through the vmem_alloc()/vmem_zalloc() interfaces.
*/
if ((spl_kmem_alloc_warn > 0) && (size > spl_kmem_alloc_warn) &&
!(flags & KM_VMEM) && __ratelimit(&kmem_alloc_ratelimit_state)) {
printk(KERN_WARNING
"Large kmem_alloc(%lu, 0x%x), please file an issue at:\n"
"https://github.com/zfsonlinux/zfs/issues/new\n",
(unsigned long)size, flags);
dump_stack();
}
/*
* Use a loop because kmalloc_node() can fail when GFP_KERNEL is used
* unlike kmem_alloc() with KM_SLEEP on Illumos.
*/
do {
/*
* Calling kmalloc_node() when the size >= spl_kmem_alloc_max
* is unsafe. This must fail for all for kmem_alloc() and
* kmem_zalloc() callers.
*
* For vmem_alloc() and vmem_zalloc() callers it is permissible
* to use __vmalloc(). However, in general use of __vmalloc()
* is strongly discouraged because a global lock must be
* acquired. Contention on this lock can significantly
* impact performance so frequently manipulating the virtual
* address space is strongly discouraged.
*/
if ((size > spl_kmem_alloc_max) || use_vmem) {
if (flags & KM_VMEM) {
ptr = __vmalloc(size, lflags, PAGE_KERNEL);
} else {
return (NULL);
}
} else {
ptr = kmalloc_node(size, lflags, node);
}
if (likely(ptr) || (flags & KM_NOSLEEP))
return (ptr);
/*
* For vmem_alloc() and vmem_zalloc() callers retry immediately
* using __vmalloc() which is unlikely to fail.
*/
if ((flags & KM_VMEM) && (use_vmem == 0)) {
use_vmem = 1;
continue;
}
if (unlikely(__ratelimit(&kmem_alloc_ratelimit_state))) {
printk(KERN_WARNING
"Possible memory allocation deadlock: "
"size=%lu lflags=0x%x",
(unsigned long)size, lflags);
dump_stack();
}
/*
* Use cond_resched() instead of congestion_wait() to avoid
* deadlocking systems where there are no block devices.
*/
cond_resched();
} while (1);
return (NULL);
}
inline void
spl_kmem_free_impl(const void *buf, size_t size)
{
if (is_vmalloc_addr(buf))
vfree(buf);
else
kfree(buf);
}
/*
* Memory allocation and accounting for kmem_* * style allocations. When
* DEBUG_KMEM is enabled the total memory allocated will be tracked and
* any memory leaked will be reported during module unload.
*
* ./configure --enable-debug-kmem
*/
#ifdef DEBUG_KMEM
/* Shim layer memory accounting */
#ifdef HAVE_ATOMIC64_T
atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
unsigned long long kmem_alloc_max = 0;
#else /* HAVE_ATOMIC64_T */
atomic_t kmem_alloc_used = ATOMIC_INIT(0);
unsigned long long kmem_alloc_max = 0;
#endif /* HAVE_ATOMIC64_T */
EXPORT_SYMBOL(kmem_alloc_used);
EXPORT_SYMBOL(kmem_alloc_max);
inline void *
spl_kmem_alloc_debug(size_t size, int flags, int node)
{
void *ptr;
ptr = spl_kmem_alloc_impl(size, flags, node);
if (ptr) {
kmem_alloc_used_add(size);
if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
kmem_alloc_max = kmem_alloc_used_read();
}
return (ptr);
}
inline void
spl_kmem_free_debug(const void *ptr, size_t size)
{
kmem_alloc_used_sub(size);
spl_kmem_free_impl(ptr, size);
}
/*
* When DEBUG_KMEM_TRACKING is enabled not only will total bytes be tracked
* but also the location of every alloc and free. When the SPL module is
* unloaded a list of all leaked addresses and where they were allocated
* will be dumped to the console. Enabling this feature has a significant
* impact on performance but it makes finding memory leaks straight forward.
*
* Not surprisingly with debugging enabled the xmem_locks are very highly
* contended particularly on xfree(). If we want to run with this detailed
* debugging enabled for anything other than debugging we need to minimize
* the contention by moving to a lock per xmem_table entry model.
*
* ./configure --enable-debug-kmem-tracking
*/
#ifdef DEBUG_KMEM_TRACKING
#include <linux/hash.h>
#include <linux/ctype.h>
#define KMEM_HASH_BITS 10
#define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS)
typedef struct kmem_debug {
struct hlist_node kd_hlist; /* Hash node linkage */
struct list_head kd_list; /* List of all allocations */
void *kd_addr; /* Allocation pointer */
size_t kd_size; /* Allocation size */
const char *kd_func; /* Allocation function */
int kd_line; /* Allocation line */
} kmem_debug_t;
static spinlock_t kmem_lock;
static struct hlist_head kmem_table[KMEM_TABLE_SIZE];
static struct list_head kmem_list;
static kmem_debug_t *
kmem_del_init(spinlock_t *lock, struct hlist_head *table,
int bits, const void *addr)
{
struct hlist_head *head;
struct hlist_node *node;
struct kmem_debug *p;
unsigned long flags;
spin_lock_irqsave(lock, flags);
head = &table[hash_ptr((void *)addr, bits)];
hlist_for_each(node, head) {
p = list_entry(node, struct kmem_debug, kd_hlist);
if (p->kd_addr == addr) {
hlist_del_init(&p->kd_hlist);
list_del_init(&p->kd_list);
spin_unlock_irqrestore(lock, flags);
return (p);
}
}
spin_unlock_irqrestore(lock, flags);
return (NULL);
}
inline void *
spl_kmem_alloc_track(size_t size, int flags,
const char *func, int line, int node)
{
void *ptr = NULL;
kmem_debug_t *dptr;
unsigned long irq_flags;
dptr = kmalloc(sizeof (kmem_debug_t), kmem_flags_convert(flags));
if (dptr == NULL)
return (NULL);
dptr->kd_func = __strdup(func, flags);
if (dptr->kd_func == NULL) {
kfree(dptr);
return (NULL);
}
ptr = spl_kmem_alloc_debug(size, flags, node);
if (ptr == NULL) {
kfree(dptr->kd_func);
kfree(dptr);
return (NULL);
}
INIT_HLIST_NODE(&dptr->kd_hlist);
INIT_LIST_HEAD(&dptr->kd_list);
dptr->kd_addr = ptr;
dptr->kd_size = size;
dptr->kd_line = line;
spin_lock_irqsave(&kmem_lock, irq_flags);
hlist_add_head(&dptr->kd_hlist,
&kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]);
list_add_tail(&dptr->kd_list, &kmem_list);
spin_unlock_irqrestore(&kmem_lock, irq_flags);
return (ptr);
}
inline void
spl_kmem_free_track(const void *ptr, size_t size)
{
kmem_debug_t *dptr;
/* Ignore NULL pointer since we haven't tracked it at all*/
if (ptr == NULL)
return;
/* Must exist in hash due to kmem_alloc() */
dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);
ASSERT3P(dptr, !=, NULL);
ASSERT3S(dptr->kd_size, ==, size);
kfree(dptr->kd_func);
kfree(dptr);
spl_kmem_free_debug(ptr, size);
}
#endif /* DEBUG_KMEM_TRACKING */
#endif /* DEBUG_KMEM */
/*
* Public kmem_alloc(), kmem_zalloc() and kmem_free() interfaces.
*/
void *
spl_kmem_alloc(size_t size, int flags, const char *func, int line)
{
ASSERT0(flags & ~KM_PUBLIC_MASK);
#if !defined(DEBUG_KMEM)
return (spl_kmem_alloc_impl(size, flags, NUMA_NO_NODE));
#elif !defined(DEBUG_KMEM_TRACKING)
return (spl_kmem_alloc_debug(size, flags, NUMA_NO_NODE));
#else
return (spl_kmem_alloc_track(size, flags, func, line, NUMA_NO_NODE));
#endif
}
EXPORT_SYMBOL(spl_kmem_alloc);
void *
spl_kmem_zalloc(size_t size, int flags, const char *func, int line)
{
ASSERT0(flags & ~KM_PUBLIC_MASK);
flags |= KM_ZERO;
#if !defined(DEBUG_KMEM)
return (spl_kmem_alloc_impl(size, flags, NUMA_NO_NODE));
#elif !defined(DEBUG_KMEM_TRACKING)
return (spl_kmem_alloc_debug(size, flags, NUMA_NO_NODE));
#else
return (spl_kmem_alloc_track(size, flags, func, line, NUMA_NO_NODE));
#endif
}
EXPORT_SYMBOL(spl_kmem_zalloc);
void
spl_kmem_free(const void *buf, size_t size)
{
#if !defined(DEBUG_KMEM)
return (spl_kmem_free_impl(buf, size));
#elif !defined(DEBUG_KMEM_TRACKING)
return (spl_kmem_free_debug(buf, size));
#else
return (spl_kmem_free_track(buf, size));
#endif
}
EXPORT_SYMBOL(spl_kmem_free);
#if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
static char *
spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
{
int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
int i, flag = 1;
ASSERT(str != NULL && len >= 17);
memset(str, 0, len);
/*
* Check for a fully printable string, and while we are at
* it place the printable characters in the passed buffer.
*/
for (i = 0; i < size; i++) {
str[i] = ((char *)(kd->kd_addr))[i];
if (isprint(str[i])) {
continue;
} else {
/*
* Minimum number of printable characters found
* to make it worthwhile to print this as ascii.
*/
if (i > min)
break;
flag = 0;
break;
}
}
if (!flag) {
sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
*((uint8_t *)kd->kd_addr),
*((uint8_t *)kd->kd_addr + 2),
*((uint8_t *)kd->kd_addr + 4),
*((uint8_t *)kd->kd_addr + 6),
*((uint8_t *)kd->kd_addr + 8),
*((uint8_t *)kd->kd_addr + 10),
*((uint8_t *)kd->kd_addr + 12),
*((uint8_t *)kd->kd_addr + 14));
}
return (str);
}
static int
spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
{
int i;
spin_lock_init(lock);
INIT_LIST_HEAD(list);
for (i = 0; i < size; i++)
INIT_HLIST_HEAD(&kmem_table[i]);
return (0);
}
static void
spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
{
unsigned long flags;
kmem_debug_t *kd;
char str[17];
spin_lock_irqsave(lock, flags);
if (!list_empty(list))
printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address",
"size", "data", "func", "line");
list_for_each_entry(kd, list, kd_list)
printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr,
(int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8),
kd->kd_func, kd->kd_line);
spin_unlock_irqrestore(lock, flags);
}
#endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
int
spl_kmem_init(void)
{
#ifdef DEBUG_KMEM
kmem_alloc_used_set(0);
#ifdef DEBUG_KMEM_TRACKING
spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
#endif /* DEBUG_KMEM_TRACKING */
#endif /* DEBUG_KMEM */
return (0);
}
void
spl_kmem_fini(void)
{
#ifdef DEBUG_KMEM
/*
* Display all unreclaimed memory addresses, including the
* allocation size and the first few bytes of what's located
* at that address to aid in debugging. Performance is not
* a serious concern here since it is module unload time.
*/
if (kmem_alloc_used_read() != 0)
printk(KERN_WARNING "kmem leaked %ld/%llu bytes\n",
(unsigned long)kmem_alloc_used_read(), kmem_alloc_max);
#ifdef DEBUG_KMEM_TRACKING
spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
#endif /* DEBUG_KMEM_TRACKING */
#endif /* DEBUG_KMEM */
}
|