This file is indexed.

/usr/share/doc/skalibs-doc/libbiguint.html is in skalibs-doc 0.47-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1" />
    <meta http-equiv="Content-Language" content="en" />
    <title>skalibs: the biguint library interface</title>
    <meta name="Description" content="skalibs: the biguint library interface" />
    <meta name="Keywords" content="skalibs biguint libbiguint library interface" />
    <!-- <link rel="stylesheet" type="text/css" href="http://www.skarnet.org/default.css" /> -->
  </head>
<body>

<p>
<a href="index.html">skalibs</a><br />
<a href="http://www.skarnet.org/software/">Software</a><br />
<a href="http://www.skarnet.org/">www.skarnet.org</a>
</p>

<h1> The <tt>biguint</tt> library interface </h1>

<p>
<tt>biguint</tt> is set of simple primitives performing arithmetical
operations on (unsigned) integers of arbitrary length. It is nowhere
near as powerful or efficient as specialized,
assembly language-optimized libraries such as
<a href="http://www.swox.com/gmp/">GMP</a>, but it has the advantages
of smallness and simplicity. <tt>biguint</tt> was developed for use in
<a href="http://www.skarnet.org/software/minssl/">minssl</a>; now that
it provides every function that <tt>minssl</tt> needs, no feature will
most probably be added.
</p>

<h2> Compiling </h2>

<ul>
 <li> Add <tt>/package/prog/skalibs/include</tt> to your header directory list </li>
 <li> Use <tt>#include "uint32.h"</tt> and <tt>#include "biguint.h"</tt></li>
</ul>

<h2> Linking </h2>

<ul>
 <li> Define a global variable <tt>PROG</tt> of type <tt>char const *</tt>
that contains the name of your executable. </li>
 <li> Link against <tt>/package/prog/skalibs/library/libbiguint.a</tt> and
<tt>/package/prog/skalibs/library/libstddjb.a</tt>. </li>
</ul>

<h2> Programming </h2>

<p>
 You should refer to the <tt>biguint.h</tt> header for the exact function
prototypes.
</p>

<h3> <a name="defs" />
Definitions </h3>

<ul>
 <li> A <em>biguint</em> <tt>x</tt> is a pointer to an array <tt>u</tt>
of uint32, together with an unsigned integer <tt>n</tt> called its <em>length</em>.
<br><tt>x = (2^32)^0 * u[0] + (2^32)^1 * u[1] + ... + (2^32)^(n-1) * u[n-1]</tt>.
<br> <tt>n</tt> must be lesser than BIGUINT_MAXLIMBS, which is currently 64. </li>
 <li> Every <tt>u[i]</tt> is called a <em>limb</em>. </li>
 <li> The greatest integer <tt>i</tt> lesser than <tt>n</tt> for which
<tt>u[i]</tt> is non-zero is called the <em>order</em> of <tt>x</tt>. The
order of zero is 0. </li>
</ul>

<h3> <a name="basic" />
Basic operations </h3>

<h4> Creating a biguint </h4>

<p>
 Just declare <tt>uint32 x[BIGUINT_MAXLIMBS] ;</tt> . In the following,
we will refer to a biguint as a <tt>uint32 *</tt>; remember that it
must be pre-allocated.
</p>

<h4> Setting it to zero </h4>

<pre>
uint32 *x ;
unsigned int n ;

 bu_zero(x, n) ;
</pre>

<p>
<tt>bu_zero()</tt> sets the first <tt>n</tt> limbs of <tt>x</tt> to zero.
</p>

<h4> Copying a biguint </h4>

<pre>
uint32 const *x ;
uint32 *y ;
unsigned int n ;

 bu_copy(y, x, n) ;
</pre>

<p>
<tt>bu_copy()</tt> will copy the first <tt>n</tt> limbs from <tt>x</tt>
to <tt>y</tt>.
</p>

<h4> Calculating the order </h4>

<pre>
uint32 const *x ;
unsigned int n ;
unsigned int r ;

 r = bu_len(x, n) ;
</pre>

<p>
<tt>bu_len()</tt> outputs the order of <tt>x</tt> of length <tt>n</tt>.
<tt>0&nbsp;&lt;=&nbsp;r&nbsp;&lt;=&nbsp;n</tt>.
</p>

<h4> Comparing two biguints </h4>

<pre>
uint32 const *a ;
uint32 const *b ;
unsigned int n ;
int r ;

 r = bu_cmp(a, b, n) ;
</pre>

<p>
<tt>bu_cmp()</tt> returns -1 if <tt>a&nbsp;&lt;&nbsp;b</tt>, 1 if
<tt>a&nbsp;&gt;&nbsp;b</tt>, and 0 if <tt>a&nbsp;=&nbsp;b</tt>.
<tt>a</tt> and <tt>b</tt> must have the same length <tt>n</tt>.
</p>

<h3> <a name="io" />
I/O operations </h3>

<h4> Writing a biguint as an array of bytes </h4>

<pre>
char *s ;
uint32 const *x ;
unsigned int n ;

 bu_pack(s, x, n) ;
 bu_pack_big(s, x, n) ;
</pre>

<p>
<tt>bu_pack()</tt> writes <tt>4*n</tt> bytes to <tt>s</tt>. The bytes
are a little-endian representation of <tt>x</tt>.<br />
<tt>bu_pack_big()</tt> is the same, with a big-endian representation.
</p>

<h4> Reading a biguint from an array of bytes </h4>

<pre>
char const *s ;
uint32 *x ;
unsigned int n ;

 bu_unpack(s, x, n) ;
 bu_unpack_big(s, x, n) ;
</pre>

<p>
<tt>bu_unpack()</tt> reads <tt>4*n</tt> little-endian bytes from <tt>s</tt>
and builds the corresponding biguint <tt>x</tt>. <br />
<tt>bu_unpack_big()</tt> is the same, but the bytes are interpreted as
big-endian.
</p>

<h4> Formatting a biguint for readable output </h4>

<pre>
char *s ;
uint32 const *x ;
unsigned int n ;

 bu_fmt(s, x, n) ;
</pre>

<p>
<tt>bu_fmt()</tt> writes <tt>x</tt> in <tt>s</tt> as a standard big-endian
hexadecimal number. <tt>x</tt> is considered of length <tt>n</tt>, so
<tt>8*n</tt> bytes will be written to <tt>s</tt>, even if it <tt>x</tt>
starts with zeros.
</p>

<h4> Reading a biguint from readable format </h4>

<pre>
char const *s ;
uint32 *x ;
unsigned int n ;
unsigned int r ;

 r = bu_scan(s, x, &amp;n) ;
</pre>

<p>
<tt>bu_scan()</tt> is the inverse of <tt>bu_fmt()</tt>: some
bytes are read from <tt>s</tt>, and they build a biguint <tt>x</tt> of
computed length <tt>n</tt>. The reading stops at the first byte encountered
that is not in the 0-9, A-F or a-f range. <tt>bu_scan()</tt> returns the
number of bytes read.
</p>

<h3> <a name="arith" />
Arithmetic operations </h3>

<h4> Addition </h4>

<pre>
uint32 const *a ;
uint32 const *b ;
uint32 *c ;
unsigned int n ;
unsigned char carrybefore ;
unsigned char carryafter ;

 carryafter = bu_addc(c, a, b, n, carrybefore) ;
 carryafter = bu_subc(c, a, b, n, carrybefore) ;
</pre>

<p>
<tt>bu_addc()</tt> adds <tt>a</tt> and <tt>b</tt>, and puts the result
into <tt>c</tt>. <tt>a</tt> and <tt>b</tt> must have the same length,
<tt>n</tt>; after the addition, <tt>c</tt> has length <tt>n</tt>.
<tt>carrybefore</tt> must be 0 or 1; if it is 1, then <tt>b+1</tt> is
used instead of <tt>b</tt>. If <tt>c</tt> doesn't fit in <tt>n</tt>
limbs, then the <tt>n</tt> least significant limbs are kept, and
<tt>bu_addc()</tt> returns 1. Else it returns 0. <br />
<tt>bu_subc()</tt> is the same, with substraction. If <tt>c</tt>
should be negative, then <tt>c</tt> is really <tt>(2^32)^n - c</tt>
and <tt>bu_subc()</tt> returns 1.<br />
<tt>bu_add(c, a, b, n)</tt> is a macro for <tt>bu_addc(c, a, b, n, 0)</tt>.<br />
<tt>bu_sub(c, a, b, n)</tt> is a macro for <tt>bu_subc(c, a, b, n, 0)</tt>.<br />
</p>

<h4> Multiplication </h4>

<pre>
uint32 const *a ;
uint32 const *b ;
uint32 *c ;
unsigned int an, bn ;

 bu_mul(c, a, an, b, bn) ;
</pre>

<p>
<tt>bu_mul()</tt> computes <tt>c=a*b</tt>. <tt>a</tt>'s length is <tt>an</tt>;
<tt>b</tt>'s length is <tt>bn</tt>; <tt>c</tt>'s length will be <tt>an+bn</tt>.
</p>

<h4> Division </h4>

<pre>
uint32 const *a ;
uint32 const *b ;
uint32 *q ;
uint32 *r ;
unsigned int n ;

 bu_div(a, b, q, r, n) ;
 bu_mod(a, b, n) ;
</pre>

<p>
<tt>bu_div()</tt> computes <tt>q</tt>, the quotient, and <tt>r</tt>, the
remainder, of <tt>a</tt> divided by <tt>b</tt>. If <tt>b</tt> is zero,
a SIGFPE is raised: this is intentional.<br />
<tt>bu_mod()</tt> computes only the remainder, and stores it into <tt>a</tt>.
</p>

<h4> Left-shifts and right-shifts </h4>

<pre>
uint32 *x ;
unsigned int n ;
unsigned char carryafter ;
unsigned char carrybefore ;

 carryafter = bu_slbc(x, n, carrybefore) ;
 carryafter = bu_srbc(x, n, carrybefore) ;
</pre>

<p>
<tt>bu_slbc()</tt> computes <tt>x&nbsp;&lt;&lt;=&nbsp;1</tt>.
The least significant bit of <tt>x</tt> is then set to
<tt>carrybefore</tt>. <tt>bu_slbc()</tt> returns the
previous value of <tt>x</tt>'s most significant bit. <br />
<tt>bu_srbc()</tt> computes <tt>x&nbsp;&gt;&gt;=&nbsp;1</tt>.
The most significant bit of <tt>x</tt> is then set to
<tt>carrybefore</tt>. <tt>bu_slbc()</tt> returns the
previous value of <tt>x</tt>'s least significant bit.<br />
<tt>bu_slb(x, n)</tt> and <tt>bu_srb(x, n)</tt> are macros for
respectively <tt>bu_slbc(x, n, 0)</tt> and <tt>bu_srbc(x, n, 0)</tt>.
</p>

<h4> Modular operations </h4>

<pre>
uint32 const *a ;
uint32 const *b ;
uint32 *c ;
uint32 const *m ;
unsigned int n ;

 bu_addmod(c, a, b, m, n) ;
 bu_submod(c, a, b, m, n) ;
 bu_divmod(c, a, b, m, n) ;
 bu_invmod(c, m, n) ;
</pre>

<p>
<tt>bu_addmod()</tt> computes <tt>c&nbsp;=&nbsp;(a+b)&nbsp;mod&nbsp;m</tt>.<br />
<tt>bu_submod()</tt> computes <tt>c&nbsp;=&nbsp;(a-b)&nbsp;mod&nbsp;m</tt>.<br />
<tt>a</tt>, <tt>b</tt> and <tt>m</tt> must have the same length <tt>n</tt>.
<tt>a</tt> and <tt>b</tt> must already be numbers modulo <tt>m</tt>.
</p>

<p>
<tt>bu_divmod()</tt> computes <tt>a</tt> divided by <tt>b</tt> modulo
<tt>m</tt> and stores it into <tt>c</tt>. <br />
<tt>bu_invmod()</tt> computes the inverse of <tt>c</tt> modulo <tt>m</tt>
and stores it into <tt>c</tt>. <br />
<strong>The divisor and <tt>m</tt> must be relatively prime</strong>, else
those functions loop forever. <br />
 The algorithm for modular division and inversion is due to
<a href="http://research.sun.com/techrep/2001/abstract-95.html">Sheueling
Chang Shantz</a>.
</p>

</body>
</html>