/usr/share/singular/LIB/zeroset.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 | ////////////////////////////////////////////////////////////////////////////
version="version zeroset.lib 4.0.0.0 Jun_2013 "; // $Id: 1f516419790d9ecd0d05768a9e70df1d51397083 $
category="Symbolic-numerical solving";
info="
LIBRARY: zeroset.lib Procedures for roots and factorization
AUTHOR: Thomas Bayer, email: tbayer@mathematik.uni-kl.de,@*
http://wwwmayr.informatik.tu-muenchen.de/personen/bayert/@*
Current address: Hochschule Ravensburg-Weingarten
OVERVIEW:
Algorithms for finding the zero-set of a zero-dim. ideal in Q(a)[x_1,..,x_n],
roots and factorization of univariate polynomials over Q(a)[t]
where a is an algebraic number. Written in the scope of the
diploma thesis (advisor: Prof. Gert-Martin Greuel) 'Computations of moduli
spaces of semiquasihomogeneous singularities and an implementation in Singular'.
This library is meant as a preliminary extension of the functionality
of Singular for univariate factorization of polynomials over simple algebraic
extensions in characteristic 0.
NOTE:
Subprocedures with postfix 'Main' require that the ring contains a variable
'a' and no parameters, and the ideal 'mpoly', where 'minpoly' from the
basering is stored.
PROCEDURES:
Quotient(f, g) quotient q of f w.r.t. g (in f = q*g + remainder)
remainder(f,g) remainder of the division of f by g
roots(f) computes all roots of f in an extension field of Q
sqfrNorm(f) norm of f (f must be squarefree)
zeroSet(I) zero-set of the 0-dim. ideal I
egcdMain(f, g) gcd over an algebraic extension field of Q
factorMain(f) factorization of f over an algebraic extension field
invertNumberMain(c) inverts an element of an algebraic extension field
quotientMain(f, g) quotient of f w.r.t. g
remainderMain(f,g) remainder of the division of f by g
rootsMain(f) computes all roots of f, might extend the ground field
sqfrNormMain(f) norm of f (f must be squarefree)
containedQ(data, f) f in data ?
sameQ(a, b) a == b (list a,b)
";
LIB "primitiv.lib";
LIB "primdec.lib";
// note : return a ring : ring need not be exported !!!
// Artihmetic in Q(a)[x] without built-in procedures
// assume basering = Q[x,a] and minpoly is represented by mpoly(a).
// the algorithms are taken from "Polynomial Algorithms in Computer Algebra",
// F. Winkler, Springer Verlag Wien, 1996.
// To do :
// squarefree factorization
// multiplicities
// Improvement :
// a main problem is the growth of the coefficients. Try roots(x7 - 1)
// return ideal mpoly !
// mpoly is not monic, comes from primitive_extra
// IMPLEMENTATION
//
// In procedures with name 'proc-name'Main a polynomial ring over a simple
// extension field is represented as Q[x...,a] together with the ideal
// 'mpoly' (attribute "isSB"). The arithmetic in the extension field is
// implemented in the procedures in the procedures 'MultPolys' (multiplication)
// and 'InvertNumber' (inversion). After addition and substraction one should
// apply 'SimplifyPoly' to the result to reduce the result w.r.t. 'mpoly'.
// This is done by reducing each coefficient seperately, which is more
// efficient for polynomials with many terms.
///////////////////////////////////////////////////////////////////////////////
proc roots(poly f)
"USAGE: roots(f); where f is a polynomial
PURPOSE: compute all roots of f in a finite extension of the ground field
without multiplicities.
RETURN: ring, a polynomial ring over an extension field of the ground field,
containing a list 'theRoots' and polynomials 'newA' and 'f':
@format
- 'theRoots' is the list of roots of the polynomial f (no multiplicities)
- if the ground field is Q(a') and the extension field is Q(a), then
'newA' is the representation of a' in Q(a).
If the basering contains a parameter 'a' and the minpoly remains unchanged
then 'newA' = 'a'.
If the basering does not contain a parameter then 'newA' = 'a' (default).
- 'f' is the polynomial f in Q(a) (a' being substituted by 'newA')
@end format
ASSUME: ground field to be Q or a simple extension of Q given by a minpoly
EXAMPLE: example roots; shows an example
"
{
int dbPrt = printlevel-voice+3;
// create a new ring where par(1) is replaced by the variable
// with the same name or, if basering does not contain a parameter,
// with a new variable 'a'.
def ROB = basering;
def ROR = TransferRing(basering);
setring ROR;
export(ROR);
// get the polynomial f and find the roots
poly f = imap(ROB, f);
list result = rootsMain(f); // find roots of f
// store the roots and the new representation of 'a' and transform
// the coefficients of f.
list theRoots = result[1];
poly newA = result[2];
map F = basering, maxideal(1);
F[nvars(basering)] = newA;
poly fn = SimplifyPoly(F(f));
// create a new ring with minploy = mpoly[1] (from ROR)
def RON = NewBaseRing();
setring(RON);
list theRoots = imap(ROR, theRoots);
poly newA = imap(ROR, newA);
poly f = imap(ROR, fn);
kill ROR;
export(theRoots);
export(newA);
export(f); dbprint(dbPrt,"
// 'roots' created a new ring which contains the list 'theRoots' and
// the polynomials 'f' and 'newA'
// To access the roots, newA and the new representation of f, type
def R = roots(f); setring R; theRoots; newA; f;
");
return(RON);
}
example
{"EXAMPLE:"; echo = 2;
ring R = (0,a), x, lp;
minpoly = a2+1;
poly f = x3 - a;
def R1 = roots(f);
setring R1;
minpoly;
newA;
f;
theRoots;
map F;
F[1] = theRoots[1];
F(f);
}
///////////////////////////////////////////////////////////////////////////////
proc rootsMain(poly f)
"USAGE: rootsMain(f); where f is a polynomial
PURPOSE: compute all roots of f in a finite extension of the ground field
without multiplicities.
RETURN: list, all entries are polynomials
@format
_[1] = roots of f, each entry is a polynomial
_[2] = 'newA' - if the ground field is Q(b) and the extension field
is Q(a), then 'newA' is the representation of b in Q(a)
_[3] = minpoly of the algebraic extension of the ground field
@end format
ASSUME: basering = Q[x,a] ideal mpoly must be defined, it might be 0!
NOTE: might change the ideal mpoly!!
EXAMPLE: example rootsMain; shows an example
"
{
int i, linFactors, nlinFactors, dbPrt;
intvec wt = 1,0; // deg(a) = 0
list factorList, nlFactors, nlMult, roots, result;
poly fa, lc;
dbPrt = printlevel-voice+3;
// factor f in Q(a)[t] to obtain the roots lying in Q(a)
// firstly, find roots of the linear factors,
// nonlinear factors are processed later
dbprint(dbPrt, "roots of " + string(f) + ", minimal polynomial = " + string(mpoly[1]));
factorList = factorMain(f); // Factorize f
dbprint(dbPrt, (" prime factors of f are : " + string(factorList[1])));
linFactors = 0;
nlinFactors = 0;
for(i = 2; i <= size(factorList[1]); i = i + 1) { // find linear and nonlinear factors
fa = factorList[1][i];
if(deg(fa, wt) == 1) {
linFactors++; // get the root from the linear factor
lc = LeadTerm(fa, 1)[3];
fa = MultPolys(invertNumberMain(lc), fa); // make factor monic
roots[linFactors] = var(1) - fa; // fa is monic !!
}
else { // ignore nonlinear factors
nlinFactors++;
nlFactors[nlinFactors] = factorList[1][i];
nlMult[nlinFactors] = factorList[2][i];
}
}
if(linFactors == size(factorList[1]) - 1) { // all roots of f are contained in the ground field
result[1] = roots;
result[2] = var(2);
result[3] = mpoly[1];
return(result);
}
// process the nonlinear factors, i.e., extend the ground field
// where a nonlinear factor (irreducible) is a minimal polynomial
// compute the primitive element of this extension
ideal primElem, minPolys, Fid;
list partSol;
map F, Xchange;
poly f1, newA, mp, oldMinPoly;
Fid = mpoly;
F[1] = var(1);
Xchange[1] = var(2); // the variables have to be exchanged
Xchange[2] = var(1); // for the use of 'primitive'
if(nlinFactors == 1) // one nl factor
{
// compute the roots of the nonlinear (irreducible, monic) factor f1 of f
// by extending the basefield by a' with minimal polynomial f1
// Then call roots(f1) to find the roots of f1 over the new base field
f1 = nlFactors[1];
if(mpoly[1] != 0)
{
mp = mpoly[1];
minPolys = Xchange(mp), Xchange(f1);
if (deg(jet(minPolys[2],0,intvec(1,0)))==0)
{ primElem = primitive(minPolys); } // random coord. change
else
{ primElem = primitive_extra(minPolys); } // no random coord. change
mpoly = std(primElem[1]);
F = basering, maxideal(1);
F[2] = primElem[2]; // transfer all to the new representation
newA = primElem[2]; // new representation of a
f1 = SimplifyPoly(F(f1)); //reduce(F(f1), mpoly);
if(size(roots) > 0) {roots = SimplifyData(F(roots));}
}
else {
mpoly = std(Xchange(f1));
newA = var(2);
}
result[3] = mpoly[1];
oldMinPoly = mpoly[1];
partSol = rootsMain(f1); // find roots of f1 over extended field
if(oldMinPoly != partSol[3]) { // minpoly has changed ?
// all previously computed roots must be transformed
// because the minpoly has changed
result[3] = partSol[3]; // new minpoly
F[2] = partSol[2]; // new representation of algebraic number
if(size(roots) > 0) {roots = SimplifyData(F(roots)); }
newA = SimplifyPoly(F(newA)); // F(newA);
}
roots = roots + partSol[1]; // add roots
result[2] = newA;
result[1] = roots;
}
else { // more than one nonlinear (irreducible) factor (f_1,...,f_r)
// solve each of them by rootsMain(f_i), append their roots
// change the minpoly and transform all previously computed
// roots if necessary.
// Note that the for-loop is more or less book-keeping
newA = var(2);
result[2] = newA;
for(i = 1; i <= size(nlFactors); i = i + 1) {
oldMinPoly = mpoly[1];
partSol = rootsMain(nlFactors[i]); // main work
nlFactors[i] = 0; // delete factor
result[3] = partSol[3]; // store minpoly
// book-keeping starts here as in the case 1 nonlinear factor
if(oldMinPoly != partSol[3]) { // minpoly has changed
F = basering, maxideal(1);
F[2] = partSol[2]; // transfer all to the new representation
newA = SimplifyPoly(F(newA)); // F(newA); new representation of a
result[2] = newA;
if(i < size(nlFactors)) {
nlFactors = SimplifyData(F(nlFactors));
} // transform remaining factors
if(size(roots) > 0) {roots = SimplifyData(F(roots));}
}
roots = roots + partSol[1]; // transform roots
result[1] = roots;
} // end more than one nl factor
}
return(result);
}
///////////////////////////////////////////////////////////////////////////////
proc zeroSet(ideal I, list #)
"USAGE: zeroSet(I [,opt] ); I=ideal, opt=integer
PURPOSE: compute the zero-set of the zero-dim. ideal I, in a finite extension
of the ground field.
RETURN: ring, a polynomial ring over an extension field of the ground field,
containing a list 'theZeroset', a polynomial 'newA', and an
ideal 'id':
@format
- 'theZeroset' is the list of the zeros of the ideal I, each zero is an ideal.
- if the ground field is Q(b) and the extension field is Q(a), then
'newA' is the representation of b in Q(a).
If the basering contains a parameter 'a' and the minpoly remains unchanged
then 'newA' = 'a'.
If the basering does not contain a parameter then 'newA' = 'a' (default).
- 'id' is the ideal I in Q(a)[x_1,...] (a' substituted by 'newA')
@end format
ASSUME: dim(I) = 0, and ground field to be Q or a simple extension of Q given
by a minpoly.
OPTIONS: opt = 0: no primary decomposition (default)
opt > 0: primary decomposition
NOTE: If I contains an algebraic number (parameter) then I must be
transformed w.r.t. 'newA' in the new ring.
EXAMPLE: example zeroSet; shows an example
"
{
int primaryDecQ, dbPrt;
list rp;
dbPrt = printlevel-voice+2;
if(size(#) > 0) { primaryDecQ = #[1]; }
else { primaryDecQ = 0; }
// create a new ring 'ZSR' with one additional variable instead of the
// parameter
// if the basering does not contain a parameter then 'a' is used as the
// additional variable.
def RZSB = basering;
def ZSR = TransferRing(RZSB);
setring ZSR;
// get ideal I and find the zero-set
ideal id = std(imap(RZSB, I));
// print(dim(id));
if(dim(id) > 1) { // new variable adjoined to ZSR
ERROR(" ideal not zerodimensional ");
}
list result = zeroSetMain(id, primaryDecQ);
// store the zero-set, minimal polynomial and the new representative of 'a'
list theZeroset = result[1];
poly newA = result[2];
poly minPoly = result[3][1];
// transform the generators of the ideal I w.r.t. the new representation
// of 'a'
map F = basering, maxideal(1);
F[nvars(basering)] = newA;
id = SimplifyData(F(id));
// create a new ring with minpoly = minPoly
def RZBN = NewBaseRing();
setring RZBN;
list theZeroset = imap(ZSR, theZeroset);
poly newA = imap(ZSR, newA);
ideal id = imap(ZSR, id);
kill ZSR;
export(id);
export(theZeroset);
export(newA);
dbprint(dbPrt,"
// 'zeroSet' created a new ring which contains the list 'theZeroset', the ideal
// 'id' and the polynomial 'newA'. 'id' is the ideal of the input transformed
// w.r.t. 'newA'.
// To access the zero-set, 'newA' and the new representation of the ideal, type
def R = zeroSet(I); setring R; theZeroset; newA; id;
");
setring RZSB;
return(RZBN);
}
example
{"EXAMPLE:"; echo = 2;
ring R = (0,a), (x,y,z), lp;
minpoly = a2 + 1;
ideal I = x2 - 1/2, a*z - 1, y - 2;
def T = zeroSet(I);
setring T;
minpoly;
newA;
id;
theZeroset;
map F1 = basering, theZeroset[1];
map F2 = basering, theZeroset[2];
F1(id);
F2(id);
}
///////////////////////////////////////////////////////////////////////////////
proc invertNumberMain(poly f)
"USAGE: invertNumberMain(f); where f is a polynomial
PURPOSE: compute 1/f if f is a number in Q(a), i.e., f is represented by a
polynomial in Q[a].
RETURN: poly 1/f
ASSUME: basering = Q[x_1,...,x_n,a], ideal mpoly must be defined and != 0 !
NOTE: outdated, use / instead
"
{
if(diff(f, var(1)) != 0) { ERROR("number must not contain variable !");}
int n = nvars(basering);
def RINB = basering;
string ringSTR = "ring RINR = 0, " + string(var(n)) + ", dp;";
execute(ringSTR); // new ring = Q[a]
list gcdList;
poly f, g, inv;
f = imap(RINB, f);
g = imap(RINB, mpoly)[1];
if(diff(f, var(1)) != 0) { inv = extgcd(f, g)[2]; } // f contains var(1)
else { inv = 1/f;} // f element in Q
setring(RINB);
return(imap(RINR, inv));
}
///////////////////////////////////////////////////////////////////////////////
proc MultPolys(poly f, poly g)
"USAGE: MultPolys(f, g); poly f,g
PURPOSE: multiply the polynomials f and g and reduce them w.r.t. mpoly
RETURN: poly f*g
ASSUME: basering = Q[x,a], ideal mpoly must be defined, it might be 0 !
"
{
return(SimplifyPoly(f * g));
}
///////////////////////////////////////////////////////////////////////////////
proc LeadTerm(poly f, int i)
"USAGE: LeadTerm(f); poly f, int i
PURPOSE: compute the leading coef and term of f w.r.t var(i), where the last
ring variable is treated as a parameter.
RETURN: list of polynomials
_[1] = leading term
_[2] = leading monomial
_[3] = leading coefficient
ASSUME: basering = Q[x_1,...,x_n,a]
"
{
list result;
matrix co = coef(f, var(i));
result[1] = co[1, 1]*co[2, 1];
result[2] = co[1, 1];
result[3] = co[2, 1];
return(result);
}
///////////////////////////////////////////////////////////////////////////////
proc Quotient(poly f, poly g)
"USAGE: Quotient(f, g); where f,g are polynomials;
PURPOSE: compute the quotient q and remainder r s.t. f = g*q + r, deg(r) < deg(g)
RETURN: list of polynomials
@format
_[1] = quotient q
_[2] = remainder r
@end format
ASSUME: basering = Q[x] or Q(a)[x]
NOTE: This procedure is outdated, and should no longer be used. Use div and mod
instead.
EXAMPLE: example Quotient; shows an example
"
{
def QUOB = basering;
def QUOR = TransferRing(basering); // new ring with parameter 'a' replaced by a variable
setring QUOR;
export(QUOR);
poly f = imap(QUOB, f);
poly g = imap(QUOB, g);
list result = quotientMain(f, g);
setring(QUOB);
list result = imap(QUOR, result);
kill QUOR;
return(result);
}
example
{"EXAMPLE:"; echo = 2;
ring R = (0,a), x, lp;
minpoly = a2+1;
poly f = x4 - 2;
poly g = x - a;
list qr = Quotient(f, g);
qr;
qr[1]*g + qr[2] - f;
}
proc quotientMain(poly f, poly g)
"USAGE: quotientMain(f, g); where f,g are polynomials
PURPOSE: compute the quotient q and remainder r s.th. f = g*q + r, deg(r) < deg(g)
RETURN: list of polynomials
@format
_[1] = quotient q
_[2] = remainder r
@end format
ASSUME: basering = Q[x,a] and ideal mpoly is defined (it might be 0),
this represents the ring Q(a)[x] together with its minimal polynomial.
NOTE: outdated, use div/mod instead
"
{
if(g == 0) { ERROR("Division by zero !");}
def QMB = basering;
def QMR = NewBaseRing();
setring QMR;
poly f, g, h;
h = imap(QMB, f) / imap(QMB, g);
setring QMB;
return(list(imap(QMR, h), 0));
}
///////////////////////////////////////////////////////////////////////////////
proc remainder(poly f, poly g)
"USAGE: remainder(f, g); where f,g are polynomials
PURPOSE: compute the remainder of the division of f by g, i.e. a polynomial r
s.t. f = g*q + r, deg(r) < deg(g).
RETURN: poly
ASSUME: basering = Q[x] or Q(a)[x]
NOTE: outdated, use mod/reduce instead
"
{
def REMB = basering;
def REMR = TransferRing(basering); // new ring with parameter 'a' replaced by a variable
setring(REMR);
export(REMR);
poly f = imap(REMB, f);
poly g = imap(REMB, g);
poly h = remainderMain(f, g);
setring(REMB);
poly r = imap(REMR, h);
kill REMR;
return(r);
}
example
{"EXAMPLE:"; echo = 2;
ring R = (0,a), x, lp;
minpoly = a2+1;
poly f = x4 - 1;
poly g = x3 - 1;
remainder(f, g);
}
proc remainderMain(poly f, poly g)
"USAGE: remainderMain(f, g); where f,g are polynomials
PURPOSE: compute the remainder r s.t. f = g*q + r, deg(r) < deg(g)
RETURN: poly
ASSUME: basering = Q[x,a] and ideal mpoly is defined (it might be 0),
this represents the ring Q(a)[x] together with its minimal polynomial.
NOTE: outdated, use mod/reduce instead
"
{
int dg;
intvec wt = 1,0;;
poly lc, g1, r;
if(deg(g, wt) == 0) { return(0); }
lc = LeadTerm(g, 1)[3];
g1 = MultPolys(invertNumberMain(lc), g); // make g monic
return(SimplifyPoly(reduce(f, std(g1))));
}
///////////////////////////////////////////////////////////////////////////////
proc egcdMain(poly f, poly g)
"USAGE: egcdMain(f, g); where f,g are polynomials
PURPOSE: compute the polynomial gcd of f and g over Q(a)[x]
RETURN: poly
ASSUME: basering = Q[x,a] and ideal mpoly is defined (it might be 0),
this represents the ring Q(a)[x] together with its minimal polynomial.
NOTE: outdated, use gcd instead
EXAMPLE: example EGCD; shows an example
"
{
// might be extended to return s1, s2 s.t. f*s1 + g*s2 = gcd
int i = 1;
poly r1, r2, r;
r1 = f;
r2 = g;
while(r2 != 0) {
r = remainderMain(r1, r2);
r1 = r2;
r2 = r;
}
return(r1);
}
///////////////////////////////////////////////////////////////////////////////
proc MEGCD(poly f, poly g, int varIndex)
"USAGE: MEGCD(f, g, i); poly f, g; int i
PURPOSE: compute the polynomial gcd of f and g in the i'th variable
RETURN: poly
ASSUME: f, g are polynomials in var(i), last variable is the algebraic number
EXAMPLE: example MEGCD; shows an example
"
// might be extended to return s1, s2 s.t. f*s1 + g*s2 = gc
// not used !
{
string @str, @sf, @sg, @mp, @parName;
def @RGCDB = basering;
@sf = string(f);
@sg = string(g);
@mp = string(minpoly);
if(npars(basering) == 0) { @parName = "0";}
else { @parName = "(0, " + parstr(basering) + ")"; }
@str = "ring @RGCD = " + @parName + ", " + string(var(varIndex)) + ", dp;";
execute(@str);
if(@mp != "0") { execute ("minpoly = " + @mp + ";"); }
execute("poly @f = " + @sf + ";");
execute("poly @g = " + @sg + ";");
export(@RGCD);
poly @h = gcd(@f, @g);
setring(@RGCDB);
poly h = imap(@RGCD, @h);
kill @RGCD;
return(h);
}
///////////////////////////////////////////////////////////////////////////////
proc sqfrNorm(poly f)
"USAGE: sqfrNorm(f); where f is a polynomial
PURPOSE: compute the norm of the squarefree polynomial f in Q(a)[x].
RETURN: list with 3 entries
@format
_[1] = squarefree norm of g (poly)
_[2] = g (= f(x - s*a)) (poly)
_[3] = s (int)
@end format
ASSUME: f must be squarefree, basering = Q(a)[x] and minpoly != 0.
NOTE: the norm is an element of Q[x]
EXAMPLE: example sqfrNorm; shows an example
"
{
def SNB = basering;
def SNR = TransferRing(SNB); // new ring with parameter 'a'
// replaced by a variable
setring SNR;
poly f = imap(SNB, f);
list result = sqfrNormMain(f); // squarefree norm of f
setring SNB;
list result = imap(SNR, result);
kill SNR;
return(result);
}
example
{"EXAMPLE:"; echo = 2;
ring R = (0,a), x, lp;
minpoly = a2+1;
poly f = x4 - 2*x + 1;
sqfrNorm(f);
}
proc sqfrNormMain(poly f)
"USAGE: sqfrNorm(f); where f is a polynomial
PURPOSE: compute the norm of the squarefree polynomial f in Q(a)[x].
RETURN: list with 3 entries
@format
_[1] = squarefree norm of g (poly)
_[2] = g (= f(x - s*a)) (poly)
_[3] = s (int)
@end format
ASSUME: f must be squarefree, basering = Q[x,a] and ideal mpoly is equal to
'minpoly', this represents the ring Q(a)[x] together with 'minpoly'.
NOTE: the norm is an element of Q[x]
EXAMPLE: example SqfrNorm; shows an example
"
{
def SNRMB = basering;
int s = 0;
intvec wt = 1,0;
ideal mapId;
// list result;
poly g, N, N1, h;
string ringSTR;
mapId[1] = var(1) - var(2); // linear transformation
mapId[2] = var(2);
map Fs = SNRMB, mapId;
N = resultant(f, mpoly[1], var(2)); // norm of f
N1 = diff(N, var(1));
g = f;
ringSTR = "ring SNRM1 = 0, " + string(var(1)) + ", dp;"; // univariate ring
execute(ringSTR);
poly N, N1, h; // N, N1 do not contain 'a', use built-in gcd
h = gcd(imap(SNRMB, N), imap(SNRMB, N1));
setring(SNRMB);
h = imap(SNRM1, h);
while(deg(h, wt) != 0) { // while norm is not squarefree
s = s + 1;
g = reduce(Fs(g), mpoly);
N = reduce(resultant(g, mpoly[1], var(2)), mpoly); // norm of g
N1 = reduce(diff(N, var(1)), mpoly);
setring(SNRM1);
h = gcd(imap(SNRMB, N), imap(SNRMB, N1));
setring(SNRMB);
h = imap(SNRM1, h);
}
return(list(N, g, s));
}
///////////////////////////////////////////////////////////////////////////////
proc factorMain(poly f)
"USAGE: factorMain(f); where f is a polynomial
PURPOSE: compute the factorization of the squarefree polynomial f over Q(a)[t],
minpoly = p(a).
RETURN: list with 2 entries
@format
_[1] = factors, first is a constant
_[2] = multiplicities (not yet implemented)
@end format
ASSUME: basering = Q[x,a], representing Q(a)[x]. An ideal mpoly must
be defined, representing the minimal polynomial (it might be 0!).
NOTE: outdated, use factorize instead
EXAMPLE: example Factor; shows an example
"
{
// extend this by a squarefree factorization !!
// multiplicities are not valid !!
int i, s;
list normList, factorList, quo_rem;
poly f1, h, h1, H, g, leadCoef, invCoeff;
ideal fac1, fac2;
map F;
// if no minimal polynomial is defined then use 'factorize'
// FactorOverQ is wrapped around 'factorize'
if(mpoly[1] == 0) {
// print(" factorize : deg = " + string(deg(f, intvec(1,0))));
factorList = factorize(f); // FactorOverQ(f);
return(factorList);
}
// if mpoly != 0 and f does not contain the algebraic number, a root of
// f might be contained in Q(a). Hence one must not use 'factorize'.
fac1[1] = 1;
fac2[1] = 1;
normList = sqfrNormMain(f);
// print(" factorize : deg = " + string(deg(normList[1], intvec(1,0))));
factorList = factorize(normList[1]); // factor squarefree norm of f over Q[x]
g = normList[2];
s = normList[3];
F[1] = var(1) + s*var(2); // inverse transformation
F[2] = var(2);
fac1[1] = factorList[1][1];
fac2[1] = factorList[2][1];
for(i = 2; i <= size(factorList[1]); i = i + 1) {
H = factorList[1][i];
h = egcdMain(H, g);
quo_rem = quotientMain(g, h);
g = quo_rem[1];
fac1[i] = SimplifyPoly(F(h));
fac2[i] = 1; // to be changed later
}
return(list(fac1, fac2));
}
///////////////////////////////////////////////////////////////////////////////
proc zeroSetMain(ideal I, int primDecQ)
"USAGE: zeroSetMain(ideal I, int opt); ideal I, int opt
PURPOSE: compute the zero-set of the zero-dim. ideal I, in a simple extension
of the ground field.
RETURN: list
- 'f' is the polynomial f in Q(a) (a' being substituted by newA)
_[1] = zero-set (list), is the list of the zero-set of the ideal I,
each entry is an ideal.
_[2] = 'newA'; if the ground field is Q(a') and the extension field
is Q(a), then 'newA' is the representation of a' in Q(a).
If the basering contains a parameter 'a' and the minpoly
remains unchanged then 'newA' = 'a'. If the basering does not
contain a parameter then 'newA' = 'a' (default).
_[3] = 'mpoly' (ideal), the minimal polynomial of the simple extension
of the ground field.
ASSUME: basering = K[x_1,x_2,...,x_n] where K = Q or a simple extension of Q
given by a minpoly; dim(I) = 0.
NOTE: opt = 0 no primary decomposition
opt > 0 use a primary decomposition
EXAMPLE: example zeroSetMain; shows an example
"
{
// main work is done in zeroSetMainWork, here the zero-set of each ideal from the
// primary decompostion is coputed by menas of zeroSetMainWork, and then the
// minpoly and the parameter representing the algebraic extension are
// transformed according to 'newA', i.e., only bookeeping is done.
def altring=basering;
int i, j, n, noMP, dbPrt;
intvec w;
list currentSol, result, idealList, primDecList, zeroSet;
ideal J;
map Fa;
poly newA, oldMinPoly;
dbPrt = printlevel-voice+2;
dbprint(dbPrt, "zeroSet of " + string(I) + ", minpoly = " + string(minpoly));
n = nvars(basering) - 1;
for(i = 1; i <= n; i++) { w[i] = 1;}
w[n + 1] = 0;
if(primDecQ == 0) { return(zeroSetMainWork(I, w, 0)); }
newA = var(n + 1);
if(mpoly[1] == 0) { noMP = 1;}
else {noMP = 0;}
primDecList = primdecGTZ(I); // primary decomposition
dbprint(dbPrt, "primary decomposition consists of " + string(size(primDecList)) + " primary ideals ");
// idealList = PDSort(idealList); // high degrees first
for(i = 1; i <= size(primDecList); i = i + 1) {
idealList[i] = primDecList[i][2]; // use prime component
dbprint(dbPrt, string(i) + " " + string(idealList[i]));
}
// compute the zero-set of each primary ideal and join them.
// If necessary, change the ground field and transform the zero-set
dbprint(dbPrt, "
find the zero-set of each primary ideal, form the union
and keep track of the minimal polynomials ");
for(i = 1; i <= size(idealList); i = i + 1) {
J = idealList[i];
idealList[i] = 0;
oldMinPoly = mpoly[1];
dbprint(dbPrt, " ideal#" + string(i) + " of " + string(size(idealList)) + " = " + string(J));
currentSol = zeroSetMainWork(J, w, 0);
if(oldMinPoly != currentSol[3]) { // change minpoly and transform solutions
dbprint(dbPrt, " change minpoly to " + string(currentSol[3][1]));
dbprint(dbPrt, " new representation of algebraic number = " + string(currentSol[2]));
if(!noMP) { // transform the algebraic number a
Fa = basering, maxideal(1);
Fa[n + 1] = currentSol[2];
newA = SimplifyPoly(Fa(newA)); // new representation of a
if(size(zeroSet) > 0) {zeroSet = SimplifyZeroset(Fa(zeroSet)); }
if(i < size(idealList)) { idealList = SimplifyZeroset(Fa(idealList)); }
}
else { noMP = 0;}
}
zeroSet = zeroSet + currentSol[1]; // add new elements
}
return(list(zeroSet, newA, mpoly));
}
///////////////////////////////////////////////////////////////////////////////
proc zeroSetMainWork(ideal id, intvec wt, int sVars)
"USAGE: zeroSetMainWork(I, wt, sVars);
PURPOSE: compute the zero-set of the zero-dim. ideal I, in a finite extension
of the ground field (without multiplicities).
RETURN: list, all entries are polynomials
_[1] = zeros, each entry is an ideal
_[2] = newA; if the ground field is Q(a') this is the rep. of a' w.r.t. a
_[3] = minpoly of the algebraic extension of the ground field (ideal)
_[4] = name of algebraic number (default = 'a')
ASSUME: basering = Q[x_1,x_2,...,x_n,a]
ideal mpoly must be defined, it might be 0!
NOTE: might change 'mpoly' !!
EXAMPLE: example IdealSolve; shows an example
"
{
def altring=basering;
int i, j, k, nrSols, n, noMP;
ideal I, generators, gens, solid, partsolid;
list linSol, linearSolution, nLinSol, nonlinSolutions, partSol, sol, solutions, result;
list linIndex, nlinIndex, index;
map Fa, Fsubs;
poly oldMinPoly, newA;
if(mpoly[1] == 0) { noMP = 1;}
else { noMP = 0;}
n = nvars(basering) - 1;
newA = var(n + 1);
I = std(id);
// find linear solutions of univariate generators
linSol = LinearZeroSetMain(I, wt);
generators = linSol[3]; // they are a standardbasis
linIndex = linSol[2];
linearSolution = linSol[1];
if(size(linIndex) + sVars == n) { // all variables solved
solid = SubsMapIdeal(linearSolution, linIndex, 0);
result[1] = list(solid);
result[2] = var(n + 1);
result[3] = mpoly;
return(result);
}
// find roots of the nonlinear univariate polynomials of generators
// if necessary, transform linear solutions w.r.t. newA
oldMinPoly = mpoly[1];
nLinSol = NonLinearZeroSetMain(generators, wt); // find solutions of univariate generators
nonlinSolutions = nLinSol[1]; // store solutions
nlinIndex = nLinSol[4]; // and index of solved variables
generators = nLinSol[5]; // new generators
// change minpoly if necessary and transform the ideal and the partial solutions
if(oldMinPoly != nLinSol[3]) {
newA = nLinSol[2];
if(!noMP && size(linearSolution) > 0) { // transform the algebraic number a
Fa = basering, maxideal(1);
Fa[n + 1] = newA;
linearSolution = SimplifyData(Fa(linearSolution)); // ...
}
}
// check if all variables are solved.
if(size(linIndex) + size(nlinIndex) == n - sVars) {
solutions = MergeSolutions(linearSolution, linIndex, nonlinSolutions, nlinIndex, list(), n);
}
else {
// some variables are not solved.
// substitute each partial solution in generators and find the
// zero set of the resulting ideal by recursive application
// of zeroSetMainWork !
index = linIndex + nlinIndex;
nrSols = 0;
for(i = 1; i <= size(nonlinSolutions); i = i + 1) {
sol = linearSolution + nonlinSolutions[i];
solid = SubsMapIdeal(sol, index, 1);
Fsubs = basering, solid;
gens = std(SimplifyData(Fsubs(generators))); // substitute partial solution
oldMinPoly = mpoly[1];
partSol = zeroSetMainWork(gens, wt, size(index) + sVars);
if(oldMinPoly != partSol[3]) { // minpoly has changed
Fa = basering, maxideal(1);
Fa[n + 1] = partSol[2]; // a -> p(a), representation of a w.r.t. new minpoly
newA = reduce(Fa(newA), mpoly);
generators = std(SimplifyData(Fa(generators)));
if(size(linearSolution) > 0) { linearSolution = SimplifyData(Fa(linearSolution));}
if(size(nonlinSolutions) > 0) {
nonlinSolutions = SimplifyZeroset(Fa(nonlinSolutions));
}
sol = linearSolution + nonlinSolutions[i];
}
for(j = 1; j <= size(partSol[1]); j++) { // for all partial solutions
partsolid = partSol[1][j];
for(k = 1; k <= size(index); k++) {
partsolid[index[k]] = sol[k];
}
nrSols++;
solutions[nrSols] = partsolid;
}
}
} // end else
return(list(solutions, newA, mpoly));
}
///////////////////////////////////////////////////////////////////////////////
proc LinearZeroSetMain(ideal I, intvec wt)
"USAGE: LinearZeroSetMain(I, wt)
PURPOSE: solve the univariate linear polys in I
ASSUME: basering = Q[x_1,...,x_n,a]
RETURN: list
_[1] = partial solution of I
_[2] = index of solved vars
_[3] = new generators (standardbasis)
"
{
def altring=basering;
int i, ok, n, found, nrSols;
ideal generators, newGens;
list result, index, totalIndex, vars, sol, temp;
map F;
poly f;
result[1] = index; // sol[1] should be the empty list
n = nvars(basering) - 1;
generators = I; // might be wrong, use index !
ok = 1;
nrSols = 0;
while(ok) {
found = 0;
for(i = 1; i <= size(generators); i = i + 1) {
f = generators[i];
vars = Variables(f, n);
if(size(vars) == 1 && deg(f, wt) == 1) { // univariate,linear
nrSols++; found++;
index[nrSols] = vars[1];
sol[nrSols] = var(vars[1]) - MultPolys(invertNumberMain(LeadTerm(f, vars[1])[3]), f);
}
}
if(found > 0) {
F = basering, SubsMapIdeal(sol, index, 1);
newGens = std(SimplifyData(F(generators))); // substitute, simplify alg. number
if(size(newGens) == 0) {ok = 0;}
generators = newGens;
}
else {
ok = 0;
}
}
if(nrSols > 0) { result[1] = sol;}
result[2] = index;
result[3] = generators;
return(result);
}
///////////////////////////////////////////////////////////////////////////////
proc NonLinearZeroSetMain(ideal I, intvec wt)
"USAGE: NonLinearZeroSetMain(I, wt);
PURPOSE: solves the (nonlinear) univariate polynomials in I
of the ground field (without multiplicities).
RETURN: list, all entries are polynomials
_[1] = list of solutions
_[2] = newA
_[3] = minpoly
_[4] - index of solved variables
_[5] = new representation of I
ASSUME: basering = Q[x_1,x_2,...,x_n,a], ideal 'mpoly' must be defined,
it might be 0 !
NOTE: might change 'mpoly' !!
"
{
int i, nrSols, ok, n;
ideal generators;
list result, sols, index, vars, partSol;
map F;
poly f, newA;
string ringSTR;
def NLZR = basering;
export(NLZR);
n = nvars(basering) - 1;
generators = I;
newA = var(n + 1);
result[2] = newA; // default
nrSols = 0;
ok = 1;
i = 1;
while(ok) {
// test if the i-th generator of I is univariate
f = generators[i];
vars = Variables(f, n);
if(size(vars) == 1) {
generators[i] = 0;
generators = simplify(generators, 2); // remove 0
nrSols++;
index[nrSols] = vars[1]; // store index of solved variable
// create univariate ring
ringSTR = "ring RIS1 = 0, (" + string(var(vars[1])) + ", " + string(var(n+1)) + "), lp;";
execute(ringSTR);
ideal mpoly = std(imap(NLZR, mpoly));
list roots;
poly f = imap(NLZR, f);
export(RIS1);
export(mpoly);
roots = rootsMain(f);
// get "old" basering with new minpoly
setring(NLZR);
partSol = imap(RIS1, roots);
kill RIS1;
if(mpoly[1] != partSol[3]) { // change minpoly
mpoly = std(partSol[3]);
F = NLZR, maxideal(1);
F[n + 1] = partSol[2];
if(size(sols) > 0) {sols = SimplifyZeroset(F(sols)); }
newA = reduce(F(newA), mpoly); // normal form
result[2] = newA;
generators = SimplifyData(F(generators)); // does not remove 0's
}
sols = ExtendSolutions(sols, partSol[1]);
} // end univariate
else {
i = i + 1;
}
if(i > size(generators)) { ok = 0;}
}
result[1] = sols;
result[3] = mpoly;
result[4] = index;
result[5] = std(generators);
kill NLZR;
return(result);
}
///////////////////////////////////////////////////////////////////////////////
static proc ExtendSolutions(list solutions, list newSolutions)
"USAGE: ExtendSolutions(sols, newSols); list sols, newSols;
PURPOSE: extend the entries of 'sols' by the entries of 'newSols',
each entry of 'newSols' is a number.
RETURN: list
ASSUME: basering = Q[x_1,...,x_n,a], ideal 'mpoly' must be defined,
it might be 0 !
NOTE: used by 'NonLinearZeroSetMain'
"
{
int i, j, k, n, nrSols;
list newSols, temp;
nrSols = size(solutions);
if(nrSols > 0) {n = size(solutions[1]);}
else {
n = 0;
nrSols = 1;
}
k = 0;
for(i = 1; i <= nrSols; i++) {
for(j = 1; j <= size(newSolutions); j++) {
k++;
if(n == 0) { temp[1] = newSolutions[j];}
else {
temp = solutions[i];
temp[n + 1] = newSolutions[j];
}
newSols[k] = temp;
}
}
return(newSols);
}
///////////////////////////////////////////////////////////////////////////////
static proc MergeSolutions(list sol1, list index1, list sol2, list index2)
"USAGE: MergeSolutions(sol1, index1, sol2, index2); all parameters are lists
RETURN: list
PURPOSE: create a list of solutions of size n, each entry of 'sol2' must
have size n. 'sol1' is one partial solution (from 'LinearZeroSetMain')
'sol2' is a list of partial solutions (from 'NonLinearZeroSetMain')
ASSUME: 'sol2' is not empty
NOTE: used by 'zeroSetMainWork'
{
int i, j, k, m;
ideal sol;
list newSols;
m = 0;
for(i = 1; i <= size(sol2); i++) {
m++;
newSols[m] = SubsMapIdeal(sol1 + sol2[i], index1 + index2, 0);
}
return(newSols);
}
///////////////////////////////////////////////////////////////////////////////
static proc SubsMapIdeal(list sol, list index, int opt)
"USAGE: SubsMapIdeal(sol,index,opt); list sol, index; int opt;
PURPOSE: built an ideal I as follows.
if i is contained in 'index' then set I[i] = sol[i]
if i is not contained in 'index' then
- opt = 0: set I[i] = 0
- opt = 1: set I[i] = var(i)
if opt = 1 and n = nvars(basering) then set I[n] = var(n).
RETURN: ideal
ASSUME: size(sol) = size(index) <= nvars(basering)
"
{
int k = 0;
ideal I;
for(int i = 1; i <= nvars(basering) - 1; i = i + 1) { // built subs. map
if(containedQ(index, i)) {
k++;
I[index[k]] = sol[k];
}
else {
if(opt) { I[i] = var(i); }
else { I[i] = 0; }
}
}
if(opt) {I[nvars(basering)] = var(nvars(basering));}
return(I);
}
///////////////////////////////////////////////////////////////////////////////
proc SimplifyZeroset(def data)
"USAGE: SimplifyZeroset(data); list data
PURPOSE: reduce the entries of the elements of 'data' w.r.t. the ideal 'mpoly'
'data' is a list of ideals/lists.
RETURN: list
ASSUME: basering = Q[x_1,...,x_n,a], order = lp
'data' is a list of ideals
ideal 'mpoly' must be defined, it might be 0 !
"
{
int i;
list result;
for(i = 1; i <= size(data); i++) {
result[i] = SimplifyData(data[i]);
}
return(result);
}
///////////////////////////////////////////////////////////////////////////////
proc Variables(poly f, int n)
"USAGE: Variables(f,n); poly f; int n;
PURPOSE: list of variables among var(1),...,var(n) which occur in f.
RETURN: list
ASSUME: n <= nvars(basering)
"
{
int i, nrV;
list index;
nrV = 0;
for(i = 1; i <= n; i = i + 1) {
if(diff(f, var(i)) != 0) { nrV++; index[nrV] = i; }
}
return(index);
}
///////////////////////////////////////////////////////////////////////////////
proc containedQ(def data,def f, list #)
"USAGE: containedQ(data, f [, opt]); data=list; f=any type; opt=integer
PURPOSE: test if f is an element of data.
RETURN: int
0 if f not contained in data
1 if f contained in data
OPTIONS: opt = 0 : use '==' for comparing f with elements from data@*
opt = 1 : use @code{sameQ} for comparing f with elements from data
"
{
int opt, i, found;
if(size(#) > 0) { opt = #[1];}
else { opt = 0; }
i = 1;
found = 0;
while((!found) && (i <= size(data))) {
if(opt == 0) {
if(f == data[i]) { found = 1;}
else {i = i + 1;}
}
else {
if(sameQ(f, data[i])) { found = 1;}
else {i = i + 1;}
}
}
return(found);
}
//////////////////////////////////////////////////////////////////////////////
proc sameQ(def a,def b)
"USAGE: sameQ(a, b); a,b=list/intvec
PURPOSE: test a == b elementwise, i.e., a[i] = b[i].
RETURN: int
0 if a != b
1 if a == b
"
{
if(typeof(a) == typeof(b)) {
if(typeof(a) == "list" || typeof(a) == "intvec") {
if(size(a) == size(b)) {
int i = 1;
int ok = 1;
while(ok && (i <= size(a))) {
if(a[i] == b[i]) { i = i + 1;}
else {ok = 0;}
}
return(ok);
}
else { return(0); }
}
else { return(a == b);}
}
else { return(0);}
}
///////////////////////////////////////////////////////////////////////////////
static proc SimplifyPoly(poly f)
"USAGE: SimplifyPoly(f); poly f
PURPOSE: reduces the coefficients of f w.r.t. the ideal 'moly' if they contain
the algebraic number 'a'.
RETURN: poly
ASSUME: basering = Q[x_1,...,x_n,a]
ideal mpoly must be defined, it might be 0 !
NOTE: outdated, use reduce instead
"
{
matrix coMx;
poly f1, vp;
vp = 1;
for(int i = 1; i < nvars(basering); i++) { vp = vp * var(i);}
coMx = coef(f, vp);
f1 = 0;
for(i = 1; i <= ncols(coMx); i++) {
f1 = f1 + coMx[1, i] * reduce(coMx[2, i], mpoly);
}
return(f1);
}
///////////////////////////////////////////////////////////////////////////////
static proc SimplifyData(def data)
"USAGE: SimplifyData(data); ideal/list data;
PURPOSE: reduces the entries of 'data' w.r.t. the ideal 'mpoly' if they contain
the algebraic number 'a'
RETURN: ideal/list
ASSUME: basering = Q[x_1,...,x_n,a]
ideal 'mpoly' must be defined, it might be 0 !
"
{
def altring=basering;
int n;
poly f;
if(typeof(data) == "ideal") { n = ncols(data); }
else { n = size(data);}
for(int i = 1; i <= n; i++) {
f = data[i];
data[i] = SimplifyPoly(f);
}
return(data);
}
///////////////////////////////////////////////////////////////////////////////
static proc TransferRing(def R)
"USAGE: TransferRing(R);
PURPOSE: creates a new ring containing the same variables as R, but without
parameters. If R contains a parameter then this parameter is added
as the last variable and 'minpoly' is represented by the ideal 'mpoly'
If the basering does not contain a parameter then 'a' is added and
'mpoly' = 0.
RETURN: ring
ASSUME: R = K[x_1,...,x_n] where K = Q or K = Q(a).
NOTE: Creates the ring needed for all prodecures with name 'proc-name'Main
"
{
def altring=basering;
string ringSTR, parName, minPoly;
setring(R);
if(npars(basering) == 0) {
parName = "a";
minPoly = "0";
}
else {
parName = parstr(basering);
minPoly = string(minpoly);
}
ringSTR = "ring TR = 0, (" + varstr(basering) + "," + parName + "), lp;";
execute(ringSTR);
execute("ideal mpoly = std(" + minPoly + ");");
export(mpoly);
setring altring;
return(TR);
}
///////////////////////////////////////////////////////////////////////////////
static proc NewBaseRing()
"USAGE: NewBaseRing();
PURPOSE: creates a new ring, the last variable is added as a parameter.
minpoly is set to mpoly[1].
RETURN: ring
ASSUME: basering = Q[x_1,...,x_n, a], 'mpoly' must be defined
"
{
int n = nvars(basering);
int MP;
string ringSTR, parName, varString;
def BR = basering;
if(mpoly[1] != 0) {
parName = "(0, " + string(var(n)) + ")";
MP = 1;
}
else {
parName = "0";
MP = 0;
}
for(int i = 1; i < n - 1; i++) {
varString = varString + string(var(i)) + ",";
}
varString = varString + string(var(n-1));
ringSTR = "ring TR = " + parName + ", (" + varString + "), lp;";
execute(ringSTR);
if(MP) { minpoly = number(imap(BR, mpoly)[1]); }
setring BR;
return(TR);
}
///////////////////////////////////////////////////////////////////////////////
/*
Examples:
// order = 20;
ring S1 = 0, (s(1..3)), lp;
ideal I = s(2)*s(3), s(1)^2*s(2)+s(1)^2*s(3)-1, s(1)^2*s(3)^2-s(3), s(2)^4-s(3)^4+s(1)^2, s(1)^4+s(2)^3-s(3)^3, s(3)^5-s(1)^2*s(3);
ideal mpoly = std(0);
// order = 10
ring S2 = 0, (s(1..5)), lp;
ideal I = s(2)+s(3)-s(5), s(4)^2-s(5), s(1)*s(5)+s(3)*s(4)-s(4)*s(5), s(1)*s(4)+s(3)-s(5), s(3)^2-2*s(3)*s(5), s(1)*s(3)-s(1)*s(5)+s(4)*s(5), s(1)^2+s(4)^2-2*s(5), -s(1)+s(5)^3, s(3)*s(5)^2+s(4)-s(5)^3, s(1)*s(5)^2-1;
ideal mpoly = std(0);
//order = 126
ring S3 = 0, (s(1..5)), lp;
ideal I = s(3)*s(4), s(2)*s(4), s(1)*s(3), s(1)*s(2), s(3)^3+s(4)^3-1, s(2)^3+s(4)^3-1, s(1)^3-s(4)^3, s(4)^4-s(4), s(1)*s(4)^3-s(1), s(5)^7-1;
ideal mpoly = std(0);
// order = 192
ring S4 = 0, (s(1..4)), lp;
ideal I = s(2)*s(3)^2*s(4)+s(1)*s(3)*s(4)^2, s(2)^2*s(3)*s(4)+s(1)*s(2)*s(4)^2, s(1)*s(3)^3+s(2)*s(4)^3, s(1)*s(2)*s(3)^2+s(1)^2*s(3)*s(4), s(1)^2*s(3)^2-s(2)^2*s(4)^2, s(1)*s(2)^2*s(3)+s(1)^2*s(2)*s(4), s(1)^3*s(3)+s(2)^3*s(4), s(2)^4-s(3)^4, s(1)*s(2)^3+s(3)*s(4)^3, s(1)^2*s(2)^2-s(3)^2*s(4)^2, s(1)^3*s(2)+s(3)^3*s(4), s(1)^4-s(4)^4, s(3)^5*s(4)-s(3)*s(4)^5, s(3)^8+14*s(3)^4*s(4)^4+s(4)^8-1, 15*s(2)*s(3)*s(4)^7-s(1)*s(4)^8+s(1), 15*s(3)^4*s(4)^5+s(4)^9-s(4), 16*s(3)*s(4)^9-s(3)*s(4), 16*s(2)*s(4)^9-s(2)*s(4), 16*s(1)*s(3)*s(4)^8-s(1)*s(3), 16*s(1)*s(2)*s(4)^8-s(1)*s(2), 16*s(1)*s(4)^10-15*s(2)*s(3)*s(4)-16*s(1)*s(4)^2, 16*s(1)^2*s(4)^9-15*s(1)*s(2)*s(3)-16*s(1)^2*s(4), 16*s(4)^13+15*s(3)^4*s(4)-16*s(4)^5;
ideal mpoly = std(0);
ring R = (0,a), (x,y,z), lp;
minpoly = a2 + 1;
ideal I1 = x2 - 1/2, a*z - 1, y - 2;
ideal I2 = x3 - 1/2, a*z2 - 3, y - 2*a;
*/
|