/usr/share/singular/LIB/tropical.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 | //
version="version tropical.lib 4.0.0.0 Dec_2013 ";
category="Tropical Geometry";
info="
LIBRARY: tropical.lib Computations in Tropical Geometry
AUTHORS: Anders Jensen Needergard, email: jensen@math.tu-berlin.de
@* Hannah Markwig, email: hannah@uni-math.gwdg.de
@* Thomas Markwig, email: keilen@mathematik.uni-kl.de
@* Yue Ren, email: ren@mathematik.uni-kl.de
WARNING:
- tropicalLifting will only work with LINUX and if in addition gfan is installed.
@*- drawTropicalCurve and drawTropicalNewtonSubdivision will only display the
@* tropical curve with LINUX and if in addition latex and xdg-open
@* are installed.
@*- For tropicalLifting in the definition of the basering the parameter t
@* from the Puiseux series field C{{t}} must be defined as a variable,
@* while for all other procedures it must be defined as a parameter.
THEORY:
Fix some base field K and a bunch of lattice points v0,...,vm in the integer
lattice Z^n, then this defines a toric variety as the closure of (K*)^n in
the projective space P^m, where the torus is embedded via the map sending a
point x in (K*)^n to the point (x^v0,...,x^vm).
The generic hyperplane sections are just the images of the hypersurfaces
in (K*)^n defined by the polynomials f=a0*x^v0+...+am*x^vm=0. Some properties
of these hypersurfaces can be studied via tropicalisation.
For this we suppose that K=C{{t}} is the field of Puiseux series over the
field of complex numbers (or any other field with a valuation into the real
numbers). One associates to the hypersurface given by f=a0*x^v0+...+am*x^vm
the tropical hypersurface defined by the tropicalisation
trop(f)=min{val(a0)+<v0,x>,...,val(am)+<vm,x>}.
Here, <v,x> denotes the standard scalar product of the integer vector v in Z^n
with the vector x=(x1,...,xn) of variables, so that trop(f) is a piecewise
linear function on R^n. The corner locus of this function (i.e. the points
at which the minimum is attained a least twice) is the tropical hypersurface
defined by trop(f).
The theorem of Newton-Kapranov states that this tropical hypersurface is
the same as if one computes pointwise the valuation of the hypersurface
given by f. The analogue holds true if one replaces one equation f by an
ideal I. A constructive proof of the theorem is given by an adapted
version of the Newton-Puiseux algorithm. The hard part is to find a point
in the variety over C{{t}} which corresponds to a given point in the
tropical variety.
It is the purpose of this library to provide basic means to deal with
tropical varieties. Of course we cannot represent the field of Puiseux
series over C in its full strength, however, in order to compute interesting
examples it will be sufficient to replace the complex numbers C by the
rational numbers Q and to replace Puiseux series in t by rational functions
in t, i.e. we replace C{{t}} by Q(t), or sometimes even by Q[t].
Note, that this in particular forbids rational exponents for the t's.
Moreover, in Singular no negative exponents of monomials are allowed, so
that the integer vectors vi will have to have non-negative entries.
Shifting all exponents by a fixed integer vector does not change the
tropicalisation nor does it change the toric variety. Thus this does not
cause any restriction.
If, however, for some reason you prefer to work with general vi, then you
have to pass right away to the tropicalisation of the equations, whereever
this is allowed -- these are linear polynomials where the constant coefficient
corresponds to the valuation of the original coefficient and where
the non-constant coefficient correspond to the exponents of the monomials,
thus they may be rational numbers respectively negative numbers:
e.g. if f=t^{1/2}*x^{-2}*y^3+2t*x*y+4 then trop(f)=min{1/2-2x+3y,1+x+y,0}.
The main tools provided in this library are as follows:
@* - tropicalLifting implements the constructive proof of the Theorem of
Newton-Kapranov and constructs a point in the variety
over C{{t}} corresponding to a given point in the
corresponding tropical variety associated to an
ideal I; the generators of I have to be in the
polynomial ring Q[t,x1,...,xn] considered as a
subring of C{{t}}[x1,...,xn]; a solution will be
constructed up to given order; note that several
field extensions of Q might be necessary throughout
the intermediate computations; the procedures use
the external program gfan
@* - puiseuxExpansion computes a Newton-Puiseux expansion of a plane curve
singularity
@* - drawTropicalCurve visualises a tropical plane curve either given by a
polynomial in Q(t)[x,y] or by a list of linear
polynomials of the form ax+by+c with a,b in Z and c
in Q; latex must be installed on your computer
@* - tropicalJInvariant computes the tropical j-invaiant of a tropical
elliptic curve
@* - jInvariant computes the j-invariant of an elliptic curve
@* - weierstrassForm computes the Weierstrass form of an elliptic curve
PROCEDURES FOR TROPICAL LIFTING:
tropicalLifting() computes a point in the tropical variety
displayTropicalLifting() displays the output of tropicalLifting
puiseuxExpansion() computes a Newton-Puiseux expansion in the plane
displayPuiseuxExpansion() displays the output of puiseuxExpansion
PROCEDURES FOR DRAWING TROPICAL CURVES:
tropicalCurve() computes a tropical curve and its Newton subdivision
drawTropicalCurve() produces a post script image of a tropical curve
drawNewtonSubdivision() produces a post script image of a Newton subdivision
PROCEDURES FOR J-INVARIANTS:
tropicalJInvariant() computes the tropical j-invariant of a tropical curve
weierstrassForm() computes the Weierstrass form of a cubic polynomial
jInvariant() computes the j-invariant of a cubic polynomial
GENERAL PROCEDURES:
conicWithTangents() computes a conic through five points with tangents
tropicalise() computes the tropicalisation of a polynomial
tropicaliseSet() computes the tropicalisation several polynomials
tInitialForm() computes the tInitial form of a polynomial in Q[t,x_1,...,x_n]
tInitialIdeal() computes the tInitial ideal of an ideal in Q[t,x_1,...,x_n]
initialForm() computes the initial form of poly in Q[x_1,...,x_n]
initialIdeal() computes the initial ideal of an ideal in Q[x_1,...,x_n]
PROCEDURES FOR LATEX CONVERSION:
texNumber() outputs the texcommand for the leading coefficient of poly
texPolynomial() outputs the texcommand for the polynomial poly
texMatrix() outputs the texcommand for the matrix
texDrawBasic() embeds output of texDrawTropical in a texdraw environment
texDrawTropical() computes the texdraw commands for a tropical curve
texDrawNewtonSubdivision() computes texdraw commands for a Newton subdivision
texDrawTriangulation() computes texdraw commands for a triangulation
AUXILARY PROCEDURES:
radicalMemberShip() checks radical membership
tInitialFormPar() computes the t-initial form of poly in Q(t)[x_1,...,x_n]
tInitialFormParMax() same as tInitialFormPar, but uses maximum
solveTInitialFormPar() displays approximated solution of a 0-dim ideal
detropicalise() computes the detropicalisation of a linear form
tDetropicalise() computes the detropicalisation of a linear form
dualConic() computes the dual of an affine plane conic
parameterSubstitute() substitutes in the polynomial the parameter t by t^N
tropicalSubst() makes certain substitutions in a tropical polynomial
randomPolyInT() computes a polynomial with random coefficients
cleanTmp() clears /tmp from files created by other procedures
PROCEDURES FROM BINARY LIBRARY:
groebnerCone() constructs the Groebner cone with respect to a weight vector
maximalGroebnerCone() constructs the Groebner cone with respect to the current ordering
homogeneitySpace() constructs the homogeneity space
initial() constructs the initial form resp. ideal
tropicalVariety() computes the tropical variety of a poly or ideal
groebnerFan() computes the Groebner fan of a poly or ideal
groebnerComplex() computes the Groebner complex of a poly or ideal
KEYWORDS: tropical curves; tropical polynomials
";
///////////////////////////////////////////////////////////////////////////////
/// Auxilary Static Procedures in this Library
///////////////////////////////////////////////////////////////////////////////
/// - phiOmega
/// - cutdown
/// - tropicalparametriseNoabs
/// - findzeros
/// - basictransformideal
/// - testw
/// - simplifyToOrder
/// - scalarproduct
/// - intvecdelete
/// - invertorder
/// - ordermaximalidealsNoabs
/// - displaypoly
/// - displaycoef
/// - choosegfanvector
/// - tropicalliftingresubstitute
/// - tropicalparametrise
/// - eliminatecomponents
/// - findzerosAndBasictransform
/// - ordermaximalideals
/// - verticesTropicalCurve
/// - bunchOfLines
/// - clearintmat
/// - sortintvec
/// - sortintmat
/// - intmatcoldelete
/// - intmatconcat
/// - minInIntvec
/// - positionInList
/// - sortlist
/// - minInList
/// - vergleiche
/// - koeffizienten
/// - minOfPolys
/// - shorten
/// - minOfStringDecimal
/// - decimal
/// - stringcontainment
/// - stringdelete
/// - stringinsert
/// - texmonomial
/// - texcoefficient
/// - abs
/// - findNonLoopVertex
/// - coordinatechange
/// - weierstrassFormOfACubic
/// - weierstrassFormOfA4x2Curve
/// - weierstrassFormOfA2x2Curve
/// - jInvariantOfACubic
/// - jInvariantOfA4x2Curve
/// - jInvariantOfA2x2Curve
/// - jInvariantOfAPuiseuxCubic
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
LIB "random.lib";
LIB "solve.lib";
LIB "poly.lib";
LIB "elim.lib";
LIB "linalg.lib";
LIB "polymake.lib";
LIB "primdec.lib";
LIB "absfact.lib";
LIB "hnoether.lib";
LIB "ring.lib";
//////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
/// Procedures concerned with tropical parametrisation
///////////////////////////////////////////////////////////////////////////////
proc tropicalLifting (ideal i,intvec w,int ordnung,list #)
"USAGE: tropicalLifting(i,w,ord[,opt]); i ideal, w intvec, ord int, opt string
ASSUME: - i is an ideal in Q[t,x_1,...,x_n], w=(w_0,w_1,...,w_n)
and (w_1/w_0,...,w_n/w_0) is in the tropical variety of i,
and ord is the order up to which a point in V(i) over Q{{t}}
lying over (w_1/w_0,...,w_n/w_0) shall be computed;
w_0 may NOT be ZERO
@* - the basering should not have any parameters on its own
and it should have a global monomial ordering,
e.g. ring r=0,(t,x(1..n)),dp;
@* - the first variable of the basering will be treated as the
parameter t in the Puiseux series field
@* - the optional parameter opt should be one or more strings among
the following:
@* 'isZeroDimensional' : the dimension i is zero (not to be checked);
@* 'isPrime' : the ideal is prime over Q(t)[x_1,...,x_n]
(not to be checked);
@* 'isInTrop' : (w_1/w_0,...,w_n/w_0) is in the tropical
variety (not to be checked);
@* 'oldGfan' : uses gfan version 0.2.1 or less
@* 'findAll' : find all solutions of a zero-dimensional
ideal over (w_1/w_0,...,w_n/w_0)
@* 'noAbs' : do NOT use absolute primary decomposition
@* 'puiseux' : n=1 and i is generated by one equation
@* 'noResubst' : avoids the computation of the resubstitution
RETURN: IF THE OPTION 'findAll' WAS NOT SET THEN:
@* list, containing one lifting of the given point (w_1/w_0,...,w_n/w_0)
in the tropical variety of i to a point in V(i) over Puiseux
series field up to the first ord terms; more precisely:
@* IF THE OPTION 'noAbs' WAS NOT SET, THEN:
@* l[1] = ring Q[a]/m[[t]]
@* l[2] = int
@* l[3] = intvec
@* l[4] = list
@* IF THE OPTION 'noAbs' WAS SET, THEN:
@* l[1] = ring Q[X(1),...,X(k)]/m[[t]]
@* l[2] = int
@* l[3] = intvec
@* l[4] = list
@* l[5] = string
@* IF THE OPITON 'findAll' WAS SET, THEN:
@* list, containing ALL liftings of the given point ((w_1/w_0,...,w_n/w_0)
in the tropical variety of i to a point in V(i) over Puiseux
series field up to the first ord terms, if the ideal is
zero-dimensional over Q{{t}};
more precisely, each entry of the list is a list l as computed
if 'findAll' was NOT set
@* WE NOW DESCRIBE THE LIST ENTRIES IF 'findAll' WAS NOT SET:
@* - the ring l[1] contains an ideal LIFT, which contains
a point in V(i) lying over w up to the first ord terms;
@* - and if the integer l[2] is N then t has to be replaced by t^1/N
in the lift, or alternatively replace t by t^N in the defining ideal
@* - if the k+1st entry of l[3] is non-zero, then the kth component of
LIFT has to be multiplied t^(-l[3][k]/l[3][1]) AFTER substituting t
by t^1/N
@* - unless the option 'noResubst' was set, the kth entry of list l[4]
is a string which represents the kth generator of
the ideal i where the coordinates have been replaced by the result
of the lift;
the t-order of the kth entry should in principle be larger than the
t-degree of LIFT
@* - if the option 'noAbs' was set, then the string in l[5] defines
a maximal ideal in the field Q[X(1),...,X(k)], where X(1),...,X(k)
are the parameters of the ring in l[1];
the basefield of the ring in l[1] should be considered modulo this
ideal
REMARK: - it is best to use the procedure displayTropicalLifting to
display the result
@* - the option 'findAll' cannot be used if 'noAbs' is set
@* - if the parameter 'findAll' is set AND the ideal i is zero-dimensional
in Q{{t}}[x_1,...,x_n] then ALL points in V(i) lying over w are
computed up to order ord; if the ideal is not-zero dimenisonal, then
only the points in the ideal after cutting down to dimension zero
will be computed
@* - the procedure requires that the program GFAN is installed on your
computer; if you have GFAN version less than 0.3.0 then you must
use the optional parameter 'oldGfan'
@* - the procedure requires the Singular procedure absPrimdecGTZ to be
present in the package primdec.lib, unless the option 'noAbs' is set;
but even if absPrimdecGTZ is present it might be necessary to set
the option 'noAbs' in order to avoid the costly absolute primary
decomposition; the side effect is that the field extension which is
computed throughout the recursion might need more than one
parameter to be described
@* - since Q is infinite, the procedure finishes with probability one
@* - you can call the procedure with Z/pZ as base field instead of Q,
but there are some problems you should be aware of:
@* + the Puiseux series field over the algebraic closure of Z/pZ is
NOT algebraicall closed, and thus there may not exist a point in
V(i) over the Puiseux series field with the desired valuation;
so there is no chance that the procedure produced a sensible output
- e.g. if i=tx^p-tx-1
@* + if the dimension of i over Z/pZ(t) is not zero the process of
reduction to zero might not work if the characteristic is small
and you are unlucky
@* + the option 'noAbs' has to be used since absolute primary
decomposition in Singular only works in characteristic zero
@* - the basefield should either be Q or Z/pZ for some prime p;
field extensions will be computed if necessary; if you need
parameters or field extensions from the beginning they should
rather be simulated as variables possibly adding their relations to
the ideal; the weights for the additional variables should be zero
EXAMPLE: example tropicalLifting; shows an example"
{
// if the basering has parameters, then exit with an error message
if (parstr(basering)!="")
{
ERROR("The procedure is not implemented for rings with parameters. See: help tropicalLifting; for more information");
}
// in order to avoid unpleasent surprises with the names of the variables
// we change to a ring where the variables have names t and x(1),...,x(n)
def ALTERRING=basering;
if (nvars(basering)==2)
{
execute("ring BASERING=("+charstr(ALTERRING)+"),(t,x(1)),("+ordstr(ALTERRING)+");");
}
else
{
execute("ring BASERING=("+charstr(ALTERRING)+"),(t,x(1.."+string(nvars(ALTERRING)-1)+")),("+ordstr(ALTERRING)+");");
}
map altphi=ALTERRING,maxideal(1);
ideal i=altphi(i);
int j,k,l,jj,kk; // index variables
// work through the optionional parameters
int isprime,iszerodim,isintrop,gfanold,findall,noabs,nogfan,noresubst,puiseux;
for (j=1;j<=size(#);j++)
{
if (#[j]=="isZeroDimensional")
{
iszerodim=1;
}
if (#[j]=="isPrime")
{
isprime=1;
}
if (#[j]=="isInTrop")
{
isintrop=1;
}
if (#[j]=="oldGfan")
{
gfanold=1;
}
if (#[j]=="findAll")
{
findall=1;
}
if (#[j]=="noAbs")
{
noabs=1;
}
if (#[j]=="puiseux")
{
int puiseuxgood=0;
// test, if the option puiseux makes sense, i.e. we are considering a plane curve
if ((size(i)==1) and (nvars(basering)==2))
{
puiseuxgood=1;
}
// the case, where the base field has a parameter and a minimal polynomial is
// treated by an additional variable (which should be the last variable)
// and an ideal containing the minimal polynomial as first entry
if ((size(i)==2) and (nvars(basering)==3))
{
// check if the first entry is the minimal polynomial
poly mpcheck=i[1];
if (substitute(mpcheck,var(1),0,var(2),0)==mpcheck)
{
puiseuxgood=1;
}
kill mpcheck;
}
if (puiseuxgood==0)
{
ERROR("The option puiseux is not allowed for this ring. See: help tropicalLifting; for more information");
}
puiseux=1;
nogfan=1; // if puiseux is set, then gfan should not be used
}
// this option is not documented -- it prevents the execution of gfan and
// just asks for wneu to be inserted -- it can be used to check problems
// with the precedure without calling gfan, if wneu is know from previous
// computations
if (#[j]=="noGfan")
{
nogfan=1;
}
if (#[j]=="noResubst")
{
noresubst=1;
}
}
// if the basering has characteristic not equal to zero,
// then absolute factorisation
// is not available, and thus we need the option noAbs
/*
if ((char(basering)!=0) and (noabs!=1))
{
ERROR("If the characteristic is not zero the procedure should be called with option 'noAbs'");
}
*/
int N=1; // we are working with the variable t^1/N - the N may be changed
// w_0 must be non-zero!
if (w[1]==0)
{
Error("The first coordinate of your input w must be NON-ZERO, since it is a DENOMINATOR!");
}
// if w_0<0, then replace w by -w, so that the "denominator" w_0 is positive
if (w[1]<0)
{
w=-w;
}
intvec prew=w; // stores w for later reference
// for our computations, w[1] represents the weight of t and this
// should be -w_0 !!!
w[1]=-w[1];
// if w_0!=-1 then replace t by t^-w_0 and w_0 by -1
if (w[1]<-1)
{
i=subst(i,t,t^(-w[1]));
N=-w[1];
w[1]=-1;
}
// if some entry of w is positive, we have to make a transformation,
// which moves it to something non-positive
for (j=2;j<=nvars(basering);j++)
{
if (w[j]>0)
{
// transform x_j to t^(-w[j])*x_j in the ideal i
i=phiOmega(i,j,w[j]);
w[j]=0;
}
}
prew[1]=prew[1]+w[1];
prew=prew-w; // this now contains the positive part of the original w,
// but the original first comp. of w
// pass to a ring which represents Q[t]_<t>[x1,...,xn]
// for this, unfortunately, t has to be the last variable !!!
ideal variablen;
for (j=2;j<=nvars(basering);j++)
{
variablen=variablen+var(j);
}
execute("ring GRUNDRING=("+charstr(basering)+"),("+string(variablen)+",t),(dp("+string(nvars(basering)-1)+"),lp(1));");
ideal variablen;
for (j=1;j<=nvars(basering)-1;j++)
{
variablen=variablen+var(j);
}
map GRUNDPHI=BASERING,t,variablen;
ideal i=GRUNDPHI(i);
// compute the initial ideal of i and test if w is in the tropical
// variety of i
// - the last entry 1 only means that t is the last variable in the ring
ideal ini=tInitialIdeal(i,w,1);
if (isintrop==0) // test if w is in trop(i) only if isInTrop has not been set
{
poly product=1;
for (j=1;j<=nvars(basering)-1;j++)
{
product=product*var(j);
}
if (radicalMemberShip(product,ini)==1) // if w is not in Trop(i) - error
{
ERROR("The integer vector is not in the tropical variety of the ideal.");
}
}
// compute next the dimension of i in K(t)[x] and cut the ideal down to dim 0
if (iszerodim==0) // do so only if is_dim_zero is not set
{
execute("ring QUOTRING=("+charstr(basering)+",t),("+string(variablen)+"),dp;");
ideal i=groebner(imap(GRUNDRING,i));
int dd=dim(i);
setring GRUNDRING;
// if the dimension is not zero, we cut the ideal down to dimension zero
// and compute the
// t-initial ideal of the new ideal at the same time
if(dd!=0)
{
// the procedurce cutdown computes a new ring, in which there lives a
// zero-dimensional
// ideal which has been computed by cutting down the input with
// generic linear forms
// of the type x_i1-p_1,...,x_id-p_d for some polynomials
// p_1,...,p_d not depending
// on the variables x_i1,...,x_id; that way we have reduced
// the number of variables by dd !!!
// the new zero-dimensional ideal is called i, its t-initial
// ideal (with respect to
// the new w=CUTDOWN[2]) is ini, and finally there is a list
// repl in the ring
// which contains at the polynomial p_j at position i_j and
//a zero otherwise;
if (isprime==0) // the minimal associated primes of i are computed
{
list CUTDOWN=cutdown(i,w,dd);
}
else // i is assumed to be prime
{
list CUTDOWN=cutdown(i,w,dd,"isPrime");
}
def CUTDOWNRING=CUTDOWN[1];
intvec precutdownw=w; // save the old w for later reference
w=CUTDOWN[2]; // the new w - some components have been eliminated
setring CUTDOWNRING;
}
}
else
{
int dd=0; // the dimension of i
}
list liftrings; // will contain the final result
// if the procedure is called without 'findAll' then it may happen, that no
// proper solution is found when dd>0; in that case we have
// to start all over again;
// this is controlled by the while-loop
intvec ordnungskontrollvektor=N,-w[2]; // used with the option puiseux
while (size(liftrings)==0)
{
// compute lifting for the zero-dimensional ideal via tropicalparametrise
if (noabs==1) // do not use absolute primary decomposition
{
list TP=list(tropicalparametriseNoabs(i,w,ordnung,gfanold,nogfan,puiseux,ini));
}
else // use absolute primary decomposition
{
list TP=tropicalparametrise(i,w,ordnung,ordnungskontrollvektor,gfanold,findall,nogfan,puiseux,ini);
}
// compute the liftrings by resubstitution
kk=1; // counts the liftrings
int isgood; // test in the non-zerodimensional case
// if the result has the correct valuation
for (jj=1;jj<=size(TP);jj++)
{
// the list TP contains as a first entry the ring over which the
// tropical parametrisation
// of the (possibly cutdown ideal) i lives
def LIFTRING=TP[jj][1];
// if the dimension of i originally was not zero,
// then we have to fill in the missing
// parts of the parametrisation
if (dd!=0)
{
// we need a ring where the parameters X_1,...,X_k
// from LIFTRING are present,
// and where also the variables of CUTDOWNRING live
execute("ring REPLACEMENTRING=("+charstr(LIFTRING)+"),("+varstr(CUTDOWNRING)+"),dp;");
list repl=imap(CUTDOWNRING,repl); // get the replacement rules
// from CUTDOWNRING
ideal PARA=imap(LIFTRING,PARA); // get the zero-dim. parametrisatio
// from LIFTRING
// compute the lift of the solution of the original ideal i
ideal LIFT;
k=1;
// the lift has as many components as GRUNDRING has variables!=t
for (j=1;j<=nvars(GRUNDRING)-1;j++)
{
// if repl[j]=0, then the corresponding variable was not eliminated
if (repl[j]==0)
{
LIFT[j]=PARA[k]; // thus the lift has been
// computed by tropicalparametrise
k++; // k checks how many entries of PARA have already been used
}
else // if repl[j]!=0, repl[j] contains replacement rule for the lift
{
LIFT[j]=repl[j]; // we still have to replace the vars
// in repl[j] by the corresp. entries of PARA
// replace all variables!=t (from CUTDOWNRING)
for (l=1;l<=nvars(CUTDOWNRING)-1;l++)
{
// substitute the kth variable by PARA[k]
LIFT[j]=subst(LIFT[j],var(l),PARA[l]);
}
}
}
setring LIFTRING;
ideal LIFT=imap(REPLACEMENTRING,LIFT);
// test now if the LIFT has the correct valuation !!!
// note: it may happen, that when resubstituting PARA into
// the replacement rules
// there occured some unexpected cancellation;
// we only know that for SOME
// solution of the zero-dimensional reduction NO
// canellation will occur,
// but for others this may very well happen;
// this in particular means that
// we possibly MUST compute all zero-dimensional
// solutions when cutting down!
intvec testw=precutdownw[1];
for (j=1;j<=size(LIFT);j++)
{
testw[j+1]=-ord(LIFT[j]);
}
if (testw==precutdownw)
{
isgood=1;
}
else
{
isgood=0;
}
}
else
{
setring LIFTRING;
ideal LIFT=PARA;
isgood=1;
}
kill PARA;
// only if LIFT has the right valuation we have to do something
if (isgood==1)
{
// it remains to reverse the original substitutions,
// where appropriate !!!
// if some entry of the original w was positive,
// we replace the corresponding
// variable x_i by t^-w[i]*x_i, so we must now replace
// the corresponding entry
// LIFT[i] by t^-w[i]*LIFT[i] --- the original w is stored in prew
// PROBLEM: THIS CANNOT BE DONE SINCE -w[i] IS NEGATIVE
// INSTEAD: RETURN prew IN THE LIST
/*
for (j=2;j<=size(prew);j++)
{
if (prew[j]>0)
{
LIFT[j-1]=t^(-prew[j])*LIFT[j-1];
}
}
*/
// if LIFTRING contains a parameter @a, change it to a
if ((noabs==0) and (defined(@a)==-1))
{
// pass first to a ring where a and @a
// are variables in order to use maps
poly mp=minpoly;
ring INTERRING=char(LIFTRING),(t,@a,a),dp;
poly mp=imap(LIFTRING,mp);
ideal LIFT=imap(LIFTRING,LIFT);
kill LIFTRING;
// replace @a by a in minpoly and in LIFT
map phi=INTERRING,t,a,a;
mp=phi(mp);
LIFT=phi(LIFT);
// pass now to a ring whithout @a and with a as parameter
ring LIFTRING=(char(INTERRING),a),t,ls;
minpoly=number(imap(INTERRING,mp));
ideal LIFT=imap(INTERRING,LIFT);
kill INTERRING;
}
// then export LIFT
export(LIFT);
// test the result by resubstitution
setring GRUNDRING;
list resubst;
if (noresubst==0)
{
if (noabs==1)
{
resubst=tropicalliftingresubstitute(substitute(i,t,t^(TP[jj][2])),list(LIFTRING),N*TP[jj][2],TP[jj][3]);
}
else
{
resubst=tropicalliftingresubstitute(substitute(i,t,t^(TP[jj][2])),list(LIFTRING),N*TP[jj][2]);
}
}
setring BASERING;
// Finally, if t has been replaced by t^N, then we have to change the
// third entry of TP by multiplying by N.
if (noabs==1)
{
liftrings[kk]=list(LIFTRING,N*TP[jj][2],prew,resubst,TP[jj][3]);
}
else
{
liftrings[kk]=list(LIFTRING,N*TP[jj][2],prew,resubst);
}
kk++;
kill resubst;
}
setring BASERING;
kill LIFTRING;
}
// if dd!=0 and the procedure was called without the
// option findAll, then it might very well
// be the case that no solution is found, since
// only one solution for the zero-dimensional
// reduction was computed and this one might have
// had cancellations when resubstituting;
// if so we have to restart the process with the option findAll
if (size(liftrings)==0)
{
"The procedure was called without findAll and no proper solution was found.";
"The procedure will be restarted with the option 'findAll'.";
"Go on by hitting RETURN!";
findall=1;
noabs=0;
setring CUTDOWNRING;
int hadproblems;
"i";i;
"ini";tInitialIdeal(i,w,1);
/*
setring GRUNDRING;
list repl=imap(CUTDOWNRING,repl);
i=imap(CUTDOWNRING,i);
for (j=1;j<=nvars(basering)-1;j++)
{
if (repl[j]!=0)
{
i=i+ideal(var(j)-repl[j]);
}
}
ini=tInitialIdeal(i,precutdownw,1);
w=precutdownw;
*/
}
}
// if internally the option findall was set, then return
// only the first solution
if (defined(hadproblems)!=0)
{
liftrings=liftrings[1];
}
///////////////////////////////////////////////////////////
if (printlevel-voice+2>=0)
{
"The procedure has created a list of lists. The jth entry of this list
contains a ring, an integer and an intvec.
In this ring lives an ideal representing the wanted lifting,
if the integer is N then in the parametrisation t has to be replaced by t^1/N,
and if the ith component of the intvec is w[i] then the ith component in LIFT
should be multiplied by t^-w[i]/N in order to get the parametrisation.
Suppose your list has the name L, then you can access the 1st ring via:
";
if (findall==1)
{
"def LIFTRing=L[1][1]; setring LIFTRing; LIFT;
";
}
else
{
"def LIFTRing=L[1]; setring LIFTRing; LIFT;
";
}
}
if (findall==1) // if all solutions have been computed, return a list of lists
{
return(liftrings);
}
else //if only 1 solution was to be computed, return the 1st list in liftrings
{
liftrings=liftrings[1];
return(liftrings);
}
}
example
{
"EXAMPLE:";
int oldprintlevel=printlevel;
printlevel=1;
echo=2;
////////////////////////////////////////////////////////
// 1st EXAMPLE:
////////////////////////////////////////////////////////
ring r=0,(t,x),dp;
ideal i=(1+t2)*x2+t5x+t2;
intvec w=1,-1;
list LIST=tropicalLifting(i,w,4);
def LIFTRing=LIST[1];
setring LIFTRing;
// LIFT contains the first 4 terms of a point in the variety of i
// over the Puiseux series field C{{t}} whose order is -w[1]/w[0]=1
LIFT;
// Since the computations were done over Q a field extension was necessary,
// and the parameter "a" satisfies the equation given by minpoly
minpoly;
////////////////////////////////////////////////////////
// 2nd EXAMPLE
////////////////////////////////////////////////////////
setring r;
LIST=tropicalLifting(x12-t11,intvec(12,-11),2,"isPrime","isInTrop");
def LIFTRing2=LIST[1];
setring LIFTRing2;
// This time, LIFT contains the lifting of the point -w[1]/w[0]=11/12
// only after we replace in LIFT the variable t by t^1/N with N=LIST[3]
LIFT;
LIST[3];
///////////////////////////////////////////////////////
// 3rd EXAMPLE
////////////////////////////////////////////////////////
ring R=0,(t,x,y,z),dp;
ideal i=-y2t4+x2,yt3+xz+y;
w=1,-2,0,2;
LIST=tropicalLifting(i,w,3);
// This time, LIFT contains the lifting of the point v=(-2,0,2)
// only after we multiply LIFT[3] by t^k with k=-LIST[4][3];
// NOTE: since the last component of v is positive, the lifting
// must start with a negative power of t, which in Singular
// is not allowed for a variable.
def LIFTRing3=LIST[1];
setring LIFTRing3;
LIFT;
LIST[4];
// An easier way to display this is via displayTropicalLifting.
setring R;
displayTropicalLifting(LIST,"subst");
printlevel=oldprintlevel;
}
///////////////////////////////////////////////////////////////////////////////
proc displayTropicalLifting (list troplift,list #)
"USAGE: displaytropcallifting(troplift[,#]); troplift list, # list
ASSUME: troplift is the output of tropicalLifting; the optional parameter
# can be the string 'subst'
RETURN: none
NOTE: - the procedure displays the output of the procedure tropicalLifting
@* - if the optional parameter 'subst' is given, then the lifting is
substituted into the ideal and the result is displayed
EXAMPLE: example displayTropicalLifting; shows an example"
{
int j;
// if the procedure has to display more than one lifting
if (typeof(troplift[1])=="list")
{
for (j=1;j<=size(troplift);j++)
{
"=============================";
string(j)+". Lifting:";
"";
displayTropicalLifting(troplift[j],#);
"";
}
}
// if the procedure has to display only one lifting
else
{
list variablen;
for (j=2;j<=nvars(basering);j++)
{
variablen[j-1]=string(var(j));
}
def LIFTRing=troplift[1];
int N=troplift[2];
intvec wdiff=troplift[3];
string LIFTpar=parstr(LIFTRing);
if (char(LIFTRing)==0)
{
string Kstring="Q";
}
else
{
string Kstring="Z/"+string(char(LIFTRing))+"Z";
}
// this means that tropicalLifting was called with
// absolute primary decomposition
if (size(troplift)==4)
{
setring LIFTRing;
"The lifting of the point in the tropical variety lives in the ring";
if ((size(LIFTpar)==0) and (N==1))
{
Kstring+"[[t]]";
}
if ((size(LIFTpar)==0) and (N!=1))
{
Kstring+"[[t^(1/"+string(N)+")]]";
}
if ((size(LIFTpar)!=0) and (N!=1))
{
Kstring+"["+LIFTpar+"]/"+string(minpoly)+"[[t^(1/"+string(N)+")]]";
}
if ((size(LIFTpar)!=0) and (N==1))
{
Kstring+"["+LIFTpar+"]/"+string(minpoly)+"[[t]]";
}
}
else // tropicalLifting was called with the option noAbs
{
string m=troplift[5];
setring LIFTRing;
"The lifting of the point in the tropical variety lives in the ring";
if ((size(LIFTpar)==0) and (N==1))
{
Kstring+"[[t]]";
}
if ((size(LIFTpar)==0) and (N!=1))
{
Kstring+"[[t^(1/"+string(N)+")]]";
}
if ((size(LIFTpar)!=0) and (N!=1))
{
Kstring+"["+LIFTpar+"]/M[[t^(1/"+string(N)+")]]";
"where M is the maximal ideal";
"M=<"+m+">";
}
if ((size(LIFTpar)!=0) and (N==1))
{
Kstring+"["+LIFTpar+"]/M[[t]]";
"where M is the maximal ideal";
"M=<"+m+">";
}
}
"";
"The lifting has the form:";
for (j=1;j<=size(LIFT);j++)
{
if (ncols(LIFT)==size(variablen))
{
variablen[j]+"="+displaypoly(LIFT[j],N,wdiff[j+1],wdiff[1]);
}
else
{
"var("+string(j)+")="+displaypoly(LIFT[j],N,wdiff[j+1],wdiff[1]);
}
}
if (size(#)>0)
{
if (#[1]=="subst")
{
"";
"Substituting the solution into the ideal gives:";
for(j=1;j<=size(troplift[4]);j++)
{
"i["+string(j)+"]="+troplift[4][j];
}
}
}
}
}
example
{
"EXAMPLE:";
echo=2;
ring r=0,(t,x,y,z),dp;
ideal i=-y2t4+x2,yt3+xz+y;
intvec w=2,-4,0,4;
displayTropicalLifting(tropicalLifting(i,w,3),"subst");
}
proc puiseuxExpansion (poly f,int n,list #)
"USAGE: puiseuxExpansion(f,n,#); f poly, n int, # list
ASSUME: f is a non-constant polynomial in two variables which is not
divisible by the first variable and which is squarefree
as a power series over the complex numbers;
the base field is either the field of rational numbers or a finite extension thereof;
monomial ordering is assumed to be local;
the optional parameter # can be the string 'subst'
RETURN: list, where each entry of the list l describes the Newton-Puiseux
@* parametrisations of one branch of the plane curve singularity
@* at the origin defined by f; only the terms up to order n of each
@* parametetrisation are computed
@* l[i][1] = is a ring
@* l[i][2] = int
@* l[i][3] = string
@*
@* WE NOW DESCRIBE THE LIST ENTRIES l[i] IN MORE DETAIL:
@* - the ring l[i][1] contains an ideal LIFT and the Newton-Puiseux
parametrisation of the branch is given by x=t^N and y=LIFT[1],
where N=l[i][2]
@* - if the base field had a parameter and a minimal polynomial, then
the new base field will have a parameter and a new minimal polynomial,
and LIFT[2] describes how the old parameter can be computed from the new one
@* - if a field extension with minimal polynomial of degree k was necessary,
then to the one extension produced acutally k extensions correspond by replacing
the parameter a successively by all zeros of the minimal polynomial
@* - if the option subst was set l[i][3] contains the polynomial where
y has been substituted by y(t^{1/N}) as a string
REMARK: - it is best to use the procedure displayPuiseuxExpansion to
display the result
@* - the procedure requires the Singular procedure absPrimdecGTZ to be
present in the package primdec.lib
@* - if f is not squarefree it will be replaced by its squarefree part
EXAMPLE: example puiseuxExpansion; shows an example"
{
if (deg(f)<=0)
{
ERROR("The input polynomial is not allowed to be constant!");
}
if (char(basering)!=0)
{
ERROR("In positive characteristic a Puiseux expansion will not in general exist!");
}
if ((npars(basering)>1) or ((npars(basering)==1) and (minpoly==0)))
{
ERROR("The procedure is not implemented for this base field!");
}
if (nvars(basering)!=2)
{
ERROR("The base ring should depend on exactly two variables.");
}
if (f==(f / var(1))*var(1))
{
ERROR("The input polynomial is not allowed to be divisible by the first variable.");
}
// if the ordering is not local, change to a local ordering
if ((1<var(1)) or (1<var(2)))
{
def GLOBALRING=basering;
def LOCALRING=changeordTo(GLOBALRING,"ds");
setring LOCALRING;
poly f=imap(GLOBALRING,f);
}
// check if a substitution is necessary
int noResubst;
if (size(#)>1)
{
if (#[1]=="subst")
{
noResubst=0;
}
}
// replace f by its squarefree part
f=squarefree(f);
// check if var(1) or var(2) divide f
int coordinatebranchtwo;
if (f==(f / var(2))*var(2))
{
coordinatebranchtwo=1;
f=f/var(2);
}
int jj;
// if f is now constant then we should skip the next part
if (deg(f)!=0)
{
// compute the Newton polygon
int zw;
intvec w;
int ggteiler;
list NewtP=newtonpoly(f);
list tls;
list pexp;
// if the base field has a minimal polynomial change the base ring and the ideal
if (minpoly!=0)
{
poly mp=minpoly;
def OLDRING=basering;
execute("ring NEWRING=0,("+varstr(basering)+","+parstr(basering)+"),ds;");
ideal I=imap(OLDRING,mp),imap(OLDRING,f);
}
else
{
ideal I=f;
}
// for each facet of the Newton polygon compute the corresponding parametrisations
// using tropicalLifting with the option "puiseux" which avoids gfan
for (jj=1;jj<=size(NewtP)-1;jj++)
{
w=NewtP[jj]-NewtP[jj+1];
ggteiler=gcd(w[1],w[2]);
zw=w[1] div ggteiler;
w[1]=w[2] div ggteiler;
w[2]=zw;
// if we have introduced a third variable for the parameter, then w needs a third component
if (nvars(basering)==3)
{
w[3]=0;
}
if (noResubst==0)
{
tls=tropicalLifting(I,w,n,"findAll","puiseux");
}
else
{
tls=tropicalLifting(I,w,n,"findAll","puiseux","noResubst");
}
pexp=pexp+tls;
}
// kill rings that are no longer needed
if (defined(NEWRING))
{
setring OLDRING;
kill NEWRING;
}
if (defined(GLOBALRING))
{
setring GLOBALRING;
kill LOCALRING;
}
// remove the third entry in the list of parametrisations since we know
// that none of the exponents in the parametrisation will be negative
for (jj=1;jj<=size(pexp);jj++)
{
pexp[jj]=delete(pexp[jj],3);
pexp[jj][3]=pexp[jj][3][size(pexp[jj][3])]; // replace the list in pexp[jj][3] by its first entry
}
}
else // if f was reduced to a constant we still have to introduce the list pexp
{
list pexp;
}
// we have to add the parametrisations for the branches var(1) resp. var(2) if
// we removed them
def BASERING=basering;
if (coordinatebranchtwo==1)
{
ring brring=0,t,ds;
ideal LIFT=0;
export(LIFT);
setring BASERING;
list pexpentry;
pexpentry[1]=brring;
pexpentry[2]=1;
pexpentry[3]="0";
pexp[size(pexp)+1]=pexpentry;
kill brring;
}
// check if all branches have been found
int numberofbranchesfound;
for (jj=1;jj<=size(pexp);jj++)
{
def countring=pexp[jj][1];
setring countring;
if (minpoly==0)
{
numberofbranchesfound=numberofbranchesfound+1;
}
else
{
poly mp=minpoly;
ring degreering=0,a,dp;
poly mp=imap(countring,mp);
numberofbranchesfound=numberofbranchesfound+deg(mp);
setring countring;
kill degreering;
}
setring BASERING;
kill countring;
}
// give a warning if not all branches have been found
if (numberofbranchesfound!=ord(subst(f,x,0))+coordinatebranchtwo)
{
"!!!! WARNING: The number of terms computed in the Puiseux expansion were";
"!!!! not enough to find all branches of the curve singularity!";
}
return(pexp);
}
example
{
"EXAMPLE:";
echo=2;
printlevel=1;
ring r=0,(x,y),ds;
poly f=x2-y4+x5y7;
puiseuxExpansion(f,3,"subst");
displayPuiseuxExpansion(puiseuxExpansion(f,3));
}
proc displayPuiseuxExpansion (list puiseux,list #)
"USAGE: displayPuiseuxExpansion(puiseux[,#]); puiseux list, # list
ASSUME: puiseux is the output of puiseuxExpansion; the optional parameter
# can be the string 'subst'
RETURN: none
NOTE: - the procedure displays the output of the procedure puiseuxExpansion
@* - if the optional parameter 'subst' is given, then the expansion is
substituted into the polynomial and the result is displayed
@* - if the base field had a parameter and a minimal polynomial, then the
new base field will have a parameter and a minimal polynomial;
var(2) is the old parameter and it is displayed how the old parameter
can be computed from the new one
EXAMPLE: example displayPuiseuxExpansion; shows an example"
{
int j;
// if the procedure has to display more than one expansion
if (typeof(puiseux[1])=="list")
{
for (j=1;j<=size(puiseux);j++)
{
"=============================";
string(j)+". Expansion:";
"";
displayPuiseuxExpansion(puiseux[j],#);
"";
}
}
// if the procedure has to display only one expansion
else
{
list variablen;
for (j=2;j<=nvars(basering);j++)
{
variablen[j-1]=string(var(j));
}
def BASERING=basering;
def LIFTRing=puiseux[1];
int N=puiseux[2];
string LIFTpar=parstr(LIFTRing);
string Kstring="Q";
setring LIFTRing;
"The Puiseux expansion lives in the ring";
if ((size(LIFTpar)==0) and (N==1))
{
Kstring+"[[t]]";
}
if ((size(LIFTpar)==0) and (N!=1))
{
Kstring+"[[t^(1/"+string(N)+")]]";
}
if ((size(LIFTpar)!=0) and (N!=1))
{
Kstring+"["+LIFTpar+"]/"+string(minpoly)+"[[t^(1/"+string(N)+")]]";
}
if ((size(LIFTpar)!=0) and (N==1))
{
Kstring+"["+LIFTpar+"]/"+string(minpoly)+"[[t]]";
}
"";
"The expansion has the form:";
// treat the case LIFT==0 separately
if (size(LIFT)==0)
{
variablen[1]+"=0";
}
else
{
for (j=1;j<=size(LIFT);j++)
{
if (ncols(LIFT)==size(variablen))
{
variablen[j]+"="+displaypoly(LIFT[j],N,0,1);
}
else
{
"var("+string(j)+")="+displaypoly(LIFT[j],N,0,1);
}
}
}
if (size(#)>0)
{
if (#[1]=="subst")
{
setring BASERING;
"";
"Substituting the expansion into the polynomial gives:";
"f="+puiseux[3];
}
}
}
}
example
{
"EXAMPLE:";
echo=2;
ring r=0,(x,y),ds;
poly f=x2-y4+x5y7;
displayPuiseuxExpansion(puiseuxExpansion(f,3));
}
///////////////////////////////////////////////////////////////////////////////
/// Procedures concerned with drawing a tropical curve or a Newton subdivision
///////////////////////////////////////////////////////////////////////////////
proc tropicalCurve (def tp,list #)
"USAGE: tropicalCurve(tp[,#]); tp list, # optional list
ASSUME: tp is list of linear polynomials of the form ax+by+c
with integers a, b and a rational number c representing
a tropical Laurent polynomial defining a tropical plane curve;
alternatively tp can be a polynomial in Q(t)[x,y] defining a
tropical plane curve via the valuation map;
the basering must have a global monomial ordering,
two variables and up to one parameter!
RETURN: list, each entry i=1,...,size(l)-1 corresponds to a vertex
in the tropical plane curve defined by tp
l[i][1] = x-coordinate of the ith vertex
l[i][2] = y-coordinate of the ith vertex
l[i][3] = intmat, if j is an entry in the first row
of intmat then the ith vertex of
the tropical curve is connected to the
jth vertex with multiplicity given
by the corresponding entry in the second row
l[i][4] = list of lists, the first entry of a list is
a primitive integer vector defining the direction
of an unbounded edge emerging from the ith vertex
of the graph, the corresponding second entry in
the list is the multiplicity of the unbounded edge
l[i][5] = a polynomial whose monomials mark the vertices
in the Newton polygon corresponding to the entries
in tp which take the common minimum at the ith
vertex -- if some coefficient a or b of the
linear polynomials in the input was negative,
then each monomial has to be shifted by
the values in l[size(l)][3]
l[size(l)][1] = list, the entries describe the boundary
points of the Newton subdivision
l[size(l)][2] = list, the entries are pairs of integer
vectors defining an interior
edge of the Newton subdivision
l[size(l)][3] = intvec, the monmials occuring in l[i][5]
have to be shifted by this vector
in order to represent marked
vertices in the Newton polygon
NOTE: here the tropical polynomial is supposed to be the MINIMUM
of the linear forms in tp, unless the optional input #[1]
is the string 'max'
EXAMPLE: example tropicalCurve; shows an example"
{
// introduce necessary variables
int i,j,k,l,d;
intvec v,w,u;
intmat D[2][2];
// the basering must have a global monomial ordering
if (1>var(1))
{
ERROR("The basering should have a global monomial ordering, e.g. ring r=(0,t),(x,y),dp;");
}
// if you insert a single polynomial instead of an ideal
// representing a tropicalised polynomial,
// then we compute first the tropicalisation of this polynomial
// -- this feature is not documented in the above help string
if (typeof(tp)=="poly")
{
// exclude the case that the basering has not precisely
// one parameter and two indeterminates
if ((npars(basering)!=1) or (nvars(basering)!=2))
{
ERROR("The basering should have precisely one parameter and two indeterminates!");
}
poly f=tp;
kill tp;
list tp=tropicalise(f,#); // the tropicalisation of f
}
// Exclude the case that the basering has more than 2 indeterminates
if (nvars(basering) != 2)
{
ERROR("The basering should have precisely two indeterminates!");
}
// -1) Exclude the pathological case that the defining
// tropical polynomial has only one term,
// so that the tropical variety is not defined.
if (size(tp)==1)
{
ERROR("A monomial does not define a tropical curve!");
intmat M[2][1]=0,0;
return(list(list(0,0,M,list(),detropicalise(tp[1])),list(list(leadexp(detropicalise(tp[1]))),list())));
}
// 0) If the input was a list of linear polynomials,
// then some coefficient of x or y can be negative,
// i.e. the input corresponds to the tropical curve
// of a Laurent polynomial. In that case we should
// add some ax+by, so that all coefficients are positive.
// This does not change the tropical curve.
// however, we have to save (a,b), since the Newton
// polygone has to be shifted by (-a,-b).
poly aa,bb; // koeffizienten
for (i=1;i<=size(tp);i++)
{
if (koeffizienten(tp[i],1)<aa)
{
aa=koeffizienten(tp[i],1);
}
if (koeffizienten(tp[i],2)<bb)
{
bb=koeffizienten(tp[i],2);
}
}
if ((aa!=0) or (bb!=0))
{
for (i=1;i<=size(tp);i++)
{
tp[i]=tp[i]-aa*var(1)-bb*var(2);
}
}
// 1) compute the vertices of the tropical curve
// defined by tp and the Newton subdivision
list vtp=verticesTropicalCurve(tp,#);
// if vtp is empty, then the Newton polygone is just
// a line segment and constitutes a bunch of lines
// which can be computed by bunchOfLines
if (size(vtp)==0)
{
return(bunchOfLines(tp));
}
// 2) store all vertices belonging to the ith part of the
// Newton subdivision in the list vtp[i] as 4th entry,
// and store those, which are not corners of the ith subdivision polygon
// in vtp[i][6]
poly nwt;
list boundaryNSD; // stores the boundary of a Newton subdivision
intmat zwsp[2][1]; // used for intermediate storage
for (i=1;i<=size(vtp);i++)
{
k=1;
nwt=vtp[i][3]; // the polynomial representing the
// ith part of the Newton subdivision
// store the vertices of the ith part of the
// Newton subdivision in the list newton
list newton;
while (nwt!=0)
{
newton[k]=leadexp(nwt);
nwt=nwt-lead(nwt);
k++;
}
boundaryNSD=findOrientedBoundary(newton);// a list of the vertices
// of the Newton subdivision
// as integer vectors (only those
// on the boundary, and oriented
// clockwise)
vtp[i][4]=boundaryNSD[1];
vtp[i][5]=boundaryNSD[2];
vtp[i][6]=zwsp; // the entries of the first row will denote to which
// vertex the ith one is connected
// and the entries of the second row will denote
//with which multiplicity
kill newton; // we kill the superflous list
}
// 3) Next we build for each part of the Newton
// subdivision the list of all pairs of vertices on the
// boundary, which are involved, including those which are not corners
list pairs,pair;
for (i=1;i<=size(vtp);i++)
{
list ipairs;
for (j=1;j<=size(vtp[i][4])-1;j++)
{
pair=vtp[i][4][j],vtp[i][4][j+1];
ipairs[j]=pair;
}
pair=vtp[i][4][size(vtp[i][4])],vtp[i][4][1];
ipairs[size(vtp[i][4])]=pair;
pairs[i]=ipairs;
kill ipairs;
}
// 4) Check for all pairs of verticies in the Newton diagram if they
// occur in two different parts of the Newton subdivision
int deleted; // if a pair occurs in two NSD, it can be removed
// from both - deleted is then set to 1
list inneredges; // contains the list of all pairs contained in two NSD
// - these are inner the edges of NSD
int ggt;
d=1; // counts the inner edges
for (i=1;i<=size(pairs)-1;i++)
{
for (j=i+1;j<=size(pairs);j++)
{
for (k=size(pairs[i]);k>=1;k--)
{
deleted=0;
for (l=size(pairs[j]);l>=1 and deleted==0;l--)
{
if (((pairs[i][k][1]==pairs[j][l][1]) and (pairs[i][k][2]==pairs[j][l][2])) or ((pairs[i][k][1]==pairs[j][l][2]) and (pairs[i][k][2]==pairs[j][l][1])))
{
inneredges[d]=pairs[i][k]; // new inner edge is saved in inneredges
d++;
ggt=abs(gcd(pairs[i][k][1][1]-pairs[i][k][2][1],pairs[i][k][1][2]-pairs[i][k][2][2]));
zwsp=j,ggt; // and it is recorded that the ith and jth
// vertex should be connected with mult ggt
vtp[i][6]=intmatconcat(vtp[i][6],zwsp);
zwsp=i,ggt;
vtp[j][6]=intmatconcat(vtp[j][6],zwsp);
pairs[i]=delete(pairs[i],k); // finally the pair is deleted
// from both sets of pairs
pairs[j]=delete(pairs[j],l);
deleted=1;
}
}
}
}
}
// 5) The entries in vtp[i][6] are ordered, multiple entries are removed,
// and the redundant zero is removed as well
for (i=1;i<=size(vtp);i++)
{
vtp[i][6]=clearintmat(vtp[i][6]);
}
// 6) Declare the orientation of the boundary of the Newton polytope.
// 6.1) Collect all potential vertices of the boundary of the Newton polytope.
list vertices; // all vertices in the set of pairs
k=1;
for (i=1;i<=size(pairs);i++)
{
for (j=1;j<=size(pairs[i]);j++)
{
vertices[k]=pairs[i][j][1];
k++;
vertices[k]=pairs[i][j][2];
k++;
}
}
// 6.2) delete multiple vertices
for (i=size(vertices)-1;i>=1;i--)
{
for (j=size(vertices);j>=i+1;j--)
{
if (vertices[i]==vertices[j])
{
vertices=delete(vertices,j);
}
}
}
// 6.3) Order the vertices such that passing from one to the next we
// travel along the boundary of the Newton polytope clock wise.
boundaryNSD=findOrientedBoundary(vertices);
list orderedvertices=boundaryNSD[1];
// 7) Find the unbounded edges emerging from a vertex in the tropical curve.
// For this we check the remaining pairs for the ith NSD.
// Each pair is ordered according
// to the order in which the vertices occur in orderedvertices.
// The direction of the
// unbounded edge is then the outward pointing primitive normal
// vector to the vector
// pointing from the first vertex in a pair to the second one.
intvec normalvector; // stores the outward pointing normal vector
intvec zwspp; // used for intermediate storage
int zw,pos1,pos2; // stores the gcd of entries of the
// non-normalised normal vector, etc.
int gestorben; // tests if unbounded edges are multiple
for (i=1;i<=size(pairs);i++)
{
list ubedges; // stores the unbounded edges
k=1; // counts the unbounded edges
for (j=1;j<=size(pairs[i]);j++)
{
// computes the position of the vertices in the
pos1=positionInList(orderedvertices,pairs[i][j][1]);
// pair in the list orderedvertices
pos2=positionInList(orderedvertices,pairs[i][j][2]);
if (((pos1>pos2) and !((pos1==size(orderedvertices)) and (pos2==1))) or ((pos2==size(orderedvertices)) and (pos1==1))) // reorders them if necessary
{
zwspp=pairs[i][j][1];
pairs[i][j][1]=pairs[i][j][2];
pairs[i][j][2]=zwspp;
}
// the vector pointing from vertex 1 in the pair to vertex2
normalvector=pairs[i][j][2]-pairs[i][j][1];
ggt=gcd(normalvector[1],normalvector[2]); // the gcd of the entries
zw=normalvector[2]; // create the outward pointing normal vector
normalvector[2]=-normalvector[1] div ggt;
normalvector[1]=zw div ggt;
if (size(#)==0) // we are computing w.r.t. minimum
{
ubedges[k]=list(normalvector,ggt); // store outward pointing normal vec.
}
else // we are computing w.r.t. maximum
{
ubedges[k]=list(-normalvector,ggt); //store outward pointing normal vec.
}
k++;
}
// remove multiple unbounded edges
for (j=size(ubedges);j>=1;j--)
{
gestorben=0;
for(k=1;(k<=j-1) and (gestorben==0);k++)
{
if (ubedges[k][1]==ubedges[j][1])
{
ubedges[k][2]=ubedges[k][2]+ubedges[j][2]; // add the multiplicities
ubedges=delete(ubedges,j);
gestorben=1;
}
}
}
vtp[i][7]=ubedges; // store the unbounded edges in vtp[i][7]
kill ubedges;
}
// 8) Store the computed information for the ith part
// of the NSD in the list graph[i].
list graph,gr;
for (i=1;i<=size(vtp);i++)
{
// the first coordinate of the ith vertex of the tropical curve
gr[1]=vtp[i][1];
// the second coordinate of the ith vertex of the tropical curve
gr[2]=vtp[i][2];
// to which vertices is the ith vertex of the tropical curve connected
gr[3]=vtp[i][6];
// the directions unbounded edges emerging from the ith
// vertex of the trop. curve
gr[4]=vtp[i][7];
// the vertices of the boundary of the ith part of the NSD
gr[5]=vtp[i][3];
graph[i]=gr;
}
// 9) Shift the Newton subdivision by (aa,bb) if necessary
intvec shiftvector=intvec(int(aa),int(bb));
if ((aa!=0) or (bb!=0))
{
for (i=1;i<=size(boundaryNSD[2]);i++)
{
boundaryNSD[2][i]=boundaryNSD[2][i]+shiftvector;
}
for (i=1;i<=size(inneredges);i++)
{
for (j=1;j<=size(inneredges[i]);j++)
{
inneredges[i][j]=inneredges[i][j]+shiftvector;
}
}
}
// 10) Finally store the boundary vertices and
// the inner edges as last entry in the list graph.
// This represents the NSD.
graph[size(vtp)+1]=list(boundaryNSD[2],inneredges,shiftvector);
return(graph);
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
poly f=t*(x7+y7+1)+1/t*(x4+y4+x2+y2+x3y+xy3)+1/t7*x2y2;
list graph=tropicalCurve(f);
// the tropical curve has size(graph)-1 vertices
size(graph)-1;
// the coordinates of the first vertex are graph[1][1],graph[1][2];
graph[1][1],graph[1][2];
// the first vertex is connected to the vertices
// graph[1][3][1,1..ncols(graph[1][3])]
intmat M=graph[1][3];
M[1,1..ncols(graph[1][3])];
// the weights of the edges to these vertices are
// graph[1][3][2,1..ncols(graph[1][3])]
M[2,1..ncols(graph[1][3])];
// from the first vertex emerge size(graph[1][4]) unbounded edges
size(graph[1][4]);
// the primitive integral direction vector of the first unbounded edge
// of the first vertex
graph[1][4][1][1];
// the weight of the first unbounded edge of the first vertex
graph[1][4][1][2];
// the monomials which are part of the Newton subdivision of the first vertex
graph[1][5];
// connecting the points in graph[size(graph)][1] we get
// the boundary of the Newton polytope
graph[size(graph)][1];
// an entry in graph[size(graph)][2] is a pair of points
// in the Newton polytope bounding an inner edge
graph[size(graph)][2][1];
}
/////////////////////////////////////////////////////////////////////////
proc drawTropicalCurve (def f,list #)
"USAGE: drawTropicalCurve(f[,#]); f poly or list, # optional list
ASSUME: f is list of linear polynomials of the form ax+by+c with
integers a, b and a rational number c representing a tropical
Laurent polynomial defining a tropical plane curve;
alternatively f can be a polynomial in Q(t)[x,y] defining
a tropical plane curve via the valuation map;
the basering must have a global monomial ordering, two
variables and up to one parameter!
RETURN: NONE
NOTE: - the procedure creates the files /tmp/tropicalcurveNUMBER.tex and
/tmp/tropicalcurveNUMBER.ps, where NUMBER is a random four
digit integer;
moreover it displays the tropical curve via xdg-open;
if you wish to remove all these files from /tmp,
call the procedure cleanTmp
@* - edges with multiplicity greater than one carry this multiplicity
@* - if # is empty, then the tropical curve is computed w.r.t. minimum,
if #[1] is the string 'max', then it is computed w.r.t. maximum
@* - if the last optional argument is 'onlytexfile' then only the
latex file is produced; this option should be used if xdg-utils
is not installed on your system
@* - note that lattice points in the Newton subdivision which are
black correspond to markings of the marked subdivision,
while lattice points in grey are not marked
EXAMPLE: example drawTropicalCurve shows an example"
{
// check if the option "onlytexfile" is set, then only a tex file is produced
if (size(#)!=0)
{
if (#[size(#)]=="onlytexfile")
{
int onlytexfile;
#=delete(#,size(#));
}
}
// start the actual computations
string texf;
int j;
if (typeof(f)=="poly")
{
// exclude the case that the basering has not precisely
// one parameter and two indeterminates
if ((npars(basering)!=1) or (nvars(basering)!=2))
{
ERROR("The basering should have precisely one parameter and two indeterminates!");
}
// if the characteristic of the base field is not 0 then replace the base field
// by a field of characteristic zero
if (char(basering)!=0)
{
string polynomstring=string(f);
execute("ring drawring=(0,"+parstr(basering)+"),("+varstr(basering)+"),dp;");
execute("poly f="+polynomstring+";");
}
texf=texPolynomial(f); // write the polynomial over Q(t)
list graph=tropicalCurve(tropicalise(f,#),#); // graph of tropicalis. of f
}
if (typeof(f)=="list")
{
if (typeof(f[1])=="list")
{
texf="\\mbox{\\tt The defining equation was not handed over!}";
list graph=f;
}
else
{ // write the tropical polynomial defined by f
if (size(#)==0)
{
texf="\\min\\{";
}
else
{
texf="\\max\\{";
}
for (j=1;j<=size(f);j++)
{
texf=texf+texPolynomial(f[j]);
if (j<size(f))
{
texf=texf+", ";
}
else
{
texf=texf+"\\}";
}
}
list graph=tropicalCurve(f,#); // the graph of the tropical polynomial f
}
}
// produce the tex file
string vertices;
for (j=1;j<=size(graph)-2;j++)
{
vertices=vertices+"("+string(graph[j][1])+","+string(graph[j][2])+"),\\;\\; ";
}
vertices=vertices+"("+string(graph[j][1])+","+string(graph[j][2])+")";
string TEXBILD="\\documentclass[12pt]{amsart}
\\usepackage{texdraw}
\\setlength{\\topmargin}{30mm}
\\addtolength{\\topmargin}{-1in}
\\addtolength{\\topmargin}{-\\headsep}
\\addtolength{\\topmargin}{-\\headheight}
\\addtolength{\\topmargin}{-\\topskip}
\\setlength{\\textheight}{267mm}
\\addtolength{\\textheight}{\\topskip}
\\addtolength{\\textheight}{-\\footskip}
\\addtolength{\\textheight}{-30pt}
\\setlength{\\oddsidemargin}{-1in}
\\addtolength{\\oddsidemargin}{20mm}
\\setlength{\\evensidemargin}{\\oddsidemargin}
\\setlength{\\textwidth}{170mm}
\\makeatletter
\\def\\old@comma{,}
\\catcode`\\,=13
\\def,{%
\\ifmmode%
\\old@comma\\discretionary{}{}{}%
\\else%
\\old@comma%
\\fi%
\}
\\makeatother
\\begin{document}
\\parindent0cm
\\begin{center}
\\large\\bf The Tropicalisation of
\\bigskip
\\begin{math}
f="+texf+"
\\end{math}
\\end{center}
\\vspace*{0.5cm}
The vertices of the tropical curve are:
\\begin{center}
\\begin{math}
"+vertices+"
\\end{math}
\\end{center}
\\vspace*{0.5cm}
\\begin{center}
"+texDrawBasic(texDrawTropical(graph,#))+ // write the tropical curve
"\\end{center}
\\vspace*{0.5cm}
The Newton subdivision of the tropical curve is:
\\vspace*{0.5cm}
\\begin{center}
"+texDrawNewtonSubdivision(graph,#)+"
\\end{center}
\\end{document}";
if(defined(onlytexfile)==0)
{
int rdnum=random(1000,9999);
write(":w /tmp/tropicalcurve"+string(rdnum)+".tex",TEXBILD);
system("sh","cd /tmp; latex /tmp/tropicalcurve"+string(rdnum)+".tex; dvips /tmp/tropicalcurve"+string(rdnum)+".dvi -o; command rm tropicalcurve"+string(rdnum)+".log; command rm tropicalcurve"+string(rdnum)+".aux; command rm tropicalcurve"+string(rdnum)+".ps?; command rm tropicalcurve"+string(rdnum)+".dvi; xdg-open tropicalcurve"+string(rdnum)+".ps &");
}
else
{
return(TEXBILD);
}
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
poly f=t*(x3+y3+1)+1/t*(x2+y2+x+y+x2y+xy2)+1/t2*xy;
// the command drawTropicalCurve(f) computes the graph of the tropical curve
// given by f and displays a post script image, provided you have xdg-open
drawTropicalCurve(f);
// we can instead apply the procedure to a tropical polynomial and use "maximum"
poly g=1/t3*(x7+y7+1)+t3*(x4+y4+x2+y2+x3y+xy3)+t21*x2y2;
list tropical_g=tropicalise(g);
tropical_g;
drawTropicalCurve(tropical_g,"max");
}
/////////////////////////////////////////////////////////////////////////
proc drawNewtonSubdivision (def f,list #)
"USAGE: drawTropicalCurve(f[,#]); f poly, # optional list
ASSUME: f is list of linear polynomials of the form ax+by+c with integers
a, b and a rational number c representing a tropical Laurent
polynomial defining a tropical plane curve;
alternatively f can be a polynomial in Q(t)[x,y] defining a tropical
plane curve via the valuation map;
the basering must have a global monomial ordering, two variables
and up to one parameter!
RETURN: NONE
NOTE: - the procedure creates the files /tmp/newtonsubdivisionNUMBER.tex,
and /tmp/newtonsubdivisionNUMBER.ps, where NUMBER is a random
four digit integer;
moreover it desplays the tropical curve defined by f via xdg-open;
if you wish to remove all these files from /tmp, call the procedure
cleanTmp;
@* if # is empty, then the tropical curve is computed w.r.t. minimum,
if #[1] is the string 'max', then it is computed w.r.t. maximum
@* - note that lattice points in the Newton subdivision which are black
correspond to markings of the marked subdivision, while lattice
points in grey are not marked
EXAMPLE: example drawNewtonSubdivision; shows an example"
{
string texf;
int j;
if (typeof(f)=="poly")
{
texf=texPolynomial(f); // write the polynomial over Q(t)
list graph=tropicalCurve(tropicalise(f,#),#); // graph of tropicalis. of f
}
else
{ // write the tropical polynomial defined by f
if (size(#)==0)
{
texf="\\min\\{";
}
else
{
texf="\\max\\{";
}
for (j=1;j<=size(f);j++)
{
texf=texf+texPolynomial(f[j]);
if (j<size(f))
{
texf=texf+", ";
}
else
{
texf=texf+"\\}";
}
}
list graph=tropicalCurve(f,#); // the graph of the tropical polynomial f
}
string TEXBILD="\\documentclass[12pt]{amsart}
\\usepackage{texdraw}
\\begin{document}
\\parindent0cm
\\begin{center}
\\large\\bf The Newtonsubdivison of
\\begin{displaymath}
f="+texf+"
\\end{displaymath}
\\end{center}
\\vspace*{1cm}
\\begin{center}
"+texDrawNewtonSubdivision(graph)+
" \\end{center}
\\end{document}";
int rdnum=random(1000,9999);
write(":w /tmp/newtonsubdivision"+string(rdnum)+".tex",TEXBILD);
system("sh","cd /tmp; latex /tmp/newtonsubdivision"+string(rdnum)+".tex; dvips /tmp/newtonsubdivision"+string(rdnum)+".dvi -o; command rm newtonsubdivision"+string(rdnum)+".log; command rm newtonsubdivision"+string(rdnum)+".aux; command rm newtonsubdivision"+string(rdnum)+".ps?; command rm newtonsubdivision"+string(rdnum)+".dvi; xdg-open newtonsubdivision"+string(rdnum)+".ps &");
// return(TEXBILD);
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
poly f=t*(x3+y3+1)+1/t*(x2+y2+x+y+x2y+xy2)+1/t2*xy;
// the command drawTropicalCurve(f) computes the graph of the tropical curve
// given by f and displays a post script image, provided you have xdg-open
drawNewtonSubdivision(f);
// we can instead apply the procedure to a tropical polynomial
poly g=x+y+x2y+xy2+1/t*xy;
list tropical_g=tropicalise(g);
tropical_g;
drawNewtonSubdivision(tropical_g);
}
///////////////////////////////////////////////////////////////////////////////
/// Procedures concerned with cubics
///////////////////////////////////////////////////////////////////////////////
proc tropicalJInvariant (def f,list #)
"USAGE: tropicalJInvariant(f[,#]); f poly or list, # optional list
ASSUME: f is list of linear polynomials of the form ax+by+c with integers
a, b and a rational number c representing a tropical Laurent
polynomial defining a tropical plane curve;
alternatively f can be a polynomial in Q(t)[x,y] defining a
tropical plane curve via the valuation map;
@* the basering must have a global monomial ordering, two variables
and up to one parameter!
RETURN: number, if the graph underlying the tropical curve has precisely
one loop then its weighted lattice length is returned,
otherwise the result will be -1
NOTE: - if the tropical curve is elliptic and its embedded graph has
precisely one loop, then the weigthed lattice length of
the loop is its tropical j-invariant
@* - the procedure checks if the embedded graph of the tropical
curve has genus one, but it does NOT check if the loop can
be resolved, so that the curve is not a proper tropical
elliptic curve
@* - if the embedded graph of a tropical elliptic curve has more
than one loop, then all but one can be resolved, but this is
not observed by this procedure, so it will not compute
the j-invariant
@* - if # is empty, then the tropical curve is computed w.r.t. minimum,
if #[1] is the string 'max', then it is computed w.r.t. maximum
@* - the tropicalJInvariant of a plane tropical cubic is the
'cycle length' of the cubic as introduced in the paper:
Eric Katz, Hannah Markwig, Thomas Markwig: The j-invariant
of a cubic tropical plane curve.
EXAMPLE: example tropicalJInvariant; shows an example"
{
// 1) compute first the graph of the tropical curve
if (typeof(f)=="poly")
{
list graph=tropicalCurve(f,#);
}
else
{
if (typeof(f)=="list")
{
if (typeof(f[1])=="list")
{
list graph=f;
}
else
{
if (typeof(f[1])=="poly")
{
list graph=tropicalCurve(f,#);
}
else
{
ERROR("This is no valid input.");
}
}
}
else
{
ERROR("This is no valid input.");
}
}
int i,j,k;
// 2) compute the genus of the embedded graph of the tropical curve
int genus;
for (i=1;i<=size(graph)-1;i++) // we count the number of bounded edges
{
genus=genus+ncols(graph[i][3]);
}
genus=-genus/2; // we have counted each bounded edge twice
genus=genus+size(graph); // the genus is 1-#bounded_edges+#vertices
// 3) if the embedded graph has not genus one,
// we cannot compute the j-invariant
if(genus!=1)
{
if (printlevel>=0)
{
"The embedded graph of the curve has not genus one.";
}
return(-1);
}
else
{
intmat nullmat[2][1]; // used to set
// 4) find a vertex which has only one bounded edge,
// if none exists zero is returned,
// otherwise the number of the vertex in the list graph
int nonloopvertex=findNonLoopVertex(graph);
int dv; //checks if vert. has been found to which nonloopvertex is connected
intmat delvert; // takes for a moment graph[i][3] of the vertex
// to which nonloopvertex is connected
// 5) delete successively vertices in the graph which
// have only one bounded edge
while (nonloopvertex>0)
{
// find the only vertex to which the nonloopvertex
// is connected, when it is found
// delete the connection in graph[i][3] and set dv=1
dv=0;
for (i=1;i<=size(graph)-1 and dv==0;i++)
{
if (i!=nonloopvertex)
{
for (j=1;j<=ncols(graph[i][3]) and dv==0;j++)
{
if(graph[i][3][1,j]==nonloopvertex) // the vertex is found
{
delvert=graph[i][3];
delvert=intmatcoldelete(delvert,j); // delete the connection (note
// there must have been two!)
dv=1;
graph[i][3]=delvert;
}
}
}
}
graph[nonloopvertex][3]=nullmat; // the only connection of nonloopvertex
// is killed
nonloopvertex=findNonLoopVertex(graph); // find the next vertex
// which has only one edge
}
// 6) find the loop and the weights of the edges
intvec loop,weights; // encodes the loop and the edges
i=1;
// start by finding some vertex which belongs to the loop
while (loop==0)
{
// if graph[i][3] of a vertex in the loop has 2 columns, all others have 1
if (ncols(graph[i][3])==1)
{
i++;
}
else
{
loop[1]=i; // a starting vertex is found
loop[2]=graph[i][3][1,1]; // it is connected to vertex with this number
weights[2]=graph[i][3][2,1]; // and the edge has this weight
}
}
j=graph[i][3][1,1]; // the active vertex of the loop
k=2; // counts the vertices in the loop
while (j!=i) // the loop ends with the same vertex with which it starts
{
// the first row of graph[j][3] has two entries
// corresponding to the two vertices
// to which the active vertex j is connected;
// one is loop[k-1], i.e. the one which
// precedes j in the loop; we have to choose the other one
if (graph[j][3][1,1]==loop[k-1])
{
loop[k+1]=graph[j][3][1,2];
weights[k+1]=graph[j][3][2,2];
}
else
{
loop[k+1]=graph[j][3][1,1];
weights[k+1]=graph[j][3][2,1];
}
j=loop[k+1]; // set loop[k+1] the new active vertex
k++;
}
// 7) compute for each edge in the loop the lattice length
poly xcomp,ycomp; // the x- and y-components of the vectors
// connecting two vertices of the loop
number nenner; // the product of the denominators of
// the x- and y-components
number jinvariant; // the j-invariant
int eins,zwei,ggt;
for (i=1;i<=size(loop)-1;i++) // compute the lattice length for each edge
{
xcomp=graph[loop[i]][1]-graph[loop[i+1]][1];
ycomp=graph[loop[i]][2]-graph[loop[i+1]][2];
nenner=denominator(leadcoef(xcomp))*denominator(leadcoef(ycomp));
execute("eins="+string(numerator(leadcoef(nenner*xcomp)))+";");
execute("zwei="+string(numerator(leadcoef(nenner*ycomp)))+";");
ggt=gcd(eins,zwei); // the lattice length is the "gcd"
// of the x-component and the y-component
jinvariant=jinvariant+ggt/(nenner*weights[i+1]); // divided by the
// weight of the edge
}
return(jinvariant);
}
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
// tropcialJInvariant computes the tropical j-invariant of an elliptic curve
tropicalJInvariant(t*(x3+y3+1)+1/t*(x2+y2+x+y+x2y+xy2)+1/t2*xy);
// the Newton polygone need not be the standard simplex
tropicalJInvariant(x+y+x2y+xy2+1/t*xy);
// the curve can have arbitrary degree
tropicalJInvariant(t*(x7+y7+1)+1/t*(x4+y4+x2+y2+x3y+xy3)+1/t7*x2y2);
// the procedure does not realise, if the embedded graph of the tropical
// curve has a loop that can be resolved
tropicalJInvariant(1+x+y+xy+tx2y+txy2);
// but it does realise, if the curve has no loop at all ...
tropicalJInvariant(x+y+1);
// or if the embedded graph has more than one loop - even if only one
// cannot be resolved
tropicalJInvariant(1+x+y+xy+tx2y+txy2+t3x5+t3y5+tx2y2+t2xy4+t2yx4);
}
/////////////////////////////////////////////////////////////////////////
proc weierstrassForm (poly f,list #)
"USAGE: weierstrassForm(wf[,#]); wf poly, # list
ASSUME: wf is a a polynomial whose Newton polygon has precisely one
interior lattice point, so that it defines an elliptic curve
on the toric surface corresponding to the Newton polygon
RETURN: poly, the Weierstrass normal form of the polynomial
NOTE: - the algorithm for the coefficients of the Weierstrass form is due
to Fernando Rodriguez Villegas, villegas@math.utexas.edu
@* - the characteristic of the base field should not be 2 or 3
@* - if an additional argument # is given, a simplified Weierstrass
form is computed
EXAMPLE: example weierstrassForm; shows an example"
{
// Check first if the Newton polygon has precisely one interior point
// - compute the Newton polygon
list polygon=newtonPolytopeLP(f);
// - find the vertices of the Newton cycle and order it clockwise
list pg=findOrientedBoundary(polygon)[2];
// - check if there is precisely one interior point in the Newton polygon
if (picksFormula(pg)[3]!=1)
{
ERROR("The Newton polygon of the input has NOT precisely one interior point!");
}
// Compute the Normal form of the polygon.
list nf=ellipticNF(polygon);
// Transform f by the unimodular affine coordinate transformation
poly tf=coordinatechange(f,nf[2],nf[3]);
// Check if the Newton polygon is of type 4x2, 2x2 or a cubic
poly a,b=flatten(coeffs(tf,ideal(var(1)^4,var(1)^2*var(2)^2)));
// if it is of type 4x2
if (a!=0)
{
return(weierstrassFormOfA4x2Curve(tf));
}
// if it is of type 2x2
if (b!=0)
{
return(weierstrassFormOfA2x2Curve(tf));
}
// else it is a cubic
return(weierstrassFormOfACubic(tf,#));
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),lp;
// f is already in Weierstrass form
poly f=y2+yx+3y-x3-2x2-4x-6;
weierstrassForm(f);
// g is not, but wg is
poly g=x+y+x2y+xy2+1/t*xy;
poly wg=weierstrassForm(g);
wg;
// but it is not yet simple, since it still has an xy-term, unlike swg
poly swg=weierstrassForm(g,1);
swg;
// the j-invariants of all three polynomials coincide
jInvariant(g);
jInvariant(wg);
jInvariant(swg);
// the following curve is elliptic as well
poly h=x22y11+x19y10+x17y9+x16y9+x12y7+x9y6+x7y5+x2y3;
// its Weierstrass form is
weierstrassForm(h);
}
/////////////////////////////////////////////////////////////////////////
proc jInvariant (poly f,list #)
"USAGE: jInvariant(f[,#]); f poly, # list
ASSUME: - f is a a polynomial whose Newton polygon has precisely one
interior lattice point, so that it defines an elliptic curve
on the toric surface corresponding to the Newton polygon
@* - it the optional argument # is present the base field should be
Q(t) and the optional argument should be one of the following
strings:
@* 'ord' : then the return value is of type integer,
namely the order of the j-invariant
@* 'split' : then the return value is a list of two polynomials,
such that the quotient of these two is the j-invariant
RETURN: poly, the j-invariant of the elliptic curve defined by poly
NOTE: the characteristic of the base field should not be 2 or 3,
unless the input is a plane cubic
EXAMPLE: example jInvariant; shows an example"
{
// compute first the Weierstrass form of the cubic and then the j-invariant
if (size(#)==0)
{
return(jInvariantOfACubic(weierstrassForm(f),#));
}
else
{
if (#[1]=="split")
{
return(jInvariantOfAPuiseuxCubic(weierstrassForm(f)));
}
else
{
return(jInvariantOfAPuiseuxCubic(weierstrassForm(f),"ord"));
}
}
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
// jInvariant computes the j-invariant of a cubic
jInvariant(x+y+x2y+y3+1/t*xy);
// if the ground field has one parameter t, then we can instead
// compute the order of the j-invariant
jInvariant(x+y+x2y+y3+1/t*xy,"ord");
// one can compare the order of the j-invariant to the tropical j-invariant
tropicalJInvariant(x+y+x2y+y3+1/t*xy);
// the following curve is elliptic as well
poly h=x22y11+x19y10+x17y9+x16y9+x12y7+x9y6+x7y5+x2y3+x14y8;
// its j-invariant is
jInvariant(h);
}
///////////////////////////////////////////////////////////////////////////////
/// Procedures concerned with conics
///////////////////////////////////////////////////////////////////////////////
proc conicWithTangents (list points,list #)
"USAGE: conicWithTangents(points[,#]); points list, # optional list
ASSUME: points is a list of five points in the plane over K(t)
RETURN: list, l[1] = the list points of the five given points
@* l[2] = the conic f passing through the five points
@* l[3] = list of equations of tangents to f in the given points
@* l[4] = ideal, tropicalisation of f (i.e. list of linear forms)
@* l[5] = a list of the tropicalisation of the tangents
@* l[6] = a list containing the vertices of the tropical conic f
@* l[7] = a list containing lists with vertices of the tangents
@* l[8] = a string which contains the latex-code to draw the
tropical conic and its tropicalised tangents
@* l[9] = if # is non-empty, this is the same data for the dual
conic and the points dual to the computed tangents
NOTE: the points must be generic, i.e. no three on a line
EXAMPLE: example conicWithTangents; shows an example"
{
int i;
// Compute the tropical coordinates of the given points - part 1
list pointdenom,pointnum;
poly pp1,pp2;
for (i=1;i<=size(points);i++)
{
pp1=denominator(leadcoef(points[i][1]));
pp2=denominator(leadcoef(points[i][2]));
pointdenom[i]=list(pp1,pp2);
pp1=numerator(leadcoef(points[i][1]));
pp2=numerator(leadcoef(points[i][2]));
pointnum[i]=list(pp1,pp2);
}
// compute the equation of the conic
def BASERING=basering;
ring LINRING=(0,t),(x,y,a(1..6)),lp;
list points=imap(BASERING,points);
ideal I; // the ideal will contain the linear equations given by the conic
// and the points
for (i=1;i<=5;i++)
{
I=I,substitute(a(1)*x2+a(2)*xy+a(3)*y2+a(4)*x+a(5)*y+a(6),x,points[i][1],y,points[i][2]);
}
I=std(I);
list COEFFICIENTS;
ideal DENOMINATORS;
for (i=1;i<=6;i++)
{
COEFFICIENTS[i]=leadcoef(reduce(a(i),I));
DENOMINATORS[i]=denominator(leadcoef(COEFFICIENTS[i]));
}
// compute the common denominator of the coefficients
ring TRING=0,t,dp;
ideal DENOMINATORS=imap(LINRING,DENOMINATORS);
poly p=lcm(DENOMINATORS);
// compute the tropical coordinates of the points - part 2
ring tRING=0,t,ls;
list pointdenom=imap(BASERING,pointdenom);
list pointnum=imap(BASERING,pointnum);
intvec pointcoordinates;
for (i=1;i<=size(pointdenom);i++)
{
pointcoordinates[2*i-1]=ord(pointnum[i][1])-ord(pointdenom[i][1]);
pointcoordinates[2*i]=ord(pointnum[i][2])-ord(pointdenom[i][2]);
}
// multiply the coefficients of the conic by the common denominator
setring LINRING;
poly p=imap(TRING,p);
for (i=1;i<=6;i++)
{
COEFFICIENTS[i]=COEFFICIENTS[i]*p;
}
// Compute the tangents to the conic in the given points
// and tropicalise the conic and the tangents
setring BASERING;
list CO=imap(LINRING,COEFFICIENTS);
poly f=CO[1]*x2+CO[2]*xy+CO[3]*y2+CO[4]*x+CO[5]*y+CO[6];
poly fx=diff(f,x);
poly fy=diff(f,y);
list tangents;
list tropicaltangents;
for (i=1;i<=5;i++)
{
tangents[i]=substitute(fx,x,points[i][1],y,points[i][2])*x+substitute(fy,x,points[i][1],y,points[i][2])*y;
tangents[i]=tangents[i]-substitute(tangents[i],x,points[i][1],y,points[i][2]);
tropicaltangents[i]=tropicalise(tangents[i]);
}
list tropicalf=tropicalise(f);
// compute the vertices of the tropcial conic and of the tangents
list graphf=tropicalCurve(tropicalf);
list eckpunktef;
for (i=1;i<=size(graphf)-1;i++)
{
eckpunktef[i]=list(graphf[i][1],graphf[i][2]);
}
list eckpunktetangents;
for (i=1;i<=size(tropicaltangents);i++)
{
eckpunktetangents[i]=verticesTropicalCurve(tropicaltangents[i],0);
}
// find the minimal and maximal coordinates of vertices
poly minx,miny,maxx,maxy=graphf[1][1],graphf[1][2],graphf[1][1],graphf[1][2];
for (i=2;i<=size(graphf)-1;i++)
{
minx=minOfPolys(list(minx,graphf[i][1]));
miny=minOfPolys(list(miny,graphf[i][2]));
maxx=-minOfPolys(list(-maxx,-graphf[i][1]));
maxy=-minOfPolys(list(-maxy,-graphf[i][2]));
}
// find the scale factor for the texdraw image
poly maxdiffx,maxdiffy;
maxdiffx=maxx-minx;
maxdiffy=maxy-miny;
if (maxdiffx==0)
{
maxdiffx=1;
}
if (maxdiffy==0)
{
maxdiffy=1;
}
poly scalefactor=minOfPolys(list(12/leadcoef(maxdiffx),16/leadcoef(maxdiffy)))/4;
// Produce a Latex-Image of the Conic with each of its Tangents
string zusatzinfo;
string TEXBILD="\\documentclass[12pt]{amsart}
\\usepackage{texdraw}
\\begin{document}
\\parindent0cm
\\begin{center}
\\large\\bf A Tropical Conic through 5 Points and Tangents
\\end{center}
We consider the concic through the following five points:
\\begin{displaymath}
";
string texf=texDrawTropical(graphf,list("",scalefactor));
for (i=1;i<=size(points);i++)
{
TEXBILD=TEXBILD+"p_"+string(i)+"=("+texNumber(points[i][1])+","+texNumber(points[i][2])+"),\\;\\;\\;";
}
TEXBILD=TEXBILD+"
\\end{displaymath}";
for (i=1;i<=size(points);i++)
{
zusatzinfo="
\\move ("+decimal(pointcoordinates[2*i-1])+" "+decimal(pointcoordinates[2*i])+")
\\fcir f:0.5 r:0.25
\\rmove (0.4 0.4)
\\htext{$p_"+string(i)+"$=("+string(pointcoordinates[2*i-1])+","+string(pointcoordinates[2*i])+")}
";
TEXBILD=TEXBILD+"
Here we draw the conic and the tangent through point $p_"+string(i)+"$:
\\vspace*{1cm}
\\begin{center}
"+texDrawBasic(list(texf,zusatzinfo,texDrawTropical(tropicalCurve(tropicaltangents[i]),list("",scalefactor," \\setgray 0.8 \\linewd 0.1 \\lpatt (0.1 0.4)"))))+
"\\end{center}";
if (i<size(points))
{
TEXBILD=TEXBILD+"
\\newpage
";
}
}
TEXBILD=TEXBILD+"
\\end{document}";
setring BASERING;
// If # non-empty, compute the dual conic and the tangents
// through the dual points
// corresponding to the tangents of the given conic.
if (size(#)>0)
{
list dualpoints;
for (i=1;i<=size(points);i++)
{
dualpoints[i]=list(leadcoef(tangents[i])/substitute(tangents[i],x,0,y,0),leadcoef(tangents[i]-lead(tangents[i]))/substitute(tangents[i],x,0,y,0));
}
list dualimage=conicWithTangents(dualpoints);
return(list(points,f,tangents,tropicalf,tropicaltangents,eckpunktef,eckpunktetangents,TEXBILD,dualimage));
}
else
{
return(list(points,f,tangents,tropicalf,tropicaltangents,eckpunktef,eckpunktetangents,TEXBILD));
}
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
// the input consists of a list of five points in the plane over Q(t)
list points=list(1/t2,t),list(1/t,t2),list(1,1),list(t,1/t2),list(t2,1/t);
list conic=conicWithTangents(points);
// conic[1] is the list of the given five points
conic[1];
// conic[2] is the equation of the conic f passing through the five points
conic[2];
// conic[3] is a list containing the equations of the tangents
// through the five points
conic[3];
// conic[4] is an ideal representing the tropicalisation of the conic f
conic[4];
// conic[5] is a list containing the tropicalisation
// of the five tangents in conic[3]
conic[5];
// conic[6] is a list containing the vertices of the tropical conic
conic[6];
// conic[7] is a list containing the vertices of the five tangents
conic[7];
// conic[8] contains the latex code to draw the tropical conic and
// its tropicalised tangents; it can written in a file, processed and
// displayed via xdg-open
write(":w /tmp/conic.tex",conic[8]);
system("sh","cd /tmp; latex /tmp/conic.tex; dvips /tmp/conic.dvi -o;
xdg-open conic.ps &");
// with an optional argument the same information for the dual conic is computed
// and saved in conic[9]
conic=conicWithTangents(points,1);
conic[9][2]; // the equation of the dual conic
}
///////////////////////////////////////////////////////////////////////////////
/// Procedures concerned with tropicalisation
///////////////////////////////////////////////////////////////////////////////
proc tropicalise (poly f,list #)
"USAGE: tropicalise(f[,#]); f polynomial, # optional list
ASSUME: f is a polynomial in Q(t)[x_1,...,x_n]
RETURN: list, the linear forms of the tropicalisation of f
NOTE: if # is empty, then the valuation of t will be 1,
@* if # is the string 'max' it will be -1;
@* the latter supposes that we consider the maximum of the
computed linear forms, the former that we consider their minimum
EXAMPLE: example tropicalise; shows an example"
{
if (npars(basering)==0)
{
ERROR("The basering has no paramter t.");
}
int order,j;
list tropicalf;
intvec exp;
int i=0;
while (f!=0)
{
i++;
exp=leadexp(f);
if (size(#)==0)
{
tropicalf[i]=simplifyToOrder(f)[1];
}
else
{
tropicalf[i]=-simplifyToOrder(f)[1];
}
for (j=1;j<=nvars(basering);j++)
{
tropicalf[i]=tropicalf[i]+exp[j]*var(j);
}
f=f-lead(f);
}
return(tropicalf);
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
tropicalise(2t3x2-1/t*xy+2t3y2+(3t3-t)*x+ty+(t6+1));
}
/////////////////////////////////////////////////////////////////////////
proc tropicaliseSet (ideal i)
"USAGE: tropicaliseSet(i); i ideal
ASSUME: i is an ideal in Q(t)[x_1,...,x_n]
RETURN: list, the jth entry is the tropicalisation of the jth generator of i
EXAMPLE: example tropicaliseSet; shows an example"
{
list tropicalid;
for (int j=1;j<=size(i);j++)
{
tropicalid[j]=tropicalise(i[j]);
}
return(tropicalid);
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
ideal i=txy-y2+1,2t3x2+1/t*y-t6;
tropicaliseSet(i);
}
/////////////////////////////////////////////////////////////////////////
proc tInitialForm (poly f, intvec w)
"USAGE: tInitialForm(f,w); f a polynomial, w an integer vector
ASSUME: f is a polynomial in Q[t,x_1,...,x_n] and w=(w_0,w_1,...,w_n)
RETURN: poly, the t-initialform of f(t,x) w.r.t. w evaluated at t=1
NOTE: the t-initialform is the sum of the terms with MAXIMAL
weighted order w.r.t. w
EXAMPLE: example tInitialForm; shows an example"
{
// take in lead(f) only the term of lowest t-order and set t=1
poly initialf=lead(f);
// compute the order of lead(f) w.r.t. (1,w)
int gewicht=scalarproduct(w,leadexp(f));
// do the same for the remaining part of f and compare the results
// keep only the smallest ones
int vglgewicht;
f=f-lead(f);
while (f!=0)
{
vglgewicht=scalarproduct(w,leadexp(f));
if (vglgewicht>gewicht)
{
initialf=lead(f);
gewicht=vglgewicht;
}
else
{
if (vglgewicht==gewicht)
{
initialf=initialf+lead(f);
}
}
f=f-lead(f);
}
initialf=substitute(initialf,var(1),1);
return(initialf);
}
example
{
"EXAMPLE:";
echo=2;
ring r=0,(t,x,y),dp;
poly f=t4x2+y2-t2xy+t4x-t9;
intvec w=-1,-2,-3;
tInitialForm(f,w);
}
/////////////////////////////////////////////////////////////////////////
proc tInitialIdeal (ideal i,intvec w,list #)
"USAGE: tInitialIdeal(i,w); i ideal, w intvec
ASSUME: i is an ideal in Q[t,x_1,...,x_n] and w=(w_0,...,w_n)
RETURN: ideal ini, the t-initial ideal of i with respect to w"
{
// THE PROCEDURE WILL BE CALLED FROM OTHER PROCEDURES INSIDE THIS LIBRARY;
// IN THIS CASE THE VARIABLE t WILL INDEED BE THE LAST VARIABLE INSTEAD OF
// THE FIRST,
// AND WE THEREFORE HAVE TO MOVE IT BACK TO THE FRONT!
// THIS IS NOT DOCUMENTED FOR THE GENERAL USER!!!!
def BASERING=basering;
int j;
if (size(#)>0)
{
// we first have to move the variable t to the front again
ideal variablen=var(nvars(basering));
for (j=1;j<nvars(basering);j++)
{
variablen=variablen+var(j);
}
}
else
{
ideal variablen=maxideal(1);
}
// we want to homogenise the ideal i ....
execute("ring HOMOGRING=("+charstr(basering)+"),(@s,"+string(variablen)+"),dp;");
ideal i=homog(std(imap(BASERING,i)),@s);
// ... and compute a standard basis with
// respect to the homogenised ordering defined by w. Since the generators
// of i will be homogeneous it we can instead take the ordering wp
// with the weightvector (0,w) replaced by (M,...,M)+(0,w) for some
// large M, so that all entries are positive
int M=-minInIntvec(w)[1]+1; // find M such that w[j]+M is
// strictly positive for all j
intvec whomog=M;
for (j=1;j<=size(w);j++)
{
whomog[j+1]=w[j]+M;
}
intmat O=weightVectorToOrderMatrix(whomog);
execute("ring WEIGHTRING=("+charstr(basering)+"),("+varstr(basering)+"),(M("+string(O)+"));");
// map i to the new ring and compute a GB of i, then dehomogenise i,
// so that we can be sure, that the
// initial forms of the generators generate the initial ideal
ideal i=subst(groebner(imap(HOMOGRING,i)),@s,1);
// compute the w-initial ideal with the help of the procedure tInitialForm;
setring BASERING;
execute("ring COMPINIRING=("+charstr(basering)+"),("+string(variablen)+"),dp;");
ideal i=imap(WEIGHTRING,i);
ideal ini;
for (j=1;j<=size(i);j++)
{
ini=ini,tInitialForm(i[j],w);
}
// the first elementin in ini is zero, we can delete this one!
ini=simplify(ini,2);
// convert it to a string
setring BASERING;
return(imap(COMPINIRING,ini));
}
example
{
"EXAMPLE:";
echo=2;
ring r=0,(t,x,y),dp;
ideal i=t2x-y+t3,t2x-y-2t3x;
intvec w=-1,2,0;
// the t-initial forms of the generators are
tInitialForm(i[1],w),tInitialForm(i[2],w);
// and they do not generate the t-initial ideal of i
tInitialIdeal(i,w);
}
/////////////////////////////////////////////////////////////////////////
proc initialForm (poly f, intvec w)
"USAGE: initialForm(f,w); f a polynomial, w an integer vector
ASSUME: f is a polynomial in Q[x_1,...,x_n] and w=(w_1,...,w_n)
RETURN: poly, the initial form of f(x) w.r.t. w
NOTE: the initialForm consists of the terms with MAXIMAL weighted order w.r.t. w
EXAMPLE: example initialForm; shows an example"
{
def BASERING=basering;
intmat O=weightVectorToOrderMatrix(w);
execute("ring INITIALRING=("+charstr(BASERING)+"),("+varstr(basering)+"),M("+string(O)+");");
poly f=imap(BASERING,f);
int GRAD=deg(f);
poly initialf=lead(f);
f=f-lead(f);
while (deg(f)==GRAD)
{
initialf=initialf+lead(f);
f=f-lead(f);
}
setring BASERING;
return(imap(INITIALRING,initialf));
}
example
{
"EXAMPLE:";
echo=2;
ring r=0,(x,y),dp;
poly f=x3+y2-xy+x-1;
intvec w=2,3;
initialForm(f,w);
}
/////////////////////////////////////////////////////////////////////////
proc weightVectorToOrderMatrix (intvec w)
"USAGE: weightVectorToOrderMatrix(w); w intvec
ASSUME: w not zero vector
RETURN: intmat, an order matrix yielding a weighted degree ordering
NOTE: returns matrix of full rank with first row equal to m
EXAMPLE: example weightVectorToOrderMatrix; shows an example"
{
intmat O[size(w)][size(w)]; O[1,1..size(w)]=w;
for (int j=size(w);j>=1;j--)
{
if (w[j]<>0) // find the last non-zero component of w
{
int r=2;
for (int k=1;k<=size(w);k++)
{ // fill the order matrix O with unit vectors
if(k<>j) // except the unit vector of the non-zero component
{
intvec u;
u[size(w)]=0;
u[k]=1;
O[r,1..size(w)]=u;
r=r+1;
kill u;
}
}
return(O);
}
}
}
example
{
"EXAMPLE:";
echo=2;
intvec v=2,3,0,0;
weightVectorToOrderMatrix(v);
}
/////////////////////////////////////////////////////////////////////////
proc initialIdeal (ideal i, intvec w)
"USAGE: initialIdeal(i,w); i ideal, w intvec
ASSUME: i is an ideal in Q[x_1,...,x_n] and w=(w_1,...,w_n)
RETURN: ideal, the initialIdeal of i w.r.t. w
NOTE: the initialIdeal consists of the terms with MAXIMAL weighted order w.r.t. w
EXAMPLE: example initialIdeal; shows an example"
{
def BASERING=basering;
intmat O=weightVectorToOrderMatrix(w);
execute("ring INITIALRING=("+charstr(BASERING)+"),("+varstr(basering)+"),M("+string(O)+");");
ideal i=imap(BASERING,i);
i=std(i);
ideal ini;
for (int j=1;j<=size(i);j++)
{
ini[j]=initialForm(i[j],w);
}
setring BASERING;
return(imap(INITIALRING,ini));
}
example
{
"EXAMPLE:";
echo=2;
ring r=0,(x,y),dp;
poly f=x3+y2-xy+x-1;
intvec w=2,3;
initialIdeal(f,w);
}
///////////////////////////////////////////////////////////////////////////////
/// PROCEDURES CONCERNED WITH THE LATEX CONVERSION
///////////////////////////////////////////////////////////////////////////////
proc texNumber (poly p)
"USAGE: texNumber(f); f poly
RETURN: string, tex command representing leading coefficient of f using \frac
EXAMPLE: example texNumber; shows an example"
{
number n=leadcoef(p);
number den=denominator(n);
number num=numerator(n);
if (parstr(basering)=="")
{
if (den==-1)
{
den=-den;
num=-num;
}
if (den==1)
{
return(string(num));
}
else
{
return("\\tfrac{"+string(num)+"}{"+string(den)+"}");
}
}
def BASERING=basering;
execute("ring PARAMETERRING=("+string(char(basering))+"),("+parstr(basering)+"),ds;");
poly den=imap(BASERING,den);
poly num=imap(BASERING,num);
if (den==1)
{
return(texPolynomial(num));
}
else
{
return("\\tfrac{"+texPolynomial(num)+"}{"+texPolynomial(den)+"}");
}
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),x,dp;
texNumber((3t2-1)/t3);
}
/////////////////////////////////////////////////////////////////////////
proc texPolynomial (poly f)
"USAGE: texPolynomial(f); f poly
RETURN: string, the tex command representing f
EXAMPLE: example texPolynomial; shows an example"
{
int altshort=short;
short=0;
if (f==0)
{
return("0");
}
string texmf;
string texco;
string texf;
string plus;
int laenge=size(f);
while (f!=0)
{
if (size(f)<laenge)
{
plus="+";
}
texmf=texmonomial(f);
if (texmf=="1")
{
texco=texcoefficient(f,1);
if (texco[1]=="-")
{
texf=texf+texco;
}
else
{
texf=texf+plus+texco;
}
}
else
{
texco=texcoefficient(f);
if (texco[1]=="-")
{
texf=texf+texco+texmf;
}
else
{
texf=texf+plus+texco+texmf;
}
}
f=f-lead(f);
}
short=altshort;
return(texf);
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),x,dp;
texPolynomial(1/t*x2-t2x+1/t);
}
/////////////////////////////////////////////////////////////////////////
proc texMatrix (matrix M)
"USAGE: texMatrix(M); M matrix
RETURN: string, the tex command representing M
EXAMPLE: example texMatrix; shows an example"
{
int i,j;
string texmat="\\left(\\begin{array}{";
for (i=1;i<=ncols(M);i++)
{
texmat=texmat+"c";
}
texmat=texmat+"}
";
for (i=1;i<=nrows(M);i++)
{
for (j=1;j<=ncols(M);j++)
{
texmat=texmat+texPolynomial(M[i,j]);
if (j<ncols(M))
{
texmat=texmat+" & ";
}
else
{
texmat=texmat+" \\\\
";
}
}
}
texmat=texmat+"\\end{array}\\right)";
return(texmat);
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),x,dp;
matrix M[2][2]=3/2,1/t*x2-t2x+1/t,5,-2x;
texMatrix(M);
}
/////////////////////////////////////////////////////////////////////////
proc texDrawBasic (list texdraw)
"USAGE: texDrawBasic(texdraw); list texdraw
ASSUME: texdraw is a list of strings representing texdraw commands
(as produced by texDrawTropical) which should be embedded into
a texdraw environment
RETURN: string, a texdraw environment enclosing the input
NOTE: is called from conicWithTangents
EXAMPLE: example texDrawBasic; shows an example"
{
string texdrawtp="
\\begin{texdraw}
\\drawdim cm \\relunitscale 0.7 \\arrowheadtype t:V
%\\linewd 0.05 \\lpatt (0.1 0.4)
%\\move (-4 0) \\avec (9 0) \\move (0 -4) \\avec (0 9)
\\linewd 0.1 \\lpatt (1 0)
";
for (int i=1;i<=size(texdraw);i++)
{
texdrawtp=texdrawtp+texdraw[i];
}
texdrawtp=texdrawtp+"
\\end{texdraw}";
return(texdrawtp);
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
poly f=x+y+1;
string texf=texDrawTropical(tropicalCurve(f),list("",1));
texDrawBasic(texf);
}
/////////////////////////////////////////////////////////////////////////
proc texDrawTropical (list graph,list #)
"USAGE: texDrawTropical(graph[,#]); graph list, # optional list
ASSUME: graph is the output of tropicalCurve
RETURN: string, the texdraw code of the tropical plane curve encoded by graph
NOTE: - if the list # is non-empty, the first entry should be a string;
if this string is 'max', then the tropical curve is considered
with respect to the maximum
@* - the procedure computes a scalefactor for the texdraw command which
should help to display the curve in the right way; this may,
however, be a bad idea if several texDrawTropical outputs are
put together to form one image; the scalefactor can be prescribed
by the further optional entry of type poly
@* - one can add a string as last opional argument to the list #;
it can be used to insert further texdraw commands (e.g. to have
a lighter image as when called from inside conicWithTangents);
@* - the list # is optional and may as well be empty
EXAMPLE: example texDrawTropical; shows an example"
{
// there is one possible argument, which is not explained to the user;
// it is used to draw several tropical curves; there we want to suppress
// the weights sometimes; this is done by handing over the string "noweights"
int i,j;
int noweights; // controls if weights should be drawn or not
for (i=1;i<=size(#);i++)
{
if (typeof(#[i])=="string")
{
if (#[i]=="noweights")
{
noweights=1;
#=delete(#,i);
}
}
}
// deal first with the pathological case that
// the input polynomial was a monomial
// and does therefore not define a tropical curve,
// and check if the Newton polytope is
// a line segment so that the curve defines a bunch of lines
int bunchoflines;
// if the boundary of the Newton polytope consists of a single point
if (size(graph[size(graph)][1])==1)
{
return(string());
}
else
{
matrix M[2][size(graph[size(graph)][1])];
for (i=1;i<=size(graph[size(graph)][1]);i++)
{
M[1,i]=graph[size(graph)][1][i][1];
M[2,i]=graph[size(graph)][1][i][2];
}
// then the Newton polytope is a line segment
if ((size(graph[size(graph)][1])-size(syz(M)))==1)
{
bunchoflines=1;
}
}
// go on with the case that a tropical curve is defined
string texdrawtp="
\\setgray 0.6
";
// if texdraw input has been inserted, it should be added
if (size(#)>=1)
{
if (typeof(#[size(#)])=="string")
{
if (#[size(#)]!="max")
{
texdrawtp=texdrawtp+#[size(#)];
}
}
}
// find the minimal and maximal coordinates of vertices
// and find the scale factor for the texdraw image
list SCFINPUT;
SCFINPUT[1]=graph;
list SCF=minScaleFactor(SCFINPUT);
poly minx,miny,maxx,maxy=SCF[4],SCF[5],SCF[6],SCF[7];
poly centerx,centery=SCF[8],SCF[9];
int nachkomma=2; // number of decimals for the scalefactor
number sf=1; // correction factor for scalefactor
// if no scale factor was handed over to the procedure, use the
// one computed by minScaleFactor;
// check first if a scale factor has been handed over
i=1;
int scfpresent;
while ((i<=size(#)) and (scfpresent==0))
{
// if the scalefactor as polynomial was handed over, get it
if (typeof(#[i])=="poly")
{
poly scalefactor=#[2];
scfpresent=1;
}
// if the procedure is called for drawing more than one tropical curve
// then scalefactor,sf,nachkomma,minx,miny,maxx,maxy,centerx,centery
// has been handed over to the procedure
if (typeof(#[i])=="list")
{
poly scalefactor=#[i][1];
sf=#[i][2];
nachkomma=#[i][3];
minx=#[i][4];
miny=#[i][5];
maxx=#[i][6];
maxy=#[i][7];
centerx=#[i][8];
centery=#[i][9];
scfpresent=1;
}
i++;
}
// if no scalefactor was handed over we take the one computed in SCF
if (scfpresent==0)
{
poly scalefactor=SCF[1];
sf=SCF[2];
nachkomma=SCF[3];
texdrawtp=texdrawtp+"
\\relunitscale "+ decimal(scalefactor,nachkomma);
}
// compute the texdrawoutput for the tropical curve given by f
list relxy;
for (i=1;i<=size(graph)-1;i++)
{
// if the curve is a bunch of lines no vertex has to be drawn
if (bunchoflines==0)
{
texdrawtp=texdrawtp+"
\\move ("+decimal((graph[i][1]-centerx)/sf)+" "+decimal((graph[i][2]-centery)/sf)+") \\fcir f:0 r:"+decimal(2/(leadcoef(scalefactor)*10),size(string(int(scalefactor)))+1);
}
// draw the bounded edges emerging from the ith vertex
for (j=1;j<=ncols(graph[i][3]);j++)
{
// don't draw it twice - and if there is only one vertex
// and graph[i][3][1,1] is thus 0, nothing is done
if (i<graph[i][3][1,j])
{
texdrawtp=texdrawtp+"
\\move ("+decimal((graph[i][1]-centerx)/sf)+" "+decimal((graph[i][2]-centery)/sf)+") \\lvec ("+decimal((graph[graph[i][3][1,j]][1]-centerx)/sf)+" "+decimal((graph[graph[i][3][1,j]][2]-centery)/sf)+")";
// if the multiplicity is more than one, denote it in the picture
if ((graph[i][3][2,j]>1) and (noweights==0))
{
texdrawtp=texdrawtp+"
\\htext ("+decimal((graph[i][1]-centerx+graph[graph[i][3][1,j]][1])/(2*sf))+" "+decimal((graph[i][2]-centery+graph[graph[i][3][1,j]][2])/(2*sf))+"){$"+string(graph[i][3][2,j])+"$}";
}
}
}
// draw the unbounded edges emerging from the ith vertex
// they should not be too long
for (j=1;j<=size(graph[i][4]);j++)
{
relxy=shorten(list(decimal((3*graph[i][4][j][1][1]/scalefactor)*sf),decimal((3*graph[i][4][j][1][2]/scalefactor)*sf),string(5*sf/2)));
texdrawtp=texdrawtp+"
\\move ("+decimal((graph[i][1]-centerx)/sf)+" "+decimal((graph[i][2]-centery)/sf)+") \\rlvec ("+relxy[1]+" "+relxy[2]+")";
// if the multiplicity is more than one, denote it in the picture
if ((graph[i][4][j][2]>1) and (noweights==0))
{
texdrawtp=texdrawtp+"
\\htext ("+decimal(graph[i][1]/sf-centerx/sf+graph[i][4][j][1][1]/scalefactor)+" "+decimal(graph[i][2]/sf-centery/sf+graph[i][4][j][1][2]/scalefactor)+"){$"+string(graph[i][4][j][2])+"$}";
}
}
}
// add lattice points if the scalefactor is >= 1/2
// and was not handed over
if ((scalefactor>1/2) and (scfpresent==0))
{
int uh=1;
if (scalefactor>3)
{
uh=0;
}
texdrawtp=texdrawtp+"
%% HERE STARTS THE CODE FOR THE LATTICE";
for (i=int(minx)-uh;i<=int(maxx)+uh;i++)
{
for (j=int(miny)-uh;j<=int(maxy)+uh;j++)
{
texdrawtp=texdrawtp+"
\\move ("+decimal(i-centerx)+" "+decimal(j-centery)+") \\fcir f:0.8 r:"+decimal(1/(10*scalefactor),size(string(int(scalefactor)))+1);
}
}
texdrawtp=texdrawtp+"
%% HERE ENDS THE CODE FOR THE LATTICE
";
}
return(texdrawtp);
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
poly f=x+y+x2y+xy2+1/t*xy;
list graph=tropicalCurve(f);
// compute the texdraw code of the tropical curve defined by f
texDrawTropical(graph);
// compute the texdraw code again, but set the scalefactor to 1
texDrawTropical(graph,"",1);
}
/////////////////////////////////////////////////////////////////////////
proc texDrawNewtonSubdivision (list graph,list #)
"USAGE: texDrawNewtonSubdivision(graph[,#]); graph list, # optional list
ASSUME: graph is the output of tropicalCurve
RETURN: string, the texdraw code of the Newton subdivision of the
tropical plane curve encoded by graph
NOTE: - the list # may contain optional arguments, of which only
one will be considered, namely the first entry of type 'poly';
this entry should be a rational number which specifies the
scaling factor to be used; if it is missing, the factor will
be computed; the list # may as well be empty
@* - note that lattice points in the Newton subdivision which are
black correspond to markings of the marked subdivision,
while lattice points in grey are not marked
EXAMPLE: example texDrawNewtonSubdivision; shows an example"
{
int i,j,k,l;
list boundary=graph[size(graph)][1];
list inneredges=graph[size(graph)][2];
intvec shiftvector=graph[size(graph)][3];
string subdivision;
// find maximal and minimal x- and y-coordinates and define the scalefactor
poly maxx,maxy=1,1;
for (i=1;i<=size(boundary);i++)
{
maxx=-minOfPolys(list(-maxx,-boundary[i][1]));
maxy=-minOfPolys(list(-maxy,-boundary[i][2]));
}
// compute the scalefactor
poly scalefactor=minOfPolys(list(12/leadcoef(maxx),12/leadcoef(maxy)));
// Check if the scalefactor was handed over, then take that instead
if (size(#)>0)
{
int scfpresent;
i=1;
while (i<=size(#) and scfpresent==0)
{
if (typeof(#[i])=="poly")
{
scalefactor=#[i];
scfpresent=1;
}
i++;
}
}
// check if scaling is necessary
if (scalefactor<1)
{
subdivision=subdivision+"
\\relunitscale"+ decimal(scalefactor);
}
// define the texdraw code for the Newton subdivision
for (i=1;i<=size(boundary)-1;i++)
{
subdivision=subdivision+"
\\move ("+string(boundary[i][1])+" "+string(boundary[i][2])+")
\\lvec ("+string(boundary[i+1][1])+" "+string(boundary[i+1][2])+")";
}
subdivision=subdivision+"
\\move ("+string(boundary[size(boundary)][1])+" "+string(boundary[size(boundary)][2])+")
\\lvec ("+string(boundary[1][1])+" "+string(boundary[1][2])+")
";
for (i=1;i<=size(inneredges);i++)
{
subdivision=subdivision+"
\\move ("+string(inneredges[i][1][1])+" "+string(inneredges[i][1][2])+")
\\lvec ("+string(inneredges[i][2][1])+" "+string(inneredges[i][2][2])+")";
}
// add lattice points if the scalefactor is >= 1/2
if (scalefactor>1/2)
{
for (i=shiftvector[1];i<=int(maxx);i++)
{
for (j=shiftvector[2];j<=int(maxy);j++)
{
if (scalefactor > 2)
{
subdivision=subdivision+"
\\move ("+string(i)+" "+string(j)+") \\fcir f:0.6 r:"+decimal(2/(10*scalefactor),size(string(int(scalefactor)))+1);
}
else
{
subdivision=subdivision+"
\\move ("+string(i)+" "+string(j)+") \\fcir f:0.6 r:"+decimal(2/(20*scalefactor),size(string(int(scalefactor)))+1);
}
}
}
if ((shiftvector[1]!=0) or (shiftvector[2]!=0))
{
subdivision=subdivision+"
\\htext (-0.3 0.1){{\\tiny $(0,0)$}}";
}
}
// deal with the pathological cases
if (size(boundary)==1) // then the Newton polytope is a point
{
subdivision=subdivision+"
\\move ("+string(boundary[1][1])+" "+string(boundary[1][2])+")
\\fcir f:0 r:0.15";
}
else
{
matrix M[2][size(boundary)];
for (i=1;i<=size(boundary);i++)
{
M[1,i]=boundary[i][1];
M[2,i]=boundary[i][2];
}
if ((size(boundary)-size(syz(M)))==1)
{
for (i=1;i<=size(boundary);i++)
{
subdivision=subdivision+"
\\move ("+string(boundary[i][1])+" "+string(boundary[i][2])+")
\\fcir f:0 r:"+decimal(2/(8*scalefactor),size(string(int(scalefactor)))+1);
}
}
}
// find the marked points in the subdivision
poly pg;
list markings;
k=1;
for (i=1;i<size(graph);i++)
{
pg=graph[i][5];
while (pg!=0)
{
markings[k]=leadexp(pg)+shiftvector;
pg=pg-lead(pg);
k++;
}
}
for (i=size(markings);i>=2;i--)
{
j=i-1;
while (j>=1)
{
if (markings[i]==markings[j])
{
markings=delete(markings,i);
j=0;
}
j--;
}
}
for (i=1;i<=size(markings);i++)
{
if (scalefactor > 2)
{
subdivision=subdivision+"
\\move ("+string(markings[i][1])+" "+string(markings[i][2])+")
\\fcir f:0 r:"+decimal(2/(8*scalefactor),size(string(int(scalefactor)))+1);
}
else
{
subdivision=subdivision+"
\\move ("+string(markings[i][1])+" "+string(markings[i][2])+")
\\fcir f:0 r:"+decimal(2/(16*scalefactor),size(string(int(scalefactor)))+1);
}
}
// enclose subdivision in the texdraw environment
string texsubdivision="
\\begin{texdraw}
\\drawdim cm \\relunitscale 1
\\linewd 0.05"
+subdivision+"
\\end{texdraw}
";
return(texsubdivision);
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
poly f=x+y+x2y+xy2+1/t*xy;
list graph=tropicalCurve(f);
// compute the texdraw code of the Newton subdivision of the tropical curve
texDrawNewtonSubdivision(graph);
}
/////////////////////////////////////////////////////////////////////////
proc texDrawTriangulation (list triang,list polygon)
"USAGE: texDrawTriangulation(triang,polygon); triang,polygon list
ASSUME: polygon is a list of integer vectors describing the
lattice points of a marked polygon;
triang is a list of integer vectors describing a
triangulation of the marked polygon
in the sense that an integer vector of the form (i,j,k) describes
the triangle formed by polygon[i], polygon[j] and polygon[k]
RETURN: string, a texdraw code for the triangulation described
by triang without the texdraw environment
EXAMPLE: example texDrawTriangulation; shows an example"
{
// the header of the texdraw output
string latex="
\\drawdim cm \\relunitscale 1.2 \\arrowheadtype t:V
";
int i,j; // indices
list pairs,markings; // stores edges of the triangulation, respecively
// the marked points for each triangle store the edges and marked
// points of the triangle
for (i=1;i<=size(triang);i++)
{
pairs[3*i-2]=intvec(triang[i][1],triang[i][2]);
pairs[3*i-1]=intvec(triang[i][2],triang[i][3]);
pairs[3*i]=intvec(triang[i][3],triang[i][1]);
markings[3*i-2]=triang[i][1];
markings[3*i-1]=triang[i][2];
markings[3*i]=triang[i][3];
}
// delete redundant pairs which occur more than once
for (i=size(pairs);i>=1;i--)
{
for (j=1;j<i;j++)
{
if ((pairs[i]==pairs[j]) or ((pairs[i][1]==pairs[j][2]) and (pairs[i][2]==pairs[j][1])))
{
pairs=delete(pairs,i);
j=i;
}
}
}
// delete redundant marked points which occur more than once
for (i=size(markings);i>=1;i--)
{
for (j=1;j<i;j++)
{
if (markings[i]==markings[j])
{
markings=delete(markings,i);
j=i;
}
}
}
// change the color
latex=latex+"
\\setgray 0";
// draw first all marked points of the triangulation in fat black
for (i=1;i<=size(markings);i++)
{
latex=latex+"
\\move ("+string(polygon[markings[i]][1])+" "+string(polygon[markings[i]][2])+")
\\fcir f:0 r:0.08";
}
// next draw all edges in black
for (i=1;i<=size(pairs);i++)
{
latex=latex+"
\\move ("+string(polygon[pairs[i][1]][1])+" "+string(polygon[pairs[i][1]][2])+")
\\lvec ("+string(polygon[pairs[i][2]][1])+" "+string(polygon[pairs[i][2]][2])+")";
}
// finally daw all marked points of the polygon in small gray
for (i=1;i<=size(polygon);i++)
{
latex=latex+"
\\move ("+string(polygon[i][1])+" "+string(polygon[i][2])+")
\\fcir f:0.7 r:0.04";
}
return(latex);
}
example
{
"EXAMPLE:";
echo=2;
// the lattice polygon spanned by the points (0,0), (3,0) and (0,3)
// with all integer points as markings
list polygon=intvec(1,1),intvec(3,0),intvec(2,0),intvec(1,0),intvec(0,0),
intvec(2,1),intvec(0,1),intvec(1,2),intvec(0,2),intvec(0,3);
// define a triangulation by connecting the only interior point
// with the vertices
list triang=intvec(1,2,5),intvec(1,5,10),intvec(1,2,10);
// produce the texdraw output of the triangulation triang
texDrawTriangulation(triang,polygon);
}
///////////////////////////////////////////////////////////////////////////////
/// Auxilary Procedures
///////////////////////////////////////////////////////////////////////////////
proc radicalMemberShip (poly f,ideal i)
"USAGE: radicalMemberShip (f,i); f poly, i ideal
RETURN: int, 1 if f is in the radical of i, 0 else
EXAMPLE: example radicalMemberShip; shows an example"
{
def BASERING=basering;
execute("ring RADRING=("+charstr(basering)+"),(@T,"+varstr(basering)+"),(dp(1),"+ordstr(basering)+");");
ideal I=ideal(imap(BASERING,i))+ideal(1-@T*imap(BASERING,f));
if (reduce(1,std(I))==0)
{
return(1);
}
else
{
return(0);
}
}
example
{
"EXAMPLE:";
echo=2;
ring r=0,(x,y),dp;
ideal i=(x+1)*y2;
// y is NOT in the radical of i
radicalMemberShip(y,i);
ring rr=0,(x,y),ds;
ideal i=(x+1)*y2;
// since this time the ordering is local, y is in the radical of i
radicalMemberShip(y,i);
}
///////////////////////////////////////////////////////////////////////////////
/// Auxilary Procedures concerned with initialforms
///////////////////////////////////////////////////////////////////////////////
proc tInitialFormPar (poly f, intvec w)
"USAGE: tInitialFormPar(f,w); f a polynomial, w an integer vector
ASSUME: f is a polynomial in Q(t)[x_1,...,x_n] and w=(w_1,...,w_2)
RETURN: poly, the t-initialform of f(t,x) w.r.t. (1,w) evaluated at t=1
NOTE: the t-initialform are the terms with MINIMAL weighted order w.r.t. (1,w)
EXAMPLE: example tInitialFormPar; shows an example"
{
// compute first the t-order of the leading coefficient of f (leitkoef[1]) and
// the rational constant corresponding to this order in leadkoef(f)
// (leitkoef[2])
list leitkoef=simplifyToOrder(f);
execute("poly koef="+leitkoef[2]+";");
// take in lead(f) only the term of lowest t-order and set t=1
poly initialf=koef*leadmonom(f);
// compute the order of lead(f) w.r.t. (1,w)
int gewicht=leitkoef[1]+scalarproduct(w,leadexp(f));
// do the same for the remaining part of f and compare the results
// keep only the smallest ones
int vglgewicht;
f=f-lead(f);
while (f!=0)
{
leitkoef=simplifyToOrder(f);
vglgewicht=leitkoef[1]+scalarproduct(w,leadexp(f));
if (vglgewicht<gewicht)
{
execute("koef="+leitkoef[2]+";");
initialf=koef*leadmonom(f);
gewicht=vglgewicht;
}
else
{
if (vglgewicht==gewicht)
{
execute("koef="+leitkoef[2]+";");
initialf=initialf+koef*leadmonom(f);
}
}
f=f-lead(f);
}
return(initialf);
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
poly f=t4x2+y2-t2xy+t4x-t9;
intvec w=2,3;
tInitialFormPar(f,w);
}
/////////////////////////////////////////////////////////////////////////
proc tInitialFormParMax (poly f, intvec w)
"USAGE: tInitialFormParMax(f,w); f a polynomial, w an integer vector
ASSUME: f is a polynomial in Q(t)[x_1,...,x_n] and w=(w_1,...,w_2)
RETURN: poly, the t-initialform of f(t,x) w.r.t. (-1,w) evaluated at t=1
NOTE: the t-initialform are the terms with MAXIMAL weighted order w.r.t. (1,w)
EXAMPLE: example tInitialFormParMax; shows an example"
{
// compute first the t-order of the leading coefficient of f (leitkoef[1]) and
// the rational constant corresponding to this order in leadkoef(f)
// (leitkoef[2])
list leitkoef=simplifyToOrder(f);
execute("poly koef="+leitkoef[2]+";");
// take in lead(f) only the term of lowest t-order and set t=1
poly initialf=koef*leadmonom(f);
// compute the order of lead(f) w.r.t. (-1,w)
int gewicht=-leitkoef[1]+scalarproduct(w,leadexp(f));
// do the same for the remaining part of f and compare the results
// keep only the largest ones
int vglgewicht;
f=f-lead(f);
while (f!=0)
{
leitkoef=simplifyToOrder(f);
vglgewicht=-leitkoef[1]+scalarproduct(w,leadexp(f));
if (vglgewicht>gewicht)
{
execute("koef="+leitkoef[2]+";");
initialf=koef*leadmonom(f);
gewicht=vglgewicht;
}
else
{
if (vglgewicht==gewicht)
{
execute("koef="+leitkoef[2]+";");
initialf=initialf+koef*leadmonom(f);
}
}
f=f-lead(f);
}
return(initialf);
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
poly f=t4x2+y2-t2xy+t4x-1/t6;
intvec w=2,3;
tInitialFormParMax(f,w);
}
/////////////////////////////////////////////////////////////////////////
proc solveTInitialFormPar (ideal i)
"USAGE: solveTInitialFormPar(i); i ideal
ASSUME: i is a zero-dimensional ideal in Q(t)[x_1,...,x_n] generated
by the (1,w)-homogeneous elements for some integer vector w
- i.e. by the (1,w)-initialforms of polynomials
RETURN: none
NOTE: the procedure just displays complex approximations
of the solution set of i
EXAMPLE: example solveTInitialFormPar; shows an example"
{
i=subst(i,t,1);
string CHARAKTERISTIK=charstr(basering);
CHARAKTERISTIK=CHARAKTERISTIK[1..size(CHARAKTERISTIK)-2];
def BASERING=basering;
execute("ring INITIALRING=("+CHARAKTERISTIK+"),("+varstr(basering)+"),("+ordstr(basering)+");");
list l=solve(imap(BASERING,i));
l;
setring BASERING;
// return(fetch(SUBSTRING,l));
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
ideal i=t2x2+y2,x-t2;
solveTInitialFormPar(i);
}
/////////////////////////////////////////////////////////////////////////
proc detropicalise (def p)
"USAGE: detropicalise(f); f poly or f list
ASSUME: if f is of type poly then t is a linear polynomial with
an arbitrary constant term and positive integer coefficients
as further coefficients;
@* if f is of type list then f is a list of polynomials of
the type just described in before
RETURN: poly, the detropicalisation of f ignoring the constant parts
NOTE: the output will be a monomial and the constant coefficient
has been ignored
EXAMPLE: example detropicalise; shows an example"
{
poly dtp=1;
while (p!=0)
{
if (leadmonom(p)!=1)
{
dtp=dtp*leadmonom(p)^int(leadcoef(p));
}
p=p-lead(p);
}
return(dtp);
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
detropicalise(3x+4y-1);
}
/////////////////////////////////////////////////////////////////////////
proc tDetropicalise (def p)
"USAGE: tDetropicalise(f); f poly or f list
ASSUME: if f is of type poly then f is a linear polynomial with an
integer constant term and positive integer coefficients
as further coefficients;
@* if f is of type list then it is a list of polynomials of
the type just described in before
RETURN: poly, the detropicalisation of f over the field Q(t)
NOTE: the output will be a term where the coeffiecient is a Laurent
monomial in the variable t
EXAMPLE: example tDetropicalise; shows an example"
{
poly dtp;
if (typeof(p)=="list")
{
int i;
for (i=1;i<=size(p);i++)
{
dtp=dtp+tDetropicalise(p[i]);
}
}
else
{
dtp=1;
while (p!=0)
{
if (leadmonom(p)!=1)
{
dtp=dtp*leadmonom(p)^int(leadcoef(p));
}
else
{
dtp=t^int(leadcoef(p))*dtp;
}
p=p-lead(p);
}
}
return(dtp);
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
tDetropicalise(3x+4y-1);
}
///////////////////////////////////////////////////////////////////////////////
/// Auxilary Procedures concerned with conics
///////////////////////////////////////////////////////////////////////////////
proc dualConic (poly f)
"USAGE: dualConic(f); f poly
ASSUME: f is an affine conic in two variables x and y
RETURN: poly, the equation of the dual conic
EXAMPLE: example dualConic; shows an example"
{
if (deg(f)!=2)
{
"The polynomial is not a conic";
return(0);
}
matrix A=coeffs(f,ideal(var(1)^2,var(1)*var(2),var(2)^2,var(1),var(2),1));
matrix C[3][3]=A[1,1],A[2,1]/2,A[4,1]/2,A[2,1]/2,A[3,1],A[5,1]/2,A[4,1]/2,A[5,1]/2,A[6,1];
matrix M[3][1]=var(1),var(2),1;
matrix Cdual=-adjoint(C);
matrix ffd=transpose(M)*Cdual*M;
poly fdual=ffd[1,1];
return(fdual);
}
example
{
"EXAMPLE:";
echo=2;
ring r=0,(x,y),dp;
poly conic=2x2+1/2y2-1;
dualConic(conic);
}
///////////////////////////////////////////////////////////////////////////////
/// Auxilary Procedures concerned with substitution
///////////////////////////////////////////////////////////////////////////////
proc parameterSubstitute (poly f,int N)
"USAGE: parameterSubstitute(f,N); f poly, N int
ASSUME: f is a polynomial in Q(t)[x_1,...,x_n] describing
a plane curve over Q(t)
RETURN: poly f with t replaced by t^N
EXAMPLE: example parameterSubstitute; shows an example"
{
def BASERING=basering;
number nenner=1;
for (int i=1;i<=size(f);i++)
{
nenner=nenner*denominator(leadcoef(f[i]));
}
f=f*nenner;
f=subst(f,t,t^N)/number(subst(nenner,t,t^N));
return(f);
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
poly f=t2xy+1/t*y+t3;
parameterSubstitute(f,3);
parameterSubstitute(f,-1);
}
/////////////////////////////////////////////////////////////////////////
proc tropicalSubst (poly f,int N,list #)
"USAGE: parameterSubstitute(f,N,L); f poly, N int, L list
ASSUME: f is a polynomial in Q(t)[x_1,...,x_k]
and L is a list of the form var(i_1),poly_1,...,v(i_k),poly_k
RETURN: list, the list is the tropical polynomial which we get from f
by replacing the i-th variable be the i-th polynomial
but in the i-th polynomial the parameter t is replaced by t^1/N
EXAMPLE: example tropicalSubst; shows an example"
{
f=parameterSubstitute(f,N);
f=substitute(f,#);
list tp=tropicalise(f);
poly const;
for (int i=1;i<=size(tp);i++)
{
const=substitute(tp[i],x,0,y,0);
tp[i]=tp[i]-const+const/N;
}
return(tp);
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
poly f=t2x+1/t*y-1;
tropicalSubst(f,2,x,x+t,y,tx+y+t2);
// The procedure can be used to study the effect of a transformation of
// the form x -> x+t^b, with b a rational number, on the tropicalisation and
// the j-invariant of a cubic over the Puiseux series.
f=t7*y3+t3*y2+t*(x3+xy2+y+1)+xy;
// - the j-invariant, and hence its valuation,
// does not change under the transformation
jInvariant(f,"ord");
// - b=3/2, then the cycle length of the tropical cubic equals -val(j-inv)
list g32=tropicalSubst(f,2,x,x+t3,y,y);
tropicalJInvariant(g32);
// - b=1, then it is still true, but only just ...
list g1=tropicalSubst(f,1,x,x+t,y,y);
tropicalJInvariant(g1);
// - b=2/3, as soon as b<1, the cycle length is strictly less than -val(j-inv)
list g23=tropicalSubst(f,3,x,x+t2,y,y);
tropicalJInvariant(g23);
}
/////////////////////////////////////////////////////////////////////////
proc randomPolyInT (int d,int ug, int og, list #)
"USAGE: randomPolyInT(d,ug,og[,#]); d, ug, og int, # list
ASSUME: the basering has a parameter t
RETURN: poly, a polynomial of degree d where the coefficients are
of the form t^j with j a random integer between ug and og
NOTE: if an optional argument # is given, then the coefficients are
instead either of the form t^j as above or they are zero,
and this is chosen randomly
EXAMPLE: example randomPolyInT; shows an example"
{
if (defined(t)!=-1) { ERROR("basering has no paramter t");}
int i,j,k;
def BASERING=basering;
ring RANDOMRING=(0,t),(x,y,z),dp;
ideal m=maxideal(d);
int nnn=size(m);
for (i=1;i<=nnn;i++)
{
m[i]=subst(m[i],z,1);
}
poly randomPolynomial;
for (i=1;i<=nnn;i++)
{
if (size(#)!=0)
{
k=random(0,1);
}
if (k==0)
{
j=random(ug,og);
randomPolynomial=randomPolynomial+t^j*m[i];
}
}
setring BASERING;
poly randomPolynomial=imap(RANDOMRING,randomPolynomial);
if ((size(randomPolynomial)<3) and (nnn>=3))
{
randomPolynomial=randomPolyInT(d,ug,og,#);
}
return(randomPolynomial);
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
randomPolyInT(3,-2,5);
randomPolyInT(3,-2,5,1);
}
/////////////////////////////////////////////////////////////////////////
proc cleanTmp ()
"USAGE: cleanTmp()
PURPOSE: some procedures create latex and ps-files in the directory /tmp;
in order to remove them simply call cleanTmp();
RETURN: none"
{
system("sh","cd /tmp; command rm -f tropicalcurve*; command rm -f tropicalnewtonsubdivision*");
}
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
/// AUXILARY PROCEDURES, WHICH ARE DECLARED STATIC
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
/// Procedures used in tropicalparametriseNoabs respectively in tropicalLifting:
/// - phiOmega
/// - cutdown
/// - tropicalparametriseNoabs
/// - findzeros
/// - basictransformideal
/// - testw
/// - simplifyToOrder
/// - scalarproduct
/// - intvecdelete
/// - invertorder
/// - ordermaximalidealsNoabs
/// - displaypoly
/// - displaycoef
/// - choosegfanvector
/// - tropicalliftingresubstitute
//////////////////////////////////////////////////////////////////////////////
static proc phiOmega (ideal i,int j,int wj)
"USAGE: phiOmega(i,j,wj); i ideal, j int, wj int
ASSUME: i an ideal in Q[t,x_1,...,x_n] and 0<j<n+1
RETURN: ideal, in i var(j) has been substituted by t^-wj*var(j)
NOTE: is called from tropicalLifting"
{
int k;
ideal variablen;
for (k=2;k<=nvars(basering);k++)
{
variablen=variablen+var(k);
}
def BASERING=basering;
execute("ring QUOTRING=("+charstr(basering)+",t),("+string(variablen)+"),dp;");
ideal i=subst(imap(BASERING,i),var(j-1),t^(-wj)*var(j-1));
for (k=1;k<=size(i);k++)
{
i[k]=i[k]/content(i[k]);
}
setring BASERING;
return(imap(QUOTRING,i));
}
/////////////////////////////////////////////////////////////////////////
static proc cutdown (ideal jideal,intvec wvec,int dimension,list #)
"USAGE: cutdown(i,w,d); i ideal, w intvec, d int, # list
ASSUME: i an ideal in Q[t,x_1,...,x_n], (w_1,...,w_n) is in the tropical
variety of jideal and d=dim(i)>0, in Q(t)[x]; the optional
parameter # can contain the string 'isPrime' to indicate that
the input ideal is prime and no minimal associated primes have
to be computed
RETURN: list, the first entry is a ring, namely the basering where some
variables have been eliminated, and the ring contains
the ideal i (with the same variables eliminated),
the t-initial ideal ini of i (w.r.t. the weight vector
where the entries corresponding to the deleted variables
have been eliminated) and a list repl where for each
eliminated variable there is one entry, namely a polynomial
in the remaining variables and t that explains how
resubstitution of a solution for the new i gives a solution
for the old i; the second entry is the weight vector
wvec with the components corresponding to the eliminated
variables removed
NOTE: needs the libraries random.lib and primdec.lib;
is called from tropicalLifting"
{
// IDEA: i is an ideal of dimension d; we want to cut it with d random linear
// forms in such a way that the resulting
// ideal is 0-dim and still contains w in the tropical variety
// NOTE: t is the last variable in the basering
ideal pideal; //this is the ideal we want to return
ideal cutideal;
ideal pini; //this is the initial ideal
ideal primini; //the initial of the prime we picl
int j1,j2,dimp,winprim,j3;
poly product=1;
def BASERING=basering;
ideal variablen;
intvec setvec;intvec wvecp;
setvec[nvars(basering)-1]=0;
poly randomp=0;
poly randomp1=0;
poly randomp2=0;
list erglini;
list ergl;
for (j1=1;j1<=nvars(basering)-1;j1++)
{
variablen=variablen+var(j1); // read the set of variables
// (needed to make the quotring later)
product=product*var(j1); // make product of all variables
// (needed for the initial-monomial-check later
}
execute("ring QUOTRING=("+charstr(basering)+",t),("+string(variablen)+"),dp;");
setring BASERING;
// change to quotring where we want to compute the primary decomposition of i
if (size(#)==0) // we only have to do so if isPrime is not set
{
setring QUOTRING;
ideal jideal=imap(BASERING,jideal);
list primp=minAssGTZ(jideal); //compute the primary decomposition
for (j1=1;j1<=size(primp);j1++)
{
for(j2=1;j2<=size(primp[j1]);j2++)
{
// clear all denominators
primp[j1][j2]=primp[j1][j2]/content(primp[j1][j2]);
}
}
setring BASERING;
list primp=imap(QUOTRING,primp);
// if i is not primary itself
// go through the list of min. ass. primes and find the first
// one which has w in its tropical variety
if (size(primp)>1)
{
j1=1;
while(winprim==0)
{
//compute the t-initial of the associated prime
// - the last entry 1 only means that t is the last variable in the ring
primini=tInitialIdeal(primp[j1],wvec,1);
// check if it contains a monomial (resp if the product of var
// is in the radical)
if (radicalMemberShip(product,primini)==0)
{
// if w is in the tropical variety of the prime, we take that
jideal=primp[j1];
setring QUOTRING;
dimension=dim(groebner(imap(BASERING,jideal)));//compute its dimension
setring BASERING;
winprim=1; // and stop the checking
}
j1=j1+1; //else we look at the next associated prime
}
}
else
{
jideal=primp[1]; //if i is primary itself we take its prime instead
}
}
// now we start as a first try to intersect with a hyperplane parallel to
// coordinate axes, because this would make our further computations
// a lot easier.
// We choose a subset of our n variables of size d=dim(ideal).
// For each of these
// variables, we want to fix a value: x_i= a_i*t^-w_i.
// This will only work if the
// projection of the d-dim variety to the other n-d variables
// is the whole n-d plane.
// Then a general choice for a_i will intersect the variety
// in finitely many points.
// If the projection is not the whole n-d plane,
// then a general choice will not work.
// We could determine if we picked a good
// d-subset of variables using elimination
// (NOTE, there EXIST d variables such that
// a random choice of a_i's would work!).
// But since this involves many computations,
// we prefer to choose randomly and just
// try in the end if our intersected ideal
// satisfies our requirements. If this does not
// work, we give up this try and use our second intersection idea, which
// will work for a Zariksi-open subset (i.e. almost always).
//
// As random subset of d variables we choose
// those for which the absolute value of the
// wvec-coordinate is smallest, because this will
// give us the smallest powers of t and hence
// less effort in following computations.
// Note that the smallest absolute value have those
// which are biggest, because wvec is negative.
//print("first try");
intvec wminust=intvecdelete(wvec,1);
intmat A[2][size(wminust)];
// make a matrix with first row -wvec (without t) and second row 1..n
A[1,1..size(wminust)]=-wminust;
A[2,1..size(wminust)]=1..size(wminust);
// sort this matrix in order to get
// the d biggest entries and their position in wvec
A=sortintmat(A);
// we construct a vector which has 1 at entry j if j belongs to the list
// of the d biggest entries of wvec and a 0 else
for (j1=1;j1<=nvars(basering)-1;j1++) //go through the variables
{
for (j2=1;j2<=dimension;j2++) //go through the list of smallest entries
{
if (A[2,j2]==j1)//if the variable belongs to this list
{
setvec[j1]=1;//put a 1
}
}
}
// using this 0/1-vector we produce
// a random constant (i.e. coeff in Q times something in t)
// for each of the biggest variables,
// we add the forms x_i-random constant to the ideal
// and we save the constant at the i-th place of
// a list we want to return for later computations
j3=0;
while (j3<=1)
{
j3++;
pideal=jideal;
j2=1;
for (j1=1;j1<=nvars(basering)-1;j1++)
{
if(setvec[j1]==1)//if x_i belongs to the biggest variables
{
if ((j3==1) and ((char(basering)==0) or (char(basering)>3)))
{
randomp1=random(1,3);
randomp=t^(A[1,j2])*randomp1;// make a random constant
// --- first we try small numbers
}
else
{
if ((j3==2) and ((char(basering)==0) or (char(basering)>100)))
{
randomp1=random(1,100);
randomp=t^(A[1,j2])*randomp1;// make a random constant
// --- next we try bigger numbers
}
else
{
randomp1=random(1,char(basering)-1);
randomp=t^(A[1,j2])*randomp1;//make a random constant
}
}
ergl[A[2,j2]]=randomp;//and save the constant in a list
erglini[A[2,j2]]=randomp1;
j2=j2+1;
}
else
{
ergl[j1]=0; //if the variable is not among the d biggest ones,
//save 0 in the list
erglini[j1]=0;
}
}
// print(ergl);print(pideal);
// now we check if we made a good choice of pideal, i.e. if dim=0 and
// wvec is still in the tropical variety
// change to quotring where we compute dimension
cutideal=pideal;
for(j1=1;j1<=nvars(basering)-1;j1++)
{
if(setvec[j1]==1)
{
cutideal=cutideal,var(j1)-ergl[j1];//add all forms to the ideal
}
}
setring QUOTRING;
ideal cutideal=imap(BASERING,cutideal);
dimp=dim(groebner(cutideal)); //compute the dim of p in the quotring
//print("dimension");
//print(dimp);
kill cutideal;
setring BASERING;
if (dimp==0) // if it is 0 as we want
{
// compute the t-initial of the associated prime
// - the last 1 just means that the variable t is
// the last variable in the ring
pini=tInitialIdeal(cutideal,wvec ,1);
//print("initial");
//print(pini);
// and if the initial w.r.t. t contains no monomial
// as we want (checked with
// radical-membership of the product of all variables)
if (radicalMemberShip(product,pini)==0)
{
// we made the right choice and now
// we substitute the variables in the ideal
// to get an ideal in less variables
// also we make a projected vector
// from wvec only the components of the remaining variables
wvecp=wvec;
variablen=0;
j2=0;
for(j1=1;j1<=nvars(basering)-1;j1++)
{
if(setvec[j1]==1)//if j belongs to the biggest variables
{
j2=j2+1;
pideal=subst(pideal,var(j1),ergl[j1]);//substitute this variable
pini=subst(pini,var(j1),erglini[j1]);
wvecp=intvecdelete(wvecp,j1+2-j2);
}
else
{
variablen=variablen+var(j1); // read the set of remaining variables
// (needed to make quotring later)
}
}
// return pideal, the initial and the list ergl which tells us
// which variables we replaced by which form
execute("ring BASERINGLESS1=("+charstr(BASERING)+"),("+string(variablen)+",t),(dp("+string(ncols(variablen))+"),lp(1));");
ideal i=imap(BASERING,pideal);
ideal ini=imap(BASERING,pini); //ideal ini2=tInitialIdeal(i,wvecp,1);
list repl=imap(BASERING,ergl);
export(i);
export(ini);
export(repl);
return(list(BASERINGLESS1,wvecp));
}
}
}
// this is our second try to cut down, which we only use if the first try
// didn't work out. We intersect with d general hyperplanes
// (i.e. we don't choose
// them to be parallel to coordinate hyperplanes anymore. This works out with
// probability 1.
//
// We choose general hyperplanes, i.e. linear forms which involve all x_i.
// Each x_i has to be multiplied bz t^(w_i) in order
// to get the same weight (namely 0)
// for each term. As we cannot have negative exponents, we multiply
// the whole form by t^minimumw. Notice that then in the first form,
// there is one term without t- the term of the variable
// x_i such that w_i is minimal. That is, we can solve for this variable.
// In the second form, we can replace that variable,
// and divide by t as much as possible.
// Then there is again one term wihtout t -
// the term of the variable with second least w.
// So we can solve for this one again and also replace it in the first form.
// Since all our coefficients are chosen randomly,
// we can also from the beginning on
// choose the set of variables which belong to the d smallest entries of wvec
// (t not counting) and pick random forms g_i(t,x')
// (where x' is the set of remaining variables)
// and set x_i=g_i(t,x').
//
// make a matrix with first row wvec (without t) and second row 1..n
//print("second try");
setring BASERING;
A[1,1..size(wminust)]=wminust;
A[2,1..size(wminust)]=1..size(wminust);
// sort this matrix in otder to get the d smallest entries
// (without counting the t-entry)
A=sortintmat(A);
randomp=0;
setvec=0;
setvec[nvars(basering)-1]=0;
// we construct a vector which has 1 at entry j if j belongs to the list of
// the d smallest entries of wvec and a 0 else
for (j1=1;j1<=nvars(basering)-1;j1++) //go through the variables
{
for (j2=1;j2<=dimension;j2++) //go through the list of smallest entries
{
if (A[2,j2]==j1)//if the variable belongs to this list
{
setvec[j1]=1;//put a 1
}
}
}
variablen=0;
wvecp=wvec;
j2=0;
for(j1=1;j1<=nvars(basering)-1;j1++)
{
if(setvec[j1]==1)//if j belongs to the biggest variables
{
j2=j2+1;
wvecp=intvecdelete(wvecp,j1+2-j2);// delete the components
// we substitute from wvec
}
else
{
variablen=variablen+var(j1); // read the set of remaining variables
// (needed to make the quotring later)
}
}
setring BASERING;
execute("ring BASERINGLESS2=("+charstr(BASERING)+"),("+string(variablen)+",t),(dp("+string(ncols(variablen))+"),lp(1));");
// using the 0/1-vector which tells us which variables belong
// to the set of smallest entries of wvec
// we construct a set of d random linear
// polynomials of the form x_i=g_i(t,x'),
// where the set of all x_i is the set of
// all variables which are in the list of smallest
// entries in wvec, and x' are the other variables.
// We add these d random linear polynomials to
// the ideal pideal, i.e. we intersect
// with these and hope to get something
// 0-dim which still contains wvec in its
// tropical variety. Also, we produce a list ergl
// with g_i at the i-th position.
// This is a list we want to return.
// we try first with small numbers
setring BASERING;
pideal=jideal;
for(j1=1;j1<=dimension;j1++)//go through the list of variables
{ // corres to the d smallest in wvec
if ((char(basering)==0) or (char(basering)>3))
{
randomp1=random(1,3);
randomp=randomp1*t^(-A[1,j1]);
}
else
{
randomp1=random(1,char(basering)-1);
randomp=randomp1*t^(-A[1,j1]);
}
for(j2=1;j2<=nvars(basering)-1;j2++)//go through all variables
{
if(setvec[j2]==0)//if x_j belongs to the set x'
{
// add a random term with the suitable power
// of t to the random linear form
if ((char(basering)==0) or (char(basering)>3))
{
randomp2=random(1,3);
randomp1=randomp1+randomp2*var(j2);
randomp=randomp+randomp2*t^(wminust[j2]-A[1,j1])*var(j2);
}
else
{
randomp2=random(char(basering)-1);
randomp1=randomp1+randomp2*var(j2);
randomp=randomp+randomp2*t^(wminust[j2]-A[1,j1])*var(j2);
}
ergl[j2]=0;//if j belongs to x' we want a 0 in our list
erglini[j2]=0;
}
}
ergl[A[2,j1]]=randomp;// else we put there the random oly g_i(t,x')
erglini[A[2,j1]]=randomp1;
randomp=0;
randomp1=0;
}
//print(ergl);
// Again, we have to test if we made a good choice
// to intersect,i.e. we have to check whether
// pideal is 0-dim and contains wvec in the tropical variety.
cutideal=pideal;
for(j1=1;j1<=nvars(basering)-1;j1++)
{
if(setvec[j1]==1)
{
cutideal=cutideal,var(j1)-ergl[j1];//add all forms to the ideal
}
}
setring QUOTRING;
ideal cutideal=imap(BASERING,cutideal);
dimp=dim(groebner(cutideal)); //compute the dim of p in the quotring
//print("dimension");
//print(dimp);
kill cutideal;
setring BASERING;
if (dimp==0) // if it is 0 as we want
{
// compute the t-initial of the associated prime
// - the last 1 just means that the variable t
// is the last variable in the ring
pini=tInitialIdeal(cutideal,wvec ,1);
//print("initial");
//print(pini);
// and if the initial w.r.t. t contains no monomial as we want (checked with
// radical-membership of the product of all variables)
if (radicalMemberShip(product,pini)==0)
{
// we want to replace the variables x_i by the forms -g_i in
// our ideal in order to return an ideal with less variables
// first we substitute the chosen variables
for(j1=1;j1<=nvars(basering)-1;j1++)
{
if(setvec[j1]==1)//if j belongs to the biggest variables
{
pideal=subst(pideal,var(j1),ergl[j1]);//substitute it
pini=subst(pini,var(j1),erglini[j1]);
}
}
setring BASERINGLESS2;
ideal i=imap(BASERING,pideal);
ideal ini=imap(BASERING,pini);//ideal ini2=tInitialIdeal(i,wvecp,1);
list repl=imap(BASERING,ergl);
export(i);
export(ini);
export(repl);
return(list(BASERINGLESS2,wvecp));
}
}
// now we try bigger numbers
while (1) //a never-ending loop which will stop with prob. 1
{ // as we find a suitable ideal with that prob
setring BASERING;
pideal=jideal;
for(j1=1;j1<=dimension;j1++)//go through the list of variables
{ // corres to the d smallest in wvec
randomp1=random(1,100);
randomp=randomp1*t^(-A[1,j1]);
for(j2=1;j2<=nvars(basering)-1;j2++)//go through all variables
{
if(setvec[j2]==0)//if x_j belongs to the set x'
{
// add a random term with the suitable power
// of t to the random linear form
if ((char(basering)==0) or (char(basering)>100))
{
randomp2=random(1,100);
randomp1=randomp1+randomp2*var(j2);
randomp=randomp+randomp2*t^(wminust[j2]-A[1,j1])*var(j2);
}
else
{
randomp2=random(1,char(basering)-1);
randomp1=randomp1+randomp2;
randomp=randomp+randomp2*t^(wminust[j2]-A[1,j1])*var(j2);
}
ergl[j2]=0;//if j belongs to x' we want a 0 in our list
erglini[j2]=0;
}
}
ergl[A[2,j1]]=randomp;// else we put there the random oly g_i(t,x')
erglini[A[2,j1]]=randomp1;
randomp=0;
randomp1=0;
}
//print(ergl);
// Again, we have to test if we made a good choice to
// intersect,i.e. we have to check whether
// pideal is 0-dim and contains wvec in the tropical variety.
cutideal=pideal;
for(j1=1;j1<=nvars(basering)-1;j1++)
{
if(setvec[j1]==1)
{
cutideal=cutideal,var(j1)-ergl[j1];//add all forms to the ideal
}
}
setring QUOTRING;
ideal cutideal=imap(BASERING,cutideal);
dimp=dim(groebner(cutideal)); //compute the dim of p in the quotring
//print("dimension");
//print(dimp);
kill cutideal;
setring BASERING;
if (dimp==0) // if it is 0 as we want
{
// compute the t-initial of the associated prime
// - the last 1 just means that the variable t
// is the last variable in the ring
pini=tInitialIdeal(cutideal,wvec ,1);
//print("initial");
//print(pini);
// and if the initial w.r.t. t contains no monomial
// as we want (checked with
// radical-membership of the product of all variables)
if (radicalMemberShip(product,pini)==0)
{
// we want to replace the variables x_i by the forms -g_i in
// our ideal in order to return an ideal with less variables
//first we substitute the chosen variables
for(j1=1;j1<=nvars(basering)-1;j1++)
{
if(setvec[j1]==1)//if j belongs to the biggest variables
{
pideal=subst(pideal,var(j1),ergl[j1]);//substitute it
pini=subst(pini,var(j1),erglini[j1]);
}
}
// return pideal and the list ergl which tells us
// which variables we replaced by which form
setring BASERINGLESS2;
ideal i=imap(BASERING,pideal);
ideal ini=imap(BASERING,pini);//ideal ini2=tInitialIdeal(i,wvecp,1);
list repl=imap(BASERING,ergl);
export(i);
export(ini);
export(repl);
return(list(BASERINGLESS2,wvecp));
}
}
}
}
/////////////////////////////////////////////////////////////////////////
static proc tropicalparametriseNoabs (ideal i,intvec ww,int ordnung,int gfanold,int nogfan,int puiseux,list #)
"USAGE: tropicalparametriseNoabs(i,tw,ord,gf,ng,pu[,#]); i ideal, tw intvec, ord int, gf,ng,pu int, # opt. list
ASSUME: - i is an ideal in Q[t,x_1,...,x_n,X_1,...,X_k],
tw=(w_0,w_1,...,w_n,0,...,0) and (w_0,...,w_n,0,...,0) is in
the tropical variety of i, and ord is the order up to which a point
in V(i) over C((t)) lying over w shall be computed;
- moreover, k should be zero if the procedure is not called recursively;
- the point in the tropical variety is supposed to lie in the NEGATIVE
orthant;
- the ideal is zero-dimensional when considered
in (Q(t)[X_1,...,X_k]/m)[x_1,...,x_n],
where m=#[2] is a maximal ideal in Q(t)[X_1,...,X_k];
- gf is 0 if version 2.2 or larger is used and it is 1 else
- ng is 1 if gfan should not be executed
- pu is 1 if n=1 and i is generated by one polynomial and newtonpoly is used to find a
point in the tropical variety instead of gfan
RETURN: list, l[1] = ring Q(0,X_1,...,X_r)[[t]]
l[2] = int
l[3] = string
NOTE: - the procedure is also called recursively by itself, and
if it is called in the first recursion, the list # is empty,
otherwise #[1] is an integer, one more than the number
of true variables x_1,...,x_n,
and #[2] will contain the maximal ideal m in the variables X_1,...X_k
by which the ring Q[t,x_1,...,x_n,X_1,...,X_k] should be divided to
work correctly in K[t,x_1,...,x_n] where K=Q[X_1,...,X_k]/m is a field
extension of Q;
- the ring l[1] contains an ideal PARA, which contains the
parametrisation of a point in V(i) lying over w up to the
first ord terms;
- the string m=l[3] contains the code of the maximal ideal m,
by which we have to divide Q[X_1,...,X_r] in order to have
the appropriate field extension over which the parametrisation lives;
- and if the integer l[2] is N then t has to be replaced by t^1/N in
the parametrisation, or alternatively replace t by t^N in the
defining ideal
- the procedure REQUIRES that the program GFAN is installed on
your computer"
{
def ALTRING=basering;
int recursively; // is set 1 if the procedure is called recursively by itself
int jj,kk;
if (size(#)==2) // this means the precedure has been called recursively
{
// how many variables are true variables, and how many come
// from the field extension
// only true variables have to be transformed
int anzahlvariablen=#[1];
ideal gesamt_m=std(#[2]); // stores all maxideals used for field extensions
// find the zeros of the w-initial ideal and transform the ideal i;
// findzeros and basictransformideal need to know how
// many of the variables are true variables
list m_ring=findzeros(i,ww,anzahlvariablen);
list btr=basictransformideal(i,ww,m_ring,anzahlvariablen);
}
else // the procedure has been called by tropicalLifting
{
// how many variables are true variables, and how many come from
// the field extension only true variables have to be transformed
int anzahlvariablen=nvars(basering);
ideal gesamt_m; // stores all maxideals used for field extensions
// the initial ideal of i has been handed over as #[1]
ideal ini=#[1];
// find the zeros of the w-initial ideal and transform the ideal i;
// we should hand the t-initial ideal ine to findzeros,
// since we know it already
list m_ring=findzeros(i,ww,ini);
list btr=basictransformideal(i,ww,m_ring);
}
// check if for the transformation a field extension was necessary, i.e. if the
// new variables had to be added to the old base ring; if so, change to the new
// ring in which the transformed i and m and the zero a of V(m) live; otherwise
// retreive i, a and m from btr
if (size(btr)==1)
{
def PREVIOUSRING=basering;
def TRRING=btr[1];
setring TRRING;
ideal gesamt_m=imap(PREVIOUSRING,gesamt_m)+m; // add the newly found maximal
// ideal to the previous ones
}
else
{
i=std(btr[1]);
list a=btr[2];
ideal m=btr[3];
gesamt_m=gesamt_m+m; // add the newly found maximal
// ideal to the previous ones
}
// check if there is a solution which has the n-th component zero,
// if so, then eliminate the n-th variable from sat(i+x_n,t),
// otherwise leave i as it is;
// then check if the (remaining) ideal has as solution
// where the n-1st component is zero,
// and procede as before; do the same for the remaining variables;
// this way we make sure that the remaining ideal has
// a solution which has no component zero;
intvec deletedvariables; // the jth entry is set 1, if we eliminate x_j
int numberdeletedvariables; // the number of eliminated variables
ideal variablen; // will contain the variables which are not eliminated
intvec tw=ww; // in case some variables are deleted,
// we have to store the old weight vector
deletedvariables[anzahlvariablen]=0;
ideal I,LI;
i=i+m; // if a field extension was necessary, then i has to be extended by m
for (jj=anzahlvariablen-1;jj>=1;jj--) // the variable t is the last one !!!
{
I=sat(ideal(var(jj)+i),t)[1];
LI=subst(I,var(nvars(basering)),0);
//size(deletedvariables)=anzahlvariablen(before elim.)
for (kk=1;kk<=size(deletedvariables)-1;kk++)
{
LI=subst(LI,var(kk),0);
}
if (size(LI)==0) // if no power of t is in lead(I)
{ // (where the X(i) are considered as field elements)
// get rid of var(jj)
i=eliminate(I,var(jj));
deletedvariables[jj]=1;
anzahlvariablen--; // if a variable is eliminated,
// then the number of true variables drops
numberdeletedvariables++;
}
else
{
variablen=variablen+var(jj); // non-eliminated true variables are stored
}
}
variablen=invertorder(variablen);
// store also the additional variables and t,
// since they for sure have not been eliminated
for (jj=anzahlvariablen+numberdeletedvariables-1;jj<=nvars(basering);jj++)
{
variablen=variablen+var(jj);
}
// if some variables have been eliminated,
// then pass to a new ring which has less variables,
// but if no variables are left, then we are done
def BASERING=basering;
if ((numberdeletedvariables>0) and (anzahlvariablen>1)) // if only t remains,
{ // all true variables are gone
execute("ring NEURING=("+charstr(basering)+"),("+string(variablen)+"),(dp("+string(size(variablen)-1)+"),lp(1));");
ideal i=imap(BASERING,i);
ideal gesamt_m=imap(BASERING,gesamt_m);
}
// now we have to compute a point ww on the tropical variety
// of the transformed ideal i;
// of course, we only have to do so, if we have not yet
// reached the order up to which we
// were supposed to do our computations
if ((ordnung>1) and (anzahlvariablen>1)) // if only t remains,
{ // all true variables are gone
// else we have to use gfan
def PREGFANRING=basering;
if (nogfan!=1)
{
// pass to a ring which has variables which are suitable for gfan
execute("ring GFANRING=("+charstr(basering)+"),(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z),dp;");
ideal phiideal=b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z;
phiideal[nvars(PREGFANRING)]=a; // map t to a
map phi=PREGFANRING,phiideal;
ideal i=phi(i);
// homogenise the ideal i with the first not yet
// used variable in our ring, since gfan
// only handles homogenous ideals; in principle
// for this one has first to compute a
// standard basis of i and homogenise that,
// but for the tropical variety (says Anders)
// it suffices to homogenise an arbitrary system of generators
// i=groebner(i);
i=homog(i,maxideal(1)[nvars(PREGFANRING)+1]);
// if gfan version >= 0.3.0 is used and the characteristic
// is not zero, then write the basering to the output
if ((gfanold!=1) and (char(GFANRING)!=0))
{
string ringvariablen=varstr(GFANRING);
ringvariablen=ringvariablen[1..2*nvars(PREGFANRING)+1];
write(":w /tmp/gfaninput","Z/"+string(char(GFANRING))+"Z["+ringvariablen+"]");
// write the ideal to a file which gfan takes as input and call gfan
write(":a /tmp/gfaninput","{"+string(i)+"}");
}
else
{
// write the ideal to a file which gfan takes as input and call gfan
write(":w /tmp/gfaninput","{"+string(i)+"}");
}
if (gfanold==1)
{
if (charstr(basering)!="0")
{
system("sh","gfan_tropicalbasis --mod "+charstr(basering)+" < /tmp/gfaninput > /tmp/gfanbasis");
system("sh","gfan_tropicalintersection < /tmp/gfanbasis > /tmp/gfanoutput");
}
else
{
// system("sh","gfan_tropicalstartingcone < /tmp/gfaninput > /tmp/gfantropstcone");
// system("sh","gfan_tropicaltraverse < /tmp/gfantropstcone > /tmp/gfanoutput");
system("sh","gfan_tropicalbasis < /tmp/gfaninput > /tmp/gfanbasis");
system("sh","gfan_tropicalintersection < /tmp/gfanbasis > /tmp/gfanoutput");
}
string trop=read("/tmp/gfanoutput");
setring PREGFANRING;
intvec wneu=-1; // this integer vector will store
// the point on the tropical variety
wneu[nvars(basering)]=0;
// for the time being simply stop Singular and set wneu by yourself
int goon=1;
trop;
"CHOOSE A RAY IN THE OUTPUT OF GFAN WHICH HAS ONLY";
"NON-POSITIVE ENTRIES AND STARTS WITH A NEGATIVE ONE,";
"E.G. (-3,-4,-1,-5,0,0,0) - the last entry will always be 0 -";
"THEN TYPE THE FOLLOWING COMMAND IN SINGULAR: wneu=-3,-4,-1,-5,0,0;";
"AND HIT THE RETURN BUTTON TWICE (!!!) - NOTE, THE LAST 0 IS OMITTED";
"IF YOU WANT wneu TO BE TESTED, THEN SET goon=0;";
// THIS IS NOT NECESSARY !!!! IF WE COMPUTE NOT ONLY THE
// TROPICAL PREVARIETY
// test, if wneu really is in the tropical variety
while (goon==0)
{
if (testw(reduce(i,std(gesamt_m)),wneu,anzahlvariablen)==1)
{
"CHOOSE A DIFFERENT RAY";
}
else
{
goon=1;
}
}
}
else
{
system("sh","gfan_tropicallifting -n "+string(anzahlvariablen)+" --noMult -c < /tmp/gfaninput > /tmp/gfanoutput");
// read the result from gfan and store it to a string,
// which in a later version
// should be interpreded by Singular
intvec wneu=choosegfanvector(read("/tmp/gfanoutput"),0,homogentest)[1];
setring PREGFANRING;
}
}
else // if gfan is NOT executed
{
// if puiseux is set, then we are in the case of a plane curve and can use the command newtonpoly
if (puiseux==1)
{
list NewtP=newtonpoly(i[1]);
wneu=NewtP[1]-NewtP[2];
int ggteiler=gcd(wneu[1],wneu[2]);
wneu[1]=-wneu[1] div ggteiler;
wneu[2]=wneu[2] div ggteiler;
if (wneu[1]>0)
{
wneu=-wneu;
}
kill NewtP,ggteiler;
}
else // set wneu by hand
{
"Set intvec wneu!";
}
}
}
// if we have not yet computed our parametrisation
// up to the required order and
// zero is not yet a solution, then we have
// to go on by calling the procedure recursively;
// if all variables were deleted, then i=0 and thus anzahlvariablen==0
if ((ordnung>1) and (anzahlvariablen>1))
{
// we call the procedure with the transformed ideal i,
// the new weight vector, with the
// required order lowered by one, and with
// additional parameters, namely the number of
// true variables and the maximal ideal that
// was computed so far to describe the field extension
list PARALIST=tropicalparametriseNoabs(i,wneu,ordnung-1,gfanold,nogfan,puiseux,anzahlvariablen,gesamt_m);
// the output will be a ring, in which the
// parametrisation lives, and a string, which contains
// the maximal ideal that describes the necessary field extension
def PARARing=PARALIST[1];
int tweight=-tw[1]*PARALIST[2];
string PARAm=PARALIST[3];
setring PARARing;
// if some variables have been eliminated in before,
// then we have to insert zeros
// into the parametrisation for those variables
if (numberdeletedvariables>0)
{
ideal PARAneu=PARA;
int k;
for (jj=1;jj<=anzahlvariablen+numberdeletedvariables-1;jj++) // t admits
{ // no parametrisation
if (deletedvariables[jj]!=1)
{
k++;
PARA[jj]=PARAneu[k];
}
else
{
PARA[jj]=poly(0);
}
}
}
}
// otherwise we are done and we can start to compute
// the last step of the parametrisation
else
{
// we store the information on m in a string
string PARAm=string(gesamt_m);
// we define the weight of t, i.e. in the parametrisation t
// has to be replaced by t^1/tweight
int tweight=-tw[1];
// if additional variables were necessary,
// we introduce them now as parameters;
// in any case the parametrisation ring will
// have only one variable, namely t,
// and its order will be local, so that it
// displays the lowest term in t first
if (anzahlvariablen+numberdeletedvariables<nvars(basering))
{
execute("ring PARARing=("+charstr(basering)+",X("+string(1)+".."+string(nvars(basering)-anzahlvariablen-numberdeletedvariables)+")),t,ls;");
}
else
{
execute("ring PARARing=("+charstr(basering)+"),t,ls;");
}
ideal PARA; // will contain the parametrisation
// we start by initialising the entries to be zero;
// one entry for each true variable
// here we also have to consider the variables
// that we have eliminated in before
for (jj=1;jj<=anzahlvariablen+numberdeletedvariables-1;jj++)
{
PARA[jj]=poly(0);
}
}
// we now have to change the parametrisation by
// reverting the transformations that we have done
list a=imap(BASERING,a);
if (defined(wneu)==0) // when tropicalparametriseNoabs is called for the
{ // last time, it does not enter the part, where wneu is defined and the
intvec wneu=-1; // variable t should have weight -1
}
for (jj=1;jj<=anzahlvariablen+numberdeletedvariables-1;jj++)
{
PARA[jj]=(PARA[jj]+a[jj+1])*t^(tw[jj+1]*tweight div ww[1]);
}
// if we have reached the stop-level, i.e. either
// we had only to compute up to order 1
// or zero was a solution of the ideal, then we have
// to export the computed parametrisation
// otherwise it has already been exported before
// note, if all variables were deleted, then i==0 and thus testaufnull==0
if ((ordnung==1) or (anzahlvariablen==1))
{
export(PARA);
}
// kill the gfan files in /tmp
system("sh","cd /tmp; /usr/bin/touch gfaninput; /usr/bin/touch gfanoutput; command rm gfaninput; command rm gfanoutput");
// we return a list which contains the
// parametrisation ring (with the parametrisation ideal)
// and the string representing the maximal ideal
// describing the necessary field extension
return(list(PARARing,tweight,PARAm));
}
/////////////////////////////////////////////////////////////////////////
static proc findzeros (ideal i,intvec w,list #)
"USAGE: findzeros(i,w[,#]); i ideal, w intvec, # an optional list
ASSUME: i is an ideal in Q[t,x_1,...,x_n,X_n+1,...,X_m] and
w=(w_0,...,w_n,0,...,0) is in the tropical variety of i
RETURN: list, l[1] = is polynomial ring containing an associated maximal
ideal m of the w-initial ideal of i which does not
contain any monomial and where the variables
which do not lead to a field extension have already
been eliminated, and containing a list a such that
the non-zero entries of a correspond to the values
of the zero of the associated maximal ideal for the
eliminated variables
l[2] = number of variables which have not been eliminated
l[3] = intvec, if the entry is one then the corresponding
variable has not been eliminated
NOTE: the procedure is called from inside the recursive procedure
tropicalparametriseNoabs;
if it is called in the first recursion, the list #[1] contains
the t-initial ideal of i w.r.t. w, otherwise #[1] is an integer,
one more than the number of true variables x_1,...,x_n"
{
def BASERING=basering;
// set anzahlvariablen to the number of true variables
if (typeof(#[1])=="int")
{
int anzahlvariablen=#[1];
// compute the initial ideal of i
// - the last 1 just means that the variable t is the last
// variable in the ring
ideal ini=tInitialIdeal(i,w,1);
}
else
{
int anzahlvariablen=nvars(basering);
ideal ini=#[1]; // the t-initial ideal has been computed
// in before and was handed over
}
// move to a polynomial ring with global monomial ordering
// - the variable t is superflous
ideal variablen;
for (int j=1;j<=nvars(basering)-1;j++)
{
variablen=variablen+var(j);
}
execute("ring INITIALRING=("+charstr(basering)+"),("+string(variablen)+"),dp;");
ideal ini=imap(BASERING,ini);
// compute the associated primes of the initialideal
// ordering the maximal ideals shall help to avoid
// unneccessary field extensions
list maximalideals=ordermaximalidealsNoabs(minAssGTZ(std(ini)),anzahlvariablen);
ideal m=maximalideals[1][1]; // the first associated maximal ideal
int neuvar=maximalideals[1][2]; // the number of new variables needed
intvec neuevariablen=maximalideals[1][3]; // the information which variable
// leads to a new one
list a=maximalideals[1][4]; // a_k is the kth component of a
// zero of m, if it is not zero
// eliminate from m the superflous variables, that is those ones,
// which do not lead to a new variable
poly elimvars=1;
for (j=1;j<=anzahlvariablen-1;j++)
{
if (neuevariablen[j+1]==0)
{
elimvars=elimvars*var(j);
}
}
m=eliminate(m,elimvars);
export(a);
export(m);
list m_ring=INITIALRING,neuvar,neuevariablen;
setring BASERING;
return(m_ring);
}
/////////////////////////////////////////////////////////////////////////
static proc basictransformideal (ideal i,intvec w,list m_ring,list #)
"USAGE: basictransformideal(i,w,m_ring[,#]); i ideal, w intvec, m_ring list, # an optional list
ASSUME: i is an ideal in Q[t,x_1,...,x_n,X_1,...,X_k],
w=(w_0,...,w_n,0,...,0) is in the tropical variety of i, and
m_ring contains a ring containing a maximal ideal m needed
to describe the field extension over which a corresponding
associated maximal ideal of the initialideal of i, considered
in (Q[X_1,...,X_k]/m_alt)(t)[x_1,...,x_n], has a zero, and
containing a list a describing the zero of m, and m_ring contains
the information how many new variables are needed for m
RETURN: list, either l[1] = ideal, i transformed by x_j -> (a_j+x_j)*t^w_j
l[2] = list, a_1,...,a_n a point in V(m)
l[3] = ideal, the maximal ideal m
or l[1] = ring which contains the ideals i and m, and the list a
NOTE: the procedure is called from inside the recursive procedure
tropicalparametriseNoabs;
if it is called in the first recursion, the list # is empty,
otherwise #[1] is an integer, the number of true variables x_1,...,x_n;
during the procedure we check if a field extension is necessary
to express a zero (a_1,...,a_n) of m; if so, we have to introduce
new variables and a list containing a ring is returned, otherwise
the list containing i, a and m is returned;
the ideal m will be changed during the procedure since all variables
which reduce to a polynomial in X_1,...,X_k modulo m will be eliminated,
while the others are replaced by new variables X_k+1,...,X_k'"
{
def BASERING=basering; // the variable t is acutally the LAST variable !!!
int j,k; // counters
// store the weighted degrees of the elements of i in an integer vector
intvec wdegs;
for (j=1;j<=size(i);j++)
{
wdegs[j]=deg(i[j],intvec(w[2..size(w)],w[1]));
}
// how many variables are true variables,
// and how many come from the field extension
// only real variables have to be transformed
if (size(#)>0)
{
int anzahlvariablen=#[1];
}
else
{
int anzahlvariablen=nvars(basering);
}
//
int zaehler; // testvariable
// get the information if any new variables are needed from m_ring
int neuvar=m_ring[2]; // number of variables which have to be added
intvec neuevariablen=m_ring[3]; // [i]=1, if for the ith comp.
// of a zero of m a new variable is needed
def MRING=m_ring[1]; // MRING contains a and m
list a=imap(MRING,a); // (a_1,...,a_n)=(a[2],...,a[n+1]) will be
// a common zero of the ideal m
ideal m=std(imap(MRING,m)); // m is zero, if neuvar==0,
// otherwise we change the ring anyway
// if a field extension is needed, then extend the polynomial
// ring by new variables X_k+1,...,X_k';
if (neuvar>0)
{
// change to a ring where for each variable needed
// in m a new variable has been introduced
ideal variablen;
// extract the variables x_1,...,x_n
for (j=1;j<nvars(basering);j++)
{
variablen=variablen+var(j);
}
execute("ring TRANSFORMRING=("+charstr(basering)+"),("+string(variablen)+",X("+string(nvars(BASERING)-anzahlvariablen+1)+".."+string(nvars(BASERING)-anzahlvariablen+neuvar)+"),t),(dp("+string(anzahlvariablen-1)+"),dp("+string(nvars(BASERING)+neuvar-anzahlvariablen)+"),lp(1));");
// map i into the new ring
ideal i=imap(BASERING,i);
// define a map phi which maps the true variables, which are not
// reduced to polynomials in the additional variables modulo m, to
// the corresponding newly introduced variables, and which maps
// the old additional variables to themselves
ideal phiideal;
k=1;
for (j=2;j<=size(neuevariablen);j++) // starting with 2, since the
{ // first entry corresponds to t
if(neuevariablen[j]==1)
{
phiideal[j-1]=var(nvars(BASERING)+k-1); // -1 since t is the last variable
k++;
}
else
{
phiideal[j-1]=0;
}
}
if (anzahlvariablen<nvars(BASERING))
{
phiideal=phiideal,X(1..nvars(BASERING)-anzahlvariablen);
}
map phi=MRING,phiideal;
// map m and a to the new ring via phi, so that the true variables
// in m and a are replaced by
// the corresponding newly introduced variables
ideal m=std(phi(m));
list a=phi(a);
}
// replace now the zeros among the a_j by the corresponding
// newly introduced variables;
// note that no component of a can be zero
// since the maximal ideal m contains no variable!
// moreover, substitute right away in the ideal i
// the true variable x_j by (a_j+x_j)*t^w_j
zaehler=nvars(BASERING)-anzahlvariablen+1;
for (j=1;j<=anzahlvariablen;j++)
{
if ((a[j]==0) and (j!=1)) // a[1]=0, since t->t^w_0
{
a[j]=X(zaehler);
zaehler++;
}
for (k=1;k<=size(i);k++)
{
if (j!=1) // corresponds to x_(j-1) -- note t is the last variable
{
i[k]=substitute(i[k],var(j-1),(a[j]+var(j-1))*t^(-w[j]));
}
else // corresponds to t
{
i[k]=substitute(i[k],t,t^(-w[j]));
}
}
}
// we can divide the jth generator of i by t^-wdegs[j]
for (j=1;j<=ncols(i);j++)
{
if (wdegs[j]<0) // if wdegs[j]==0 there is no need to divide, and
{ // we made sure that it is no positive
i[j]=i[j]/t^(-wdegs[j]);
}
}
// since we want to consider i now in the ring
// (Q[X_1,...,X_k']/m)[t,x_1,...,x_n]
// we can reduce i modulo m, so that "constant terms"
// which are "zero" since they
// are in m will disappear; simplify(...,2) then really removes them
i=simplify(reduce(i,m),2);
// if new variables have been introduced, we have
// to return the ring containing i, a and m
// otherwise we can simply return a list containing i, a and m
if (neuvar>0)
{
export(m);
export(i);
export(a);
list returnlist=TRANSFORMRING;
return(returnlist);
}
else
{
return(list(i,a,m));
}
}
/////////////////////////////////////////////////////////////////////////
static proc testw (ideal i,intvec w,int anzahlvariablen,list #)
"USAGE: testw(i,w,n); i ideal, w intvec, n number
ASSUME: i is an ideal in Q[t,x_1,...,x_n,X_1,...,X_k] and
w=(w_0,...,w_n,0,...,0)
RETURN: int b, 0 if the t-initial ideal of i considered in
Q(X_1,...,X_k)[t,x_1,...,x_n] is monomial free, 1 else
NOTE: the procedure is called by tinitialform"
{
// compute the t-initial of i
// - the last 1 just means that the variable t is the last variable in the ring
if (size(#)==0)
{
ideal tin=tInitialIdeal(i,w);
}
else
{
ideal tin=tInitialIdeal(i,w,1);
}
int j;
ideal variablen;
poly monom=1;
if (size(#)==0)
{
for (j=2;j<=anzahlvariablen;j++)
{
variablen=variablen+var(j);
monom=monom*var(j);
}
ideal Parameter;
for (j=anzahlvariablen+1;j<=nvars(basering);j++)
{
Parameter=Parameter+var(j);
}
}
else
{
for (j=1;j<=anzahlvariablen-1;j++)
{
variablen=variablen+var(j);
monom=monom*var(j);
}
ideal Parameter;
for (j=anzahlvariablen;j<=nvars(basering)-1;j++)
{
Parameter=Parameter+var(j);
}
}
def BASERING=basering;
if (anzahlvariablen<nvars(basering))
{
execute("ring TINRING=("+charstr(basering)+","+string(Parameter)+"),("+string(variablen)+"),dp;");
}
else
{
execute("ring TINRING=("+charstr(basering)+"),("+string(variablen)+"),dp;");
}
ideal tin=imap(BASERING,tin);
poly monom=imap(BASERING,monom);
return(radicalMemberShip(monom,tin));
}
/////////////////////////////////////////////////////////////////////////
static proc simplifyToOrder (poly f)
"USAGE: simplifyToOrder(f); f a polynomial
ASSUME: f is a polynomial in Q(t)[x_1,...,x_n]
RETURN: list, l[1] = t-order of leading term of f
l[2] = the rational coefficient of the term of lowest t-order
in lead(f)
NOTE: the procedure is called by tInitialFormPar"
{
string denom=string(denominator(leadcoef(f)));
string num=string(numerator(leadcoef(f)));
string PMet=string(par(1));
def BASERING=basering;
execute("ring r=0,"+PMet+",ls;");
execute("poly denomi="+denom+";");
execute("poly numer="+num+";");
int ordnung=ord(numer)-ord(denomi);
string koeffizient=string(leadcoef(numer)/leadcoef(denomi));
setring BASERING;
return(list(ordnung,koeffizient));
}
/////////////////////////////////////////////////////////////////////////
static proc scalarproduct (intvec w,intvec v)
"USAGE: scalarproduct(w,v); w,v intvec
ASSUME: w and v are integer vectors of the same length
RETURN: int, the scalarproduct of v and w
NOTE: the procedure is called by tropicalparametriseNoabs"
{
int sp;
for (int i=1;i<=size(w);i++)
{
sp=sp+v[i]*w[i];
}
return(sp);
}
/////////////////////////////////////////////////////////////////////////
static proc intvecdelete (intvec w,int i)
"USAGE: intvecdelete(w,i); w intvec, i int
RETURN: intvec, the integer vector w with the ith component deleted
NOTE: the procedure is called by tropicalparametriseNoabs"
{
if ((i<1) or (i>size(w)) or (size(w)==1))
{
return(w);
}
if (i==1)
{
return(w[2..size(w)]);
}
if (i==size(w))
{
return(w[1..size(w)-1]);
}
else
{
intvec erg=w[1..i-1],w[i+1..size(w)];
return(erg);
}
}
/////////////////////////////////////////////////////////////////////////
static proc invertorder (ideal i)
"USAGE: intvertorder(i); i ideal
RETURN: ideal, the order of the entries of i has been inverted
NOTE: the procedure is called by tropicalparametriseNoabs"
{
ideal ausgabe;
for (int j=size(i);j>=1;j--)
{
ausgabe[size(i)-j+1]=i[j];
}
return(ausgabe);
}
/////////////////////////////////////////////////////////////////////////
static proc ordermaximalidealsNoabs (list minassi,int anzahlvariablen)
"USAGE: ordermaximalidealsNoabs(minassi); minassi list
ASSUME: minassi is a list of maximal ideals
RETURN: list, the procedure orders the maximal ideals in minassi according
to how many new variables are needed to describe the zeros
of the ideal
l[j][1] = jth maximal ideal
l[j][2] = the number of variables needed
l[j][3] = intvec, if for the kth variable a new variable is
needed to define the corresponding zero of
l[j][1], then the k+1st entry is one
l[j][4] = list, if for the kth variable no new variable is
needed to define the corresponding zero of
l[j][1], then its value is the k+1st entry
NOTE: if a maximal ideal contains a variable, it is removed from the list;
the procedure is called by findzeros"
{
int j,k,l;
int neuvar; // number of new variables needed (for each maximal ideal)
int pruefer; // is set one if a maximal ideal contains a variable
list minassisort; // will contain the output
for (j=1;j<=size(minassi);j++){minassisort[j]=0;} // initialise minassisort
// to fix its initial length
list zwischen; // needed for reordering
list a;// (a_1,...,a_n)=(a[2],...,a[n+1]) will be a common zero of the ideal m
poly nf; // normalform of a variable w.r.t. m
intvec neuevariablen; // ith entry is 1, if for the ith component of a zero
// of m a new variable is needed
intvec testvariablen; // integer vector of length n=number of variables
// compute for each maximal ideal the number of new variables,
// which are needed to describe
// its zeros -- note, a new variable is needed if modulo
// the maximal ideal it does not reduce
// to something which only depends on the following variables;
// if no new variable is needed, then store the value
// a variable reduces to in the list a;
for (j=size(minassi);j>=1;j--)
{
a[1]=poly(0); // the first entry in a and in neuevariablen
// corresponds to the variable t,
neuevariablen[1]=0; // which is not present in the INITIALRING
neuvar=0;
minassi[j]=std(minassi[j]);
for (k=1;(k<=anzahlvariablen-1) and (pruefer==0);k++)
{
nf=reduce(var(k),minassi[j]);
// if a variable reduces to zero, then the maximal ideal
// contains a variable and we can delete it
if (nf==0)
{
pruefer=1;
}
// set the entries of testvariablen corresponding to the first
// k variables to 1, and the others to 0
for (l=1;l<=nvars(basering);l++)
{
if (l<=k)
{
testvariablen[l]=1;
}
else
{
testvariablen[l]=0;
}
}
// if the variable x_j reduces to a polynomial
// in x_j+1,...,x_n,X_1,...,X_k modulo m
// then we can eliminate x_j from the maximal ideal
// (since we do not need any
// further field extension to express a_j) and a_j
// will just be this normalform,
// otherwise we have to introduce a new variable in order to express a_j;
if (scalarproduct(leadexp(nf),testvariablen)==0)
{
a[k+1]=nf; // a_k is the normal form of the kth variable modulo m
neuevariablen[k+1]=0; // no new variable is needed
}
else
{
a[k+1]=poly(0); // a_k is set to zero until we have
// introduced the new variable
neuevariablen[k+1]=1;
neuvar++; // the number of newly needed variables is raised by one
}
}
// if the maximal ideal contains a variable, we simply delete it
if (pruefer==0)
{
minassisort[j]=list(minassi[j],neuvar,neuevariablen,a);
}
// otherwise we store the information on a,
// neuevariablen and neuvar together with the ideal
else
{
minassi=delete(minassi,j);
minassisort=delete(minassisort,j);
pruefer=0;
}
}
// sort the maximal ideals ascendingly according to
// the number of new variables needed to
// express the zero of the maximal ideal
for (j=2;j<=size(minassi);j++)
{
l=j;
for (k=j-1;k>=1;k--)
{
if (minassisort[l][2]<minassisort[k][2])
{
zwischen=minassisort[l];
minassisort[l]=minassisort[k];
minassisort[k]=zwischen;
l=k;
}
}
}
return(minassisort);
}
/////////////////////////////////////////////////////////////////////////
static proc displaypoly(poly p,int N,int wj,int w1)
"USAGE: displaypoly(p,N,wj,w1); p poly, N, wj, w1 int
ASSUME: p is a polynomial in r=(0,X(1..k)),t,ls
RETURN: string, the string of t^-wj/w1*p(t^1/N)
NOTE: the procedure is called from displayTropicalLifting"
{
if (p==0)
{
return(string(0));
}
ideal tpowers;
for (int j=ord(p);j<=deg(p);j++)
{
tpowers=tpowers,t^j;
}
tpowers=simplify(tpowers,2);
ideal koeffizienten=flatten(coeffs(p,tpowers));;
string dp;
for (j=ord(p);j<=deg(p);j++)
{
if (koeffizienten[j-ord(p)+1]!=0)
{
if ((j-(N*wj) div w1)==0)
{
dp=dp+displaycoef(koeffizienten[j-ord(p)+1]);
}
if (((j-(N*wj) div w1)==1) and (N!=1))
{
dp=dp+displaycoef(koeffizienten[j-ord(p)+1])+"*t^(1/"+string(N)+")";
}
if (((j-(N*wj) div w1)==1) and (N==1))
{
dp=dp+displaycoef(koeffizienten[j-ord(p)+1])+"*t";
}
if (((j-(N*wj) div w1)==-1) and (N==1))
{
dp=dp+displaycoef(koeffizienten[j-ord(p)+1])+"*1/t";
}
if (((j-(N*wj) div w1)==-1) and (N!=1))
{
dp=dp+displaycoef(koeffizienten[j-ord(p)+1])+"*1/t^(1/"+string(N)+")";
}
if (((j-(N*wj) div w1)>1) and (N==1))
{
dp=dp+displaycoef(koeffizienten[j-ord(p)+1])+"*t^"+string(j-(N*wj) div w1);
}
if (((j-(N*wj) div w1)>1) and (N!=1))
{
dp=dp+displaycoef(koeffizienten[j-ord(p)+1])+"*t^("+string(j-(N*wj) div w1)+"/"+string(N)+")";
}
if (((j-(N*wj) div w1)<-1) and (N==1))
{
dp=dp+displaycoef(koeffizienten[j-ord(p)+1])+"*1/t^"+string(wj-j);
}
if (((j-(N*wj) div w1)<-1) and (N!=1))
{
dp=dp+displaycoef(koeffizienten[j-ord(p)+1])+"*1/t^("+string((N*wj) div w1-j)+"/"+string(N)+")";
}
if (j<deg(p))
{
dp=dp+" + ";
}
}
}
return(dp);
}
/////////////////////////////////////////////////////////////////////////
static proc displaycoef (poly p)
"USAGE: displaycoef(p); p poly
RETURN: string, the string of p where brackets around
have been added if they were missing
NOTE: the procedure is called from displaypoly"
{
string pp=string(p);
if (pp[1]=="(")
{
return(pp);
}
else
{
return("("+pp+")");
}
}
/////////////////////////////////////////////////////////////////////////
static proc choosegfanvector (string s,int findall,int homogentest)
"USAGE: choosegfanvector(s,fa,h); s string, fa,h int
RETURN: list, the jth entry is the jth integer vector contained in s
NOTE: the procedure is called from tropicalparametrise"
{
if (findall==0) // if only one point in the tropical variety should be found
{
int i=2;
string w;
while (s[i]!=")")
{
w=w+s[i];
i++;
}
execute("intvec ww="+w+";");
// the last entry in ww should correspond to the homogenisation variable
// (and can be omitted), unless the input to gfan was already homogeneous
if (homogentest==0)
{
ww=ww[1..size(ww)-1];
}
return(list(ww));
}
else
{
int i=1;
string w;
list ww;
intvec www;
while (size(s)!=0)
{
while ((s[1]!="(") and (size(s)!=0))
{
s=stringdelete(s,1);
}
if (size(s)!=0)
{
s=stringdelete(s,1);
}
while ((s[1]!=")") and (size(s)!=0))
{
w=w+s[1];
s=stringdelete(s,1);
}
if (size(s)!=0)
{
execute("www=intvec("+w+");");
if (homogentest==0)
{
ww[i]=intvec(www[1..size(www)-1]);
}
else
{
ww[i]=www;
}
w="";
i++;
}
}
return(ww);
}
}
/////////////////////////////////////////////////////////////////////////
static proc tropicalliftingresubstitute (ideal i,list liftring,int N,list #)
"USAGE: tropicalliftingresubstitute(i,L,N[,#]); i ideal, L list, N int, # string
ASSUME: i is an ideal and L[1] is a ring which contains the lifting of a
point in the tropical variety of i computed with tropicalLifting;
t has to be replaced by t^1/N in the lifting; #[1]=m is the string
of the maximal ideal defining the necessary field extension as
computed by tropicalLifting, if #[1] is present
RETURN: string, the lifting has been substituted into i
NOTE: the procedure is called from tropicalLifting"
{
def BASERING=basering;
def LIFTRing=liftring[1];
if (size(parstr(LIFTRing))!=0)
{
if (size(#)>0) // noAbs was used
{
execute("ring NOQRing=("+string(char(LIFTRing))+"),("+varstr(basering)+","+parstr(LIFTRing)+"),dp;");
execute("qring TESTRing=std("+#[1]+");");
ideal i=imap(BASERING,i);
}
else // absolute primary decomposition was used
{
setring LIFTRing;
poly mp=minpoly;
execute("ring TESTRing=("+charstr(LIFTRing)+"),("+varstr(BASERING)+"),dp;");
minpoly=number(imap(LIFTRing,mp));
ideal i=imap(BASERING,i);
}
}
else
{
def TESTRing=BASERING;
setring TESTRing;
}
// map the ideal LIFT to the TESTRing and substitute the solutions in i
ideal liftideal=imap(LIFTRing,LIFT);
for (int j=1;j<=ncols(liftideal);j++)
{
i=substitute(i,var(j),liftideal[j]);
}
// map the resulting i back to LIFTRing;
// if noAbs, then reduce i modulo the maximal ideal
// before going back to LIFTRing
if ((size(parstr(LIFTRing))!=0) and size(#)>0)
{
i=reduce(i,std(0));
setring LIFTRing;
ideal i=imap(TESTRing,i);
}
else
{
setring LIFTRing;
ideal i=imap(TESTRing,i);
}
list SUBSTTEST;
// replace t by t^1/N
for (j=1;j<=ncols(i);j++)
{
SUBSTTEST[j]=displaypoly(i[j],N,0,1);
}
return(SUBSTTEST);
}
///////////////////////////////////////////////////////////////////////////////
/// Procedures used in tropicalLifting when using absolute primary decomposition
/// - tropicalparametrise
/// - eliminatecomponents
/// - findzerosAndBasictransform
/// - ordermaximalideals
///////////////////////////////////////////////////////////////////////////////
static proc tropicalparametrise (ideal i,intvec ww,int ordnung,intvec ordnungskontrollvektor,int gfanold,int findall,int nogfan,int puiseux,list #)
"USAGE: tropicalparametrise(i,tw,ord,gf,fa,ng,pu[,#]); i ideal, tw intvec, ord int, gf,fa,ng,pu int, # opt. list
ASSUME: - i is an ideal in Q[t,x_1,...,x_n,@a], tw=(w_0,w_1,...,w_n,0)
and (w_0,...,w_n,0) is in the tropical variety of i,
and ord is the order up to which a point in V(i)
over K{{t}} lying over w shall be computed;
- moreover, @a should be not be there if the procedure is not
called recursively;
- the point in the tropical variety is supposed to lie in the
NEGATIVE orthant;
- the ideal is zero-dimensional when considered in
(K(t)[@a]/m)[x_1,...,x_n], where m=#[2] is a maximal ideal in K[@a];
- gf is 0 if version 2.2 or larger is used and it is 1 else
- fa is 1 if all solutions should be found
- ng is 1 if gfan should not be executed
- pu is 1 if n=1 and i is generated by one polynomial and newtonpoly is used to find a
point in the tropical variety instead of gfan
RETURN: list, l[1] = ring K[@a]/m[[t]]
l[2] = int
NOTE: - the procedure is also called recursively by itself, and
if it is called in the first recursion, the list # is empty,
otherwise #[1] is an integer, one more than the number of
true variables x_1,...,x_n, and #[2] will contain the maximal
ideal m in the variable @a by which the ring K[t,x_1,...,x_n,@a]
should be divided to work correctly in L[t,x_1,...,x_n] where
L=Q[@a]/m is a field extension of K
- the ring l[1] contains an ideal PARA, which contains the
parametrisation of a point in V(i) lying over w up to the first
ord terms;
- the string m contains the code of the maximal ideal m, by which we
have to divide K[@a] in order to have the appropriate field extension
over which the parametrisation lives;
- and if the integer l[3] is N then t has to be replaced by t^1/N in the
parametrisation, or alternatively replace t by t^N in the defining
ideal
- the procedure REQUIRES that the program GFAN is installed
on your computer"
{
def BASERING=basering;
int recursively; // is set 1 if the procedure is called recursively by itself
int ii,jj,kk,ll,jjj,kkk,lll;
if (typeof(#[1])=="int") // this means the procedure has been
{ // called recursively
// how many variables are true variables, and how many come
// from the field extension
// only true variables have to be transformed
int anzahlvariablen=#[1];
// find the zeros of the w-initial ideal and transform the ideal i;
// findzeros and basictransformideal need to know
// how many of the variables are true variables
// and do the basic transformation as well
list zerolist=#[2];
list trring=findzerosAndBasictransform(i,ww,zerolist,findall,anzahlvariablen);
}
else // the procedure has been called by tropicalLifting
{
// how many variables are true variables, and
// how many come from the field extension
// only true variables have to be transformed
int anzahlvariablen=nvars(basering);
list zerolist; // will carry the zeros which are
//computed in the recursion steps
// the initial ideal of i has been handed over as #[1]
ideal ini=#[1];
// find the zeros of the w-initial ideal and transform the ideal i;
// we should hand the t-initial ideal ine to findzeros,
// since we know it already;
// and do the basic transformation as well
list trring=findzerosAndBasictransform(i,ww,zerolist,findall,ini);
}
list wneulist; // carries all newly computed weight vector
intvec wneu; // carries the newly computed weight vector
intvec okvneu; // carries the newly computed ordnungskontrollvektor
int tweight; // carries the weight of t
list PARALIST; // carries the result when tropicalparametrise
// is recursively called
list eliminaterings; // carries the result of eliminatecomponents
intvec deletedvariables; // contains inform. which variables have been deleted
deletedvariables[anzahlvariablen-1]=0; // initialise this vector
int numberdeletedvariables; // the number of deleted variables
int oldanzahlvariablen=anzahlvariablen; // anzahlvariablen for later reference
int homogentest=0;
list liftings,partliftings; // the computed liftings (all resp. partly)
// consider each ring which has been returned when computing the zeros of the
// the t-initial ideal, equivalently, consider
// each zero which has been returned
for (jj=1;jj<=size(trring);jj++)
{
def TRRING=trring[jj];
setring TRRING;
// check if a certain number of components lead to suitable
// solutions with zero components;
// compute them all if findall==1
eliminaterings=eliminatecomponents(i,m,oldanzahlvariablen,findall,oldanzahlvariablen-1,deletedvariables);
// consider each of the rings returned by eliminaterings ...
// there is at least one !!!
for (ii=1;ii<=size(eliminaterings);ii++)
{
// #variables which have been eliminated
numberdeletedvariables=oldanzahlvariablen-eliminaterings[ii][2];
// #true variables which remain (including t)
anzahlvariablen=eliminaterings[ii][2];
// a 1 in this vector says that variable was eliminated
deletedvariables=eliminaterings[ii][3];
setring TRRING; // set TRRING - this is important for the loop
// pass the ring computed by eliminatecomponents
def PREGFANRING=eliminaterings[ii][1];
setring PREGFANRING;
poly m=imap(TRRING,m); // map the maximal ideal to this ring
list zero=imap(TRRING,zero); // map the vector of zeros to this ring
// now we have to compute a point ww on the tropical
// variety of the transformed ideal i;
// of course, we only have to do so, if we have
// not yet reached the order up to which we
// were supposed to do our computations
if ((ordnung>1) and (anzahlvariablen>1)) // if only t remains,
{ // all true variables are gone
if (nogfan!=1)
{
// pass to a ring which has variables which are suitable for gfan
execute("ring GFANRING=("+string(char(basering))+"),(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z),dp;");
ideal phiideal=b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z;
phiideal[nvars(PREGFANRING)]=a; // map t to a
map phi=PREGFANRING,phiideal;
ideal II=phi(i);
// homogenise the ideal II with the first not yet
// used variable in our ring, since gfan
// only handles homogenous ideals; in principle for this
// one has first to compute a
// standard basis of II and homogenise that,
// but for the tropical variety (says Anders)
// it suffices to homogenise an arbitrary system of generators
// II=groebner(II);
homogentest=homog(II);
II=homog(II,maxideal(1)[nvars(PREGFANRING)+1]);
// if gfan version >= 0.3.0 is used and the characteristic
// is not zero, then write the basering to the output
if ((gfanold!=1) and (char(GFANRING)!=0))
{
string ringvariablen=varstr(GFANRING);
ringvariablen=ringvariablen[1..2*nvars(PREGFANRING)+1];
write(":w /tmp/gfaninput","Z/"+string(char(GFANRING))+"Z["+ringvariablen+"]");
// write the ideal to a file which gfan takes as input and call gfan
write(":a /tmp/gfaninput","{"+string(II)+"}");
}
else
{
// write the ideal to a file which gfan takes as input and call gfan
write(":w /tmp/gfaninput","{"+string(II)+"}");
}
if (gfanold==1)
{
if (charstr(basering)!="0")
{
system("sh","gfan_tropicalbasis --mod "+charstr(basering)+" < /tmp/gfaninput > /tmp/gfanbasis");
system("sh","gfan_tropicalintersection < /tmp/gfanbasis > /tmp/gfanoutput");
}
else
{
// system("sh","gfan_tropicalstartingcone < /tmp/gfaninput > /tmp/gfantropstcone");
// system("sh","gfan_tropicaltraverse < /tmp/gfantropstcone > /tmp/gfanoutput");
system("sh","gfan_tropicalbasis < /tmp/gfaninput > /tmp/gfanbasis");
system("sh","gfan_tropicalintersection < /tmp/gfanbasis > /tmp/gfanoutput");
}
string trop=read("/tmp/gfanoutput");
setring PREGFANRING;
wneu=-1; // this integer vector will store the point on the tropical variety
wneu[nvars(basering)]=0;
// for the time being simply stop Singular and set wneu by yourself
int goon=1;
trop;
"CHOOSE A RAY IN THE OUTPUT OF GFAN WHICH HAS ONLY";
"NON-POSITIVE ENTRIES AND STARTS WITH A NEGATIVE ONE,";
"E.G. (-3,-4,-1,-5,0,0,0) - the last entry will always be 0 -";
"THEN TYPE THE FOLLOWING COMMAND IN SINGULAR: wneu=-3,-4,-1,-5,0,0;";
"AND HIT THE RETURN BUTTON - NOTE, THE LAST 0 IS OMITTED";
"IF YOU WANT wneu TO BE TESTED, THEN SET goon=0;";
// THIS IS NOT NECESSARY !!!! IF WE COMPUTE NOT ONLY
// THE TROPICAL PREVARIETY
// test, if wneu really is in the tropical variety
while (goon==0)
{
if (testw(reduce(i,std(gesamt_m)),wneu,anzahlvariablen)==1)
{
"CHOOSE A DIFFERENT RAY";
}
else
{
goon=1;
}
}
wneulist[1]=wneu;
}
else
{
system("sh","gfan_tropicallifting -n "+string(anzahlvariablen)+" --noMult -c < /tmp/gfaninput > /tmp/gfanoutput");
// read the result from gfan and store it to a string,
// which in a later version
// should be interpreded by Singular
wneulist=choosegfanvector(read("/tmp/gfanoutput"),findall,homogentest);
setring PREGFANRING;
}
kill GFANRING;
}
else // if gfan is NOT executed
{
// if puiseux is set, then we are in the case of a plane curve and can use the command newtonpoly
if (puiseux==1)
{
if (nvars(basering)>2) // if the basering has a parameter
{ // we have to pass to a ring with two variables to compute the newtonpoly
def PRENPRing=basering;
poly NPpoly=i[1];
ring NPRING=(0,@a),(x(1),t),ds;
poly NPpoly=imap(PRENPRing,NPpoly);
list NewtP=newtonpoly(NPpoly);
setring PRENPRing;
kill NPRING;
}
else
{
list NewtP=newtonpoly(i[1]);
}
for (jjj=1;jjj<=size(NewtP)-1;jjj++)
{
wneu=NewtP[jjj]-NewtP[jjj+1];
int ggteiler=gcd(wneu[1],wneu[2]);
wneu[1]=-wneu[1] div ggteiler;
wneu[2]=wneu[2] div ggteiler;
if (wneu[1]>0)
{
wneu=-wneu;
}
if (nvars(basering)>2)
{
wneu[3]=0;
}
wneulist[jjj]=wneu;
}
kill NewtP,ggteiler;
}
else // we have to set the points in the tropical variety by hand
{
if (findall==1)
{
"Set wneulist!";
}
else
{
"Set intvec wneu!";
wneulist[1]=wneu;
}
}
}
}
// if we have not yet computed our parametrisation up to
// the required order and
// zero is not yet a solution, then we have to go on
// by calling the procedure recursively;
// if all variables were deleted, then i=0 and thus anzahlvariablen==0
lll=0;
if (((puiseux==0) and (ordnung>1)) or ((puiseux==1) and (ordnungskontrollvektor[2]<ordnungskontrollvektor[1]*ordnung)) and (anzahlvariablen>1))
{
partliftings=list(); // initialise partliftings
// we call the procedure with the transformed
// ideal i, the new weight vector, with the
// required order lowered by one, and with
// additional parameters, namely the number of
// true variables and the maximal ideal that
// was computed so far to describe the field extension
for (kk=1;kk<=size(wneulist);kk++)
{
wneu=wneulist[kk];
okvneu=-ordnungskontrollvektor[1]*wneu[1],-ordnungskontrollvektor[2]*wneu[1]-wneu[2];
if (puiseux==0)
{
PARALIST=tropicalparametrise(i,wneu,ordnung-1,okvneu,gfanold,findall,nogfan,puiseux,anzahlvariablen,zero);
}
else
{
PARALIST=tropicalparametrise(i,wneu,ordnung,okvneu,gfanold,findall,nogfan,puiseux,anzahlvariablen,zero);
}
// the output will be a ring, in which the
// parametrisation lives, and a string, which contains
// the maximal ideal that describes the necessary field extension
for (ll=1;ll<=size(PARALIST);ll++)
{
def PARARing=PARALIST[ll][1];
tweight=-ww[1]*PARALIST[ll][2];
setring PARARing;
// if some variables have been eliminated
// in before, then we have to insert zeros
// into the parametrisation for those variables
if (numberdeletedvariables>0)
{
ideal PARAneu=PARA;
kkk=0;
for (jjj=1;jjj<=anzahlvariablen+numberdeletedvariables-1;jjj++)
{ // t admits no parametrisation
if (deletedvariables[jjj]!=1)
{
kkk++;
PARA[jjj]=PARAneu[kkk];
}
else
{
PARA[jjj]=poly(0);
}
}
}
lll++;
partliftings[lll]=list(PARARing,tweight,wneu);
setring PREGFANRING;
kill PARARing;
}
}
}
// otherwise we are done and we can start
// to compute the last step of the parametrisation
else
{
// we define the weight of t, i.e. in the
// parametrisation t has to be replaced by t^1/tweight
tweight=-ww[1];
// if additional variables were necessary,
// we introduce them now as parameters;
// in any case the parametrisation ring will
// have only one variable, namely t,
// and its order will be local, so that it
// displays the lowest term in t first
if (anzahlvariablen<nvars(basering))
{
execute("ring PARARing=("+string(char(basering))+",@a),t,ls;");
minpoly=number(imap(PREGFANRING,m));
}
else
{
execute("ring PARARing=("+charstr(basering)+"),t,ls;");
}
ideal PARA; // will contain the parametrisation
// we start by initialising the entries to be zero;
// one entry for each true variable
// here we also have to consider the variables
// that we have eliminated in before
for (jjj=1;jjj<=anzahlvariablen+numberdeletedvariables-1;jjj++)
{
PARA[jjj]=poly(0);
}
list zeros=imap(PREGFANRING,zero);
export(PARA);
export(zeros);
partliftings=list(list(PARARing,tweight));
kill PARARing;
}
// we now have to change the parametrisation by
// reverting the transformations that we have done
for (lll=1;lll<=size(partliftings);lll++)
{
if (size(partliftings[lll])==2) // when tropicalparametrise is called
{ // for the last time, it does not enter the part, where wneu is
wneu=-1; // defined and the variable t should have weight -1
}
else
{
wneu=partliftings[lll][3];
partliftings[lll]=delete(partliftings[lll],3);
}
tweight=partliftings[lll][2];
def PARARing=partliftings[lll][1];
setring PARARing;
for (jjj=1;jjj<=anzahlvariablen+numberdeletedvariables-1;jjj++)
{
PARA[jjj]=(PARA[jjj]+zeros[size(zeros)][jjj+1])*t^(ww[jjj+1]*tweight div ww[1]);
}
// delete the last entry in zero, since that one has
// been used for the transformation
zeros=delete(zeros,size(zeros));
// in order to avoid redefining commands an empty
// zeros list should be removed
if (size(zeros)==0)
{
kill zeros;
}
partliftings[lll]=list(PARARing,tweight);
setring TRRING;
kill PARARing;
}
kill PREGFANRING;
liftings=liftings+partliftings;
}
kill TRRING;
}
if (nogfan!=1)
{
// kill the gfan files in /tmp
system("sh","cd /tmp; /usr/bin/touch gfaninput; /usr/bin/touch gfanoutput; command rm gfaninput; command rm gfanoutput");
}
// we return a list which contains lists of the parametrisation
// rings (with the parametrisation ideal)
// and an integer N such that t should be replaced by t^1/N
return(liftings);
}
/////////////////////////////////////////////////////////////////////////
static proc eliminatecomponents (ideal i,ideal m,int anzahlvariablen,int findall,int lastvar,intvec deletedvariables)
"USAGE: eliminatecomponents(i,m,n,a,v,d); i,m ideal, n,a,v int, d intvec
ASSUME: i is an ideal in Q[x_1,...,x_n,@a,t] and w=(-w_1/w_0,...,-w_n/w_0)
is in the tropical variety of i considered in
Q[@a]/m{{t}}[x_1,...,x_n];
considered in this ring i is zero-dimensional; @a need not be present
in which case m is zero; 1<=v<=n
RETURN: list, L of lists
L[j][1] = a ring containing an ideal i and an ideal m
L[j][2] = an integer anzahlvariablen
L[j][3] = an intvec deletedvariables
NOTE: - the procedure is called from inside the recursive
procedure tropicalparametrise
- the procedure checks for solutions which have certain
components zero; these are separated from the rest by
elimination and saturation; the integer deletedvariables
records which variables have been eliminated;
the integer anzahlvariablen records how many true variables remain
after the elimination
- if the integer a is one then all zeros of the ideal i are
considered and found, otherwise only one is considered, so that L
has length one"
{
def BASERING=basering;
int j,k; // index variable
ideal I,LI; // stores the changed ideal i, respectively its leading ideal
// if all solutions have to be found
if (findall==1)
{
list saturatelist,eliminatelist; // carry the solution of the two tests
// we test first if there is a solution which has the component
// lastvar zero and
// where the order of each component is strictly positive;
// if so, we add this variable to the ideal and
// eliminate it - which amounts to
// to projecting the solutions with this component
// zero to the hyperplane without this component;
// for the test we compute the saturation with
// respect to t and replace each variable
// x_i and also t by zero -- if the result is zero,
// then 1 is not in I:t^infty
// (i.e. there is a solution which has the component lastvar zero) and
// the result lives in the maximal
// ideal <t,x_1,...,[no x_lastvar],...,x_n> so that
// there is a solution which has strictly positive valuation
// ADDENDUM:
// if i (without m) has only one polynomial, then we can divide
// i by t as long as possible to compute the saturation with respect to t
/*
// DER NACHFOLGENDE TEIL IST MUELL UND WIRD NICHT MEHR GAMACHT
// for the test we simply compute the leading ideal
// and set all true variables zero;
// since the ordering was an elimination ordering
// with respect to (@a if present and) t
// there remains something not equal to zero
// if and only if there is polynomial which only
// depends on t (and @a if present), but that is
// a unit in K{{t}}, which would show that there
// is no solution with the component lastvar zero;
// however, we also have to ensure that if there
// exists a solution with the component lastvar
// equal to zero then this component has a
// valuation with all strictly positive values!!!!;
// for this we can either saturate the ideal
// after elimination with respect to <t,x_1,...,x_n>
// and see if the saturated ideal is contained in <t,x_1,...x_n>+m,
// or ALTERNATIVELY we can pass to the
// ring 0,(t,x_1,...,x_n,@a),(ds(n+1),dp(1)),
// compute a standard basis of the elimination
// ideal (plus m) there and check if the dimension 1
// (since we have not omitted the variable lastvar,
// this means that we have the ideal
// generated by t,x_1,...,[no x_lastvar],...,x_n
// and this defines NO curve after omitting x_lastvar)
I=std(ideal(var(lastvar)+i));
// first test,
LI=lead(reduce(I,std(m)));
//size(deletedvariables)=anzahlvariablen(before elimination)
for (j=1;j<=anzahlvariablen-1;j++)
{
LI=subst(LI,var(j),0);
}
if (size(LI)==0) // if no power of t is in lead(I) (where @a is considered as a field element)
*/
if (size(i)-size(m)!=1)
{
I=reduce(sat(std(ideal(var(lastvar)+i)),t)[1],std(m)); // get rid of the minimal
// polynomial for the test
}
else
{
I=subst(i,var(lastvar),0);
while ((I[1]!=0) and (subst(I[1],t,0)==0))
{
I[1]=I[1]/t;
}
I=reduce(I,std(m));
}
LI=subst(I,var(nvars(basering)),0);
//size(deletedvariables)=anzahlvariablen(before elimination)
for (j=1;j<=anzahlvariablen-1;j++)
{
LI=subst(LI,var(j),0);
}
if (size(LI)==0) // the saturation lives in the maximal
{ // ideal generated by t and the x_i
// get rid of var(lastvar)
I=eliminate(I,var(lastvar))+m; // add the minimal polynomial again
// store the information which variable has been eliminated
intvec newdeletedvariables=deletedvariables;
newdeletedvariables[lastvar]=1;
// pass to a new ring whith one variable less
if (anzahlvariablen>2)
{
string elring="ring ELIMINATERING=("+charstr(basering)+"),("+string(simplify(reduce(maxideal(1),std(var(lastvar))),2))+"),(dp("+string(anzahlvariablen-2)+"),";
}
else
{
string elring="ring ELIMINATERING=("+charstr(basering)+"),("+string(simplify(reduce(maxideal(1),std(var(lastvar))),2))+"),(";
}
if (anzahlvariablen<nvars(basering)) // if @a was present, the
{ // ordersting needs an additional entry
elring=elring+"dp(1),";
}
elring=elring+"lp(1));";
execute(elring);
ideal i=imap(BASERING,I); // move the ideal I to the new ring
// if not yet all variables have been checked,
// then go on with the next smaller variable,
// else prepare the elimination ring and the neccessary
// information for return
if (lastvar>1)
{
eliminatelist=eliminatecomponents(i,imap(BASERING,m),anzahlvariablen-1,findall,lastvar-1,newdeletedvariables);
}
else
{
export(i);
eliminatelist=list(list(ELIMINATERING,anzahlvariablen-1,newdeletedvariables));
}
setring BASERING;
}
// next we have to test if there is also a solution
// which has the variable lastvar non-zero;
// to do so, we saturate with respect to this variable;
// since when considered over K{{t}}
// the ideal is zero dimensional, this really removes
// all solutions with that component zero;
// the checking is then done as above
// ADDENDUM
// if the ideal i (without m) is generated by a single polynomial
// then we saturate by successively dividing by the variable
if (size(i)-size(m)==1)
{
while (subst(i[1],var(lastvar),0)==0)
{
i[1]=i[1]/var(lastvar);
}
}
else
{
i=std(sat(i,var(lastvar))[1]);
}
I=reduce(i,std(m)); // "remove" m from i
// test first, if i still is in the ideal <t,x_1,...,x_n> -- if not, then
// we know that i has no longer a point in the tropical
// variety with all components negative
LI=subst(I,var(nvars(basering)),0);
for (j=1;j<=anzahlvariablen-1;j++) // set all variables
{ // t,x_1,...,x_n equal to zero
LI=subst(LI,var(j),0);
}
if (size(LI)==0) // the entries of i have no constant part
{
// check now, if the leading ideal of i contains an element
// which only depends on t
LI=lead(I);
//size(deletedvariables)=anzahlvariablen(before elimination)
for (j=1;j<=anzahlvariablen-1;j++)
{
LI=subst(LI,var(j),0);
}
if (size(LI)==0) // if no power of t is in lead(i)
{ // (where @a is considered as a field element)
// if not yet all variables have been tested, go on with the
// next smaller variable
// else prepare the neccessary information for return
if (lastvar>1)
{
saturatelist=eliminatecomponents(i,m,anzahlvariablen,findall,lastvar-1,deletedvariables);
}
else
{
execute("ring SATURATERING=("+charstr(basering)+"),("+varstr(basering)+"),("+ordstr(basering)+");");
ideal i=imap(BASERING,i);
export(i);
setring BASERING;
saturatelist=list(list(SATURATERING,anzahlvariablen,deletedvariables));
}
}
}
return(eliminatelist+saturatelist);
}
else // only one solution is searched for, we can do a simplified
{ // version of the above
// check if there is a solution which has the n-th component
// zero and with positive valuation,
// if so, then eliminate the n-th variable from
// sat(i+x_n,t), otherwise leave i as it is;
// then check if the (remaining) ideal has as
// solution where the n-1st component is zero ...,
// and procede as before; do the same for the remaining variables;
// this way we make sure that the remaining ideal has
// a solution which has no component zero;
ideal variablen; // will contain the variables which are not eliminated
for (j=anzahlvariablen-1;j>=1;j--) // the variable t is the last one !!!
{
I=sat(ideal(std(var(j)+i)),t)[1];
LI=subst(I,var(nvars(basering)),0);
//size(deletedvariables)=anzahlvariablen-1(before elimination)
for (k=1;k<=size(deletedvariables);k++)
{
LI=subst(LI,var(k),0);
}
if (size(LI)==0) // if no power of t is in lead(I)
{ // (where the X(i) are considered as field elements)
// get rid of var(j)
i=eliminate(I,var(j));
deletedvariables[j]=1;
anzahlvariablen--; // if a variable is eliminated,
// then the number of true variables drops
}
else
{
variablen=variablen+var(j); // non-eliminated true variables are stored
}
}
variablen=invertorder(variablen);
// store also the additional variable and t,
// since they for sure have not been eliminated
for (j=size(deletedvariables)+1;j<=nvars(basering);j++)
{
variablen=variablen+var(j);
}
// if there are variables left, then pass to a ring which
// only realises these variables else we are done
if (anzahlvariablen>1)
{
string elring="ring ELIMINATERING=("+charstr(basering)+"),("+string(variablen)+"),(dp("+string(anzahlvariablen-1)+"),";
}
else
{
string elring="ring ELIMINATERING=("+charstr(basering)+"),("+string(variablen)+"),(";
}
if (size(deletedvariables)+1<nvars(basering)) // if @a was present,
{ // the ordersting needs an additional entry
elring=elring+"dp(1),";
}
elring=elring+"lp(1));";
execute(elring);
ideal i=imap(BASERING,i);
ideal m=imap(BASERING,m);
export(i);
export(m);
return(list(list(ELIMINATERING,anzahlvariablen,deletedvariables)));
}
}
/////////////////////////////////////////////////////////////////////////
static proc findzerosAndBasictransform (ideal i,intvec w,list zerolist,int findall,list #)
"USAGE: findzerosAndBasictransform(i,w,z,f[,#]); i ideal, w intvec, z list, f int,# an optional list
ASSUME: i is an ideal in Q[t,x_1,...,x_n,@a] and w=(w_0,...,w_n,0)
is in the tropical variety of i; @a need not be present;
the list 'zero' contains the zeros computed in previous recursion steps;
if 'f' is one then all zeros should be found and returned,
otherwise only one
RETURN: list, each entry is a ring corresponding to one conjugacy class of
zeros of the t-initial ideal inside the torus; each of the rings
contains the following objects
ideal i = the ideal i, where the variable @a (if present) has
possibly been transformed according to the new
minimal polynomial, and where itself has been
submitted to the basic transform of the algorithm
given by the jth zero found for the t-initial ideal;
note that the new minimal polynomial has already
been added
poly m = the new minimal polynomial for @a
(it is zero if no @a is present)
list zero = zero[k+1] is the kth component of a zero
the t-initial ideal of i
NOTE: - the procedure is called from inside the recursive procedure
tropicalparametrise;
if it is called in the first recursion, the list #[1] contains
the t-initial ideal of i w.r.t. w, otherwise #[1] is an integer,
one more than the number of true variables x_1,...,x_n
- if #[2] is present, then it is an integer which tells whether
ALL zeros should be found or not"
{
def BASERING=basering;
string tvar=string(var(nvars(basering)));
int j,k,l; // indices
// store the weighted degrees of the elements of i in an integer vector
intvec wdegs;
for (j=1;j<=size(i);j++)
{
wdegs[j]=deg(i[j],intvec(w[2..size(w)],w[1]));
}
// set anzahlvariablen to the number of true variables
if (typeof(#[1])=="int")
{
int recursive=1; // checks if the procedure has been called recursively
int anzahlvariablen=#[1];
// compute the initial ideal of i
// - the last 1 just means that the variable t is the last
// variable in the ring
ideal ini=tInitialIdeal(i,w,1);
}
else
{
int recursive=0;
int anzahlvariablen=nvars(basering);
ideal ini=#[1]; // the t-initial ideal has been computed
// in before and was handed over
}
// collect the true variables x_1,...,x_n plus @a, if it is defined in BASERING
ideal variablen;
for (j=1;j<=nvars(basering)-1;j++)
{
variablen=variablen+var(j);
}
// move to a polynomial ring with global monomial ordering
// - the variable t is superflous,
// the variable @a is not if it was already present
execute("ring INITIALRING=("+charstr(basering)+"),("+string(variablen)+"),dp;");
ideal ini=imap(BASERING,ini);
// compute the minimal associated primes of the
// initialideal over the algebraic closure;
// ordering the maximal ideals shall help to
// avoid unneccessary field extensions
list absminass=absPrimdecGTZ(ini);
def ABSRING=absminass[1]; // the ring in which the minimal
// associated primes live
setring ABSRING;
list maximalideals=ordermaximalideals(absolute_primes,anzahlvariablen);
if (findall==0) // only one maximal ideal shall be considered
{
maximalideals=list(maximalideals[1]);
}
list extensionringlist; // contains the rings which are to be returned
for (j=1;j<=size(maximalideals);j++)
{
// check if for the jth maximal ideal a field extension is necessary;
// the latter condition says that @a is not in BASERING;
// if some of the maximal ideals needs a field extension,
// then everything will live in this ring
if ((maximalideals[j][1]!=0) and (nvars(BASERING)==anzahlvariablen))
{
// define the extension ring which contains
// the new variable @a, if it is not yet present
execute("ring EXTENSIONRING=("+charstr(BASERING)+"),("+string(imap(BASERING,variablen))+",@a,"+tvar+"),(dp("+string(anzahlvariablen-1)+"),dp(1),lp(1));");
// phi maps x_i to x_i, @a to @a (if present in the ring),
// and the additional variable
// for the field extension is mapped to @a as well
// -- note that we only apply phi
// to the list a, and in this list no @a is present;
// therefore, it does not matter where this is mapped to
map phi=ABSRING,imap(BASERING,variablen),@a;
}
else // @a was already present in the BASERING or no
{ // field extension is necessary
execute("ring EXTENSIONRING=("+charstr(BASERING)+"),("+varstr(BASERING)+"),("+ordstr(BASERING)+");");
// phi maps x_i to x_i, @a to @a (if present in the ring),
// and the additional variable
// for the field extension is mapped to @a as well respectively to 0,
// if no @a is present;
// note that we only apply phi to the list a and to
// the replacement rule for
// the old variable @a, and in this list resp.
// replacement rule no @a is present;
// therefore, it does not matter where this is mapped to;
if (anzahlvariablen<nvars(EXTENSIONRING)) // @a is in EXTENSIONRING
{
// additional variable is mapped to @a
map phi=ABSRING,imap(BASERING,variablen),@a;
}
else
{
// additional variable is mapped to 0
map phi=ABSRING,imap(BASERING,variablen),0;
}
}
// map the list maximalideals to the EXTENSIONRING
list maximalideals=phi(maximalideals);
poly m=maximalideals[j][1]; // extract m
list zeroneu=maximalideals[j][2]; // extract the new zero
poly repl=maximalideals[j][3]; // extract the replacement rule
// the list zero may very well exist as an EMPTY global list
// - in this case we have to remove it
// in order to avoid a redefining warning
if (defined(zero)!=0)
{
if (size(zero)==0)
{
kill zero;
}
}
// map i and alist to the new ring
if (repl==0) // in BASERING no @a was present
{
ideal i=imap(BASERING,i);
if (defined(zerolist)==0) // if zerolist is empty, it does not
{ // depend on BASERING !
list zero=imap(BASERING,zerolist);
}
else
{
list zero=zerolist;
}
}
else // in BASERING was @a present
{
ideal variablen=imap(BASERING,variablen);
// map i and zerolist to EXTENSIONRING replacing @a
// by the replacement rule repl
map psi=BASERING,variablen[1..size(variablen)-1],repl,var(nvars(basering));
ideal i=psi(i);
list zero=psi(zerolist);
kill psi;
}
// add the last vector of zeros to zero
zero[size(zero)+1]=zeroneu;
// do now the basic transformation sending x_l -> t^-w_l*(zero_l+x_l)
for (l=1;l<=anzahlvariablen;l++)
{
for (k=1;k<=size(i);k++)
{
if (l!=1) // corresponds to x_(l-1) -- note t is the last variable
{
i[k]=subst(i[k],var(l-1),(zeroneu[l]+var(l-1))*t^(-w[l]));
}
else // corresponds to t
{
i[k]=subst(i[k],var(nvars(basering)),var(nvars(basering))^(-w[l]));
}
}
}
// we can divide the lth generator of i by t^-wdegs[l]
for (l=1;l<=ncols(i);l++)
{
if (wdegs[l]<0) // if wdegs[l]==0 there is no need to divide,
{ // and we made sure that it is no positive
i[l]=i[l]/t^(-wdegs[l]);
}
}
// since we want to consider i now in the ring (Q[@a]/m)[t,x_1,...,x_n]
// we can reduce i modulo m, so that "constant terms"
// which are "zero" since they
// are in m will disappear; simplify(...,2) then really removes them;
// finally we add the minimal polynomial
i=simplify(ideal(reduce(i,std(m))+m),2);
export(i);
export(m);
export(zero);
extensionringlist[j]=EXTENSIONRING;
kill EXTENSIONRING;
setring ABSRING;
}
return(extensionringlist);
}
/////////////////////////////////////////////////////////////////////////
static proc ordermaximalideals (list minassi,int anzahlvariablen)
"USAGE: ordermaximalideals(minassi); minassi list
ASSUME: minassi is a list of maximal ideals (together with the information
how many conjugates it has), where the first polynomial is the
minimal polynomial of the last variable in the ring which is
considered as a parameter
RETURN: list, the procedure orders the maximal ideals in minassi according
to how many new variables are needed (namely none or one) to
describe the zeros of the ideal, and accordingly to the
degree of the corresponding minimal polynomial
l[j][1] = the minimal polynomial for the jth maximal ideal
l[j][2] = list, the k+1st entry is the kth coordinate of the
zero described by the maximal ideal in terms
of the last variable
l[j][3] = poly, the replacement for the old variable @a
NOTE: if a maximal ideal contains a variable, it is removed from the list;
the procedure is called by findzerosAndBasictransform"
{
int j,k,l;
int pruefer; // is set one if a maximal ideal contains a variable
list minassisort; // will contain the output
for (j=1;j<=size(minassi);j++){minassisort[j]=0;} // initialise minassisort
// to fix its initial length
list zwischen; // needed for reordering
list zero; // (a_1,...,a_n)=(zero[2],...,zero[n+1]) will be
// a common zero of the ideal m
poly nf; // normalform of a variable w.r.t. m
poly minimalpolynomial; // minimal polynomial for the field extension
poly parrep; // the old variable @a possibly has to be replaced by a new one
// compute for each maximal ideal the number of new variables, which are
// needed to describe its zeros -- note, a new variable is needed
// if the first entry of minassi[j][1] is not the last variable
// store the value a variable reduces to in the list a;
for (j=size(minassi);j>=1;j--)
{
minimalpolynomial=minassi[j][1][1];
if (minimalpolynomial==var(nvars(basering)))
{
minimalpolynomial=0;
}
zero[1]=poly(0); // the first entry in zero and in
// neuevariablen corresponds to the variable t,
minassi[j][1]=std(minassi[j][1]);
for (k=1;(k<=anzahlvariablen-1) and (pruefer==0);k++)
{
// zero_k+1 is the normal form of the kth variable modulo m
zero[k+1]=reduce(var(k),minassi[j][1]);
// if a variable reduces to zero, then the maximal
// ideal contains a variable and we can delete it
if (zero[k+1]==0)
{
pruefer=1;
}
}
// if anzahlvariablen<nvars(basering), then the old ring
// had already an additional variable;
// the old parameter @a then has to be replaced by parrep
if (anzahlvariablen<nvars(basering))
{
parrep=reduce(var(anzahlvariablen),minassi[j][1]);
}
// if the maximal ideal contains a variable, we simply delete it
if (pruefer==0)
{
minassisort[j]=list(minimalpolynomial,zero,parrep);
}
// otherwise we store the information on a, neuevariablen
// and neuvar together with the ideal
else
{
minassi=delete(minassi,j);
minassisort=delete(minassisort,j);
pruefer=0;
}
}
// sort the maximal ideals ascendingly according to the
// number of new variables needed to
// express the zero of the maximal ideal
for (j=2;j<=size(minassi);j++)
{
l=j;
for (k=j-1;k>=1;k--)
{
if (deg(minassisort[l][1])<deg(minassisort[k][1]))
{
zwischen=minassisort[l];
minassisort[l]=minassisort[k];
minassisort[k]=zwischen;
l=k;
}
}
}
return(minassisort);
}
////////////////////////////////////////////////////////////////////////////////////
/// Procedures used in tropicalCurve:
/// - verticesTropicalCurve
/// - bunchOfLines
/// - clearintmat
/// - sortintvec
/// - sortintmat
/// - intmatcoldelete
/// - intmatconcat
/// - minInIntvec
/// - positionInList
/// - sortlist
/// - minInList
/// - vergleiche
/// - koeffizienten
////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////
static proc verticesTropicalCurve (def tp,list #)
"USAGE: verticesTropicalCurve(tp[,#]); tp list, # optional list
ASSUME: tp is represents an ideal in Z[x,y] representing a tropical
polynomial (in the form of the output of the procedure tropicalise)
defining a tropical plane curve
RETURN: list, each entry corresponds to a vertex in the tropical plane
curve defined by tp
l[i][1] = x-coordinate of the ith vertex
l[i][2] = y-coordinate of the ith vertex
l[i][3] = a polynomial whose monimials mark the vertices in
the Newton polygon corresponding to the entries in
tp which take the common minimum at the ith vertex
NOTE: - the information in l[i][3] represents the subdivision of the Newton
polygon of tp (respectively a polynomial which defines tp);
- if # is non-empty and #[1] is the string 'max', then in the
computations minimum and maximum are exchanged;
- if # is non-empty and the #[1] is not a string, only the vertices
will be computed and the information on the Newton subdivision will
be omitted;
- here the tropical polynomial is supposed to be the MINIMUM of the
linear forms in tp, unless the optional input #[1] is the
string 'max'
- the procedure is called from tropicalCurve and from
conicWithTangents"
{
// if you insert a single polynomial instead of an ideal representing
// a tropicalised polynomial,
// then we compute first the tropicalisation of this polynomial
// -- this feature is not documented in the above help string
if (typeof(tp)=="poly")
{
poly f=tp;
kill tp;
list tp=tropicalise(f,#);
}
int i,j,k,l,z; // indices
// make sure that no constant entry of tp has type int since that
// would lead to trouble
// when using the procedure substitute
for (i=1;i<=size(tp);i++)
{
if (typeof(tp[i])=="int")
{
tp[i]=poly(tp[i]);
}
}
// introduce necessary variables
ideal punkt;
poly px,py;
poly wert,vergleich;
poly newton;
list eckpunkte;
int e=1;
option(redSB);
// for each triple (i,j,k) of entries in tp check if they have a
// point in common and if they attain at this point the minimal
// possible value for all linear forms in tp
for (i=1;i<=size(tp)-2;i++)
{
for(j=i+1;j<=size(tp)-1;j++)
{
for (k=j+1;k<=size(tp);k++)
{
punkt=std(ideal(tp[i]-tp[k],tp[j]-tp[k]));
if (size(punkt)==2)
{
if (leadmonom(punkt[1])==var(1))
{
px=(-punkt[1]+lead(punkt[1]))/leadcoef(punkt[1]);
py=(-punkt[2]+lead(punkt[2]))/leadcoef(punkt[2]);
}
else
{
py=(-punkt[1]+lead(punkt[1]))/leadcoef(punkt[1]);
px=(-punkt[2]+lead(punkt[2]))/leadcoef(punkt[2]);
}
l=1;
wert=substitute(tp[i],var(1),px,var(2),py);
newton=0;
vergleich=wert;
while((l<=size(tp)) and (vergleiche(wert,vergleich,#)))
{
vergleich=substitute(tp[l],var(1),px,var(2),py);
if (vergleich==wert)
{
newton=newton+detropicalise(tp[l]);
}
l++;
}
if ((l==size(tp)+1) and (vergleiche(wert,vergleich,#)))
{
if (size(#)==0)
{
eckpunkte[e]=list(px,py,newton);
}
else
{
if (typeof(#[1])=="string")
{
eckpunkte[e]=list(px,py,newton);
}
else
{
eckpunkte[e]=list(px,py);
}
}
e++;
}
}
}
}
}
// if a vertex appears several times, only its first occurence will be kept
for (i=size(eckpunkte);i>=2;i--)
{
for (j=i-1;j>=1;j--)
{
if ((eckpunkte[i][1]==eckpunkte[j][1]) and (eckpunkte[i][2]==eckpunkte[j][2]))
{
eckpunkte=delete(eckpunkte,i);
j=0;
}
}
}
return(eckpunkte);
}
/////////////////////////////////////////////////////////////////////////
static proc bunchOfLines (def tp,list #)
"USAGE: bunchOfLines(tp[,#]); tp list, # optional list
ASSUME: tp is represents an ideal in Q[x,y] representing a tropical
polynomial (in the form of the output of the procedure tropicalise)
defining a bunch of ordinary lines in the plane,
i.e. the Newton polygone is a line segment
RETURN: list, see the procedure tropicalCurve for an explanation of
the syntax of this list
NOTE: - the tropical curve defined by tp will consist of a bunch of
parallel lines and throughout the procedure a list with the
name bunchoflines is computed, which represents these lines and
has the following interpretation:
list, each entry corresponds to a vertex in the tropical plane
curve defined by tp
l[i][1] = the equation of the ith line in the tropical curve
l[i][2] = a polynomial whose monimials mark the vertices in
the Newton polygon corresponding to the entries in
tp which take the common minimum at the ith vertex
- the information in l[i][2] represents the subdivision of the Newton
polygon of tp (respectively a polynomial which defines tp);
- if # is non-empty and #[1] is the string 'max', then in the
computations minimum and maximum are exchanged;
- if # is non-empty and the #[1] is not a string, only the vertices
will be computed and the information on the Newton subdivision
will be omitted;
- here the tropical polynomial is supposed to be the MINIMUM of the
linear forms in tp, unless the optional input #[1] is the
string 'max'
- the procedure is called from tropicalCurve"
{
// introduce necessary variables
list oldtp=tp; // save the old entries of tp
int i,j,k,l;
ideal punkt;
poly px;
poly wert,vergleich;
poly newton;
list bunchoflines;
int e=1;
option(redSB);
// find the direction of the line segment in the Newton polygon
intvec direction=leadexp(detropicalise(tp[1]))-leadexp(detropicalise(tp[2]));
direction=direction/gcd(direction[1],direction[2]);
// change the coordinates in such a way, that the Newton polygon
// lies on the x-axis
if (direction[1]==0) // there is no x-term - exchange x and y
{ // and get rid of the new y part
for (i=1;i<=size(tp);i++)
{
tp[i]=substitute(tp[i],var(1),0,var(2),var(1));
}
}
else
{
for (i=1;i<=size(tp);i++)
{
tp[i]=substitute(tp[i],var(2),0);
}
}
// For all tuples (i,j) of entries in tp check if they attain
// at their point of intersection
// the minimal possible value for all linear forms in tp
for (i=1;i<=size(tp)-1;i++)
{
for(j=i+1;j<=size(tp);j++)
{
punkt=std(ideal(tp[i]-tp[j]));
px=-leadcoef(punkt[1]-lead(punkt[1]))/leadcoef(punkt[1]);
l=1;
wert=substitute(tp[i],var(1),px);
newton=0;
vergleich=wert;
while((l<=size(tp)) and (vergleiche(wert,vergleich,#)))
{
vergleich=substitute(tp[l],var(1),px);
if (vergleich==wert)
{
newton=newton+detropicalise(oldtp[l]);
}
l++;
}
if ((l==size(tp)+1) and (vergleiche(wert,vergleich,#)))
{
bunchoflines[e]=list((oldtp[i]-oldtp[j])/leadcoef(oldtp[i]-oldtp[j]),newton);
e++;
}
}
}
// if a vertex appears several times, only its first occurence will be kept
for (i=size(bunchoflines);i>=2;i--)
{
for (j=i-1;j>=1;j--)
{
if (bunchoflines[i][1]==bunchoflines[j][1])
{
bunchoflines=delete(bunchoflines,i);
j=0;
}
}
}
// sort the lines in an descending way according to the leading
// exponent of the polynomial
// defining the Newton polygone
list nbol;
list maximum;
while (size(bunchoflines)!=0)
{
j=1;
maximum=bunchoflines[1];
for (i=2;i<=size(bunchoflines);i++)
{
if (deg(bunchoflines[i][2])<deg(maximum[2]))
{
maximum=bunchoflines[i];
j=i;
}
}
nbol=nbol+list(maximum);
bunchoflines=delete(bunchoflines,j);
}
bunchoflines=nbol;
// define the lines by a point on the line and the direction vector
list graph,gr;
intmat M[2][1];
intvec extrema;
poly xc,yc,cc;
list NSD;
NSD[1]=leadexp(bunchoflines[1][2][size(bunchoflines[1][2])]);
for (i=1;i<=size(bunchoflines);i++)
{
NSD[i+1]=leadexp(bunchoflines[i][2]);
extrema=leadexp(bunchoflines[i][2])-leadexp(bunchoflines[i][2][size(bunchoflines[i][2])]);
cc=substitute(bunchoflines[i][1],var(2),0,var(1),0);
xc=substitute(bunchoflines[i][1]-cc,var(2),0,var(1),1);
yc=substitute(bunchoflines[i][1]-cc,var(2),1,var(1),0);
if (xc!=0) // then there is a point on the line with y-coordinate zero
{
gr[1]=-cc/leadcoef(xc);
gr[2]=0;
}
else // if there is no point with y-coordinate zero, then
{ // there is point with x-coordinate zero
gr[1]=0;
gr[2]=-cc/leadcoef(yc);
}
gr[3]=M;
gr[4]=list(list(intvec(direction[2],-direction[1]),gcd(extrema[1],extrema[2])),list(intvec(-direction[2],direction[1]),1));
gr[5]=bunchoflines[i][2];
graph[i]=gr;
}
graph=graph+list(list(NSD,list(),intvec(0,0)));
return(graph);
}
/////////////////////////////////////////////////////////////////////////
static proc clearintmat (intmat vv)
"USAGE: clearintmat(vv); vv intmat
ASSUME: all entries of the first column of vv are non-negative,
not all entries are zero unless vv has only one column
RETURN: intmat, vv has been ordered in an ascending way by the entries
of the first row;
if an entry in the first row occurs several times, the
entries in the second row have been added and only one
row has been kept;
colums with a zero in the first row have been removed
unless vv has only one column
NOTE: called by tropicalCurve"
{
vv=sortintmat(vv);
for (int i=ncols(vv)-1;i>=1;i--)
{
if (vv[1,i]==vv[1,i+1])
{
vv[2,i]=vv[2,i]+vv[2,i+1];
vv=intmatcoldelete(vv,i+1);
}
if (vv[1,i]==0)
{
vv=intmatcoldelete(vv,i);
}
}
return(vv);
}
/////////////////////////////////////////////////////////////////////////
static proc sortintvec (intvec w)
"USAGE: sortintvec(v); v intvec
RETURN: intvec, the entries of v are ordered in an ascending way
NOTE: not called at all"
{
int j,k,stop;
intvec v=w[1];
for (j=2;j<=size(w);j++)
{
k=1;
stop=0;
while ((k<=size(v)) and (stop==0))
{
if (v[k]<w[j])
{
k++;
}
else
{
stop=1;
}
}
if (k==size(v)+1)
{
v=v,w[j];
}
else
{
if (k==1)
{
v=w[j],v;
}
else
{
v=v[1..k-1],w[j],v[k..size(v)];
}
}
}
return(v);
}
/////////////////////////////////////////////////////////////////////////
static proc sortintmat (intmat vv)
"USAGE: sortintmat(vv); vv intmat
RETURN: intmat, the columns of vv have been ordered in an ascending
way by the first entry
NOTE: called by clearintmat"
{
if(ncols(vv)==1)
{
return(vv);
}
intvec v=vv[1,1..ncols(vv)];
list ww=minInIntvec(v);
intmat M[2][1]=vv[1..2,ww[2]];
vv=sortintmat(intmatcoldelete(vv,ww[2]));
return(intmatconcat(M,vv));
}
/////////////////////////////////////////////////////////////////////////
static proc intmatcoldelete (intmat w,int i)
"USAGE: intmatcoldelete(w,i); w intmat, i int
RETURN: intmat, the integer matrix w with the ith comlumn deleted
NOTE: the procedure is called by intmatsort and normalFan"
{
if ((i<1) or (i>ncols(w)) or (ncols(w)==1))
{
return(w);
}
if (i==1)
{
intmat M[nrows(w)][ncols(w)-1]=w[1..nrows(w),2..ncols(w)];
return(M);
}
if (i==ncols(w))
{
intmat M[nrows(w)][ncols(w)-1]=w[1..nrows(w),1..ncols(w)-1];
return(M);
}
else
{
intmat M[nrows(w)][i-1]=w[1..nrows(w),1..i-1];
intmat N[nrows(w)][ncols(w)-i]=w[1..nrows(w),i+1..ncols(w)];
return(intmatconcat(M,N));
}
}
/////////////////////////////////////////////////////////////////////////
static proc intmatconcat (intmat M,intmat N)
"USAGE: intmatconcat(M,N); M,N intmat
RETURN: intmat, M and N concatenated
NOTE: the procedure is called by intmatcoldelete and sortintmat"
{
if (nrows(M)>=nrows(N))
{
int m=nrows(M);
}
else
{
int m=nrows(N);
}
intmat P[m][ncols(M)+ncols(N)];
P[1..nrows(M),1..ncols(M)]=M[1..nrows(M),1..ncols(M)];
P[1..nrows(N),ncols(M)+1..ncols(M)+ncols(N)]=N[1..nrows(N),1..ncols(N)];
return(P);
}
/////////////////////////////////////////////////////////////////////////
static proc minInIntvec (intvec v)
"USAGE: minInIntvec(v); v intvec
RETURN: list, first entry is the minimal value in v, second entry
is its position in v
NOTE: called by sortintmat"
{
int min=v[1];
int minpos=1;
for (int i=2;i<=size(v);i++)
{
if (v[i]<min)
{
min=v[i];
minpos=i;
}
}
return(list(v[minpos],minpos));
}
/////////////////////////////////////////////////////////////////////////
static proc positionInList (list L,intvec v)
"USAGE: positionInList(L,v); L list, v intvec
RETURN: int, the position in L in which v occurs first
NOTE: called by tropicalCurve"
{
for (int i=1;i<=size(L);i++)
{
if (v==L[i])
{
return(i);
}
}
}
/////////////////////////////////////////////////////////////////////////
static proc sortlist (list v,int pos)
"USAGE: sortlist(v,pos); v list, pos int
RETURN: list, the list L ordered in an ascending way according
to the pos-th entries
NOTE: called by tropicalCurve"
{
if(size(v)==1)
{
return(v);
}
list w=minInList(v,pos);
v=delete(v,w[2]);
v=sortlist(v,pos);
v=list(w[1])+v;
return(v);
}
/////////////////////////////////////////////////////////////////////////
static proc minInList (list v,int pos)
"USAGE: minInList(v,pos); v list, pos int
RETURN: list, (v[i],i) such that v[i][pos] is minimal
NOTE: called by sortlist"
{
int min=v[1][pos];
int minpos=1;
for (int i=2;i<=size(v);i++)
{
if (v[i][pos]<min)
{
min=v[i][pos];
minpos=i;
}
}
return(list(v[minpos],minpos));
}
/////////////////////////////////////////////////////////////////////////
static proc vergleiche (poly wert,poly vglwert,list #)
"USAGE: vergleiche(wert,vglwert,liste), wert, vglwert poly, liste list
RETURN: int, if list contains a string as first entry then 1
is returned if wert is at most vglwert and 0 if wert is
larger than vglwert, if liste is anything else 1 is returned if
wert is at least vglwert and 0 if wert s less than vglwert"
{
def BASERING=basering;
ring testring=0,x,lp;
poly wert=imap(BASERING,wert);
poly vglwert=imap(BASERING,vglwert);
int ergebnis;
if (size(#)==0)
{
ergebnis=1-(wert>vglwert);
}
if (size(#)>0)
{
if (typeof(#[1])=="string")
{
ergebnis=1-(wert<vglwert);
}
else
{
ergebnis=1-(wert>vglwert);
}
}
setring BASERING;
return(ergebnis);
}
/////////////////////////////////////////////////////////////////////////
static proc koeffizienten (poly f,int k)
"USAGE: koeffizienten(f,k) f poly, k int
ASSUME: f=a*x+b*y+c is a linear polynomial in two variables,
k is either 0, 1 or 2
RETURN: poly, one of the coefficients of f, depending on the value of k:
k=0 : c is returned
k=1 : a is returned
k=2 : b is returned
NOTE: the procedure is called from tropicalCurve"
{
poly c=substitute(f,var(1),0,var(2),0);
if (k==0)
{
return(c);
}
f=f-c;
if (k==1)
{
return(substitute(f,var(1),1,var(2),0));
}
else
{
return(substitute(f,var(1),0,var(2),1));
}
}
////////////////////////////////////////////////////////////////////////////
/// Procedures used in tex-procedures and conicWithTangents:
/// - minOfPolys
/// - shorten
/// - minOfStringDecimal
/// - decimal
/// - stringdelete
/// - stringinsert
/// - texmonomial
/// - texcoefficient
/// - abs
/////////////////////////////////////////////////////////////////////////////
static proc minOfPolys (list v)
"USAGE: minOfPolys(v); v list
RETURN: poly, the minimum of the numbers in v
NOTE: called by texDrawTropical"
{
poly min=v[1];
for (int i=2;i<=size(v);i++)
{
if (v[i]<min)
{
min=v[i];
}
}
return(min);
}
/////////////////////////////////////////////////////////////////////////
proc shorten (list AA)
"USAGE: shorten(AA); AA list
ASSUME: AA has three entries representing decimal numbers a, b and c
RETURN: list, containing strings representing the numbers a and b scaled
down so that the absolute maximum of the two is no
larger than c
NOTE: the procedure is called by texDrawTropical"
{
ring REALRING=(real,50,100),x,lp;
execute("number aa,bb,cc="+AA[1]+","+AA[2]+","+AA[3]+";");
number ascale,bscale=1,1;
if ((aa>cc) or (aa<-cc))
{
ascale=abs(cc/aa);
}
if ((bb>cc) or (bb<-cc))
{
bscale=abs(cc/bb);
}
if (ascale<bscale)
{
aa=aa*ascale;
bb=bb*ascale;
}
else
{
aa=aa*bscale;
bb=bb*bscale;
}
return(list(string(aa),string(bb)));
}
/////////////////////////////////////////////////////////////////////////
static proc minOfStringDecimal (string a, string b)
"USAGE: minOfStringDecimal(a,b); a,b string
ASSUME: a and b are strings representing decimal numbers
RETURN: string, the string representing the larger of the two numbers a or b
NOTE: the procedure is called by texDrawTropical"
{
ring REALRING=(real,50,100),x,lp;
execute("poly aa,bb="+a+","+b+";");
if (aa<bb)
{
return(a);
}
else
{
return(b);
}
}
/////////////////////////////////////////////////////////////////////////
static proc decimal (poly n,list #)
"USAGE: decimal(f[,#]); f poly, # list
ASSUME: f is a polynomial in Q[x_1,...,x_n], and # is either empty
or #[1] is a positive integer
RETURN: string, a decimal expansion of the leading coefficient of f up
to order two respectively #[1]
NOTE: the procedure is called by texDrawTropical and conicWithTangents
and f will actually be a number"
{
def BASERING=basering;
execute("ring INTERRING=0,("+varstr(basering)+"),("+ordstr(basering)+");");
poly n=imap(BASERING,n);
execute("ring REALRING=(real,50,100),("+varstr(basering)+"),("+ordstr(basering)+");");
map phi=INTERRING,maxideal(1);
string s=string(phi(n));
int check=0;
int i=1;
int j;
string news;
int nachkomma=2;
if (size(#)>0)
{
nachkomma=#[1];
}
while ((check==0) and i<=size(s))
{
if (s[i]==".")
{
if (i+nachkomma>size(s))
{
nachkomma=size(s)-i;
}
for (j=i;j<=i+nachkomma;j++)
{
news=news+s[j];
}
check=1;
}
else
{
news=news+s[i];
}
i++;
}
setring BASERING;
return(news);
}
/////////////////////////////////////////////////////////////////////////
static proc stringcontainment (string a, string b)
"USAGE: stringcontainment(a,b); a,b string
ASSUME: a is a string containing a single letter
RETURN: int, one if a is one of the letters in b and zero else
NOTE: the procedure is called from extremeraysC"
{
int i;
for (i=1;i<=size(b);i++)
{
if (a==b[i])
{
return(1);
}
}
return(0);
}
/////////////////////////////////////////////////////////////////////////
static proc stringdelete (string w,int i)
"USAGE: stringdelete(w,i); w string, i int
RETURN: string, the string w with the ith component deleted
NOTE: the procedure is called by texNumber and choosegfanvector"
{
if ((i>size(w)) or (i<=0))
{
return(w);
}
if ((size(w)==1) and (i==1))
{
return("");
}
if (i==1)
{
return(w[2..size(w)]);
}
if (i==size(w))
{
return(w[1..size(w)-1]);
}
else
{
string erg=w[1..i-1],w[i+1..size(w)];
return(erg);
}
}
/////////////////////////////////////////////////////////////////////////
static proc stringinsert (string w,string v,int i)
"USAGE: stringinsert(w,v,i); w string, v string, i int
RETURN: string, the string w where at the ith component v has been inserted
NOTE: the procedure is called by texmonomial"
{
if (i==1)
{
return(v[1]+w);
}
if (i==size(w)+1)
{
return(w+v[1]);
}
else
{
string anfang=w[1..i-1];
string ende=w[i..size(w)];
string erg=anfang+v+ende;
return(erg);
}
}
/////////////////////////////////////////////////////////////////////////
static proc texmonomial (poly f)
"USAGE: texmonomial(f); f poly
RETURN: string, the tex-command for the leading monomial of f
NOTE: the procedure is called by texPolynomial and texNumber"
{
int altshort=short;
short=0;
string F=string(leadmonom(f));
int k;
for (int j=1;j<=size(F);j++)
{
if (F[j]=="^")
{
F=stringinsert(F,"{",j+1);
k=j+2;
while (k<=size(F) and ((F[k]=="0") or (F[k]=="1") or (F[k]=="2") or (F[k]=="3") or
(F[k]=="4") or (F[k]=="5") or (F[k]=="6") or (F[k]=="7") or (F[k]=="8")
or (F[k]=="9")))
{
k++;
}
F=stringinsert(F,"}",k);
j=k+1;
}
if (F[j]=="(")
{
F=stringdelete(F,j);
F=stringinsert(F,"_{",j);
k=j+2;
while (k<=size(F) and ((F[k]=="0") or (F[k]=="1") or (F[k]=="2") or (F[k]=="3") or
(F[k]=="4") or (F[k]=="5") or (F[k]=="6") or (F[k]=="7") or (F[k]=="8")
or (F[k]=="9")))
{
k++;
}
F=stringdelete(F,k);
F=stringinsert(F,"}",k);
j=k;
}
if (F[j]=="*")
{
F=stringdelete(F,j);
j--;
}
}
short=altshort;
return(F);
}
/////////////////////////////////////////////////////////////////////////
static proc texcoefficient (poly f,list #)
"USAGE: texcoefficient(f[,#]); f poly, # optional list
RETURN: string, the tex command representing the leading coefficient
of f using \frac as coefficient
NOTE: if # is non-empty, then the cdot at the end is omitted;
this is needed for the constant term"
{
string cdot;
if (size(#)==0)
{
cdot="\\cdot ";
}
string koeffizient=texNumber(f);
if (koeffizient=="1")
{
if (size(#)==0)
{
return("");
}
else
{
return(koeffizient);
}
}
if (koeffizient=="-1")
{
if (size(#)==0)
{
return("-");
}
else
{
return(koeffizient);
}
}
if (size(koeffizient)>5)
{
string tfractest=koeffizient[2..6];
if (tfractest=="tfrac")
{
return(koeffizient+cdot);
}
}
int anzahlplus,anzahlminus;
for(int j=1;j<=size(koeffizient);j++)
{
if (koeffizient[j]=="+")
{
anzahlplus++;
}
if (koeffizient[j]=="-")
{
anzahlminus++;
}
}
if ((anzahlplus==0) and (anzahlminus==1) and (koeffizient[1]=="-"))
{
return(koeffizient+cdot);
}
else
{
if (anzahlplus+anzahlminus>=1)
{
return("("+koeffizient+")"+cdot);
}
else
{
return(koeffizient+cdot);
}
}
}
/////////////////////////////////////////////////////////////////////////
static proc abs (def n)
"USAGE: abs(n); n poly or int
RETURN: poly or int, the absolute value of n"
{
if (n>=0)
{
return(n);
}
else
{
return(-n);
}
}
///////////////////////////////////////////////////////////////////////////////
/// Procedures only used to compute j-invariants
/// - findNonLoopVertex
/// - coordinatechange
/// - weierstrassFormOfACubic
/// - weierstrassFormOfA4x2Curve
/// - weierstrassFormOfA2x2Curve
/// - jInvariantOfACubic
/// - jInvariantOfA4x2Curve
/// - jInvariantOfA2x2Curve
/// - jInvariantOfAPuiseuxCubic
///////////////////////////////////////////////////////////////////////////////
static proc findNonLoopVertex (list graph)
"USAGE: findNonLoopVertex(graph); graph list
ASSUME: graph is a list as in the output of tropicalCurve
RETURN: int, the number of a vertex which has only one edge
NOTE: the procedure is called by tropicalJInvariant"
{
int i,j;
for (i=1;i<=size(graph)-1;i++)
{
if ((ncols(graph[i][3])==1) and (graph[i][3][1,1]!=0))
{
return(i);
}
}
return(-1);
}
/////////////////////////////////////////////////////////////////////////
static proc coordinatechange (poly f,intmat A,intvec v)
"USAGE: coordinatechange(f,A,v); f poly, A intmat, v intvec
ASSUME: f is a polynomial in two variables, A is a 2x2
integer matrix, and v is an integer vector with 2 entries
RETURN: poly, the polynomial transformed by (x,y)->A*(x,y)+v
NOTE: the procedure is called by weierstrassForm"
{
poly g;
int i;
intmat exp[2][1];
for (i=1;i<=size(f);i++)
{
exp=leadexp(f[i]);
exp=A*exp;
g=g+leadcoef(f[i])*var(1)^(exp[1,1]+v[1])*var(2)^(exp[2,1]+v[2]);
}
return(g);
}
/////////////////////////////////////////////////////////////////////////
static proc weierstrassFormOfACubic (poly f,list #)
"USAGE: weierstrassFormOfACubic(wf[,#]); wf poly, # list
ASSUME: poly is a cubic polynomial
RETURN: poly, the Weierstrass normal form of the cubic, 0 if poly is
not a cubic
NOTE: - the algorithm for the coefficients of the Weierstrass form is due
to Fernando Rodriguez Villegas, villegas@math.utexas.edu
- if an additional argument # is given, the simplified Weierstrass
form is computed
- the procedure is called by weierstrassForm
- the characteristic of the base field should not be 2 or 3
if # is non-empty"
{
if (deg(f)!=3)
{
ERROR("The curve is not a cubic!");
}
// store the coefficients of f in a specific order
poly t0,s1,s0,r2,r1,r0,q3,q2,q1,q0=flatten(coeffs(f,ideal(var(2)^3,var(2)^2,var(2)^2*var(1),var(2),var(2)*var(1),var(2)*var(1)^2,1,var(1),var(1)^2,var(1)^3)));
// test, if f is already in Weierstrass form
if ((t0==0) and (s1==1) and (s0==0) and (r0==0) and (q0==-1) and (size(#)==0))
{
return (f);
}
// compute the coefficients a1,a2,a3,a4, and a6 of the Weierstrass
// form y^2+a1xy+a3y=x^3+a2x^2+a4x+a6
poly a1=r1;
poly a2=-(s0*q2+s1*q1+r0*r2);
poly a3=(9*t0*q0-s0*r0)*q3+((-t0*q1-s1*r0)*q2+(-s0*r2*q1-s1*r2*q0));
poly a4=((-3*t0*r0+s0^2)*q1+(-3*s1*s0*q0+s1*r0^2))*q3
+(t0*r0*q2^2+(s1*s0*q1+((-3*t0*r2+s1^2)*q0+s0*r0*r2))*q2
+(t0*r2*q1^2+s1*r0*r2*q1+s0*r2^2*q0));
poly a6=(-27*t0^2*q0^2+(9*t0*s0*r0-s0^3)*q0-t0*r0^3)*q3^2+
(((9*t0^2*q0-t0*s0*r0)*q1+((-3*t0*s0*r1+(3*t0*s1*r0+
2*s1*s0^2))*q0+(t0*r0^2*r1-s1*s0*r0^2)))*q2+(-t0^2*q1^3
+(t0*s0*r1+(2*t0*s1*r0-s1*s0^2))*q1^2+((3*t0*s0*r2+
(-3*t0*s1*r1+2*s1^2*s0))*q0+((2*t0*r0^2-s0^2*r0)*r2+
(-t0*r0*r1^2+s1*s0*r0*r1-s1^2*r0^2)))*q1+((9*t0*s1*r2-
s1^3)*q0^2+(((-3*t0*r0+s0^2)*r1-s1*s0*r0)*r2+(t0*r1^3
-s1*s0*r1^2+s1^2*r0*r1))*q0)))*q3+(-t0^2*q0*q2^3+
(-t0*s1*r0*q1+((2*t0*s0*r2+(t0*s1*r1-s1^2*s0))*q0-
t0*r0^2*r2))*q2^2+(-t0*s0*r2*q1^2+(-t0*s1*r2*q0+
(t0*r0*r1-s1*s0*r0)*r2)*q1+((2*t0*r0-s0^2)*r2^2+
(-t0*r1^2+s1*s0*r1-s1^2*r0)*r2)*q0)*q2+
(-t0*r0*r2^2*q1^2+(t0*r1-s1*s0)*r2^2*q0*q1-
t0*r2^3*q0^2));
poly b2=a1^2+4*a2;
poly b4=2*a4+a1*a3;
poly b6=a3^2+4*a6;
poly b8=a1^2*a6+4*a2*a6-a1*a3*a4+a2*a3^2-a4^2;
poly c4=b2^2-24*b4;
poly c6=-b2^3+36*b2*b4-216*b6;
if (size(#)!=0)
{
return(substitute(var(2)^2+a1*var(1)*var(2)+a3*var(2)-var(1)^3-a2*var(1)^2-a4*var(1)-a6,var(2),var(2)-(a1*var(1)+a3)/2));
}
else
{
return(var(2)^2+a1*var(1)*var(2)+a3*var(2)-var(1)^3-a2*var(1)^2-a4*var(1)-a6);
}
}
/////////////////////////////////////////////////////////////////////////
static proc weierstrassFormOfA4x2Curve (poly f)
"USAGE: weierstrassFormOfA4x2Curve(wf); wf poly
ASSUME: poly is a polynomial of type 4x2
RETURN: poly, the Weierstrass normal form of the curve
NOTE: - the procedure is called by weierstrassForm
- the characteristic of the base field should not be 2 or 3"
{
poly u11,u40,u30,u20,u10,u00,u21,u01,u02=flatten(coeffs(f,ideal(var(1)*var(2),var(1)^4,var(1)^3,var(1)^2,var(1),1,var(1)^2*var(2),var(2),var(2)^2)));
poly c4=(u11^4 - 8*u11^2*u20*u02 - 8*u11^2*u01*u21 + 24*u11*u10*u21*u02 + 24*u11*u30*u01*u02 +
192*u00*u40*u02^2 - 48*u00*u21^2*u02 - 48*u10*u30*u02^2 + 16*u20^2*u02^2 -
16*u20*u01*u21*u02 - 48*u40*u01^2*u02 + 16*u01^2*u21^2)/lead(u02^4);
poly c6=(-u11^6 + 12*u11^4*u20*u02 + 12*u11^4*u01*u21 - 36*u11^3*u10*u21*u02 - 36*u11^3*u30*u01*u02 +
576*u11^2*u00*u40*u02^2 + 72*u11^2*u00*u21^2*u02 + 72*u11^2*u10*u30*u02^2 -
48*u11^2*u20^2*u02^2 - 24*u11^2*u20*u01*u21*u02 + 72*u11^2*u40*u01^2*u02 -
48*u11^2*u01^2*u21^2 - 864*u11*u00*u30*u21*u02^2 + 144*u11*u10*u20*u21*u02^2 -
864*u11*u10*u40*u01*u02^2 + 144*u11*u10*u01*u21^2*u02 + 144*u11*u20*u30*u01*u02^2 +
144*u11*u30*u01^2*u21*u02 - 2304*u00*u20*u40*u02^3 + 576*u00*u20*u21^2*u02^2 +
864*u00*u30^2*u02^3 + 1152*u00*u40*u01*u21*u02^2 - 288*u00*u01*u21^3*u02 +
864*u10^2*u40*u02^3 - 216*u10^2*u21^2*u02^2 - 288*u10*u20*u30*u02^3 +
144*u10*u30*u01*u21*u02^2 + 64*u20^3*u02^3 - 96*u20^2*u01*u21*u02^2 +
576*u20*u40*u01^2*u02^2 - 96*u20*u01^2*u21^2*u02 - 216*u30^2*u01^2*u02^2 -
288*u40*u01^3*u21*u02 + 64*u01^3*u21^3)/lead(u02^6);
return(var(2)^2-var(1)^3+27*c4*var(1)+54*c6);
}
/////////////////////////////////////////////////////////////////////////
static proc weierstrassFormOfA2x2Curve (poly f)
"USAGE: weierstrassFormOfA2x2Curve(f); f poly
ASSUME: poly, is a polynomial defining an elliptic curve of type (2,2) on P^1xP^1
i.e. a polynomial of the form a+bx+cx2+dy+exy+fx2y+gy2+hxy2+ix2y2
RETURN: poly, a Weierstrass form of the elliptic curve defined by poly
NOTE: - the algorithm is based on the paper Sang Yook An, Seog Young Kim,
David C. Marshall, Susan H. Marshall, William G. McCallum and
Alexander R. Perlis: Jacobians of Genus One Curves. Journal of Number
Theory 90,2 (2001), 304-315.
- the procedure is called by weierstrassForm
- the characteristic of the base field should not be 2 or 3"
{
// get the coefficients of the polynomial
poly A00,A10,A20,A01,A11,A21,A02,A12,A22=flatten(coeffs(f,ideal(1,var(1),var(1)^2,var(2),var(1)*var(2),var(1)^2*var(2),var(2)^2,var(1)*var(2)^2,var(1)^2*var(2)^2)));
// define P1xP1 as quadric in P3
matrix A[4][4]=0,0,0,1/2,0,0,1/2,0,0,1/2,0,0,1/2,0,0,0;
// define the image of the (2,2)-curve under the Segre embedding
// as quadric which should be
// intersected with the image of P1xP1
matrix B[4][4]=A00,A10/2,A01/2,0,A10/2,A20,A11/2,A21/2,A01/2,A11/2,A02,A12/2,0,A21/2,A12/2,A22;
// compute the coefficients of the Weierstrass form of
// the input polynomial and its j-invariant
poly a=det(x*A+B);
poly a0,a1,a2,a3,a4=flatten(coeffs(a,ideal(x4,x3,x2,x,1)));
a1,a2,a3=-a1/4,a2/6,-a3/4;
poly g2=a0*a4-4*a1*a3+3*a2^2;
poly g3=a0*a2*a4+2*a1*a2*a3-a0*a3^2-a4*a1^2-a2^3;
return(var(2)^2-var(1)^3+g2/4*var(1)+g3/4);
}
/////////////////////////////////////////////////////////////////////////
static proc jInvariantOfACubic (poly f,list #)
"USAGE: jInvariantOfACubic(f[,#]); f poly, # list
ASSUME: poly is a cubic polynomial defining an elliptic curve
RETURN: poly, the j-invariant of the elliptic curve defined by poly
NOTE: - if the base field is Q(t) an optional argument # may be given;
then the algorithm only computes the negative of the order
of the j-invariant"
{
if (deg(f)!=3)
{
ERROR("The input polynomial is not a cubic!");
}
// compute first the Weierstrass form of the cubic
// - this does not change the j-invariant
f=weierstrassFormOfACubic(f);
// compute the coefficients of the Weierstrass form
poly a1,a2,a3,a4,a6=flatten(coeffs(f,ideal(var(1)*var(2),var(1)^2,var(2),var(1),1)));
a2,a4,a6=-a2,-a4,-a6;
// compute the j-invariant
poly b2=a1^2+4*a2;
poly b4=2*a4+a1*a3;
poly b6=a3^2+4*a6;
poly b8=a1^2*a6+4*a2*a6-a1*a3*a4+a2*a3^2-a4^2;
poly c4=b2^2-24*b4;
// poly c6=-b2^3+36*b2*b4-216*b6;
poly delta=-b2^2*b8-8*b4^3-27*b6^2+9*b2*b4*b6;
if (delta==0)
{
ERROR("The input is a rational curve and has no j-invariant!");
}
if (size(#)>0) // if the optional argument is given, then only the
{ // negative of the order is computed
int zaehler=3*simplifyToOrder(c4)[1];
int nenner=simplifyToOrder(delta)[1];
return(nenner-zaehler);
}
else
{
poly invariant=(c4^3/delta);
return(invariant);
}
}
/////////////////////////////////////////////////////////////////////////
static proc jInvariantOfA2x2Curve (poly f,list #)
"USAGE: jInvariantOfA2x2Curve(f[,#]); f poly, # list
ASSUME: poly, is a polynomial defining an elliptic curve of type (2,2) on P^1xP^1
i.e. a polynomial of the form a+bx+cx2+dy+exy+fx2y+gy2+hxy2+ix2y2
RETURN: poly, the j-invariant of the elliptic curve defined by poly
NOTE: - if the base field is Q(t) an optional argument # may be given;
then the algorithm only computes the negative of the order of the
j-invariant
- the characteristic should not be 2 or 3
- the procedure is not called at all, it is just stored for the purpose
of comparison"
{
// get the coefficients of the polynomial
poly A00,A10,A20,A01,A11,A21,A02,A12,A22=flatten(coeffs(f,ideal(1,var(1),var(1)^2,var(2),var(1)*var(2),var(1)^2*var(2),var(2)^2,var(1)*var(2)^2,var(1)^2*var(2)^2)));
// define P1xP1 as quadric in P3
matrix A[4][4]=0,0,0,1/2,0,0,1/2,0,0,1/2,0,0,1/2,0,0,0;
// define the image of the (2,2)-curve under the Segre embedding as quadric which should be
// intersected with the image of P1xP1
matrix B[4][4]=A00,A10/2,A01/2,0,A10/2,A20,A11/2,A21/2,A01/2,A11/2,A02,A12/2,0,A21/2,A12/2,A22;
// compute the coefficients of the Weierstrass form of
// the input polynomial and its j-invariant
poly a=det(var(1)*A+B);
poly a0,a1,a2,a3,a4=flatten(coeffs(a,ideal(var(1)^4,var(1)^3,var(1)^2,var(1),1)));
a1,a2,a3=-a1/4,a2/6,-a3/4;
poly g2=a0*a4-4*a1*a3+3*a2^2;
poly g3=a0*a2*a4+2*a1*a2*a3-a0*a3^2-a4*a1^2-a2^3;
poly G2cube=g2^3;
poly G3square=g3^2;
poly jinvnum=1728*G2cube;
poly jinvdenom=-27*G3square+G2cube;
// check if the curve is rational
if (jinvdenom==0)
{
ERROR("The input is a rational curve and has no j-invariant!");
}
if (size(#)>0) // if the optional argument is given,
{ // then only the negative of the order is computed
int zaehler=simplifyToOrder(jinvnum)[1];
int nenner=simplifyToOrder(jinvdenom)[1];
return(nenner-zaehler);
}
else
{
poly invariant=(jinvnum/jinvdenom);
return(invariant);
}
}
/////////////////////////////////////////////////////////////////////////
static proc jInvariantOfA4x2Curve (poly f,list #)
"USAGE: jInvariantOfA4x2Curve(f[,#]); f poly, # list
ASSUME: poly, is a polynomial defining an elliptic curve of type (4,2),
i.e. a polynomial of the form a+bx+cx2+dx3+ex4+fy+gxy+hx2y+iy2
RETURN: poly, the j-invariant of the elliptic curve defined by poly
NOTE: - if the base field is Q(t) an optional argument # may be given;
then the algorithm only computes the negative of the order
of the j-invariant
- the characteristic should not be 2 or 3
- the procedure is not called at all, it is just stored
for the purpose of comparison"
{
poly u11,u40,u30,u20,u10,u00,u21,u01,u02=flatten(coeffs(f,ideal(var(1)*var(2),var(1)^4,var(1)^3,var(1)^2,var(1),1,var(1)^2*var(2),var(2),var(2)^2)));
poly c4=(u11^4 - 8*u11^2*u20*u02 - 8*u11^2*u01*u21 + 24*u11*u10*u21*u02 + 24*u11*u30*u01*u02 +
192*u00*u40*u02^2 - 48*u00*u21^2*u02 - 48*u10*u30*u02^2 + 16*u20^2*u02^2 -
16*u20*u01*u21*u02 - 48*u40*u01^2*u02 + 16*u01^2*u21^2);
poly c6=(-u11^6 + 12*u11^4*u20*u02 + 12*u11^4*u01*u21 - 36*u11^3*u10*u21*u02 - 36*u11^3*u30*u01*u02 +
576*u11^2*u00*u40*u02^2 + 72*u11^2*u00*u21^2*u02 + 72*u11^2*u10*u30*u02^2 -
48*u11^2*u20^2*u02^2 - 24*u11^2*u20*u01*u21*u02 + 72*u11^2*u40*u01^2*u02 -
48*u11^2*u01^2*u21^2 - 864*u11*u00*u30*u21*u02^2 + 144*u11*u10*u20*u21*u02^2 -
864*u11*u10*u40*u01*u02^2 + 144*u11*u10*u01*u21^2*u02 + 144*u11*u20*u30*u01*u02^2 +
144*u11*u30*u01^2*u21*u02 - 2304*u00*u20*u40*u02^3 + 576*u00*u20*u21^2*u02^2 +
864*u00*u30^2*u02^3 + 1152*u00*u40*u01*u21*u02^2 - 288*u00*u01*u21^3*u02 +
864*u10^2*u40*u02^3 - 216*u10^2*u21^2*u02^2 - 288*u10*u20*u30*u02^3 +
144*u10*u30*u01*u21*u02^2 + 64*u20^3*u02^3 - 96*u20^2*u01*u21*u02^2 +
576*u20*u40*u01^2*u02^2 - 96*u20*u01^2*u21^2*u02 - 216*u30^2*u01^2*u02^2 -
288*u40*u01^3*u21*u02 + 64*u01^3*u21^3);
poly c4cube=c4^3;
poly jdenom=c4cube-c6^2;
if (size(#)>0) // if the optional argument is given,
{ // then only the negative of the order is computed
int zaehler=3*simplifyToOrder(c4)[1];
int nenner=simplifyToOrder(jinvdenom)[1];
return(nenner-zaehler);
}
else
{
return(1728*(c4cube/(jdenom)));
}
}
/////////////////////////////////////////////////////////////////////////
static proc jInvariantOfAPuiseuxCubic (poly f,list #)
"USAGE: jInvariantOfAPuiseuxCubic(f[,#]); f poly, # list
ASSUME: poly is a cubic polynomial over Q(t) defining an elliptic curve
and # is empty
RETURN: list, containing two polynomials whose ratio is the j-invariant
of the elliptic curve defined by poly
ASSUME: poly is a cubic polynomial over Q(t) defining an elliptic curve
and # is non-empty
RETURN: int, the order of the j-invariant of the elliptic curve defined by poly
NOTE: the procedure is called by jInvariant"
{
if (deg(f)!=3)
{
ERROR("The input polynomial is not a cubic!");
}
// compute first the Weierstrass form of the cubic
// - this does not change the j-invariant
f=weierstrassFormOfACubic(f);
// compute the coefficients of the Weierstrass form
poly a1,a2,a3,a4,a6=flatten(coeffs(f,ideal(var(1)*var(2),var(1)^2,var(2),var(1),1)));
a2,a4,a6=-a2,-a4,-a6;
number dna1,dna2,dna3,dna4,dna6=denominator(leadcoef(a1)),denominator(leadcoef(a2)),denominator(leadcoef(a3)),denominator(leadcoef(a4)),denominator(leadcoef(a6));
number na1,na2,na3,na4,na6=numerator(leadcoef(a1)),numerator(leadcoef(a2)),numerator(leadcoef(a3)),numerator(leadcoef(a4)),numerator(leadcoef(a6));
number hn=dna1*dna2*dna3*dna4*dna6;
a1=na1*dna2*dna3*dna4*dna6;
a2=dna1*na2*dna3*dna4*dna6;
a3=dna1*dna2*na3*dna4*dna6;
a4=dna1*dna2*dna3*na4*dna6;
a6=dna1*dna2*dna3*dna4*na6;
// compute the j-invariant
poly b2=a1^2+4*a2*hn;
poly b4=2*a4*hn+a1*a3;
poly b6=a3^2+4*a6*hn;
poly b8=a1^2*a6+4*a2*a6*hn-a1*a3*a4+a2*a3^2-a4^2*hn;
poly c4=b2^2-24*b4*hn^2;
poly delta=-b2^2*b8-8*b4^3*hn-27*b6^2*hn^3+9*b2*b4*b6*hn;
if (delta==0)
{
ERROR("The input is a rational curve and has no j-invariant!");
}
if (size(#)>0) // if the optional argument is given,
{ // then only the negative of the order is computed
int zaehler=3*simplifyToOrder(c4)[1];
int nenner=simplifyToOrder(delta)[1];
int ordhn=simplifyToOrder(hn)[1];
return(zaehler-nenner-5*ordhn);
}
else
{
def BASERING=basering;
execute("ring TRING="+string(char(BASERING))+",t,ds;");
poly hn=imap(BASERING,hn);
poly c4=imap(BASERING,c4);
poly delta=imap(BASERING,delta);
poly num=c4^3;
poly denom=delta*hn^5;
poly ggt=gcd(num,denom);
num=num div ggt;
denom=denom div ggt;
setring BASERING;
poly num=imap(TRING,num);
poly denom=imap(TRING,denom);
number teiler=1;
if (char(BASERING)==0)
{
teiler=gcd(leadcoef(num),leadcoef(denom));
}
num=num/teiler;
denom=denom/teiler;
list invariant=num,denom;
return(invariant);
}
}
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
/// Further examples for testing the procedures
/////////////////////////////////////////////////////////////////////////////
/*
/// Note, only the following procedures need further examples
/// (the others are too simple):
/// A) tropicalLifting (best tested via displayTropicalLifting)
/// B) tropicalCurve (best tested via drawTropicalCurve)
/// C) tropicalJInvariant
/// D) weierstrassForm
/// E) jInvariant
////////////////////////////////////////////////////////////////////////////
/// A) Examples tropicalLifting
////////////////////////////////////////////////////////////////////////////
// -------------------------------------------------------
// Example 1
// -------------------------------------------------------
ring r0=0,(t,x),dp;
poly f=t7-6t4+3t3x+8t3-12t2x+6tx2-x3+t2;
f;
// The point -2/3 is in the tropical variety.
list L=tropicalLifting(f,intvec(3,-2),4);
L;
displayTropicalLifting(L,"subst");
// --------------------------------------------------------
// Example 2 - a field extension is necessary
// --------------------------------------------------------
poly g=(1+t2)*x2+t5x+t2;
g;
// The poin -1 is in the tropical variety.
displayTropicalLifting(tropicalLifting(g,intvec(1,-1),4),"subst");
// --------------------------------------------------------
// Example 3 - the ideal is not zero dimensional
// --------------------------------------------------------
ring r1=0,(t,x,y),dp;
poly f=(9t27-12t26-5t25+21t24+35t23-51t22-40t21+87t20+56t19-94t18-62t17+92t16+56t15-70t14-42t13+38t12+28t11+18t10-50t9-48t8+40t7+36t6-16t5-12t4+4t2)*x2+(-9t24+12t23-4t22-42t20+28t19+30t18-20t17-54t16+16t15+48t14-16t12+8t11-18t10-26t9+30t8+20t7-24t6+4t5+28t4-8t3-16t2+4)*xy+(6t16-10t15-2t14+16t13+4t12-18t11-10t10+24t9+6t8-20t7+8t6+8t5-20t4-4t3+12t2+4t-4)*y2+(-9t28+3t27+8t26-4t25-45t24-6t23+42t22+30t21-94t20-40t19+68t18+82t17-38t16-60t15+26t14+36t13-22t12-20t11+4t10+4t9+12t8+8t7-8t6-8t5+4t4)*x+(9t27-21t26+16t25+14t24+12t23-61t22+27t21+80t20-19t19-100t18+26t17+96t16-24t15-84t14+44t12-2t11-18t10+2t9+40t8+4t7-32t6-12t5+4t3+12t2-4)*y+(9t27-12t26+4t25+36t23-18t22-28t21-2t20+54t19+14t18-52t17-44t16+24t15+40t14-4t13-12t12+4t11-4t10-4t9+4t8);
f;
displayTropicalLifting(tropicalLifting(f,intvec(1,-1,-4),3),"subst");
// --------------------------------------------------------
// Example 4 - the ideal has even more equations
// --------------------------------------------------------
ring r2=0,(t,x,y,z),dp;
ideal i=t-x3+3yz,t2xy-2x2z;
i;
displayTropicalLifting(tropicalLifting(i,intvec(1,1,3,0),2),"subst");
// --------------------------------------------------------
// Example 5-7 - testing some options
// --------------------------------------------------------
setring r0;
poly f1=(x2-t3)*(x3-t5)*(x5-t7)*(x7-t11)*(x11-t13);
f1;
displayTropicalLifting(tropicalLifting(f1,intvec(7,-11),4,"noAbs"),"subst");
poly f2=(1+t2)*x2+t5x+t2;
f2;
displayTropicalLifting(tropicalLifting(f2,intvec(1,-1),4,"isZeroDimensional","findAll"),"subst");
poly f3=t7-6t4+3t3x+8t3-12t2x+6tx2-x3+t2;
f3;
displayTropicalLifting(tropicalLifting(f3,intvec(3,-2),4,"isInTrop","findAll"),"subst");
// ---------------------------------------------------------
// Even more examples
// ---------------------------------------------------------
ring r1=0,(t,x),dp;
poly f1=(x2-t3)*(x3-t5)*(x5-t7)*(x7-t11)*(x11-t13);
displayTropicalLifting(tropicalLifting(f1,intvec(7,-11),4,"noAbs"),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (7,-11)
///////////////////////////////////////////////////////////////////
// one field extension needed
// x=(X(1))*t+(-1/2*X(1))*t^3+(3/8*X(1)-1/2)*t^5+(-5/16*X(1)+1/2)*t^7+(19/128*X(1)-1/2)*t^9+(-15/256*X(1)+1/2)*t^11+(-9/1024*X(1)-1/2)*t^13 where t->t and X(1)^2+1=0
poly f2=(1+t2)*x2+t5x+t2;
displayTropicalLifting(tropicalLifting(f2,intvec(1,-1),4,"isZeroDimensional","findAll"),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (1,-1)
///////////////////////////////////////////////////////////////////
// x=t2+2t3+t7 the result is exact
poly f3=t7-6t4+3t3x+8t3-12t2x+6tx2-x3+t2;
displayTropicalLifting(tropicalLifting(f3,intvec(3,-2),4,"isInTrop","findAll"),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (3,-2)
///////////////////////////////////////////////////////////////////
// full parametrisation is given by t->t2+t3 and x=3t7+t9+4t11-t12, this however cannot be computed
// so: t->t2 and x=-3t7-21/2t8-239/8t9-78t10-25589/128t11-506t12-1298967/1024t13-3159t14-256667105/32768t15-19371t16-12540259065/262144t17-118066t18-1222177873545/4194304t19-719423t20-59637294735495/33554432t21
poly f4=t12-83t11-88t10-69t9+3t8x+153t8+298t7x-81t7+165t6x-402t5x+3t4x2+189t4x-131t3x2+213t2x2-86tx2+x3+9x2;
displayTropicalLifting(tropicalLifting(f4,intvec(2,-7),4,"findAll"),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (2,-7)
///////////////////////////////////////////////////////////////////
// t->t6 and x=3t3+t7+4t11-t12
poly f5=t12-4120t11+6t10x-1008t10-96t9x+15t8x2+4453t9-2016t8x-144t7x2+20t6x3-18t8-108t7x-1008t6x2-96t5x3+15t4x4-4681t7-36t6x-162t5x2-24t3x4+6t2x5+243t6-18t4x2-108t3x3+x6+1890t5+486t4x-27tx4+243t2x2-729t3;
displayTropicalLifting(tropicalLifting(f5,intvec(2,-1),3,"isInTrop","isZeroDimensional","findAll"),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (2,-1)
///////////////////////////////////////////////////////////////////
ring r2=0,(t,x,y),dp;
poly f7=(9t27-12t26-5t25+21t24+35t23-51t22-40t21+87t20+56t19-94t18-62t17+92t16+56t15-70t14-42t13+38t12+28t11+18t10-50t9-48t8+40t7+36t6-16t5-12t4+4t2)*x2+(-9t24+12t23-4t22-42t20+28t19+30t18-20t17-54t16+16t15+48t14-16t12+8t11-18t10-26t9+30t8+20t7-24t6+4t5+28t4-8t3-16t2+4)*xy+(6t16-10t15-2t14+16t13+4t12-18t11-10t10+24t9+6t8-20t7+8t6+8t5-20t4-4t3+12t2+4t-4)*y2+(-9t28+3t27+8t26-4t25-45t24-6t23+42t22+30t21-94t20-40t19+68t18+82t17-38t16-60t15+26t14+36t13-22t12-20t11+4t10+4t9+12t8+8t7-8t6-8t5+4t4)*x+(9t27-21t26+16t25+14t24+12t23-61t22+27t21+80t20-19t19-100t18+26t17+96t16-24t15-84t14+44t12-2t11-18t10+2t9+40t8+4t7-32t6-12t5+4t3+12t2-4)*y+(9t27-12t26+4t25+36t23-18t22-28t21-2t20+54t19+14t18-52t17-44t16+24t15+40t14-4t13-12t12+4t11-4t10-4t9+4t8);
displayTropicalLifting(tropicalLifting(f7,intvec(1,-1,-4),4,"isPrime"),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (1,-1,-4)
///////////////////////////////////////////////////////////////////
ring r3=0,(t,x,y,z),dp;
ideal i1=-y2t4+x2,yt3+xz+y;
displayTropicalLifting(tropicalLifting(i1,intvec(1,-2,0,2),4,"findAll"),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (1,-2,0,2)
///////////////////////////////////////////////////////////////////
ideal i2=-y2t4+x2,yt3+yt2+xz;
displayTropicalLifting(tropicalLifting(i2,intvec(1,-3,-1,0),4),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (1,-3,-1,0)
////////////////////////////////////////////////////////////////
ring r4=0,(t,x,y,z,u),dp;
ideal i3=t3x+ty+u,tx+t2u+y;
displayTropicalLifting(tropicalLifting(i3,intvec(1,-1,-2,-1,-3),6),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (1,-1,-2,-1,-3)
/////////////////////////////////////////////////////////////////////
setring r2;
ideal i5=t3-t2y+t2-tx-ty+xy,t3-t2y+t2-2ty+y2,-t4+2t3x-t2x2-t3+3t2x-3tx2+x3+t2+t-x,-t4+2t3x-t2x2-t3+2t2x-tx2+t2y-2txy+x2y+t2+t-y;
displayTropicalLifting(tropicalLifting(i5,intvec(1,-1,-1),3),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (1,-1,-1)
////////////////////////////////////////////////////////////////////
ring r5=0,(t,V,W,X,Y,Z),dp;
ideal i5=VXt5+3VZt4-2VXt3+WXt3+V2t2+3WZt2-2WXt+VW,-4W2X4+V2t2;
displayTropicalLifting(tropicalLifting(i5,intvec(2,-3,-3,-1,-1,-1),3),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (2,-3,-3,-1,-1,-1)
///////////////////////////////////////////////////////////////////
ring r6=0,(t,x,y,z),dp;
ideal i6=t4xy-y3z3+3t2xy3-txy2+t4y;
displayTropicalLifting(tropicalLifting(i6,intvec(3,0,-9,2),4),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (3,0,-9,2)
////////////////////////////////////////////////////////////
// very easy example stops after one loop with an exact result
ideal i7=t2xy-2x2z;
displayTropicalLifting(tropicalLifting(i7,intvec(1,1,3,0),4),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (1,1,3,0)
/////////////////////////////////////////////////////////////
displayTropicalLifting(tropicalLifting(i7,intvec(1,-3,-1,0),4),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (1,-3,-1,0)
/////////////////////////////////////////////////////////////////
// requires one field extension
ideal i8=t-x3+3yz;
displayTropicalLifting(tropicalLifting(i8,intvec(1,1,3,0),4),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (1,1,3,0)
/////////////////////////////////////////////////////////////////
displayTropicalLifting(tropicalLifting(i8,intvec(1,-3,-1,0),4),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (1,-3,-1,0)
/////////////////////////////////////////////////////////////////
// requires one field extension
ideal i9=t-x3+3yz,t2xy-2x2z;
displayTropicalLifting(tropicalLifting(i9,intvec(1,1,3,0),4),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (1,1,3,0)
// takes too much time
//displayTropicalLifting(tropicalLifting(i9,intvec(1,-3,-1,0),4),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (1,-3,-1,0)
/////////////////////////////////////////////////////////////////////
// too much for Gfan did not work on my computer
//ideal i10=t2xy+t4-z2,t-2xy+z2+tz,z2-y;
//displayTropicalLifting(tropicalLifting(i10,intvec(2,4,-6,-3),2),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (2,4,-6,-3)
////////////////////////////////////////////////////////////////////
ring r7=0,(t,x,y),dp;
ideal i11=t4xy-y3+3t2xy3-txy2+t4y;
displayTropicalLifting(tropicalLifting(i11,intvec(1,3,1),5),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (1,3,1)
////////////////////////////////////////////////////////////////
ring r8=0,(t,x),dp;
ideal i12=x32+(16t6)*x30+(8t10)*x29+(120t12)*x28+(112t16)*x27+(32t20+560t18)*x26+(728t22)*x25+(388t26+1820t24)*x24+(80t30+2912t28)*x23+(2160t32+4368t30)*x22+(824t36+8008t34)*x21+(138t40+7304t38+8008t36)*x20+(3840t42+16016t40)*x19+(1180t46+16720t44+11440t42)*x18+(170t50+10680t48+24024t46)*x17+(4480t52+27324t50+12870t48)*x16+(1168t56+19680t54+27456t52)*x15+(152t60+9920t58+32736t56+11440t54)*x14+(3472t62+25200t60+24024t58)*x13+(804t66+14140t64+29040t62+8008t60)*x12+(96t70+5824t68+22848t66+16016t64)*x11+(1776t72+13496t70+19008t68+4368t66)*x10+(364t76+6020t74+14640t72+8008t70)*x9+(42t80+2112t78+8680t76+9020t74+1820t72)*x8+(544t82+3920t80+6480t78+2912t76)*x7+(104t86+1448t84+3680t82+2992t80+560t78)*x6+(12t90+400t88+1568t86+1880t84+728t82)*x5+(94t92+564t90+970t88+648t86+120t84)*x4+(16t96+144t94+352t92+320t90+112t88)*x3+(3t100+36t98+112t96+140t94+80t92+16t90)*x2+(6t102+20t100+34t98+24t96+8t94)*x+(t106+5t104+8t102+8t100+4t98+t96);
displayTropicalLifting(tropicalLifting(i12,intvec(1,-3),2),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (1,-3)
////////////////////////////////////////////////////////////////
ring r9=3,(t,x),dp;
ideal i13=imap(r8,i12);
displayTropicalLifting(tropicalLifting(i13,intvec(1,-3),3,"noAbs"),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (1,-3)
/////////////////////////////////////////////////////
// without the option findAll we first get only a non-valid solution !!!
ring r10=0,(t,x,y,z,u),dp;
ideal i14=-y2t5-xyt4-2yzt3+yut2+xut+2zu;
displayTropicalLifting(tropicalLifting(i14,intvec(1,-2,-1,-3,-3),3),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (1,-2,-1,-3,-3)
///////////////////////////////////////////////////////
// test for positive characteristic
///////////////////////////////////////////////////////////////////
ring r11=13,(t,x),dp;
poly f1=(x2-t3)*(x3-t5)*(x5-t7)*(x7-t11)*(x11-t13);
displayTropicalLifting(tropicalLifting(f1,intvec(7,-11),4,"findAll"),"subst");
///////////////////////////////////////////////////////////////////
// weight was: (7,-11)
///////////////////////////////////////////////////////////////////
// one field extension needed
// x=(X(1))*t+(-1/2*X(1))*t^3+(3/8*X(1)-1/2)*t^5+(-5/16*X(1)+1/2)*t^7+(19/128*X(1)-1/2)*t^9+(-15/256*X(1)+1/2)*t^11+(-9/1024*X(1)-1/2)*t^13 where t->t and X(1)^2+1=0
poly f2=(1+t2)*x2+t5x+t2;
displayTropicalLifting(tropicalLifting(f2,intvec(1,-1),4,"isZeroDimensional","findAll"),"subst");
///////////////////////////////////////////////////////////////////
ring r12=5,(t,x,y),dp;
ideal i11=t4xy-y3+3t2xy3-txy2+t4y;
displayTropicalLifting(tropicalLifting(i11,intvec(1,3,1),5),"subst");
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
/// B) Examples for tropicalCurve
///////////////////////////////////////////////////////////////////
ring r=(0,t),(x,y),dp;
poly f=t*(x7+y7+1)+1/t*(x4+y4+x2+y2+x3y+xy3)+1/t7*x2y2;
list graph=tropicalCurve(f);
graph;
size(graph)-1;
drawTropicalCurve(graph);
poly g=t3*(x7+y7+1)+1/t3*(x4+y4+x2+y2+x3y+xy3)+1/t21*x2y2;
list tropical_g=tropicalise(g);
tropical_g;
drawTropicalCurve(tropical_g);
/// further examples
poly f1=x+y;
poly f2=xy+xy3+xy6+txy9;
poly f3=xy+x2y3+x3y6+tx4y9;
poly f4=t*(x3+y3+1)+1/t*(x2+y2+x+y+x2y+xy2)+1/t2*xy;
poly f5=t8x3+t8y3+t8+t4x2y+t4xy2+t4x2+t4y2+t4x+t4y+t2xy;
poly f6=x3+y3+1;
poly f7=t*x70+t*y70+1/t*x40+1/t7*x20y20+1/t*y40+1/t*x30y+1/t*xy30+1/t*x20+1/t*y20+t;
poly f8=t10*x7+t10*y7+1/t10*x4+1/t70*x2y2+1/t10*y4+1/t10*x3y+1/t10*xy3+1/t10*x2+1/t10*y2+t10;
poly f9=x+y+x2y+xy2+1/t*xy;
poly f10=1+x+y+xy+tx2y+txy2+t3x5+t3y5+tx2y2+t2xy4+t2yx4;
poly f11=1/(t8)*x6y+1/(t16)*x5y2+1/(t9)*x4y3+(t4)*x2y5+1/(t11)*xy6+(t5)*y7+1/(t5)*x6+(t16)*x4y2+(t10)*x3y3+(t19)*xy5+(t14)*x5+1/(t17)*x3y2+(t10)*x2y3+1/(t20)*xy4+(t13)*y5+1/(t17)*x4+(t9)*x3y+(t11)*xy3+1/(t3)*xy2+(t7)*y3+1/(t18)*x2+(t16)*x;
poly f12=-x3+(6t13+3t12+t5+3t4+3t3+1)/(t19)*x2+(2t5+1)/(t12)*xy+y2+(9t28-12t23-12t22+3t21+9t19+3t16-8t15-16t14-24t13-9t12-6t11-8t10-3t9-3t8-4t6-8t5-8t4-3t3-3t-2)/(t35)*x+(9t27+6t20-8t14-4t13-6t12-3t11-4t9-t8-4t5-4t4-2t3-1)/(t27)*y+(27t50+27t43-36t37-9t36-27t35-27t34-t32+12t31-18t30-11t29-54t28-36t27-12t25+13t24+28t23+61t22+27t21+18t20+16t19+3t18+14t17+3t16+16t15+26t14+44t13+34t12+21t11+27t10+12t9+7t8+t6+10t5+11t4+7t3+t2+2t+2)/(t50);
poly f13=x3+(3t9+1)/(t8)*x2y+(3t10+2t+1)/(t8)*xy2+(t10+t7+t+1)/(t7)*y3+1/(t8)*x2+(2t5+1)/(t12)*xy+(t5+t3+1)/(t11)*y2+1/(t8)*x+(t+1)/(t8)*y+1;
poly f14=x3+(3t9+3t6c+1)/(t8)*x2y+(3t12+6t9c+3t6c2+2t3+t2+2c)/(t10)*xy2+(t15+3t12c+t12+3t9c2+t6c3+t6+t5+2t3c+t2c+c2)/(t12)*y3+1/(t8)*x2+(2t5+2t2c+1)/(t12)*xy+(t8+t6+2t5c+t3+t2c2+c)/(t14)*y2+1/(t8)*x+(t3+t2+c)/(t10)*y+1;
poly f15=x3+x2y+xy2+(t5)*y3+x2+1/(t4)*xy+y2+x+y+1;
poly f16=t*(x7+y7+1)+1/t*(x4+y4+x2+y2+x3y+xy3)+1/t7*x2y2;
///////////////////////////////////////////////////////////////////
/// B) Examples for tropicalJInvariant
///////////////////////////////////////////////////////////////////
// tropcial_j_invariant computes the tropical j-invariant of the elliptic curve f
tropicalJInvariant(t*(x3+y3+1)+1/t*(x2+y2+x+y+x2y+xy2)+1/t2*xy);
// the Newton polygone need not be the standard simplex
tropicalJInvariant(x+y+x2y+xy2+1/t*xy);
// the curve can have arbitrary degree
tropicalJInvariant(t*(x7+y7+1)+1/t*(x4+y4+x2+y2+x3y+xy3)+1/t7*x2y2);
// the procedure does not realise, if the embedded graph of the tropical curve has
// a loop that can be resolved
tropicalJInvariant(1+x+y+xy+tx2y+txy2);
// but it does realise, if the curve has no loop at all ...
tropicalJInvariant(x+y+1);
// or if the embedded graph has more than one loop - even if only one cannot be resolved
tropicalJInvariant(1+x+y+xy+tx2y+txy2+t3x5+t3y5+tx2y2+t2xy4+t2yx4);
// f is already in Weierstrass form
weierstrassForm(y2+yx+3y-x3-2x2-4x-6);
// g is not, but wg is
g=x+y+x2y+xy2+1/t*xy;
poly wg=weierstrassForm(g);
wg;
// ... but it is not yet a simple, since it still has an xy-term, unlike swg
poly swg=weierstrassForm(g,1);
swg;
// the j-invariants of all three polynomials coincide ...
jInvariant(g);
jInvariant(wg);
jInvariant(swg);
// the following curve is elliptic as well
poly h=x22y11+x19y10+x17y9+x16y9+x12y7+x9y6+x7y5+x2y3;
// its Weierstrass form is
weierstrassForm(h);
jInvariant(x+y+x2y+y3+1/t*xy,"ord");
// see also example f5-f16 in part B)
*/
/////////////////////////////////////////////////////////////////////////
proc drawTwoTropicalCurves (list ff,list #)
"USAGE: drawTropicalCurve(f[,#]); f poly or list, # optional list
ASSUME: f is list of linear polynomials of the form ax+by+c with
integers a, b and a rational number c representing a tropical
Laurent polynomial defining a tropical plane curve;
alternatively f can be a polynomial in Q(t)[x,y] defining
a tropical plane curve via the valuation map;
the basering must have a global monomial ordering, two
variables and up to one parameter!
RETURN: NONE
NOTE: - the procedure creates the files /tmp/tropicalcurveNUMBER.tex and
/tmp/tropicalcurveNUMBER.ps, where NUMBER is a random four
digit integer;
moreover it displays the tropical curve via xdg-open;
if you wish to remove all these files from /tmp,
call the procedure cleanTmp
@* - edges with multiplicity greater than one carry this multiplicity
@* - if # is empty, then the tropical curve is computed w.r.t. minimum,
if #[1] is the string 'max', then it is computed w.r.t. maximum
@* - if the last optional argument is 'onlytexfile' then only the
latex file is produced; this option should be used if xdg-open
is not installed on your system
@* - note that lattice points in the Newton subdivision which are
black correspond to markings of the marked subdivision,
while lattice points in grey are not marked
EXAMPLE: example drawTropicalCurve shows an example"
{
// check if the option "onlytexfile" is set, then only a tex file is produced
if (size(#)!=0)
{
if (#[size(#)]=="onlytexfile")
{
int onlytexfile;
#=delete(#,size(#));
}
}
// store this list # for use in the Newton subdivision
list oldsharp=#;
// start the actual computations
string texf;
list graph,graphs,texfs;
int i,j;
for (i=1;i<=size(ff);i++)
{
def f=ff[i];
if (typeof(f)=="poly")
{
// exclude the case that the basering has not precisely
// one parameter and two indeterminates
if ((npars(basering)!=1) or (nvars(basering)!=2))
{
ERROR("The basering should have precisely one parameter and two indeterminates!");
}
texf=texPolynomial(f); // write the polynomial over Q(t)
graph=tropicalCurve(tropicalise(f,#),#); // graph of tropicalis. of f
}
if (typeof(f)=="list")
{
if (size(#)==0)
{
texf="\\min\\{";
}
else
{
texf="\\max\\{";
}
for (j=1;j<=size(f);j++)
{
texf=texf+texPolynomial(f[j]);
if (j<size(f))
{
texf=texf+", ";
}
else
{
texf=texf+"\\}";
}
}
graph=tropicalCurve(f,#); // the graph of the tropical polynomial f
// detropicalise ff[i]
ff[i]=tDetropicalise(f);
}
graphs[i]=graph;
texfs[i]=texf;
kill f;
}
// add the product of all curves as an additional curve
poly f=1;
for (i=1;i<=size(ff);i++)
{
f=f*ff[i];
}
ff=insert(ff,f);
graphs=insert(graphs,tropicalCurve(f,#));
texfs=insert(texfs,texPolynomial(f));
// produce the tex file
string vertices;
list verticess;
for (i=1;i<=size(ff);i++)
{
graph=graphs[i];
for (j=1;j<=size(graph)-2;j++)
{
vertices=vertices+"("+string(graph[j][1])+","+string(graph[j][2])+"),\\;\\;";
}
vertices=vertices+"("+string(graph[j][1])+","+string(graph[j][2])+")";
verticess[i]=vertices;
vertices="";
}
string TEXBILD="\\documentclass[12pt]{amsart}
\\usepackage{texdraw}
\\setlength{\\topmargin}{30mm}
\\addtolength{\\topmargin}{-1in}
\\addtolength{\\topmargin}{-\\headsep}
\\addtolength{\\topmargin}{-\\headheight}
\\addtolength{\\topmargin}{-\\topskip}
\\setlength{\\textheight}{267mm}
\\addtolength{\\textheight}{\\topskip}
\\addtolength{\\textheight}{-\\footskip}
\\addtolength{\\textheight}{-30pt}
\\setlength{\\oddsidemargin}{-1in}
\\addtolength{\\oddsidemargin}{20mm}
\\setlength{\\evensidemargin}{\\oddsidemargin}
\\setlength{\\textwidth}{170mm}
\\begin{document}
\\parindent0cm
\\begin{center}
\\large\\bf The Tropicalisation of several curves:
\\end{center}
\\bigskip
";
string fname;
for (i=1;i<=size(ff);i++)
{
if (i==1)
{
fname="f_1\\cdots f_{"+string(size(ff)-1)+"}";
}
else
{
fname="f_{"+string(i-1)+"}";
}
TEXBILD=TEXBILD+"
The vertices of the tropical curve
\\begin{center}
\\begin{math}
"+fname+"="+texfs[i]+"
\\end{math}
\\end{center}
are
\\begin{center}
\\begin{math}
"+verticess[i]+"
\\end{math}
\\end{center}
\\vspace*{0.5cm}
";
}
// compute the center and the scale factor
list SCF=minScaleFactor(graphs);
#[size(#)+1]=SCF;
string relunitscale="
\\relunitscale "+ decimal(SCF[1],SCF[3]);
#[size(#)+1]=relunitscale;
// collect the texdraw input for all the curves with different color
string TDT;
for (i=1;i<=size(ff);i++)
{
#[size(#)+1]="\\setgray "+decimal(1-(number(i)/(size(ff)+1)))+"
";
if (i>1)
{
TDT=TDT+"
"+texDrawTropical(graphs[i],#);
}
else
{
#=insert(#,"noweights");
TDT=TDT+"
"+texDrawTropical(graphs[i],#);
#=delete(#,1);
}
}
// add lattice points if the scalefactor is >= 1/2
// and was not handed over
def scalefactor=SCF[1];
if (scalefactor>1/2)
{
def minx=SCF[4];
def miny=SCF[5];
def maxx=SCF[6];
def maxy=SCF[7];
def centerx=SCF[8];
def centery=SCF[9];
int uh=1;
if (scalefactor>3)
{
uh=0;
}
TDT=TDT+"
%% HERE STARTS THE CODE FOR THE LATTICE";
for (i=int(minx)-uh;i<=int(maxx)+uh;i++)
{
for (j=int(miny)-uh;j<=int(maxy)+uh;j++)
{
TDT=TDT+"
\\move ("+decimal(i-centerx)+" "+decimal(j-centery)+") \\fcir f:0.8 r:"+decimal(1/(10*scalefactor),size(string(int(scalefactor)))+1);
}
}
TDT=TDT+"
%% HERE ENDS THE CODE FOR THE LATTICE
";
}
TEXBILD=TEXBILD+"
\\begin{center}
"+texDrawBasic(TDT)+ // write the tropical curve
"\\end{center}
\\vspace*{0.5cm}
";
// compute the scaling factor for the Newton subdivisions
oldsharp[size(oldsharp)+1]=nsdScaleFactor(graphs);
for (i=1;i<=size(ff);i++)
{
if (i==1)
{
fname="f_1\\cdots f_{"+string(size(ff)-1)+"}";
}
else
{
fname="f_{"+string(i-1)+"}";
}
TEXBILD=TEXBILD+"
The Newton subdivision of the tropical curve $"+fname+"$ is:
\\vspace*{0.5cm}
\\begin{center}
"+texDrawNewtonSubdivision(graphs[i],oldsharp)+"
\\end{center}
\\vspace*{0.5cm}
";
}
TEXBILD=TEXBILD+"
\\end{document}";
if(defined(onlytexfile)==0)
{
int rdnum=random(1000,9999);
write(":w /tmp/tropicalcurve"+string(rdnum)+".tex",TEXBILD);
system("sh","cd /tmp; latex /tmp/tropicalcurve"+string(rdnum)+".tex; dvips /tmp/tropicalcurve"+string(rdnum)+".dvi -o; command rm tropicalcurve"+string(rdnum)+".log; command rm tropicalcurve"+string(rdnum)+".aux; command rm tropicalcurve"+string(rdnum)+".ps?; command rm tropicalcurve"+string(rdnum)+".dvi; xdg-open tropicalcurve"+string(rdnum)+".ps &");
}
else
{
return(TEXBILD);
}
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
// poly f=t*(x3+y3+1)+1/t*(x2+y2+x+y+x2y+xy2)+1/t2*xy;
poly f=x+y+1;
// the command drawTropicalCurve(f) computes the graph of the tropical curve
// given by f and displays a post script image, provided you have xdg-open
// we can instead apply the procedure to a tropical polynomial and use "maximum"
poly g=t3*(x7+y7+1)+1/t3*(x4+y4+x2+y2+x3y+xy3)+1/t21*x2y2;
// list tropical_g=tropicalise(g);
drawTwoTropicalCurves(list(f,g),"max");
}
proc minScaleFactor (list graphs)
{
list graph;
int j,i,k;
poly minx,miny,maxx,maxy;
poly minX,minY,maxX,maxY;
poly maxdiffx,maxdiffy;
poly centerx,centery;
int nachkomma;
number sf,scf;
poly scalefactor;
list SFCS;
for (k=1;k<=size(graphs);k++)
{
graph=graphs[k];
// find the minimal and maximal coordinates of vertices
minx,miny,maxx,maxy=graph[1][1],graph[1][2],graph[1][1],graph[1][2];
for (i=2;i<=size(graph)-1;i++)
{
minx=minOfPolys(list(minx,graph[i][1]));
miny=minOfPolys(list(miny,graph[i][2]));
maxx=-minOfPolys(list(-maxx,-graph[i][1]));
maxy=-minOfPolys(list(-maxy,-graph[i][2]));
}
if (k==1)
{
minX=minx;
minY=miny;
maxX=maxx;
maxY=maxy;
}
else
{
if (minx<minX)
{
minX=minx;
}
if (miny<minY)
{
minY=miny;
}
if (maxx>maxX)
{
maxX=maxx;
}
if (maxy>maxY)
{
maxY=maxy;
}
}
}
minx,miny,maxx,maxy=minX,minY,maxX,maxY;
// find the scale factor for the texdraw image
maxdiffx=maxx-minx;
maxdiffy=maxy-miny;
centerx,centery=int(minx+maxdiffx/2),int(miny+maxdiffy/2);
if (maxdiffx==0)
{
maxdiffx=1;
}
if (maxdiffy==0)
{
maxdiffy=1;
}
nachkomma=2; // number of decimals for the scalefactor
sf=1; // correction factor for scalefactor
scalefactor=minOfPolys(list(12/leadcoef(maxdiffx),16/leadcoef(maxdiffy)));
// if the scalefactor is less than 1/100, then we need more than 2 decimals
if (leadcoef(scalefactor) < 1/100)
{
scf=leadcoef(scalefactor);
while (scf < 1/100)
{
scf=scf * 10;
nachkomma++;
}
}
// if the scalefactor is < 1/100, then we should rather scale the
// coordinates directly, since otherwise texdraw gets into trouble
if (nachkomma > 2)
{
for (i=3;i<=nachkomma;i++)
{
scalefactor=scalefactor * 10;
sf=sf*10;
}
}
return(list(scalefactor,sf,nachkomma,minx,miny,maxx,maxy,centerx,centery));
}
example
{
"EXAMPLE:";
echo=2;
ring r=(0,t),(x,y),dp;
poly f=t*(x3+y3+1)+1/t*(x2+y2+x+y+x2y+xy2)+1/t2*xy;
poly g=1/t3*(x7+y7+1)+t3*(x4+y4+x2+y2+x3y+xy3)+t21*x2y2;
list graphs;
graphs[1]=tropicalCurve(f);
graphs[2]=tropicalCurve(g);
minScaleFactor(graphs);
}
proc nsdScaleFactor (list graphs)
{
int i,j;
list graph,boundary,scalefactors;
poly maxx,maxy;
for (j=1;j<=size(graphs);j++)
{
graph=graphs[j];
boundary=graph[size(graph)][1];
// find maximal and minimal x- and y-coordinates and define the scalefactor
maxx,maxy=1,1;
for (i=1;i<=size(boundary);i++)
{
maxx=-minOfPolys(list(-maxx,-boundary[i][1]));
maxy=-minOfPolys(list(-maxy,-boundary[i][2]));
}
scalefactors[j]=minOfPolys(list(12/leadcoef(maxx),12/leadcoef(maxy)));
}
return(minOfPolys(scalefactors));
}
/////////////////////////////////////////////////////////////////////////
//
// Functions from binary libraries
//
/////////////////////////////////////////////////////////////////////////
proc groebnerCone()
"USAGE: groebnerCone(I,w); I ideal or poly, w intvec or bigintmat
ASSUME: I a reduced standard basis and w contained in the maximal Groebner cone
RETURN: cone, the Groebner cone of I with respect to w
EXAMPLE: example groebnerCone; shows an example"
{
}
example
{
"EXAMPLE:"; echo=2;
LIB "poly.lib";
ring r = 0,(x,y,z),dp;
ideal I = cyclic(3);
option(redSB);
ideal stdI = std(I);
// w lies in the interior of a maximal Groebner cone
intvec w = 3,2,1;
cone CwI = groebnerCone(stdI,w);
print(rays(CwI));
// v lies on a facet of a maximal Groebner cone
intvec v = 2,1,0;
cone CvI = groebnerCone(stdI,v);
print(rays(CvI));
// v lies on a ray of a maximal Groebner cone
intvec u = 1,1,1;
cone CuI = groebnerCone(stdI,u);
print(rays(CuI));
}
proc maximalGroebnerCone()
"USAGE: maximalGroebnerCone(I); I ideal or poly
ASSUME: I a reduced standard basis
RETURN: cone, the maximal Groebner cone of I with respect to the current ordering
EXAMPLE: example maximalGroebnerCone; shows an example"
{
}
example
{
"EXAMPLE:"; echo=2;
LIB "poly.lib";
ring r = 0,(x,y,z),dp;
ideal I = cyclic(3);
option(redSB);
ideal stdI = std(I);
cone CI = maximalGroebnerCone(stdI);
print(rays(CI));
ring s = 0,(x,y,z,u),dp;
ideal Ih = homog(cyclic(3),u);
ideal stdI = std(Ih);
cone CIh = maximalGroebnerCone(stdI);
print(rays(CIh));
print(generatorsOfLinealitySpace(CIh));
ring rw = 0,(x,y,z),(a(1,0,1),lp);
ideal I = cyclic(3);
ideal stdI = std(I);
CI = maximalGroebnerCone(stdI);
print(rays(CI));
}
proc homogeneitySpace()
"USAGE: homogeneitySpace(I); I ideal or poly
ASSUME: I a reduced standard basis
RETURN: cone, the set of all weight vectors with respect to whom I is weighted homogeneous
EXAMPLE: example homogeneitySpace; shows an example"
{
}
example
{
"EXAMPLE:"; echo=2;
LIB "poly.lib";
ring r = 0,(x,y,z),dp;
ideal I = cyclic(3);
option(redSB);
ideal stdI = std(I);
cone C0I = homogeneitySpace(stdI);
print(generatorsOfLinealitySpace(C0I));
ring s = 0,(x,y,z,u),dp;
ideal Ih = homog(cyclic(3),u);
ideal stdI = std(Ih);
cone C0Ih = homogeneitySpace(stdI);
print(generatorsOfLinealitySpace(C0Ih));
}
proc initial()
"USAGE: initial(f,w); f poly, w intvec or bigintmat
initial(I,w); I ideal, w intvec or bigintmat
ASSUME: I reduced Groebner basis,
w in the maximal Groebner cone of I with respect to the current ordering
RETURN: poly or ideal, the initial form of f or the initial ideal of I with respect to w
EXAMPLE: example initial; shows an example"
{
}
example
{
"EXAMPLE:"; echo=2;
LIB "poly.lib";
ring r = 0,(x,y,z),dp;
ideal I = cyclic(3);
intvec w = 1,1,1;
option(redSB);
ideal stdI = std(I);
stdI;
ideal inI = initial(stdI,w);
inI;
}
proc tropicalVariety()
"USAGE: tropicalVariety(f[,p]); f poly, p optional number
tropicalVariety(I[,p]); I ideal, p optional number
ASSUME: I homogeneous, p prime number
RETURN: fan, the tropical variety of f resp. I with respect to the trivial valuation or the p-adic valuation
NOTE: set printlevel=1 for output during traversal
EXAMPLE: example tropicalVariety; shows an example"
{
}
example
{
"EXAMPLE:"; echo=2;
ring r = 0,(x,y,z,w),dp;
ideal I = x-2y+3z,3y-4z+5w;
tropicalVariety(I);
tropicalVariety(I,number(2));
tropicalVariety(I,number(3));
tropicalVariety(I,number(5));
tropicalVariety(I,number(7));
}
proc groebnerFan()
"USAGE: groebnerFan(f); f poly
groebnerFan(I); I ideal
ASSUME: I homogeneous
RETURN: fan, the Groebner fan of f resp. I
NOTE: set printlevel=1 for output during traversal
EXAMPLE: example groebnerFan; shows an example"
{
}
example
{
"EXAMPLE:"; echo=2;
ring r = 0,(x,y,z,w),dp;
ideal I = x-2y+3z,3y-4z+5w;
groebnerFan(I);
}
proc groebnerComplex()
"USAGE: groebnerComplex(f,p); f poly, p number
groebnerComplex(I,p); I ideal, p number
ASSUME: I homogeneous, p prime number
RETURN: fan, the Groebner complex of f resp. I with respect to the p-adic valuation
NOTE: set printlevel=1 for output during traversal
EXAMPLE: example groebnerComplex; shows an example"
{
}
example
{
"EXAMPLE:"; echo=2;
ring r = 0,(x,y,z,w),dp;
ideal I = x-2y+3z,3y-4z+5w;
groebnerComplex(I,number(2));
groebnerComplex(I,number(3));
groebnerComplex(I,number(5));
groebnerComplex(I,number(7));
}
|