/usr/share/singular/LIB/surfex.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 | ////////////////////////////////////////////////////////////////////////////
version="version surfex.lib 4.0.0.0 Jun_2013 "; // $Id: bfb0e2593591319f3d6fff48b7f1136641596359 $
category="Visualization";
info="
LIBRARY: surfex.lib Procedures for visualizing and rotating surfaces.
AUTHOR: Oliver Labs
This library uses the program surf
(written by Stefan Endrass and others)
and surfex (written by Oliver Labs and others, mainly Stephan Holzer).
NOTE:
@texinfo
It is still an alpha version (see @uref{http://www.AlgebraicSurface.net})@*
This library requires the program surfex, surf and java to be installed.
The software is used for producing raytraced images of surfaces.
You can download @code{surfex} from @uref{http://www.surfex.AlgebraicSurface.net}
@end texinfo
surfex is a front-end for surf which aims to be easier to use than
the original tool.
SEE ALSO: surf_lib
PROCEDURES:
plotRotated(poly,coord); Plot the surface given by the polynomial p
with the coordinates coords(list)
plotRot(poly); Similar to plotRotated,
but guesses automatically
which coordinates should be used
plotRotatedList(varieties, coords); Plot the varieties given by the list varieties
with the coordinates coords
plotRotatedDirect(varieties); Plot the varieties given by the list varietiesList
plotRotatedListFromSpecifyList(varietiesList); Plot the varieties given by the list varietiesList
";
LIB "solve.lib";
LIB "primdec.lib";
LIB "sing.lib";
LIB "surf.lib";
///////////////////////////////////////////////////////////
//
// the main procedures:
//
proc plotRot(poly p, list #)
"
USAGE: plotRot(poly p, list #)
Similar to plotRotated, but guesses automatically which coordinates should be used.
The optional int parameter can be used to set plotting quality.
It opens the external program surfex for drawing the surface given by p,
seen as a surface in the real affine space with coordinates coords.
ASSUME: The basering is of characteristic zero and without parameters.
"
{
list coords = list();
if(num_vars_id(p)==3)
{
execute("coords = "+string_of_vars(p)+";");
}
else
{
if(num_vars_id(p)<3)
{
if(nvars(basering)==3)
{
execute("coords = "+varstr(basering)+";");
}
else
{
if(nvars(basering)<3) {
"Could not guess the coordinates because the number of variables in the basering is smaller than 3!";
"Please use plotRotated() instead of plotRot() and specify the coordinates explicitly.";
return(0);
} else {
"Could not guess the coordinates because the number of variables in the polynomial is smaller than 3 and the number of variables in the basering is greater than three!";
"Please use plotRotated() instead of plotRot() and specify the coordinates explicitly.";
return(0);
}
}
} else {
"Could not guess the coordinates because the number of variables in the polynomial is greater than 3!";
"Please use plotRotated() instead of plotRot() and specify the coordinates explicitly.";
return(0);
}
}
return(plotRotatedList(list(p), coords, #));
}
example
{
"Example:"; echo=2;
// More variables in the basering, but only 3 variables in the polynomial:
ring r1 = 0, (w,x,y,z), dp;
poly cayley_cubic = x^3+y^3+z^3+1^3-1/4*(x+y+z+1)^3;
plotRot(cayley_cubic);
// Three variables in the basering, but fewer variables in the polynomial:
ring r2 = 0, (x,y,z), dp;
plotRot(x^2+y^2-1);
plotRot(y^2+z^2-1);
// A cubic surface with a solitary point:
// Use the additional parameter 3 to ask singular
// to compute the singular locus before calling surfex.
ring r3 = 0, (x,y,z), dp;
poly kn_10 = x^3-3*x*y^2+z^3+3*x^2+3*y^2+z^2;
plotRot(kn_10, 3);
// The swallowtail:
// a surface with a real solitary curve sticking out of the surface.
// Use the additional parameter 3 to ask singular
// to compute the singular locus before calling surfex.
poly swallowtail = -4*y^2*z^3-16*x*z^4+27*y^4+144*x*y^2*z+128*x^2*z^2-256*x^3;
}
proc plotRotated(poly p, list coords, list #)
"
USAGE: plotRotated(poly p, list coords, list #)
This opens the external program surfex for drawing the surface given by p,
seen as a surface in the real affine space with coordinates coords.
The optional int parameter can be used to set plotting quality.
ASSUME: coords is a list of three variables.
The basering is of characteristic zero and without parameters.
"
{
return(plotRotatedList(list(p), coords, #));
}
example
{
"Example:"; echo=2;
// An easy example: a surface with four conical nodes.
ring r = 0, (x,y,z), dp;
poly cayley_cubic = x^3+y^3+z^3+1^3-1/4*(x+y+z+1)^3;
// plotRotated(cayley_cubic, list(x,y,z));
// A difficult example: a surface with a one-dimensional real component!
poly whitney_umbrella = x^2*z-y^2;
// The Whitney Umbrella without its handle:
plotRotated(whitney_umbrella, list(x,y,z));
// The Whitney Umbrella together with its handle:
plotRotated(whitney_umbrella, list(x,y,z), 2);
}
proc plotRotatedList(list varieties, list coords, list #)
"
USAGE: plotRotatedList(list varieties, list coords, list #)
This opens the external program surfex for drawing the surfaces given by varieties,
seen as a surface in the real affine space with coordinates coords.
The optional int parameter can be used to set plotting quality.
ASSUME: coords is a list of three variables, varieties is a list of ideals
describing the varieties to be shown.
The basering is of characteristic zero and without parameters.
"
{
def oring = basering;
int plotquality = 0;
if(size(#)>0) {
plotquality = #[1];
}
list varietiesList = list(list(), list(), list(), list());
list usedSurfaces = list();
list curveColors = list();
// go through the list of varieties
// produce a list which can be used as input for plotRotatedListFromList()
int i;
int j;
list indList;
int ind;
ideal itmp;
int ncurves;
list pd;
int k;
int surfind;
list curSurfColors = list();
list listOfPoints = list();
string str_I = "";
for(i=1; i<=size(varieties); i++) {
itmp = varieties[i];
if(plotquality>=3) {
itmp = radical(itmp);
}
itmp = simplify(itmp,1);
itmp = simplify(itmp,2);
if(size(itmp)==1) { // i.e.: a surface given by one equation
surfind = findInList(surfEqn(itmp[1],coords), usedSurfaces);
if(surfind==0) {
usedSurfaces = usedSurfaces + list(surfEqn(itmp[1],coords));
curSurfColors = list(list("insidecolor:",getInsideColorStr(size(varietiesList[1])+1)),
list("outsidecolor:",getOutsideColorStr(size(varietiesList[1])+1)));
varietiesList[1] = varietiesList[1] +
list(list(list("eqno:",string(size(varietiesList[1])+1)),
list("equation:",surfEqn(itmp[1], coords)),
curSurfColors[1],
curSurfColors[2],
list("showcbox:","true"),
list("transparency:","0")));
surfind = size(varietiesList[1]);
}
if(plotquality==1) {
varieties = varieties + list(slocus(itmp[1]));
}
if(plotquality==2 || plotquality==3) {
// remove doubled components and
// add the 1-dimensional singular components
// of the surface to the list of curves:
int dsl = dim_slocus(itmp[1]);
dsl;
if(dsl>=0) { // i.e. there is a singular locus
"compute singular locus...";
list eqd;
//
eqd = equidim(slocus(itmp[1]));
ideal tmp_l;
tmp_l = std(eqd[size(eqd)]);
"dim:",dim(tmp_l);
if(dim(tmp_l)==(nvars(basering)-3+2)) {
"--- 2-dim.";
// we have found a multiple component;
// replace it by a simple copy of it
itmp = quotient(itmp[1], tmp_l);
varieties[i] = itmp[1];
eqd = delete(eqd,size(eqd));
if(size(eqd)>0) {
tmp_l = std(eqd[size(eqd)]);
}
}
if(dim(tmp_l)==(nvars(basering)-3+1)) {
"--- 1-dim.";
// we have found a 1-dimensional singular locus
pd = std_primdecGTZ(tmp_l,2);
for(k=1; k<=size(pd); k++) {
if(pd[k][3]==(nvars(basering)-3+1)) {
varieties = varieties + list(pd[k][2]);
curveColors[size(varieties)] = curSurfColors;
} else {
"???";
}
}
eqd = delete(eqd,size(eqd));
if(size(eqd)>0) {
tmp_l = std(eqd[size(eqd)]);
}
}
if(dim(tmp_l)==(nvars(basering)-3+0)) {
"--- 0-dim.";
// we have found a 0-dimensional singular locus
// we compute floating point approximations of the
// coordinates of all singular points
if(npars(oring)>0) {
"str:",parstr(1),rootminpoly();
list all_real_sols = allroots_minpoly();
// "all sols:";all_real_sols;
// sprintf("number %s = %s; ", parstr(1), rootminpoly());
int minp;
if((npars(basering) == 1) && (minpoly != 0)) {
minp = 1;
} else {
minp = 0;
}
str_I = "";
if(minp==1) {
"minp=1";
string str_para = parstr(1);
string str_tmp_l;
def cur_ring = basering;
if(1) {
short=0;
str_tmp_l = "ideal eqd_tmp = "+
// string(tmp_l)+","+string(minpoly)+";";
string(tmp_l);
"str:",str_tmp_l;
string str_num_mp = "number "+parstr(1)+"="+
decstr2ratstr(rootminpoly())+";";
execute("ring Iring = 0,("
// +string(coords)+","+str_para+"),dp;");
+string(coords)+"),dp;");
basering;
execute(str_num_mp);
execute(str_tmp_l);
eqd_tmp;
list real_sols = real_solve(eqd_tmp);
real_sols;
$;
setring cur_ring;
}
} else {
// minp==0: we do not know how to handle this
"???";
}
} else {
"no pars";
ideal eqd_tmp = tmp_l;
short=0;
string str_tmp_l = "ideal eqd_tmp = "+string(tmp_l)+";";
def cur_ring = basering;
execute("ring Iring = (real,30),("+string(coords)+"),("+ordstr(oring)+");");
// basering;
execute(str_I);
execute(str_tmp_l);
list real_sols = real_solve(eqd_tmp);
setring cur_ring;
}
"real_sols:";real_sols;
for(k=1; k<=size(real_sols); k++) {
"search point:";
string(list(real_sols[k][1],real_sols[k][2],real_sols[k][3],string(surfind)));
// listOfPoints;
if(findInList(string(list(list(real_sols[k][1],real_sols[k][2],real_sols[k][3],string(surfind)))),
listOfPoints)==0) {
"add pt";
varietiesList[4] = varietiesList[4] +
list(list(real_sols[k][1],real_sols[k][2],real_sols[k][3],string(surfind)));
listOfPoints = listOfPoints +
list(string(list(real_sols[k][1],real_sols[k][2],real_sols[k][3],string(surfind))));
}
}
}
}
}
} else {
// i.e.: more than one equation
varietiesList[2] = varietiesList[2] +
list(list(list("surfaces:"),
list("curveno:",
string(size(varietiesList[2])+1)),
list("showcbox:","true")));
if(size(curveColors) >= i) {
varietiesList[2][size(varietiesList[2])][4] = curveColors[i][1];
varietiesList[2][size(varietiesList[2])][4][1] = "color:";
}
ncurves = size(varietiesList[2]);
for(j=1; j<=size(itmp); j++) {
ind = findInList(surfEqn(itmp[j],coords), usedSurfaces);
usedSurfaces = usedSurfaces + list(surfEqn(itmp[1],coords));
// "indList:";indList;
if(ind == 0) {
// "--------> not in list", surfEqn(itmp[j], coords);
if(j==1) {
varietiesList[1] = varietiesList[1] +
list(list(list("eqno:",string(size(varietiesList[1])+1)),
list("equation:",surfEqn(itmp[j], coords)),
list("insidecolor:",getInsideColorStr(size(varietiesList[1])+1)),
list("outsidecolor:",getOutsideColorStr(size(varietiesList[1])+1)),
list("showcbox:","true"),
list("transparency:","100")));
} else {
varietiesList[1] = varietiesList[1] +
list(list(list("eqno:",string(size(varietiesList[1])+1)),
list("equation:",surfEqn(itmp[j], coords)),
list("insidecolor:",getInsideColorStr(size(varietiesList[1])+1)),
list("outsidecolor:",getOutsideColorStr(size(varietiesList[1])+1)),
list("showcbox:","false"),
list("transparency:","0")));
}
ind = size(varietiesList[1]);
} else {
}
varietiesList[2][ncurves][1] = varietiesList[2][ncurves][1] + list(string(ind));
}
}
}
// "------------";
// varietiesList;
// "------------";
return(plotRotatedListFromSpecifyList(varietiesList, coords, #));
}
example {
"Example:"; echo=2;
// A cubic surface together with a tritangent plane
// (i.e. a plane which cuts out three lines).
ring r = 0, (x,y,z), dp;
poly cayley_cubic = x^3+y^3+z^3+1^3-1/4*(x+y+z+1)^3;
poly plane = 1-x-y-z;
plotRotatedList(list(cayley_cubic, plane), list(x,y,z));
// The same cubic and plane.
// The plane is not shown but only its intersection with the surface.
plotRotatedList(list(cayley_cubic, ideal(cayley_cubic, plane)), list(x,y,z));
}
proc plotRotatedListFromSpecifyList(list varietiesList, list #)
"
USAGE: plotRotatedListFromSpecifyList(list varietiesList, list #);
varietiesList has a complicated format (not documented yet);
see the example.@*
The optional int parameter can be used to set plotting quality.
ASSUME: The basering is of characteristic zero.
EXAMPLE: example plotRotatedListFromSpecifyList;
"
{
// make the surfex file
string str = getSurfexCodeFromSpecifyList(varietiesList, #);
return(plotRotatedFromCode(str, #));
}
example
{
"Example:"; echo=2;
// A cubic surface depending on a parameter:
ring r = (0,p1), (x,y,z), dp;
poly cayley_cubic = x^3+y^3+z^3+1^3-p1*(x+y+z+1)^3;
poly plane = 1-x-y-z;
plotRotatedListFromSpecifyList(list(list(list(list("eqno:","1"),
list("equation:",
string(cayley_cubic))
)
),
list(),
list(list(1,"0.0","1.0","500","0.25+0.25*sin(PI*p1)")),
list()
));
}
proc plotRotatedListFromStringList(list varieties, list #)
"
RETURN: the return code of the system command which executes surfex.
USAGE: not documented yet.
"
{
// make the surfex file
getSurfexCodeFromStringList(varieties, #);
string str = getSurfexCodeFromStringList(varieties, #);
return(plotRotatedFromCode(str, #));
}
proc plotRotatedDirect(list varieties, list #)
"
USAGE: plotRotatedDirect(list varieties, list #)
This opens the external program surfex for drawing the surfaces given by varieties,
seen as a surface in the real affine space with coordinates x,y,z.
The format for the list varieties is not fully documented yet;
please, see the examples below and try to adjust the examples to suit your needs.@*
The optional int parameter can be used to set plotting quality.
ASSUME:
Passes the equations directly to surfex, i.e., the variable names should
be x,y,z.
The advantage is that one can use parameters p1, p2, ...;
these will be passed to surfex.
"
{
string str = getSurfexCodeFromListDirect(varieties, #);
return(plotRotatedFromCode(str, #));
}
example
{
"Example:"; echo=2;
// A cubic surface depending on a parameter:
ring r = (0,p1), (x,y,z), dp;
poly cayley_cubic = x^3+y^3+z^3+1^3-p1*(x+y+z+1)^3;
// The entries of the list of varieties can either be polynomials
plotRotatedDirect(list(list(list(cayley_cubic)),
list(),
list(list(1,"0.0","1.0","500","0.25+0.25*sin(PI*p1)"))
));
// or strings which represent surfex-readable polynomials
plotRotatedDirect(list(list(list("x^3+y^3+z^3+1^3-p1*(x+y+z+1)^3")),
list(),
list(list("1","0.0","1.0","500","0.25+0.25*sin(PI*p1)"))
));
// More complicated varieties
plotRotatedDirect(list(list(list("x^2+y^2-z^2-3^2"),
list("x*sin(p1)+y*cos(p1)-3")),
list(list(list(1,2))),
list(list("1","0.0","1.0","500","2*PI*p1"))
));
}
proc plotRotatedFromCode(string str, list #)
"
USAGE: plotRotatedFromCode(string str, list #);
This procedure is only for internal usage;
it takes the surfex-code as a string and calls surfex.
"
{
// we need a temporary .sux file for surfex
string tmpd = "/tmp";
string l="surf"+string(system("pid"))+".sux";
// a temporary file which stores the output of surfex
string erg="/tmp/surferg"+string(system("pid"));
write(":w "+tmpd+"/"+l, str);
string surfex_path=system("Singular");
while(surfex_path[size(surfex_path)]!="/") { surfex_path=surfex_path[1..size(surfex_path)-1]; }
surfex_path=surfex_path+"../LIB/surfex";
if (status(surfex_path,"exists")=="no")
{
// search in SINGULAR_PATH:
string surfex_path1=system("SingularLib");
string surfex_path2=surfex_path1;
while (find(surfex_path1,":")!=0)
{
surfex_path2=surfex_path1[1..find(surfex_path1,":")-1];
while(surfex_path2[size(surfex_path2)]==" ") {
surfex_path2 = surfex_path2[1..(size(surfex_path2)-1)];
}
if (status(surfex_path2+"/surfex","exists")=="yes") break;
surfex_path1=surfex_path1[find(surfex_path1,":")+1,size(surfex_path1)];
surfex_path2=surfex_path1[1..(size(surfex_path1)-1)];
while(surfex_path2[size(surfex_path2)]==" ") {
surfex_path2 = surfex_path2[1..(size(surfex_path2)-1)];
}
}
surfex_path=surfex_path2+"/surfex";
}
int i=system("sh","surfex \""+surfex_path+"\" -d "+tmpd+" -i " + l +" >"+erg+" 2>/dev/null");
// delete the temporary file
i = system("sh","rm " + l +" 2>/dev/null");
return(read(erg));
}
///////////////////////////////////////////////////////////
//
// procedures used to produce the surf-code:
//
proc getSurfexCodeFromListDirect(list varieties, list #)
"
USAGE: getSurfexCodeFromListDirect(list varieties, list #)
ASSUME: varieties has four components,
- the first is a list of polynomials, say f_1, ..., f_k
- the second is a list of lists of numbers in {1, ..., k} describing the curves
as intersections of the corresponding f_i
- the third is a list of lists describing the parameters used in the polynomials f_i
- the fourth is a list of lists of points given by their approximate coordinates (three decimal numbers)
RETURN: the surfex code (.sux)
"
{
int i;
int j;
string str = "this is surfex v0.89.07"+newline;
str = str + "TYPE:" + newline;
str = str + "specify"+newline;
str = str + "EQUATIONS:"+newline;
str = str + string(size(varieties[1])) + newline;
for(i=1; i<=size(varieties[1]); i++) {
str = str + "Equation:"+newline;
str = str + "eqno:"+newline;
str = str + string(i) + newline;
str = str + "equation:"+newline;
str = str + surfEqnDir(varieties[1][i][1]) + newline;
if(size(varieties[1][i])>=2) {
str = str + "showcbox:"+newline;
str = str + varieties[1][i][2] + newline; // show it or not
if(size(varieties[1][i])>=3) {
str = str + "transparency:"+newline;
str = str + string(varieties[1][i][3]) + newline; // transparency
}
}
}
str = str + "CURVES:"+newline;
str = str + string(size(varieties[2])) + newline;
for(i=1; i<=size(varieties[2]); i++) {
str = str + "Curve:"+newline;
str = str + "curveno:"+newline;
str = str + string(i) + newline;
str = str + "surfaces:"+newline;
// "curves:";varieties[2][i];
for(j=1; j<=size(varieties[2][i][1]); j++) {
str = str + string(varieties[2][i][1][j]) + newline;
}
if(size(varieties[2][i])>=2) {
str = str + "showcbox:"+newline;
str = str + varieties[2][i][2] + newline; // show it or not
}
}
str = str + "PARAMETERS:"+newline;
str = str + string(size(varieties[3])) + newline;
for(i=1; i<=size(varieties[3]); i++) {
str = str + "Parameter:"+newline;
str = str + "parno:"+newline;
str = str + string(varieties[3][i][1]) + newline;
str = str + "fromtoval:"+newline;
str = str + varieties[3][i][2] + newline;
str = str + varieties[3][i][3] + newline;
str = str + string(varieties[3][i][4]) + newline;
if(size(varieties[3][i])>=5) {
str = str + "function:"+newline;
str = str + varieties[3][i][5]+newline;
}
}
// str = str + "////////////////// Parameter: /////////////////////////"+newline;
// str = str + "1" + newline;
// str = str + "0.0" + newline;
// str = str + "1.0" + newline;
// str = str + "1000" + newline;
// str = str + string(size(varieties[3])) + newline;
return(str);
}
proc getSurfexCodeFromList(list varieties, list coords, list #)
"
ASSUME: varieties has four components,
- the first is a list of polynomials, say f_1, ..., f_k
- the second is a list of lists of numbers in {1, ..., k} describing the curves
as intersections of the corresponding f_i
- the third is a list of lists describing the parameters used in the polynomials f_i
- the fourth is a list of lists of points given by their approximate coordinates (three decimal numbers)
RETURN: the surfex code (.sux)
"
{
int i;
int j;
string str = "this is surfex v0.89.07"+newline;
str = str + "TYPE:" + newline;
str = str + "specify"+newline;
str = str + "EQUATIONS:"+newline;
str = str + string(size(varieties[1])) + newline;
for(i=1; i<=size(varieties[1]); i++) {
str = str + "Equation:"+newline;
str = str + "eqno:"+newline;
str = str + string(i) + newline;
str = str + "equation:"+newline;
str = str + surfEqn(varieties[1][i][1], coords) + newline;
str = str + "showcbox:"+newline;
str = str + varieties[1][i][2] + newline; // show it or not
str = str + "transparency:"+newline;
str = str + string(varieties[1][i][3]) + newline; // transparency
}
str = str + "CURVES:"+newline;
str = str + string(size(varieties[2])) + newline;
for(i=1; i<=size(varieties[2]); i++) {
str = str + "Curve:"+newline;
str = str + "curveno:"+newline;
str = str + string(i) + newline;
str = str + "surfaces:"+newline;
for(j=1; j<=size(varieties[2][i]); j++) {
str = str + string(varieties[2][i][1][j]) + newline;
}
str = str + "showcbox:"+newline;
str = str + varieties[2][i][2] + newline; // show it or not
}
str = str + "PARAMETERS:"+newline;
str = str + string(size(varieties[3])) + newline;
for(i=1; i<=size(varieties[3]); i++) {
str = str + "Parameter:"+newline;
str = str + "parno:"+newline;
str = str + string(varieties[3][i][1]) + newline;
str = str + "fromtoval:"+newline;
str = str + surfEqn(varieties[3][i][2], coords) + newline;
str = str + surfEqn(varieties[3][i][3], coords) + newline;
str = str + string(varieties[3][i][4]) + newline;
if(size(varieties[3][i])>=5) {
str = str + "function:"+newline;
str = str + varieties[3][i][5]+newline;
}
}
// str = str + "////////////////// Parameter: /////////////////////////"+newline;
// str = str + "1" + newline;
// str = str + "0.0" + newline;
// str = str + "1.0" + newline;
// str = str + "1000" + newline;
// str = str + string(size(varieties[3])) + newline;
return(str);
}
proc getSurfexCodeFromStringList(list varieties, list #)
"
ASSUME: varieties has three components,
- the first is a list of polynomials, say f_1, ..., f_k
- the second is a list of lists of numbers in {1, ..., k} describing the curves
as intersections of the corresponding f_i
- the third is a list of lists describing the parameters used in the polynomials f_i
RETURN: the surfex code (.sux)
"
{
int i;
int j;
string str = "this is surfex v0.89.07"+newline;
str = str + "TYPE:" + newline;
str = str + "specify"+newline;
str = str + "EQUATIONS:"+newline;
str = str + string(size(varieties[1])) + newline;
for(i=1; i<=size(varieties[1]); i++) {
str = str + "Equation:"+newline;
str = str + "eqno:"+newline;
str = str + string(i) + newline;
str = str + "equation:"+newline;
str = str + varieties[1][i][1] + newline;
str = str + "showcbox:"+newline;
str = str + varieties[1][i][2] + newline; // show it or not
str = str + "transparency:"+newline;
str = str + varieties[1][i][3] + newline; // transparency
}
str = str + "CURVES:"+newline;
str = str + string(size(varieties[2])) + newline;
for(i=1; i<=size(varieties[2]); i++) {
str = str + "Curve:"+newline;
str = str + "curveno:"+newline;
str = str + string(i) + newline;
str = str + "surfaces:"+newline;
for(j=1; j<=size(varieties[2][i][1]); j++) {
str = str + string(varieties[2][i][1][j]) + newline;
}
str = str + "showcbox:"+newline;
str = str + varieties[2][i][2] + newline; // show it or not
}
str = str + "PARAMETERS:"+newline;
str = str + string(size(varieties[3])) + newline;
for(i=1; i<=size(varieties[3]); i++) {
str = str + "Parameter:"+newline;
str = str + "parno:"+newline;
str = str + string(varieties[3][i][1]) + newline;
str = str + "fromtoval:"+newline;
str = str + varieties[3][i][2] + newline;
str = str + varieties[3][i][3] + newline;
str = str + string(varieties[3][i][4]) + newline;
if(size(varieties[3][i])>=5) {
str = str + "function:"+newline;
str = str + varieties[3][i][5]+newline;
}
}
return(str);
}
proc getSurfexCodeFromSpecifyList(list varieties, list #)
"
ASSUME: varieties has three components,
- the first is a list of polynomials, say f_1, ..., f_k
- the second is a list of lists of numbers in {1, ..., k} describing the curves
as intersections of the corresponding f_i
- the third is a list of lists describing the parameters used in the polynomials f_i
- the fourth is a list of lists describing the singular points to be shown as spheres
RETURN: the surfex code (.sux)
"
{
int i;
int j;
int k;
string str = "this is surfex v0.89.07"+newline;
str = str + "TYPE:" + newline;
str = str + "specify"+newline;
str = str + "EQUATIONS:"+newline;
str = str + string(size(varieties[1])) + newline;
for(i=1; i<=size(varieties[1]); i++) {
str = str + "Equation:"+newline;
for(j=1; j<=size(varieties[1][i]); j++) {
str = str + varieties[1][i][j][1] +newline;
str = str + varieties[1][i][j][2] +newline;
}
}
str = str + "CURVES:"+newline;
str = str + string(size(varieties[2])) + newline;
for(i=1; i<=size(varieties[2]); i++) {
str = str + "Curve:"+newline;
for(j=1; j<=size(varieties[2][i]); j++) {
str = str + varieties[2][i][j][1] +newline;
if(varieties[2][i][j][1] == "surfaces:") {
for(k=2; k<=size(varieties[2][i][j]); k++) {
str = str + string(varieties[2][i][j][k]) + newline;
}
} else {
str = str + varieties[2][i][j][2] +newline;
}
}
// str = str + "curveno:"+newline;
// str = str + string(i) + newline;
// str = str + "surfaces:"+newline;
// for(j=1; j<=size(varieties[2][i][1]); j++) {
// str = str + string(varieties[2][i][1][j]) + newline;
// }
// str = str + "showcbox:"+newline;
// str = str + varieties[2][i][2] + newline; // show it or not
}
str = str + "PARAMETERS:"+newline;
str = str + string(size(varieties[3])) + newline;
for(i=1; i<=size(varieties[3]); i++) {
str = str + "Parameter:"+newline;
str = str + "parno:"+newline;
str = str + string(varieties[3][i][1]) + newline;
str = str + "fromtoval:"+newline;
str = str + varieties[3][i][2] + newline;
str = str + varieties[3][i][3] + newline;
str = str + string(varieties[3][i][4]) + newline;
if(size(varieties[3][i])>=5) {
str = str + "function:"+newline;
str = str + varieties[3][i][5]+newline;
}
}
string str_from = "0.0";
string str_to = "5.0";
string str_radius = "50";
str = str + "SOLITARY POINTS:"+newline;
str = str + string(size(varieties[4])) + newline;
for(i=1; i<=size(varieties[4]); i++) {
str = str + "SolitaryPoint:"+newline;
str = str + "solPtNo:"+newline;
str = str + string(i) + newline;
str = str + "surface:"+newline;
str = str + varieties[4][i][4] + newline;
str = str + "fromtoval:"+newline;
str = str + str_from + newline;
str = str + str_to + newline;
str = str + str_radius + newline;
str = str + "coords:" + newline;
str = str + varieties[4][i][1] + newline;
str = str + varieties[4][i][2] + newline;
str = str + varieties[4][i][3] + newline;
}
return(str);
}
///////////////////////////////////////////////////////////
//
// procedures for standard colors:
//
proc numBaseColors()
"
USAGE: numBaseColors()
RETURN: the number of predefined surface colors.
"
{
return(6);
}
proc baseSurfaceColors(int no)
"
USAGE: baseSurfaceColors(int no)
REMARK: There are currently 6=numBaseColors() basic surface colors.
You can modify them according to your wishes
by just redefining this procedure in your Singular-script.
If you want more colors, then you also have to redefine numBaseColors() accordingly.
RETURN: a list of three integers describing the RGB values of a color.
"
{
if(no%numBaseColors()==1) {
return(list(240,160,0));
}
if(no%numBaseColors()==2) {
return(list(160,240,0));
}
if(no%numBaseColors()==3) {
return(list(0,160,240));
}
if(no%numBaseColors()==4) {
return(list(240,0,160));
}
if(no%numBaseColors()==5) {
return(list(0,240,160));
}
if(no%numBaseColors()==0) {
return(list(160,0,240));
}
}
proc getInsideColorStr(int no)
"
USAGE: getInsideColorStr(int no)
RETURN: a string describing inside color number no
where the three integer RGB values are in one line each.
"
{
list bc = baseSurfaceColors(no);
string str = string(bc[1])+newline+string(bc[2])+newline+string(bc[3]);
return(str);
}
proc getOutsideColorStr(int no)
"
USAGE: getOutsideColorStr(int no)
RETURN: a string describing outside color number no
where the three integer RGB values are in one line each.
"
{
list bc = baseSurfaceColors(no);
string str = string(bc[1])+newline+string(bc[2])+newline+string(bc[3]);
return(str);
}
///////////////////////////////////////////////////////////
//
// procedures used by the plot procedures:
//
proc surfEqnDir(list #)
"
USAGE: surfEqnDir(list #) without any checks etc.
RETURN: string(#[1]) where short=0.
"
{
int stmp = short; short = 0;
string str = string(#[1]);
short = stmp;
return(str);
}
proc surfEqn(poly p, list coords, list #)
"
USAGE: surfEqn(poly p, list coords)
Tries to produce a string for the equation of p which is convenient for surfex.
ASSUME: - p defines a plane curve or a surface,
- coords is a list of the three coordinates to use, e.g. list(x,y,z),
in this way, it is possible to distinguish between x^2+y^2-1 and y^2+z^2-1
RETURN: a string, that one can use with the external program surf
EXAMPLE: example surfEqn; shows an example
"
{
int params=0;
if(size(#)>0) {
params = #[1];
}
string err_mes; // string containing error messages
def base=basering;
int mynvars = nvars(basering);
intvec ind=num_of_vars(p);
int i,j,n;
int minp = 0;
n=0;
for(i=size(ind);i>0;i--)
{
if (ind[i]!=0) {
n++;
} else {
if(var(i)==coords[1] || var(i)==coords[2] || var(i)==coords[3]) {
ind[i]=1;
n++;
}
}
}
params = params + npars(basering);
n = n + npars(basering);
if((npars(basering) == 1) && (minpoly != 0)) {
minp = 1;
} else {
minp = 0;
}
string str_I = "";
for(i=1; i<=npars(basering); i=i+1) {
if(!(parstr(i) == "i")) {
if(minp==1) {
str_I = str_I + sprintf("number %s = %s; ", parstr(i), rootminpoly());
} else {
}
}
}
int bshort = short; short = 0;
if(!(minp==1 || npars(basering)==0)) {
p=cleardenom(p);
err_mes="Cannot plot equations with a parameter without a specified minpoly";
ERROR(err_mes);
}
str_I = str_I + "poly p = " + string(p) + ";";
short = bshort;
if(params==0) {
if (n<=2 or n>=4)
{
err_mes="Cannot plot equations with "+string(n)+" variables";
ERROR(err_mes);
// return("0");
}
if(n==4) {
ring r=(real,30,30),(xx,yy,zz,ww),dp;
} else {
ring r=(real,30,30),(x,y,z),dp;
}
} else {
if(n-params<=2 || n-params>=4) {
err_mes="Cannot plot equations with "+string(n-params)+" variables";
ERROR(err_mes);
// return("0");
} else {
if(params == 1) {
if(n-params==3) {
if(minp==1) {
// switch to a ring without minimal polynomial:
execute("ring rr = (real,30,30),("+varstr(base)+"), dp;");
// rr;
// "str_I",str_I;
execute(str_I);
def base = rr;
ring r=(real,30,30),(x,y,z),dp;
} else {
p=cleardenom(p);
ring r=(real,30,30),(x,y,z,p1),dp;
}
}
}
if(params == 2) {
if(n-params==3) {
p=cleardenom(p);
ring r=(real,30,30),(x,y,z,p1,p2),dp;
}
}
if(params == 3) {
if(n-params==3) {
p=cleardenom(p);
execute("ring rr = (real,30,30),("+varstr(base)+","+parstr(base)+"), dp;");
rr;
"str_I",str_I;
execute(str_I);
"pnew:",p;
def base = rr;
ring r=(real,30,30),(x,y,z,p1,p2,p3),dp;
}
}
}
}
// basering;
short=0;
map phi=base,0;
j=1;
for(i=1;i<=mynvars;i++)
{
if (ind[i]!=0)
{
phi[i]=var(j);
j++;
}
}
poly p=(simplify(phi(p),1));
if (leadcoef(p) <0) {
if(size(#)>1) {
if(#[2]!=0) {
p=-p;
}
} else {
p=-p;
}
}
if(leadcoef(p)!=0) {
p = p/leadcoef(p);
}
string thesurfstr = string(p);
if(minp == 1) {
// replace k by rootRepl
}
return (thesurfstr);
} // end of surfEqn()
example
{ "EXAMPLE:"; echo =2;
ring rr0 = 0,(x(1..3)),dp;
poly p = x(1)^3 - x(2)^2;
print(surfEqn(p,list(x(1),x(2),x(3))));
ring rr1 = 0,(x,y,z),dp;
poly I(1) = 2x2-1/2x3 +1-y+1;
print(surfEqn(I(1),list(x,y,z)));
// Steiner surface
poly J(2) = x^2*y^2+x^2*z^2+y^2*z^2-17*x*y*z;
print(surfEqn(J(2),list(x,y,z)));
} // end of example surfEqn()
proc num_vars_id(ideal I)
"
USAGE: num_vars_id(ideal I)
RETURN: The number of ring-variables occurring in the ideal I.
"
{
intvec v = num_of_vars(I);
int num = 0;
for(int i=size(v);i>0;i--)
{
if (v[i]!=0) { num++; }
}
return(num);
}
example {
"EXAMPLE:"; echo = 2;
ring r = 0, (x,y,z),dp;
ideal j = x^2-y, x^3-2;
num_vars_id(j);
}
proc findInList(list obj, list l)
"
USAGE: findInList(list obj, list l)
Tries to find the object obj in the list l.
ASSUME: the object obj[1] can be compared to the objects in the list l
RETURN: if obj[1]=l[i] for some i, then return the first such i,
otherwise return 0
"
{
for(int i=1; i<=size(l); i++) {
if(l[i]==obj[1]) {
return(i);
}
}
return(0);
}
example {
"EXAMPLE:"; echo = 2;
ring r = 0,(x,y,z), dp;
list a = list(x^2+y^2+z^2+1, x^2+y^2+z^2-1, x^2+y^2-z^2+1, x^2+y^2-z^2-1);
findInList(x^2+y^2+z^2-1, a);
findInList(x^2+y^2+z^2, a);
}
proc std_primdecGTZ(ideal I, list #)
"
USAGE: std_primdecGTZ(ideal I, list #)
Computes a primdary decomposition pd of I using primdecGTZ and then
calls std_for_pd(pd).
For the output and options, consult the help of std_for_pd.
RETURN: see std_for_pd.
"
{
list pd = primdecGTZ(I);
return(std_for_pd(pd, #));
}
example {
"EXAMPLE:"; echo = 2;
ring r = 0, (x,y), dp;
ideal j = y-x^2,z-x^3;
primdecGTZ(j);
std_primdecGTZ(j);
std_primdecGTZ(j,1);
}
proc std_for_pd(list pd, list #)
"
USAGE: std_for_pd(list pd, list #)
Call std for each of the prime ideals in the list pd
replace the prime ideals by their standard-basis.
Compute dim() and mult() of each prime component using these standard bases.
If an additional argument is given then do the same for the primary components.
ASSUME:
pd is in the format produced by primdecGTZ() or primdecSY().
RETURN: A list, say l, of lists, similar to a list returned by primdecSY() or primdecGTZ().
However, each of the entries of l (which is a list l[i]) contains some additional entries:
l[1]: the primary ideal
l[2]: a standard basis of the associated prime ideal
l[3]: dim() of this prime ideal
l[4]: mult() of this prime ideal
If an additional argument # is given then l[1] changes:
l[1]: a standard basis of the primary ideal
Morever, there are some more entries:
l[5]: dim() of this primary ideal
l[6]: mult() of this primary ideal
l[7]: l[6] / l[5]
"
{
if(typeof(pd[1])=="ideal") {
// this is a Singular bug!?
// "bug!";pd;"---";
pd = list(list(pd[1], pd[1]));
// pd;$;
}
list pd_neu;
int i;
list coords;
ideal stdtmp;
ideal stdtmp2;
for(i=1; i<=size(pd); i++) {
stdtmp = std(pd[i][2]);
stdtmp2 = pd[i][1];
if(size(#)>0) {
stdtmp2 = std(stdtmp2);
if(mult(stdtmp)==0) {
pd_neu[i] = list(stdtmp2,
stdtmp,
dim(stdtmp), mult(stdtmp),
dim(stdtmp2), mult(stdtmp2),
0);
} else {
pd_neu[i] = list(stdtmp2,
stdtmp,
dim(stdtmp), mult(stdtmp),
dim(stdtmp2), mult(stdtmp2),
mult(stdtmp2) div mult(stdtmp));
}
} else {
pd_neu[i] = list(stdtmp2,
stdtmp,
dim(stdtmp), mult(stdtmp));
}
}
return(pd_neu);
}
example {
"EXAMPLE:"; echo = 2;
ring r = 0, (x,y,z), dp;
ideal j = y-x^2,z-x^3;
list pd = primdecGTZ(j);
pd;
std_for_pd(pd, 1);
}
proc real_solve(ideal to_solve)
"
USAGE: real_solve(ideal to_solve)
RETURN: a list of all real solutions (as strings)
of the zero-dimensional ideal to_solve (without multiplicities).
REMARK: Until now, it may happen that some points appear more than once.
"
{
int k;
int i;
// def Isolring = solve(to_solve,30,0,60,"nodisplay");
def Isolring = solve(to_solve,9,0,13,"nodisplay");
setring Isolring;
// list SOL = solve(to_solve, "oldring", "nodisplay");
list real_sols = list();
list tmpl;
for(k=1; k<=size(SOL); k++) {
if(find(string(SOL[k]),"I")==0 && find(string(SOL[k]),"i")==0) {
tmpl = list();
for(i=1; i<=size(SOL[k]); i++) {
tmpl = tmpl + list(string(SOL[k][i]));
}
real_sols = real_sols + list(tmpl);
}
}
return(real_sols);
}
example {
"EXAMPLE:"; echo = 2;
ring r = 0, (x,y), dp;
number a = 2;
number b = 3;
ideal j = (x^2-a),(y^3-b);
real_solve(j);
}
proc rootminpoly(list #)
"
USAGE: rootminpoly(list #)
RETURN: A root of the current minpoly
as a string representation of a complex number with
the given precision #[1] (default: 30).
E.g. ring r=(0,s),x,dp; minpoly = s^2-2; => rootminpoly() 1.41421356237309504880168872421
ASSUME: The current minpoly is non-zero.
"
{
int prec = 30;
int k, done;
if(size(#)>0) {
prec = #[1];
}
short = 0;
string str_lag = sprintf("list lag = laguerre_solve(%s);", minpoly);
string str_ring = sprintf("ring r_sqrt = (complex,prec,I),(%s),lp;", parstr(basering));
execute(str_ring);
execute(str_lag);
// lag;
// choose a real solution, if it exists:
done = 0;
for(k=1; k<=size(lag) && done==0; k++) {
if(find(string(lag[k]),"I")==0) {
done = k;
}
}
if(done==0) {
// "no real solution.";
}
if(size(lag)>2) {
// return the first real solution
return(sprintf("%s",lag[done]));
}
if(sprintf("%s",lag[1])[1] == "-") {
return(sprintf("%s",lag[2]));
} else {
if(sprintf("%s",lag[1])[1] == "(") {
if(sprintf("%s",lag[1])[2] == "-") {
return(sprintf("%s",lag[2]));
} else {
return(sprintf("%s",lag[1]));
}
} else {
return(sprintf("%s",lag[1]));
}
}
short = 1;
}
example
{
"EXAMPLE:"; echo =2;
ring r=(0,s),x,dp;
minpoly = s^2-2;
rootminpoly();
ring R=(0,s),x,dp;
minpoly = s^2+2;
rootminpoly();
}
proc allroots_minpoly(list #)
"
USAGE: allroots_minpoly(list #)
RETURN: a list of strings containing all real roots of the minimal polynomial of the active ring.
ASSUME: The current minpoly is non-zero.
"
{
int prec = 30;
int k, done;
if(size(#)>0) {
prec = #[1];
}
short = 0;
string str_lag = sprintf("list lag = laguerre_solve(%s);", minpoly);
string str_ring = sprintf("ring r_sqrt = (complex,prec,I),(%s),lp;", parstr(basering));
execute(str_ring);
execute(str_lag);
// only take the real solutions:
done = 0;
list real_sols = list();
for(k=1; k<=size(lag) && done==0; k++) {
if(find(string(lag[k]),"I")==0) {
real_sols = real_sols + list(string(lag[k]));
}
}
return(real_sols);
}
example {
"EXAMPLE:"; echo = 2;
ring r=(0,s),x,dp;
minpoly = s^3-2;
allroots_minpoly();
ring R=(0,s),x,dp;
minpoly = s^2-2;
allroots_minpoly();
}
proc decstr2ratstr(string str)
"
USAGE: decstr2ratstr(string str)
Convert a decimal number of not more than 30 digits to a rational number with 14 digits.
REMARK: This procedure still has to be adapted to accept other precisions!
"
{
ring decR = (complex,30,I),(x),lp;
execute("number r="+str+";");
execute("r = "+truncdec(r,14)+";");
return(real2ratstr(r));
}
proc real2ratstr(number r)
"
USAGE: real2ratstr(number r)
RETURN: A string containing a rational number representing the decimal number r.
ASSUME: The current ring has either real or complex base field.
"
{
string ratstr = "number("+string(r*number(10000000000000000))+")/number(10000000000000000)";
return(ratstr);
}
proc truncdec(number r, int decs)
"
USAGE: truncdec(number r, int decs)
Truncates a decimal number r to the given number (decs) of digits.
RETURN: A string representing the truncated number.
"
{
string str = string(r);
return(str[1,(decs+2)]);
}
proc string_of_vars(ideal I)
"
USAGE: string_of_vars(ideal I)
RETURN: A string of all variables contained in the ideal I, separated by commas.
"
{
list listvars = list();
intvec v;
int i;
poly p;
for(i=size(I);i>0;i--)
{
p=I[i];
while(p!=0)
{
v=v+leadexp(p);
p=p-lead(p);
}
}
for(i=1; i<=nvars(basering); i++) {
if(v[i] > 0) {
listvars = listvars + list(var(i));
}
}
string strvars = string(listvars);
return(strvars);
}
|