This file is indexed.

/usr/share/singular/LIB/standard.lib is in singular-data 1:4.1.0-p3+ds-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
///////////////////////////////////////////////////////////////////////////
version="version standard.lib 4.1.0.0 Dec_2016 "; // $Id: 41f483e7be270cb0c6050c85587e557f8a077b2e $
category="Miscellaneous";
info="
LIBRARY: standard.lib   Procedures which are always loaded at Start-up

PROCEDURES:
 stdfglm(ideal[,ord])   standard basis of ideal via fglm [and ordering ord]
 stdhilb(ideal[,h])     Hilbert driven Groebner basis of ideal
 groebner(ideal,...)    standard basis using a heuristically chosen method
 res(ideal/module,[i])  free resolution of ideal or module
 sprintf(fmt,...)       returns fomatted string
 fprintf(link,fmt,..)   writes formatted string to link
 printf(fmt,...)        displays formatted string
 weightKB(stc,dd,vl)    degree dd part of a kbase w.r.t. some weigths
 qslimgb(i)             computes a standard basis with slimgb in a qring
 par2varRing([i])       create a ring making pars to vars, together with i
 datetime()             return date and time as a string
 max(i_1,...,i_k)       maximum of i_1, ..., i_k
 min(i_1,...,i_k)       minimum of i_1, ..., i_k

";
//AUXILIARY PROCEDURES:
// hilbRing([i])          ring for computing the (weighted) hilbert series
// quotientList(L,...)    ringlist for creating a correct quotient ring

//////////////////////////////////////////////////////////////////////////////

proc stdfglm (ideal i, list #)
"SYNTAX: @code{stdfglm (} ideal_expression @code{)} @*
         @code{stdfglm (} ideal_expression@code{,} string_expression @code{)}
TYPE:    ideal
PURPOSE: computes the standard basis of the ideal in the basering
         via @code{fglm} from the ordering given as the second argument
         to the ordering of the basering. If no second argument is given,
         \"dp\" is used. The standard basis for the given ordering (resp. for
         \"dp\") is computed via the command groebner except if a further
         argument \"std\" or \"slimgb\" is given in which case std resp.
         slimgb is used.
SEE ALSO: fglm, groebner, std, slimgb, stdhilb
KEYWORDS: fglm
EXAMPLE: example stdfglm; shows an example"
{
  string os;
  int s = size(#);
  def P= basering;
  string algorithm;
  int ii;
  for( ii=1; ii<=s; ii++)
  {
    if ( typeof(#[ii])== "string" )
    {
      if ( #[ii]=="std" || #[ii]=="slimgb" )
      {
        algorithm =  #[ii];
        # = delete(#,ii);
        s--;
        ii--;
      }
    }
  }

  if((s > 0) && (typeof(#[1]) == "string"))
  {
    os = #[1];
    ideal Qideal = ideal(P);
    int sQ = size(Qideal);
    int sM = size(minpoly);
    if ( sM!=0 )
    {
      string mpoly = string(minpoly);
    }
    if (sQ!=0 )
    {
      execute("ring Rfglm=("+charstr(P)+"),("+varstr(P)+"),"+os+";");
      ideal Qideal = fetch(P,Qideal);
      qring Pfglm = groebner(Qideal,"std","slimgb");
    }
    else
    {
      execute("ring Pfglm=("+charstr(P)+"),("+varstr(P)+"),"+os+";");
    }
    if ( sM!=0 )
    {
      execute("minpoly="+mpoly+";");
    }
  }
  else
  {
    list BRlist = ringlist(P);
    int nvarP = nvars(P);
    intvec w;                       //for ringweights of basering P
    int k;
    for(k=1;  k <= nvarP; k++)
    {
      w[k]=deg(var(k));
    }

    BRlist[3] = list();
    if( s==0 or (typeof(#[1]) != "string") )
    {
      if( w==1 )
      {
        BRlist[3][1]=list("dp",w);
      }
      else
      {
        BRlist[3][1]=list("wp",w);
      }
      BRlist[3][2]=list("C",intvec(0));
      def Pfglm = ring(quotientList(BRlist));
      setring Pfglm;
    }
  }
  ideal i = fetch(P,i);

  intvec opt = option(get);            //save options
  option(redSB);
  if (size(algorithm) > 0)
  {
    i = groebner(i,algorithm);
  }
  else
  {
    i = groebner(i);
  }
  option(set,opt);
  setring P;
  return (fglm(Pfglm,i));
}
example
{ "EXAMPLE:"; echo = 2;
   ring r  = 0,(x,y,z),lp;
   ideal i = y3+x2,x2y+x2,x3-x2,z4-x2-y;
   stdfglm(i);                   //uses fglm from "dp" (with groebner) to "lp"
   stdfglm(i,"std");             //uses fglm from "dp" (with std) to "lp"

   ring s  = (0,x),(y,z,u,v),lp;
   minpoly = x2+1;
   ideal i = u5-v4,zv-u2,zu3-v3,z2u-v2,z3-uv,yv-zu,yu-z2,yz-v,y2-u,u-xy2;
   weight(i);
   stdfglm(i,"(a(2,3,4,5),dp)"); //uses fglm from "(a(2,3,4,5),dp)" to "lp"
}

/////////////////////////////////////////////////////////////////////////////

proc stdhilb(def i,list #)
"SYNTAX: @code{stdhilb (} ideal_expression @code{)} @*
         @code{stdhilb (} module_expression @code{)} @*
         @code{stdhilb (} ideal_expression, intvec_expression @code{)}@*
         @code{stdhilb (} module_expression, intvec_expression @code{)}@*
         @code{stdhilb (} ideal_expression@code{,} list of string_expressions,
               and intvec_expression @code{)} @*
TYPE:    type of the first argument
PURPOSE: Compute a Groebner basis of the ideal/module in the basering by
         using the Hilbert driven Groebner basis algorithm.
         If an argument of type string, stating @code{\"std\"} resp. @code{\"slimgb\"},
         is given, the standard basis computation uses @code{std} or
         @code{slimgb}, otherwise a heuristically chosen method (default)@*
         If an optional second argument w of type intvec is given, w is used
         as variable weights. If w is not given, it is computed as w[i] =
         deg(var(i)). If the ideal is homogeneous w.r.t. w then the
         Hilbert series is computed w.r.t. to these weights.
THEORY:  If the ideal is not homogeneous compute first a Groebner basis
         of the homogenization [w.r.t. the weights w] of the ideal/module,
         then the Hilbert function and, finally, a Groebner basis in the
         original ring by using the computed Hilbert function. If the given
         w does not coincide with the variable weights of the basering, the
         result may not be a groebner basis in the original ring.
NOTE:    'Homogeneous' means weighted homogeneous with respect to the weights
         w[i] of the variables var(i) of the basering. Parameters are not
         converted to variables.
SEE ALSO: stdfglm, std, slimgb, groebner
KEYWORDS: Hilbert function
EXAMPLE: example stdhilb;  shows an example"
{

//--------------------- save data from basering --------------------------
  def P=basering;
  int nr;
  if (typeof(i)=="ideal") { nr=1;}
  else                    { nr= nrows(i); }    //nr=1 if i is an ideal
  ideal Qideal = ideal(P);      //defining the quotient ideal if P is a qring
  int was_qring;                //remembers if basering was a qring
  int is_homog =homog(i);       //check for homogeneity of i and Qideal
  if (size(Qideal) > 0)
  {
     was_qring = 1;
  }

  // save ordering of basering P for later use
  list ord_P = ringlist(P)[3];     //ordering of basering in ringlist
  string ordstr_P = ordstr(P);     //ordering of basering as string
  int nvarP = nvars(P);

  //save options:
  intvec gopt = option(get);
  int p_opt;
  string s_opt = option();
  if (find(s_opt, "prot"))  { p_opt = 1; }

//-------------------- check the given method and weights ---------------------
//Note: stdhilb is used in elim where it is applied to an elimination ordering
//a(1..1,0..0),wp(w). In such a ring deg(var(k)=0 for all vars corresponding to
//0 in a(1..1,0..0), hence we cannot identify w via w[k] = deg(var(k));
//Therefore hilbstd has the option to give ringweights.

  int k;
  string method;
  for (k=1; k<=size(#); k++)
  {
    if (typeof(#[k]) == "intvec")
    {
        intvec w = #[k];         //given ringweights of basering P
    }
    if (typeof(#[k]) == "string")
    {
      method = method + "," + #[k];
    }
  }

  if ( defined(w)!=voice )
  {
    intvec w;
    for(k=nvarP;  k>=1; k--)
    {
       w[k] = deg(var(k));     //compute ring weights
    }
  }


  if (npars(P) > 0)             //clear denominators of parameters
  {
    for( k=ncols(i); k>0; k-- )
    {
      i[k]=cleardenom(i[k]);
    }
  }

//---------- exclude cases to which stdhilb should no be applied  ----------
//Note that quotient ideal of qring must be homogeneous too

  int neg=1-attrib (P,"global");

  if( //find(ordstr_P,"s") ||// covered by neg
     find(ordstr_P,"M") || neg )
  {
    // if( defined(hi) && is_homog )
    // {
    //  if (p_opt){"std with given Hilbert function in basering";}
    //  return( std(i,hi,w) );
    //### here we would need Hibert-Samuel function
    // }

    if (p_opt)
    {"//-- stdhilb not implemented, we use std in ring:"; string(P);}
    return( std(i) );
  }

//------------------------ change to hilbRing ----------------------------
//The ground field of P and Philb coincide, Philb has an extra variable
//@ or @(k). Philb is no qring and the predefined ideal/module Id(1) in
//Philb is homogeneous (it is the homogenized i w.r.t. @ or @(k))
//Parameters of P are not converted in Philb
//Philb has only 1 block dp or wp(w)

  list hiRi = hilbRing(i,w);
  intvec W = hiRi[2];
  def Philb = hiRi[1];
  setring Philb;

//-------- compute Hilbert series of homogenized ideal in Philb ---------
//There are three cases

  string algorithm;       //possibilities: std, slimgb, stdorslimgb
  //define algorithm:
  if( find(method,"std") && !find(method,"slimgb") )
  {
    algorithm = "std";
  }
  if( find(method,"slimgb") && !find(method,"std") )
  {
    algorithm = "slimgb";
  }
  if( find(method,"std") && find(method,"slimgb") ||
    (!find(method,"std") && !find(method,"slimgb")) )
  {
    algorithm = "stdorslimgb";
  }

//### geaendert Dez08: es wird std(Id(1)) statt Id(1) aus Philb nach Phelp
// weitergegeben fuer hilbertgetriebenen std

  if (( algorithm=="std" || ( algorithm=="stdorslimgb" && char(P)>0 ) )
  && (defined(hi)!=voice))
  {
    if (p_opt) {"compute hilbert series with std in ring " + string(Philb);
                "weights used for hilbert series:",W;}
    Id(1) = std(Id(1));
    intvec hi = hilb( Id(1),1,W );
  }
  if (( algorithm=="slimgb" || ( algorithm=="stdorslimgb" && char(P)==0 ) )
  && (defined(hi)!=voice))
  {
    if (p_opt) {"compute hilbert series with slimgb in ring " + string(Philb);
                "weights used for hilbert series:",W;}
    Id(1) = qslimgb(Id(1));
    intvec hi = hilb( Id(1),1,W );
  }

  //-------------- we need another intermediate ring Phelp ----------------
  //In Phelp we change only the ordering from Philb (otherwise it coincides
  //with Philb). Phelp has in addition to P an extra homogenizing variable
  //with name @ (resp. @(i) if @ and @(1), ..., @(i-1) are defined) with
  //ordering an extra last block dp(1).
  //Phelp has the same ordering as P on common variables. In Phelp
  //a quotient ideal from P is added to the input

  list BRlist = ringlist(Philb);
  BRlist[3] = list();
  int so = size(ord_P);
  if( ord_P[so][1] =="c" || ord_P[so][1] =="C" )
  {
    list moduleord = ord_P[so];
    so = so-1;
  }
  for (k=1; k<=so; k++)
  {
    BRlist[3][k] = ord_P[k];
  }

  BRlist[3][so+1] = list("dp",1);
  w = w,1;

  if( defined(moduleord)==voice )
  {
    BRlist[3][so+2] = moduleord;
  }

//--- change to extended ring Phelp and compute std with hilbert series ----
  def Phelp = ring(quotientList(BRlist));
  setring Phelp;
  def i = imap(Philb, Id(1));
  kill Philb;

  // compute std with Hilbert series
  option(redThrough);
  if (w == 1)
  {
    if (p_opt){ "std with hilb in " + string(Phelp);}
    i = std(i, hi);
  }
  else
  {
    if(p_opt){"std with weighted hilb in "+string(Phelp);}
    i = std(i, hi, w);
  }

//-------------------- go back to original ring ---------------------------
//The main computation is done. Do not forget to simplfy before maping.

  // subst 1 for homogenizing var
  if ( p_opt ) { "dehomogenization"; }
  i = subst(i, var(nvars(basering)), 1);

  if (p_opt) { "simplification"; }
  i= simplify(i,34);

  setring P;
  if (p_opt) { "imap to ring "+string(P); }
  i = imap(Phelp,i);
  kill Phelp;
  if( was_qring )
  {
    i = NF(i,std(0));
  }
  i = simplify(i,34);
  // compute reduced SB
  if (find(s_opt, "redSB") > 0)
  {
    if (p_opt) { "//interreduction"; }
    i=interred(i);
  }
  attrib(i, "isSB", 1);
  option(set,gopt);
  return (i);
}
example
{ "EXAMPLE:"; echo = 2;
   ring  r = 0,(x,y,z),lp;
   ideal i = y3+x2,x2y+x2z2,x3-z9,z4-y2-xz;
   ideal j = stdhilb(i); j;

   ring  r1 = 0,(x,y,z),wp(3,2,1);
   ideal  i = y3+x2,x2y+x2z2,x3-z9,z4-y2-xz;  //ideal is homogeneous
   ideal j = stdhilb(i,"std"); j;
   //this is equivalent to:
   intvec v = hilb(std(i),1);
   ideal j1 = std(i,v,intvec(3,2,1)); j1;

   size(NF(j,j1))+size(NF(j1,j));            //j and j1 define the same ideal
}

///////////////////////////////////////////////////////////////////////////////
proc quotientList (list RL, list #)
"SYNTAX: @code{quotientList (} list_expression @code{)} @*
         @code{quotientList (} list_expression @code{,} string_expression@code{)}
TYPE:    list
PURPOSE: define a ringlist, say QL, of the first argument, say RL, which is
         assumed to be the ringlist of a qring, but where the quotient ideal
         RL[4] is not a standard basis with respect to the given monomial
         order in RL[3]. Then QL will be obtained from RL just by replacing
         RL[4] by a standard of it with respect to this order. RL itself
         will be returnd if size(RL[4]) <= 1 (in which case it is known to be
         a standard basis w.r.t. any ordering) or if a second argument
         \"isSB\" of type string is given.
NOTE:    the command ring(quotientList(RL)) defines a quotient ring correctly
         and should be used instead of ring(RL) if the quotient ideal RL[4]
         is not (or not known to be) a standard basis with respect to the
         monomial ordering specified in RL[3].
SEE ALSO: ringlist, ring
EXAMPLE: example quotientList; shows an example"
{
  def P = basering;
  if( size(#) > 0 )
  {
    if ( #[1] == "isSB")
    {
      return (RL);
    }
  }
  ideal Qideal  = RL[4];  //##Achtung: falls basering Nullteiler hat, kann
                           //die SB eines Elements mehrere Elemente enthalten
  if( size(Qideal) <= 0)
  {
    return (RL);
  }

  RL[4] = ideal(0);
  def Phelp = ring(RL);
  setring Phelp;
  ideal Qideal = groebner(fetch(P,Qideal));
  setring P;
  RL[4]=fetch(Phelp,Qideal);
  return (RL);
}
example
{ "EXAMPLE:"; echo = 2;
   ring P = 0,(y,z,u,v),lp;
   ideal i = y+u2+uv3, z+uv3;            //i is an lp-SB but not a dp_SB
   qring Q = std(i);
   list LQ = ringlist(Q);
   LQ[3][1][1]="dp";
   def Q1 = ring(quotientList(LQ));
   setring Q1;
   Q1;

   setring Q;
   ideal q1 = uv3+z, u2+y-z, yv3-zv3-zu; //q1 is a dp-standard basis
   LQ[4] = q1;
   def Q2 = ring(quotientList(LQ,"isSB"));
   setring Q2;
   Q2;
}

///////////////////////////////////////////////////////////////////////////////
proc par2varRing (list #)
"USAGE:   par2varRing([l]); l list of ideals/modules [default:l=empty list]
RETURN:  list, say L, with L[1] a ring where the parameters of the
         basering have been converted to an additional last block of
         variables, all of weight 1, and ordering dp.
         If a list l with l[i] an ideal/module is given, then
         l[i] + minpoly*freemodule(nrows(l[i])) is mapped to an ideal/module
         in L[1] with name Id(i).
         If the basering has no parameters then L[1] is the basering.
EXAMPLE: example par2varRing; shows an example"
{
  def P = basering;
  int npar = npars(P);  //number of parameters
  int s = size(#);
  int ii;
  if ( npar == 0)
  {
    dbprint(printlevel-voice+3,"// ** no parameters, ring was not changed");
    for( ii = 1; ii <= s; ii++)
    {
      def Id(ii) = #[ii];
      export (Id(ii));
    }
    return(list(P));
  }

  list rlist = ringlist(P);
  list parlist = rlist[1];
  rlist[1] = parlist[1];

  string @Minpoly = string(minpoly);     //check for minpoly:
  int sm = size(minpoly);
  //now create new ring
  for( ii = 1; ii <= s; ii++)
  {
    def Id(ii) = #[ii];
  }
  int nvar = size(rlist[2]);
  int nblock = size(rlist[3]);
  int k;
  for (k=1; k<=npar; k++)
  {
    rlist[2][nvar+k] = parlist[2][k];   //change variable list
  }

  //converted parameters get one block dp. If module ordering was in front
  //it stays in front, otherwise it will be moved to the end
  intvec OW = 1:npar;
  if( rlist[3][nblock][1] =="c" || rlist[3][nblock][1] =="C" )
  {
    rlist[3][nblock+1] = rlist[3][nblock];
    rlist[3][nblock] = list("dp",OW);
  }
  else
  {
    rlist[3][nblock+1] = list("dp",OW);
  }

  def Ppar2var = ring(quotientList(rlist));
  setring Ppar2var;
  if ( sm == 0 )
  {
    for( ii = 1; ii <= s; ii++)
    {
      def Id(ii) = imap(P,Id(ii));
      export (Id(ii));
    }
  }
  else
  {
    if( find(option(),"prot") ){"//add minpoly to input";}
    execute("poly Minpoly = " + @Minpoly + " ;");
    for( ii = 1; ii <= s; ii++)
    {
      def Id(ii) = imap(P,Id(ii));
      if (typeof(Id(ii))=="module")
      {
        Id(ii) = Id(ii),Minpoly*freemodule(nrows(Id(ii)));
      }
      else
      {
        Id(ii) = Id(ii),Minpoly;
      }
      export (Id(ii));
    }
  }
  list Lpar2var = Ppar2var;
  return(Lpar2var);
}
example
{ "EXAMPLE:"; echo = 2;
   ring R = (0,x),(y,z,u,v),lp;
   minpoly = x2+1;
   ideal i = x3,x2+y+z+u+v,xyzuv-1; i;
   def P = par2varRing(i)[1]; P;
   setring(P);
   Id(1);

   setring R;
   module m = x3*[1,1,1], (xyzuv-1)*[1,0,1];
   def Q = par2varRing(m)[1]; Q;
   setring(Q);
   print(Id(1));
}

//////////////////////////////////////////////////////////////////////////////
proc hilbRing ( list # )
"USAGE:   hilbRing([w,l]); w = intvec, l = list of ideals/modules
RETURN:  list, say L: L[1] is a ring and L[2] an intvec
         L[1] is a ring whith an extra homogenizing variable with name @,
         resp. @(i) if @ and @(1), ..., @(i-1) are defined.
         The monomial ordering of L[1] is consists of 1 block: dp if the
         weights of the variables of the basering, say R, are all 1, resp.
         wp(w,1) wehre w is either given or the intvec of weights of the
         variables of R, i.e. w[k]=deg(var(k)).
         If R is a quotient ring P/Q, then L[1] is not a quotient ring but
         contains the ideal @Qidealhilb@, the homogenized ideal Q of P.
         (Parameters of R are not touched).
         If a list l is given with l[i] an ideal/module, then l[i] is mapped
         to Id(i), the homogenized l[i]+Q*freemodule(nrows(l[i]) in L[1]
         (Id(i) = l[i] if l[i] is already homogeneous).
         L[2] is the intvec (w,1).
PURPOSE: Prepare a ring for computing the (weighted) hilbert series of
         an ideal/module with an easy monomial ordering.
NOTE:    For this purpose we need w[k]=deg(var(k)). However, if the ordering
         contains an extra weight vector a(v,0..0)) deg(var(k)) returns 0 for
         k being an index which is 0 in a. Therefore we must compute w
         beforehand and give it to hilbRing.
EXAMPLE: example hilbRing; shows an example
"
{
  def P = basering;
  ideal Qideal = ideal(P);    //defining the quotient ideal if P is a qring
  if( size(Qideal) != 0 )
  {
    int is_qring =1;
  }
  list BRlist = ringlist(P);
  BRlist[4] = ideal(0);      //kill quotient ideal in BRlist

  int nvarP = nvars(P);
  int s = size(#);
  int k;

  for(k = 1; k <= s; k++)
  {
    if ( typeof(#[k]) == "intvec" )
    {
       intvec w = #[k];      //given weights for the variables
       # = delete (#,k);
    }
  }

  s = size(#);
  for(k = 1; k <= s; k++)
  {
     def Id(k) = #[k];
     int nr(k) = nrows(Id(k));
  }

  if ( defined(w)!=voice )
  {
    intvec w;                   //for ringweights of basering P
    for(k=1;  k<=nvarP; k++)
    {
      w[k]=deg(var(k));        //degree of kth variable
    }
  }
  //--------------------- a homogenizing variable is added ------------------
  // call it @, resp. @(k) if @(1),...,@(k-1) are defined
  string homvar;
  if ( defined(@)==0 )
  {
    homvar = "@";
  }
  else
  {
    k=1;
    while( defined(@(k)) != 0 )
    {
      k++;
    }
    homvar = "@("+string(k)+")";
  }
  BRlist[2][nvarP+1] = homvar;
  w[nvarP +1]=1;

  //ordering is set to (dp,C) if weights of all variables are 1
  //resp. to (wp(w,1),C) where w are the ringweights of basering P
  //homogenizing var gets weight 1:

  BRlist[3] = list();
  BRlist[3][2]=list("C",intvec(0));  //put module ordering always last
  if(w==1)
  {
    BRlist[3][1]=list("dp",w);
  }
  else
  {
    BRlist[3][1]=list("wp",w);
  }

  //-------------- change ring and get ideal from previous ring ---------------
  def Philb = ring(quotientList(BRlist));
  kill BRlist;
  setring Philb;
  if( defined(is_qring)==voice )
  {
    ideal @Qidealhilb@ =  imap(P,Qideal);
    if ( ! homog(@Qidealhilb@) )
    {
       @Qidealhilb@ =  homog( @Qidealhilb@, `homvar` );
    }
    export(@Qidealhilb@);

    if( find(option(),"prot") ){"add quotient ideal to input";}

    for(k = 1; k <= s; k++)
    { //homogenize if necessary
      def Id(k) =  imap(P,Id(k));
      if ( ! homog(Id(k)) )
      {
         Id(k) =  homog( imap(P,Id(k)), `homvar` );
      }
      if (typeof(Id(k))=="module")
      {
        Id(k) =  Id(k),@Qidealhilb@*freemodule(nr(k)) ;
      }
      else
      {
        Id(k) =  Id(k),@Qidealhilb@ ;
      }
      export(Id(k));
    }
  }
  else
  {
    for(k = 1; k <= s; k++)
    { //homogenize if  necessary
      def Id(k) =  imap(P,Id(k));
      if ( ! homog(Id(k)) )
      {
         Id(k) =  homog( imap(P,Id(k)), `homvar` );
      }
      export(Id(k));
    }
  }
  list Lhilb = Philb,w;
  setring(P); return(Lhilb);
}
example
{ "EXAMPLE:"; echo = 2;
   ring R = 0,(x,y,z,u,v),lp;
   ideal i = x+y2+z3,xy+xv+yz+zu+uv,xyzuv-1;
   intvec w = 6,3,2,1,1;
   hilbRing(i,w);
   def P = hilbRing(w,i)[1];
   setring P;
   Id(1);
   hilb(std(Id(1)),1);

   ring S =  0,(x,y,z,u,v),lp;
   qring T = std(x+y2+z3);
   ideal i = xy+xv+yz+zu+uv,xyzuv-v5;
   module m = i*[0,1,1] + (xyzuv-v5)*[1,1,0];
   def Q = hilbRing(m)[1];  Q;
   setring Q;
   print(Id(1));
}

//////////////////////////////////////////////////////////////////////////////
proc qslimgb (def i)
"USAGE:   qslimgb(i); i ideal or module
RETURN:  same type as input, a standard basis of i computed with slimgb
NOTE:    Only as long as slimgb does not know qrings qslimgb should be used
         in case the basering is (possibly) a quotient ring.
         The quotient ideal is added to the input and slimgb is applied.
EXAMPLE: example qslimgb; shows an example"
{
  def P = basering;
  ideal Qideal = ideal(P);      //defining the quotient ideal if P is a qring
  int p_opt;
  if( find(option(),"prot") )
  {
    p_opt=1;
  }
  if (size(Qideal) == 0)
  {
    if (p_opt) { "slimgb in ring " + string(P); }
    return(slimgb(i));
  }

  //case of a qring; since slimgb does not know qrings we
  //delete the quotient ideal and add it to i

  list BRlist = ringlist(P);
  BRlist[4] = ideal(0);
  def Phelp = ring(BRlist);
  kill BRlist;
  setring Phelp;
  // module case:
  def iq = imap(P,i);
  iq = iq, imap(P,Qideal)*freemodule(nrows(iq));
  if (p_opt)
  {
    "slimgb in ring " + string(Phelp);
    "(with quotient ideal added to input)";
  }
  iq = slimgb(iq);

  setring P;
  if (p_opt) { "//imap to original ring"; }
  i = imap(Phelp,iq);
  kill Phelp;

  if (find(option(),"redSB") > 0)
  {
    if (p_opt) { "//interreduction"; }
    i=reduce(i,std(0));
    i=interred(i);
  }
  attrib(i, "isSB", 1);
  return (i);
}
example
{ "EXAMPLE:"; echo = 2;
   ring R  = (0,v),(x,y,z,u),dp;
   qring Q = std(x2-y3);
   ideal i = x+y2,xy+yz+zu+u*v,xyzu*v-1;
   ideal j = qslimgb(i); j;

   module m = [x+y2,1,0], [1,1,x2+y2+xyz];
   print(qslimgb(m));
}

//////////////////////////////////////////////////////////////////////////////
proc groebner(def i_par, list #)
"SYNTAX: @code{groebner (} ideal_expression @code{)} @*
         @code{groebner (} module_expression @code{)} @*
         @code{groebner (} ideal_expression@code{,} list of string_expressions
               @code{)} @*
         @code{groebner (} ideal_expression@code{,} list of string_expressions
               and int_expression @code{)}
TYPE:    type of the first argument
PURPOSE: computes a standard basis of the first argument @code{I}
         (ideal or module) by a heuristically chosen method (default)
         or by a method specified by further arguments of type string.
         Possible methods are:  @*
         - the direct methods @code{\"std\"} or @code{\"slimgb\"} without
           conversion, @*
         - conversion methods @code{\"hilb\"} or @code{\"fglm\"} where
           a Groebner basis is first computed with an \"easy\" ordering
           and then converted to the ordering of the basering by the
           Hilbert driven Groebner basis computation or by linear algebra.
           The actual computation of the Groebner basis can be
           specified by @code{\"std\"} or by @code{\"slimgb\"}
           (not for all orderings implemented). @*
         A further string @code{\"par2var\"} converts parameters to an extra
         block of variables before a Groebner basis computation (and
         afterwards back).
         @code{option(prot)} informs about the chosen method.
HINT:    Since there exists no uniform best method for computing standard
         bases, and since the difference in performance of a method on
         different examples can be huge, it is recommended to test, for hard
         examples, first various methods on a simplified example (e.g. use
         characteristic 32003 instead of 0 or substitute a subset of
         parameters/variables by integers, etc.). @*
SEE ALSO: stdhilb, stdfglm, std, slimgb, modstd_lib, ffmodstd_lib, nfmodstd_lib
KEYWORDS: groebner basis computations
EXAMPLE: example groebner;  shows an example"

{
//Vorgabe einer Teilmenge aus {hilb,fglm,par2var,std,slimgb}
//V1: Erste Einstellungen (Jan 2007)
//V2: Aktuelle Aenderungen (Juni 2008)
//---------------------------------
//0. Immer Aufruf von std unabhaengig von der Vorgabe:
//   gemischte Ordnungen, extra Gewichtsvektor, Matrix Ordnungen
//   ### Todo: extra Gewichtsvektor sollte nicht immer mit std wirken,
//   sondern z.B. mit "hilb" arbeiten koennen
//   ### Todo: es sollte ein Gewichtsvektor mitgegeben werden koennen (oder
//   berechnet werden), z.B. groebner(I,"hilb",w) oder groebner(I,"withWeights")
//   wie bei elim in elim.lib

//1. Keine Vorgabe: es wirkt die aktuelle Heuristk:
//   - Char = p: std
//V1 - Char = 0: slimgb (im qring wird Quotientenideal zum Input addiert)
//V2 - Char = 0: std
//   - 1-Block-Ordnungen/non-commutative: direkt Aufruf von std oder slimgb
//   - Komplizierte Ordnungen (lp oder > 1 Block): hilb
//V1 - Parameter werden grundsaetzlich nicht in Variable umgewandelt
//V2 - Mehr als ein Parmeter wird zu Variable konvertiert
//   - fglm is keine Heuristik, da sonst vorher dim==0 peprueft werden muss

//2. Vorgabe aus {std,slimgb}: es wird wo immer moeglich das Angegebene
//   gewaehlt (da slimgb keine Hilbertfunktion kennt, wird std verwendet).
//   Bei slimgb im qring, wird das Quotientenideal zum Ideal addiert.
//   Bei Angabe von std zusammen mit slimgb (aequivalent zur Angabe von
//   keinem von beidem) wirkt obige Heuristik.

//3. Nichtleere Vorgabe aus {hilb,fglm,std,slimgb}:
//   es wird nur das Angegebene und Moegliche sowie das Notwendige verwendet
//   und bei Wahlmoeglickeit je nach Heuristik.
//   Z.B. Vorgabe von {hilb} ist aequivalent zu {hilb,std,slimgb} und es wird
//   hilb und nach Heuristik std oder slimgb verwendet,
//   (V1: aber nicht par2var)
//   bei Vorgabe von {hilb,slimgb} wird hilb und wo moeglich slimgb verwendet.

//4. Bei Vorgabe von {par2var} wird par2var immer mit hilb und nach Heuristik
//   std oder slimgb verwendet. Zu Variablen konvertierte Parameter haben
//   extra letzten Block und Gewichte 1.

  def P=basering;
  if ((typeof(i_par)=="vector")||(typeof(i_par)=="module")||(typeof(i_par)=="matrix")) {module i=i_par;}
  else {ideal i=i_par; } // int, poly, number, ideal
  kill i_par;
// check for integer etc coefficients
  if (attrib(basering,"ring_cf")==1) // either integer or integer,q
  {
    if (find(option(),"prot"))  { "calling std for ideals in ring with ring coefficients"; }
    return (std(i));
  }

//----------------------- save the given method ---------------------------
  string method;                //all given methods as a coma separated string
  list Method;                  //all given methods as a list
  int k;
  for (k=1; k<=size(#); k++)
  {
     if (typeof(#[k]) == "string")
     {
       method = method + "," + #[k];
       Method = Method + list(#[k]);
     }
  }

//--------------------- save data from basering ---------------------------
  string @Minpoly = string(minpoly);      //minimal polynomial
  int was_minpoly;             //remembers if there was a minpoly in P
  if (size(minpoly) > 0)
  {
     was_minpoly = 1;
  }

  ideal Qideal = ideal(P);      //defining the quotient ideal if P is a qring
  int was_qring;                //remembers if basering was a qring
  //int is_homog = 1;
  if (size(Qideal) > 0)
  {
     was_qring = 1;
     //is_homog = homog(Qideal); //remembers if Qideal was homog (homog(0)=1)
  }
  list BRlist = ringlist(P);     //ringlist of basering

  // save ordering of basering P for later use
  list ord_P = BRlist[3];       //should be available in all rings
  string ordstr_P = ordstr(P);
  int nvars_P = nvars(P);
  int npars_P = npars(P);
  intvec w;                     //for ringweights of basering P
  for(k=1;  k<=nvars_P; k++)
  {
     w[k]=deg(var(k));
  }
  int neg=1-attrib (P,"global");

  //save options:
  intvec opt=option(get);
  string s_opt = option();
  int p_opt;
  if (find(s_opt, "prot"))  { p_opt = 1; }

//------------------ cases where std is always used ------------------------
//If other methods are not implemented or do not make sense, i.e. for
//local or mixed orderings, matrix orderings, extra weight vector
//### Todo: extra weight vector should be allowed for e.g. with "hilb"

  if(  //( find(ordstr_P,"s") > 0 ) || // covered by neg
       ( find(ordstr_P,"M") > 0 )  || ( find(ordstr_P,"a") > 0 )  || neg )
  {
    if (p_opt) { "std in basering"; }
    return(std(i));
  }

//now we have:
//ideal or module, global ordering, no matrix ordering, no extra weight vector
//The interesting cases start now.

 //------------------ classify the possible settings ---------------------
  string algorithm;       //possibilities: std, slimgb, stdorslimgb, mathicgb
  string conversion;      //possibilities: hilb, fglm, hilborfglm, no
  string partovar;        //possibilities: yes, no
  string order;           //possibilities: simple, !simple
  string direct;          //possibilities: yes, no

  //define algorithm:
  if( (was_minpoly == 0) && (npars_P == 0) && (was_qring == 0) && (attrib (P,"global") == 1) && (char(P) > 0) && (size(BRlist)<=4) )
  {
    if( defined(Singmathic) )
    {
      algorithm = "mathicgb"; // make it default for any appropriate setting... if mathicgb is available...
    } else
    {
      if( p_opt && find(method,"mathicgb")  ) { "Sorry Singmathic::mathicgb is not available!"; }
    }
  }
  if( find(method,"std") && !find(method,"slimgb") )
  {
    algorithm = "std";
  }
  if( find(method,"slimgb") && !find(method,"std") )
  {
    algorithm = "slimgb";
  }
  if( find(method,"std") && find(method,"slimgb") ||
      (!find(method,"std") && !find(method,"slimgb")) )
  {
    algorithm = "stdorslimgb";
  }

  //define conversion:
  if( find(method,"hilb") && !find(method,"fglm") )
  {
     conversion = "hilb";
  }
  if( find(method,"fglm") && !find(method,"hilb") )
  {
    conversion = "fglm";
  }
  if( find(method,"fglm") && find(method,"hilb") )
  {
    conversion = "hilborfglm";
  }
  if( !find(method,"fglm") && !find(method,"hilb") )
  {
    conversion = "no";
  }

  //define partovar:
  //if( find(method,"par2var") && npars_P > 0 )   //V1
  if( find(method,"par2var") || npars_P > 1 )     //V2
  {
     partovar = "yes";
  }
  else
  {
     partovar = "no";
  }

  //define order:
  if (system("nblocks") <= 2)
  {
    if ( find(ordstr_P,"M")+find(ordstr_P,"lp")+find(ordstr_P,"rp") <= 0 )
    {
      order = "simple";
    }
  }

  //define direct:
  if ( (order=="simple" && (size(method)==0)) ||
       (size(BRlist)>4) ||
        (order=="simple" && (method==",par2var" && npars_P==0 )) ||
         (conversion=="no" && partovar=="no" &&
           (algorithm=="std" || algorithm=="slimgb" || algorithm=="mathicgb" ||
            (find(method,"std") && find(method,"slimgb"))
           )
         )
     )
  {
    direct = "yes";
  }
  else
  {
    direct = "no";
  }

  //order=="simple" means that the ordering of the variables consists of one
  //block which is not a matrix ordering and not a lexicographical ordering.
  //(Note:Singular counts always least 2 blocks, one is for module component):
  //Call a method "direct" if conversion=="no" && partovar="no" which means
  //that we apply std or slimgb dircet in the basering (exception
  //as long as slimgb does not know qrings: in a qring of a ring P
  //the ideal Qideal is added to the ideal and slimgb is applied in P).
  //We apply a direct method if we have a simple monomial ordering, if no
  //conversion (fglm or hilb) is specified and if the parameters shall
  //not be made to variables
  //BRlist (=ringlist of basering) > 4 if the basering is non-commutative
//---------------------------- direct methods -----------------------------
  if ( algorithm=="mathicgb" )
  {
    if (p_opt) { algorithm + " in " + string(P); }
    return( mathicgb(i) );
  }
  if ( direct == "yes" )
  {
  //if ( algorithm=="std" || (algorithm=="stdorslimgb" && char(P)>0) )   //V1
    if ( algorithm=="std" || (algorithm=="stdorslimgb") )                //V2
    {
      if (p_opt) { "std in " + string(P); }
      return(std(i));
    }
  //if( algorithm=="slimgb" || (algorithm=="stdorslimgb" && char(P)==0)) //V1
    if ( algorithm=="slimgb" )                                           //V2
    {
      return(qslimgb(i));
    }
  }

//--------------------------- indirect methods -----------------------------
//indirect methods are methods where a conversion is used with a ring change
//We are in the following situation:
//direct=="no" (i.e. "hilb" or "fglm" or "par2var" is given)
//or no method is given and we have a complicated monomial ordering
//V1: "par2var" is not a default strategy, it must be explicitely
//given in order to be performed.
//V2: "par2var" is a default strategy if there are more than 1 parameters

//------------ case where no parameters are made to variables  -------------
  if (  partovar == "no" && conversion == "hilb"
    || (partovar == "no" && conversion == "fglm" )
    || (partovar == "no" && conversion == "hilborfglm" )
    || (partovar == "no" && conversion == "no" && direct == "no") )
  //last case: heuristic
  {
    if ( conversion=="fglm" )
    {
    //if ( algorithm=="std" || (algorithm=="stdorslimgb" && char(P)>0) ) //V1
      if ( algorithm=="std" || (algorithm=="stdorslimgb") )              //V2
      {
        return (stdfglm(i,"std"));
      }
    //if(algorithm=="slimgb" || (algorithm=="stdorslimgb" && char(P)==0))//V1
      if( algorithm=="slimgb" )                                          //V2
      {
        return (stdfglm(i,"slimgb"));
      }
    }
    else
    {
    //if ( algorithm=="std" || (algorithm=="stdorslimgb" && char(P)>0) )//V1
      if ( algorithm=="std" || (algorithm=="stdorslimgb" ) )            //V2
      {
        return (stdhilb(i,"std"));
      }
    //if(algorithm=="slimgb" || (algorithm=="stdorslimgb" && char(P)==0))//V1
      if ( algorithm=="slimgb" )                                         //V2
      {
        return (stdhilb(i,"slimgb"));
      }
    }
  }

//------------ case where parameters are made to variables  ----------------
//define a ring Phelp via par2varRing in which the parameters are variables

  else
  {
    // reset options
    option(none);
    // turn on options prot, mem, redSB, intStrategy if previously set
    if ( find(s_opt, "prot") )
      { option(prot); }
    if ( find(s_opt, "mem") )
      { option(mem); }
    if ( find(s_opt, "redSB") )
      { option(redSB); }
    if ( find(s_opt, "intStrategy") )
      { option(intStrategy); }

    //first clear denominators of parameters
    if (npars_P > 0)
    {
      for( k=ncols(i); k>0; k-- )
      { i[k]=cleardenom(i[k]); }
    }

    def Phelp = par2varRing(i)[1];   //minpoly is mapped with i
    setring Phelp;
    def i = Id(1);
    //is_homog = homog(i);

    //If parameters are converted to ring variables, they appear in an extra
    //block. Therefore we use always hilb for this block ordering:
    if ( conversion=="fglm" )
    {
      i = (stdfglm(i));       //only uesful for 1 parameter with minpoly
    }
    else
    {
    //if ( algorithm=="std" || (algorithm=="stdorslimgb" && char(P)>0) )//V1
      if ( algorithm=="std" || (algorithm=="stdorslimgb" ))             //V2
      {
        i = stdhilb(i,"std");
      }
    //if(algorithm=="slimgb" || (algorithm=="stdorslimgb" && char(P)==0))//V1
      if ( algorithm=="slimgb" )                                         //V2
      {
        i = stdhilb(i,"slimgb");
      }
    }
  }

//-------------------- go back to original ring ---------------------------
//The main computation is done. However, the SB coming from a ring with
//extra variables is in general too big. We simplify it before mapping it
//to the basering.

  if (p_opt) { "//simplification"; }

  if (was_minpoly)
  {
    execute("ideal Minpoly = " + @Minpoly + ";");
    attrib(Minpoly,"isSB",1);
    i = simplify(NF(i,Minpoly),2);
  }

  def Li = lead(i);
  setring P;
  def Li = imap(Phelp,Li);
  Li = simplify(Li,32);
  intvec vi;
  for (k=1; k<=ncols(Li); k++)
  {
    vi[k] = Li[k]==0;
  }

  setring Phelp;
  for (k=1;  k<=size(i) ;k++)
  {
    if(vi[k]==1)
    {
      i[k]=0;
    }
  }
  i = simplify(i,2);

  setring P;
  if (p_opt) { "//imap to original ring"; }
  i = imap(Phelp,i);
  kill Phelp;
  i = simplify(i,34);

  // clean-up time
  option(set, opt);
  if (find(s_opt, "redSB") > 0)
  {
    if (p_opt) { "//interreduction"; }
    i=interred(i);
  }
  attrib(i, "isSB", 1);
  return (i);
}
example
{ "EXAMPLE: "; echo=2;
  intvec opt = option(get);
  option(prot);
  ring r  = 0,(a,b,c,d),dp;
  ideal i = a+b+c+d,ab+ad+bc+cd,abc+abd+acd+bcd,abcd-1;
  groebner(i);

  ring s  = 0,(a,b,c,d),lp;
  ideal i = imap(r,i);
  groebner(i,"hilb");

  ring R  = (0,a),(b,c,d),lp;
  minpoly = a2+1;
  ideal i = a+b+c+d,ab+ad+bc+cd,abc+abd+acd+bcd,d2-c2b2;
  groebner(i,"par2var","slimgb");

  groebner(i,"fglm");          //computes a reduced standard basis

  option(set,opt);
}

//////////////////////////////////////////////////////////////////////////

proc res(list #)
"@c we do texinfo here:
@cindex resolution, computation of
@table @code
@item @strong{Syntax:}
@code{res (} ideal_expression@code{,} int_expression @code{[,} any_expression @code{])}
@*@code{res (} module_expression@code{,} int_expression @code{[,} any_expression @code{])}
@item @strong{Type:}
resolution
@item @strong{Purpose:}
computes a (possibly minimal) free resolution of an ideal or module using
a heuristically chosen method.
@* The second (int) argument (say @code{k}) specifies the length of
the resolution. If it is not positive then @code{k} is assumed to be the
number of variables of the basering.
@* If a third argument is given, the returned resolution is minimized.

Depending on the input, the returned resolution is computed using the
following methods:
@table @asis
@item @strong{quotient rings:}
@code{nres} (classical method using syzygies) , see @ref{nres}.

@item @strong{homogeneous ideals and k=0:}
@code{lres} (La'Scala's method), see @ref{lres}.

@item @strong{not minimized resolution and (homogeneous input with k not 0, or local rings):}
@code{sres} (Schreyer's method), see @ref{sres}.

@item @strong{all other inputs:}
@code{mres} (classical method), see @ref{mres}.
@end table
@item @strong{Note:}
Accessing single elements of a resolution may require some partial
computations to be finished and may therefore take some time.
@end table
@c ref
See also
@ref{betti};
@ref{ideal};
@ref{minres};
@ref{module};
@ref{mres};
@ref{nres};
@ref{lres};
@ref{hres};
@ref{sres};
@ref{resolution}.
@c ref
"
{
   def P=basering;
   if (size(#) < 2)
   {
     ERROR("res: need at least two arguments: ideal/module, int");
   }

   def m=#[1]; //the ideal or module
   int i=#[2]; //the length of the resolution
   if (i< 0) { i=0;}

   string varstr_P = varstr(P);

   int p_opt;
   string s_opt = option();
   // set p_opt, if option(prot) is set
   if (find(s_opt, "prot"))
   {
     p_opt = 1;
   }

   if( (size(ideal(basering)) > 0) || (size(ringlist(P)) > 4) )
   {
     // the quick hack for qrings - seems to fit most needs
     // (lres is not implemented for qrings, sres is not so efficient)
     // || non-commutative, since only n/m-res are implemented for NC rings
     if (p_opt) { "using nres";}
     return(nres(m,i));
   }

/* if( attrib(basering, "global") == 1 ) // preparations for s_res usage. in testing!
   {
     if (p_opt) { "using s_res";}
     if( !defined(s_res) )
     {
       def @@v=option(get); option(noloadLib); option(noloadProc); LIB( "schreyer.lib" ); // for s_res
       option(set, @@v); kill @@v;
     }
     resolution re = s_res(m,i);
     if(size(#)>2)
     {
       re=minres(re);
     }
     return(re);
   }*/

   if(homog(m)==1)
   {
      resolution re;
      if (((i==0) or (i>=nvars(basering))) && (typeof(m) != "module") && (nvars(basering)>1))
      {
        //LaScala for the homogeneous case and i == 0
        if (p_opt) { "using lres";}
        re=lres(m,i);
        if(size(#)>2)
        {
           re=minres(re);
        }
      }
      else
      {
        if(size(#)>2)
        {
          if (p_opt) { "using mres";}
          re=mres(m,i);
        }
        else
        {
          if (p_opt) { "using sres";}
          re=sres(std(m),i);
        }
      }
      return(re);
   }

   //mres for the global non homogeneous case
   if(find(ordstr(P),"s")==0)
   {
      string ri= "ring Phelp ="
                  +string(char(P))+",("+varstr_P+"),(dp,C);";
      ri = ri + "minpoly = "+string(minpoly) + ";";
      execute(ri);
      def m=imap(P,m);
      if (p_opt) { "using mres in another ring";}
      list re=mres(m,i);
      setring P;
      resolution result=imap(Phelp,re);
      if (size(#) > 2) {result = minres(result);}
      return(result);
   }

   //sres for the local case and not minimal resolution
   if(size(#)<=2)
   {
      string ri= "ring Phelp ="
                  +string(char(P))+",("+varstr_P+"),(ls,c);";
      ri = ri + "minpoly = "+string(minpoly) + ";";
      execute(ri);
      def m=imap(P,m);
      m=std(m);
      if (p_opt) { "using sres in another ring";}
      list re=sres(m,i);
      setring P;
      resolution result=imap(Phelp,re);
      return(result);
   }

   //mres for the local case and minimal resolution
   string ri= "ring Phelp ="
                  +string(char(P))+",("+varstr_P+"),(ls,C);";
   ri = ri + "minpoly = "+string(minpoly) + ";";
   execute(ri);
   def m=imap(P,m);
    if (p_opt) { "using mres in another ring";}
   list re=mres(m,i);
   setring P;
   resolution result=imap(Phelp,re);
   result = minres(result);
   return(result);
}
example
{"EXAMPLE:"; echo = 2;
  ring r=0,(x,y,z),dp;
  ideal i=xz,yz,x3-y3;
  def l=res(i,0); // homogeneous ideal: uses lres
  l;
  print(betti(l), "betti"); // input to betti may be of type resolution
  l[2];         // element access may take some time
  i=i,x+1;
  l=res(i,0);   // inhomogeneous ideal: uses mres
  l;
  ring rs=0,(x,y,z),ds;
  ideal i=imap(r,i);
  def l=res(i,0); // local ring not minimized: uses sres
  l;
  res(i,0,0);     // local ring and minimized: uses mres
}
/////////////////////////////////////////////////////////////////////////

proc quot (def m1,def m2,list #)
"SYNTAX: @code{quot (} module_expression@code{,} module_expression @code{)}
         @*@code{quot (} module_expression@code{,} module_expression@code{,}
            int_expression @code{)}
         @*@code{quot (} ideal_expression@code{,} ideal_expression @code{)}
         @*@code{quot (} ideal_expression@code{,} ideal_expression@code{,}
            int_expression @code{)}
TYPE:    ideal
SYNTAX:  @code{quot (} module_expression@code{,} ideal_expression @code{)}
TYPE:    module
PURPOSE: computes the quotient of the 1st and the 2nd argument.
         If a 3rd argument @code{n} is given the @code{n}-th method is used
         (@code{n}=1...5).
SEE ALSO: quotient
EXAMPLE: example quot; shows an example"
{
  if (((typeof(m1)!="ideal") and (typeof(m1)!="module"))
     or ((typeof(m2)!="ideal") and (typeof(m2)!="module")))
  {
    "USAGE:   quot(m1, m2[, n]); m1, m2 two submodules of k^s,";
    "         n (optional) integer (1<= n <=5)";
    "RETURN:  the quotient of m1 and m2";
    "EXAMPLE: example quot; shows an example";
    return();
  }
  if (typeof(m1)!=typeof(m2))
  {
    return(quotient(m1,m2));
  }
  if (size(#)>0)
  {
    if (typeof(#[1])=="int" )
    {
      return(quot1(m1,m2,#[1]));
    }
  }
  else
  {
    return(quot1(m1,m2,2));
  }
}
example
{ "EXAMPLE:"; echo = 2;
  ring r=181,(x,y,z),(c,ls);
  ideal id1=maxideal(4);
  ideal id2=x2+xyz,y2-z3y,z3+y5xz;
  option(prot);
  ideal id3=quotient(id1,id2);
  id3;
  ideal id4=quot(id1,id2,1);
  id4;
  ideal id5=quot(id1,id2,2);
  id5;
}

static proc quot1 (module m1, module m2,int n)
"USAGE:   quot1(m1, m2, n); m1, m2 two submodules of k^s,
         n integer (1<= n <=5)
RETURN:  the quotient of m1 and m2
EXAMPLE: example quot1; shows an example"
{
  if (n==1)
  {
    return(quotient1(m1,m2));
  }
  else
  {
    if (n==2)
    {
      return(quotient2(m1,m2));
    }
    else
    {
      if (n==3)
      {
        return(quotient3(m1,m2));
      }
      else
      {
        if (n==4)
        {
          return(quotient4(m1,m2));
        }
        else
        {
          if (n==5)
          {
            return(quotient5(m1,m2));
          }
          else
          {
            return(quotient(m1,m2));
          }
        }
      }
    }
  }
}
example
{ "EXAMPLE:"; echo = 2;
  ring r=181,(x,y,z),(c,ls);
  ideal id1=maxideal(4);
  ideal id2=x2+xyz,y2-z3y,z3+y5xz;
  option(prot);
  ideal id6=quotient(id1,id2);
  id6;
  ideal id7=quot1(id1,id2,1);
  id7;
  ideal id8=quot1(id1,id2,2);
  id8;
}

static proc quotient0(module a,module b)
{
  module mm=b+a;
  resolution rs=lres(mm,0);
  list I=list(rs);
  matrix M=I[2];
  matrix A[1][nrows(M)]=M[1..nrows(M),1];
  ideal i=A;
  return (i);
}
proc quotient1(module a,module b)  //17sec
"USAGE:   quotient1(m1, m2); m1, m2 two submodules of k^s,
RETURN:  the quotient of m1 and m2"
{
  int i;
  a=std(a);
  module dummy;
  module B=NF(b,a)+dummy;
  ideal re=quotient(a,module(B[1]));
  for(i=2;i<=ncols(B);i++)
  {
     re=intersect1(re,quotient(a,module(B[i])));
  }
  return(re);
}
proc quotient2(module a,module b)    //13sec
"USAGE:   quotient2(m1, m2); m1, m2 two submodules of k^s,
RETURN:  the quotient of m1 and m2"
{
  a=std(a);
  module dummy;
  module bb=NF(b,a)+dummy;
  int i=ncols(bb);
  ideal re=quotient(a,module(bb[i]));
  bb[i]=0;
  module temp;
  module temp1;
  module bbb;
  int mx;
  i=i-1;
  while (1)
  {
    if (i==0) break;
    temp = a+bb*re;
    temp1 = lead(interred(temp));
    mx=ncols(a);
    if (ncols(temp1)>ncols(a))
    {
      mx=ncols(temp1);
    }
    temp1 = matrix(temp1,1,mx)-matrix(lead(a),1,mx);
    temp1 = dummy+temp1;
    if (deg(temp1[1])<0) break;
    re=intersect1(re,quotient(a,module(bb[i])));
    bb[i]=0;
    i = i-1;
  }
  return(re);
}
proc quotient3(module a,module b)   //89sec
"USAGE:   quotient3(m1, m2); m1, m2 two submodules of k^s,
         only for global rings
RETURN:  the quotient of m1 and m2"
{
  string s="ring @newr=("+charstr(basering)+
           "),("+varstr(basering)+",@t,@w),dp;";
  def @newP=basering;
  execute(s);
  module b=imap(@newP,b);
  module a=imap(@newP,a);
  int i;
  int j=ncols(b);
  vector @b;
  for(i=1;i<=j;i++)
  {
     @b=@b+@t^(i-1)*@w^(j-i+1)*b[i];
  }
  ideal re=quotient(a,module(@b));
  setring @newP;
  ideal re=imap(@newr,re);
  return(re);
}
proc quotient5(module a,module b)   //89sec
"USAGE:   quotient5(m1, m2); m1, m2 two submodules of k^s,
         only for global rings
RETURN:  the quotient of m1 and m2"
{
  string s="ring @newr=("+charstr(basering)+
           "),("+varstr(basering)+",@t),dp;";
  def @newP=basering;
  execute(s);
  module b=imap(@newP,b);
  module a=imap(@newP,a);
  int i;
  int j=ncols(b);
  vector @b;
  for(i=1;i<=j;i++)
  {
     @b=@b+@t^(i-1)*b[i];
  }
  @b=homog(@b,@w);
  ideal re=quotient(a,module(@b));
  setring @newP;
  ideal re=imap(@newr,re);
  return(re);
}
proc quotient4(module a,module b)   //95sec
"USAGE:   quotient4(m1, m2); m1, m2 two submodules of k^s,
         only for global rings
RETURN:  the quotient of m1 and m2"
{
  string s="ring @newr=("+charstr(basering)+
           "),("+varstr(basering)+",@t),dp;";
  def @newP=basering;
  execute(s);
  module b=imap(@newP,b);
  module a=imap(@newP,a);
  int i;
  vector @b=b[1];
  for(i=2;i<=ncols(b);i++)
  {
     @b=@b+@t^(i-1)*b[i];
  }
  matrix sy=modulo(@b,a);
  ideal re=sy;
  setring @newP;
  ideal re=imap(@newr,re);
  return(re);
}
static proc intersect1(ideal i,ideal j)
{
  def R=basering;
  execute("ring gnir = ("+charstr(basering)+"),
                       ("+varstr(basering)+",@t),(C,dp);");
  ideal i=var(nvars(basering))*imap(R,i)+(var(nvars(basering))-1)*imap(R,j);
  ideal j=eliminate(i,var(nvars(basering)));
  setring R;
  map phi=gnir,maxideal(1);
  return(phi(j));
}

//////////////////////////////////////////////////////////////////
///
/// sprintf, fprintf printf
///
proc sprintf(string fmt, list #)
"SYNTAX:  @code{sprintf (} string_expression @code{[,} any_expressions
               @code{] )}
RETURN:   string
PURPOSE:  @code{sprintf(fmt,...);} performs output formatting. The first
          argument is a format control string. Additional arguments may be
          required, depending on the content of the control string. A series
          of output characters is generated as directed by the control string;
          these characters are returned as a string. @*
          The control string @code{fmt} is simply text to be copied,
          except that the string may contain conversion specifications.@*
          Type @code{help print;} for a listing of valid conversion
          specifications. As an addition to the conversions of @code{print},
          the @code{%n} and @code{%2} conversion specification does not
          consume an additional argument, but simply generates a newline
          character.
NOTE:     If one of the additional arguments is a list, then it should be
          wrapped in an additional @code{list()} command, since passing a list
          as an argument flattens the list by one level.
SEE ALSO: fprintf, printf, print, string
EXAMPLE : example sprintf; shows an example
"
{
  int sfmt = size(fmt);
  if (sfmt  <= 1)
  {
    return (fmt);
  }
  int next, l, nnext;
  string ret;
  list formats = "%l", "%s", "%2l", "%2s", "%t", "%;", "%p", "%b", "%n", "%2";
  while (1)
  {
    if (size(#) <= 0)
    {
      return (ret + fmt);
    }
    nnext = 0;
    while (nnext < sfmt)
    {
      nnext = find(fmt, "%", nnext + 1);
      if (nnext == 0)
      {
        next = 0;
        break;
      }
      l = 1;
      while (l <= size(formats))
      {
        next = find(fmt, formats[l], nnext);
        if (next == nnext) break;
        l++;
      }
      if (next == nnext) break;
    }
    if (next == 0)
    {
      return (ret + fmt);
    }
    if (formats[l] != "%2" && formats[l] != "%n")
    {
      ret = ret + fmt[1, next - 1] + print(#[1], formats[l]);
      # = delete(#, 1);
    }
    else
    {
      ret = ret + fmt[1, next - 1] + print("", "%2s");
    }
    if (size(fmt) <= (next + size(formats[l]) - 1))
    {
      return (ret);
    }
    fmt = fmt[next + size(formats[l]), size(fmt)-next-size(formats[l]) + 1];
  }
}
example
{ "EXAMPLE:"; echo=2;
  ring r=0,(x,y,z),dp;
  module m=[1,y],[0,x+z];
  intmat M=betti(mres(m,0));
  list l = r, m, M;
  string s = sprintf("s:%s,%n l:%l", 1, 2); s;
  s = sprintf("s:%n%s", l); s;
  s = sprintf("s:%2%s", list(l)); s;
  s = sprintf("2l:%n%2l", list(l)); s;
  s = sprintf("%p", list(l)); s;
  s = sprintf("%;", list(l)); s;
  s = sprintf("%b", M); s;
}

proc printf(string fmt, list #)
"SYNTAX:  @code{printf (} string_expression @code{[,} any_expressions@code{] )}
RETURN:   none
PURPOSE:  @code{printf(fmt,...);} performs output formatting. The first
          argument is a format control string. Additional arguments may be
          required, depending on the content of the control string. A series
          of output characters is generated as directed by the control string;
          these characters are displayed (i.e., printed to standard out). @*
          The control string @code{fmt} is simply text to be copied, except
          that the string may contain conversion specifications. @*
          Type @code{help print;} for a listing of valid conversion
          specifications. As an addition to the conversions of @code{print},
          the @code{%n} and @code{%2} conversion specification does not
          consume an additional argument, but simply generates a newline
          character.
NOTE:     If one of the additional arguments is a list, then it should be
          enclosed once more into a @code{list()} command, since passing a
          list as an argument flattens the list by one level.
SEE ALSO: sprintf, fprintf, print, string
EXAMPLE : example printf; shows an example
"
{
  write("", sprintf(fmt, #));
}
example
{ "EXAMPLE:"; echo=2;
  ring r=0,(x,y,z),dp;
  module m=[1,y],[0,x+z];
  intmat M=betti(mres(m,0));
  list l=r,m,matrix(M);
  printf("s:%s,l:%l",1,2);
  printf("s:%s",l);
  printf("s:%s",list(l));
  printf("2l:%2l",list(l));
  printf("%p",matrix(M));
  printf("%;",matrix(M));
  printf("%b",M);
}


proc fprintf(link l, string fmt, list #)
"SYNTAX:  @code{fprintf (} link_expression@code{,} string_expression @code{[,}
                any_expressions@code{] )}
RETURN:   none
PURPOSE:  @code{fprintf(l,fmt,...);} performs output formatting.
          The second argument is a format control string. Additional
          arguments may be required, depending on the content of the
          control string. A series of output characters is generated as
          directed by the control string; these characters are
          written to the link l.
          The control string @code{fmt} is simply text to be copied, except
          that the string may contain conversion specifications.@*
          Type @code{help print;} for a listing of valid conversion
          specifications. As an addition to the conversions of @code{print},
          the @code{%n} and @code{%2} conversion specification does not
          consume an additional argument, but simply generates a newline
          character.
NOTE:     If one of the additional arguments is a list, then it should be
          enclosed once more into a @code{list()} command, since passing
          a list as an argument flattens the list by one level.
SEE ALSO: sprintf, printf, print, string
EXAMPLE : example fprintf; shows an example
"
{
  write(l, sprintf(fmt, #));
}
example
{ "EXAMPLE:"; echo=2;
  ring r=0,(x,y,z),dp;
  module m=[1,y],[0,x+z];
  intmat M=betti(mres(m,0));
  list l=r,m,M;
  link li="";   // link to stdout
  fprintf(li,"s:%s,l:%l",1,2);
  fprintf(li,"s:%s",l);
  fprintf(li,"s:%s",list(l));
  fprintf(li,"2l:%2l",list(l));
  fprintf(li,"%p",list(l));
  fprintf(li,"%;",list(l));
  fprintf(li,"%b",M);
}

//////////////////////////////////////////////////////////////////////////

/*
proc minres(list #)
{
  if (size(#) == 2)
  {
    if (typeof(#[1]) == "ideal" || typeof(#[1]) == "module")
    {
      if (typeof(#[2] == "int"))
      {
        return (res(#[1],#[2],1));
      }
    }
  }

  if (typeof(#[1]) == "resolution")
  {
    return minimizeres(#[1]);
  }
  else
  {
    return minimizeres(#);
  }

}
*/
///////////////////////////////////////////////////////////////////////////////

proc weightKB(def stc, int dd, list wim)
"SYNTAX: @code{weightKB (} module_expression@code{,} int_expression @code{,}
            list_expression @code{)}@*
         @code{weightKB (} ideal_expression@code{,} int_expression@code{,}
            list_expression @code{)}
RETURN:  the same as the input type of the first argument
PURPOSE: If @code{I,d,wim} denotes the three arguments then weightKB
         computes the weighted degree- @code{d} part of a vector space basis
         (consisting of monomials) of the quotient ring, resp. of the
         quotient module, modulo @code{I} w.r.t. weights given by @code{wim}
         The information about the weights is given as a list of two intvec:
            @code{wim[1]} weights for all variables (positive),
            @code{wim[2]} weights for the module generators.
NOTE:    This is a generalization of the command @code{kbase} with the same
         first two arguments.
SEE ALSO: kbase
EXAMPLE: example weightKB; shows an example
"
{
  if(checkww(wim)){ERROR("wrong weights";);}
  kbclass();
  wwtop=wim[1];
  stc=interred(lead(stc));
  if(typeof(stc)=="ideal")
  {
    stdtop=stc;
    ideal out=widkbase(dd);
    delkbclass();
    out=simplify(out,2); // delete 0
    return(out);
  }
  list mbase=kbprepare(stc);
  module mout;
  int im,ii;
  if(size(wim)>1){mmtop=wim[2];}
  else{mmtop=0;}
  for(im=size(mbase);im>0;im--)
  {
    stdtop=mbase[im];
    if(im>size(mmtop)){ii=dd;}
    else{ii=dd-mmtop[im];}
    mout=mout+widkbase(ii)*gen(im);
  }
  delkbclass();
  mout=simplify(mout,2); // delete 0
  return(mout);
}
example
{ "EXAMPLE:"; echo=2;
  ring R=0, (x,y), wp(1,2);
  weightKB(ideal(0),3,intvec(1,2));
}

///////////////////////////////////////////////////////////////////////////////

proc datetime()
"SYNTAX: @code{datetime ()}
RETURN:  string
PURPOSE: return the curent date and time as a string
EXAMPLE: example datetime; shows an example
"
{
  return(read("|: date"));
}
example
{ "EXAMPLE:"; echo=2;
  datetime();
}

///////////////////////////////////////////////////////////////////////////////
// construct global values
static proc kbclass()
{
  intvec wwtop,mmtop;
  export (wwtop,mmtop);
  ideal stdtop,kbtop;
  export (stdtop,kbtop);
}
// delete global values
static proc delkbclass()
{
  kill wwtop,mmtop;
  kill stdtop,kbtop;
}
//  select parts of the modul
static proc kbprepare(module mstc)
{
  list rr;
  ideal kk;
  int i1,i2;
  mstc=transpose(mstc);
  for(i1=ncols(mstc);i1>0;i1--)
  {
    kk=0;
    for(i2=nrows(mstc[i1]);i2>0;i2--)
    {
      kk=kk+mstc[i1][i2];
    }
    rr[i1]=kk;
  }
  return(rr);
}
//  check for weights
static proc checkww(list vv)
{
  if(typeof(vv[1])!="intvec"){return(1);}
  intvec ww=vv[1];
  int mv=nvars(basering);
  if(size(ww)<mv){return(1);}
  while(mv>0)
  {
    if(ww[mv]<=0){return(1);}
    mv--;
  }
  if(size(vv)>1)
  {
    if(typeof(vv[2])!="intvec"){return(1);}
  }
  return(0);
}
///////////////////////////////////////////////////////
// The "Caller" for ideals
//    dd   - the degree of the result
static proc widkbase(int dd)
{
  if((size(stdtop)==1)&&(deg(stdtop[1])==0)){return(0);}
  if(dd<=0)
  {
    if(dd<0){return(0);}
    else{return(1);}
  }
  int m1,m2;
  m1=nvars(basering);
  while(wwtop[m1]>dd)
  {
    m1--;
    if(m1==0){return(0);}
  }
  attrib(stdtop,"isSB",1);
  poly mo=1;
  if(m1==1)
  {
    m2=dd div wwtop[1];
    if((m2*wwtop[1])==dd)
    {
      mo=var(1)^m2;
      if(reduce(mo,stdtop)==mo){return(mo);}
      else{return(0);}
    }
  }
  kbtop=0;
  m2=dd;
  weightmon(m1-1,m2,mo);
  while(m2>=wwtop[m1])
  {
    m2=m2-wwtop[m1];
    mo=var(m1)*mo;
    if(m2==0)
    {
      if((mo!=0) and (reduce(mo,stdtop)==mo))
      {
        kbtop[ncols(kbtop)+1]=mo;
        return(kbtop);
      }
    }
    weightmon(m1-1,m2,mo);
  }
  return(kbtop);
}
/////////////////////////////////////////////////////////
// the recursive procedure
//    va     - number of the variable
//    drest  - rest of the degree
//    mm     - the candidate
static proc weightmon(int va, int drest, poly mm)
{
  if(va==0){return();}
  while(wwtop[va]>drest)
  {
    va--;
    if(va==0){return();}
  }
  int m2;
  if(va==1)
  {
    m2=drest div wwtop[1];
    if((m2*wwtop[1])==drest)
    {
      mm=var(1)^m2*mm;
      if ((mm!=0) and (reduce(mm,stdtop)==mm))
      {
        kbtop[ncols(kbtop)+1]=mm;
      }
    }
    return();
  }
  m2=drest;
  if ((mm!=0) and (reduce(mm,stdtop)==mm))
  {
    weightmon(va-1,m2,mm);
  }
  while(m2>=wwtop[va])
  {
    m2=m2-wwtop[va];
    mm=var(va)*mm;
    if(m2==0)
    {
      if ((mm!=0) and (reduce(mm,stdtop)==mm))
      {
        kbtop[ncols(kbtop)+1]=mm;
        return();
      }
    }
     if ((mm!=0) and (reduce(mm,stdtop)==mm))
     {
       weightmon(va-1,m2,mm);
     }
  }
  return();
}
example
{ "EXAMPLE:"; echo=2;
  ring r=0,(x,y,z),dp;
  ideal i = x6,y4,xyz;
  intvec w = 2,3,6;
  weightKB(i, 12, list(w));
}

///////////////////////////////////////////////////////////////////////////////
proc max(def i,list #)
"SYNTAX: max (i_1, ..., i_k)
TYPE:    same as type of i_1, ..., i_k resp.
PURPOSE: returns the maximum for any arguments of a type
         for which '>' is defined
SEE ALSO: min
EXAMPLE: example max; shows an example"
{
  def maximum = i;
  for (int j=1; j<=size(#); j++)
  {
    if(#[j]>maximum)
    {
      maximum = #[j];
    }
  }
  return(maximum);
}
example
{ "EXAMPLE:"; echo=2;
  // biggest int
  max(2,3);
  max(1,4,3);
  // lexicographically biggest intvec
  max(intvec(1,2),intvec(0,1),intvec(1,1));
  // polynopmial with biggest leading monomial
  ring r = 0,x,dp;
  max(x+1,x2+x);
}
///////////////////////////////////////////////////////////////////////////////
proc min(def i,list #)
"SYNTAX: min (i_1, ..., i_k)
TYPE:    same as type of i_1, ..., i_k resp.
PURPOSE: returns the minimum for any arguments of a type
         for which '>' is defined
SEE ALSO: max
EXAMPLE: example min; shows an example"
{
  def minimum = i;
  for (int j=1; j<=size(#); j++)
  {
    if(#[j]<minimum)
    {
      minimum = #[j];
    }
  }
  return(minimum);
}
example
{ "EXAMPLE:"; echo=2;
  // smallest int
  min(2,3);
  min(1,4,3);
  // lexicographically smallest intvec
  min(intvec(1,2),intvec(0,1),intvec(1,1));
  // polynopmial with smallest leading monomial
  ring r = 0,x,dp;
  min(x+1,x2+x);
}


///////////////////////////////////////////////////////////////////////////////
/*
                                Versuche:
///////////////////////////////////////////////////////////////////////////////
proc downsizeSB (def I, list #)
"USAGE:   downsizeSB(I [,l]); I ideal, l list of integers [default: l=0]
RETURN:  intvec, say v, with v[j] either 1 or 0. We have v[j]=1 if
         leadmonom(I[j]) is divisible by some leadmonom(I[k]) or if
         leadmonom(i[j]) == leadmonom(i[k]) and l[j] >= l[k], with k!=j.
PURPOSE: The procedure is applied in a situation where the standard basis
         computation in the basering R is done via a conversion through an
         overring Phelp with additional variables and where a direct
         imap from Phelp to R is too expensive.
         Assume Phelp is created by the procedure @code{par2varRing} or
         @code{hilbRing} and IPhelp is a SB in Phelp [ with l[j]=
         length(IPhelp(j)) or any other integer reflecting the complexity
         of a IPhelp[j] ]. Let I = lead(IPhelp) mapped to R and compute
         v = downsizeSB(imap(Phelp,I),l) in R. Then, if Ihelp[j] is deleted
         for all j with v[j]=1, we can apply imap to the remaining generators
         of Ihelp and still get SB in R  (in general not minimal).
EXAMPLE: example downsizeSB; shows an example"
{
   int k,j;
   intvec v,l;
   poly M,N,W;
   int c=size(I);
   if( size(#) != 0 )
   {
     if ( typeof(#[1]) == "intvec" )
     {
       l = #[1];
     }
     else
     {
        ERROR("// 2nd argument must be an intvec");
     }
   }

   l[c+1]=0;
   v[c]=0;

   j=0;
   while(j<c-1)
   {
     j++;
     M = leadmonom(I[j]);
     if( M != 0 )
     {
        for( k=j+1; k<=c; k++ )
        {
          N = leadmonom(I[k]);
          if( N != 0 )
          {
             if( (M==N) && (l[j]>l[k]) )
             {
               I[j]=0;
               v[j]=1;
               break;
             }
             if( (M==N) && (l[j]<=l[k]) || N/M != 0 )
             {
               I[k]=0;
               v[k]=1;
             }
          }
        }
      }
   }
   return(v);
}
example
{ "EXAMPLE:"; echo = 2;
   ring  r = 0,(x,y,z,t),(dp(3),dp);
   ideal i = x+y+z+t,xy+yz+xt+zt,xyz+xyt+xzt+yzt,xyzt-t4;
   ideal Id = std(i);
   ideal I = lead(Id);  I;
   ring S = (0,t),(x,y,z),dp;
   downsizeSB(imap(r,I));
   //Id[5] can be deleted, we still have a SB of i in the ring S

   ring R = (0,x),(y,z,u),lp;
   ideal i = x+y+z+u,xy+xu+yz+zu,xyz+xyu+xzu+yzu,xyzu-1;
   def Phelp = par2varRing()[1];
   setring Phelp;
   ideal IPhelp = std(imap(R,i));
   ideal I = lead(IPhelp);
   setring R;
   ideal I = imap(Phelp,I); I;
   intvec v = downsizeSB(I); v;
}
///////////////////////////////////////////////////////////////////////////
// PROBLEM: Die Prozedur funktioniert nur fuer Ringe die global bekannt
//          sind, also interaktiv, aber nicht aus einer Prozedur.
//          Z.B. funktioniert example imapDownsize; nicht

proc imapDownsize (string R, string I)
"SYNTAX: @code{imapDownsize (} string @code{,} string @code{)} *@
         First string must be the string of the name of a ring, second
         string must be the string of the name of an object in the ring.
TYPE:    same type as the object with name the second string
PURPOSE: maps the object given by the second string to the basering.
         If R resp. I are the first resp. second string, then
         imapDownsize(R,I) is equivalent to simplify(imap(`R`,`I`),34).
NOTE:    imapDownsize is usually faster than imap if `I` is large and if
         simplify has a great effect, since the procedure maps only those
         generators from `I` which are not killed by simplify( - ,34).
         This is useful if `I` is a standard bases for a block ordering of
         `R` and if some variables from the last block in `R` are mapped
         to parameters. Then the returned result is a standard basis in
         the basering.
SEE ALSO: imap, fetch, map
EXAMPLE: example imapDownsize; shows an example"
{
       def BR = basering;
       int k;

       setring `R`;
       def @leadI@ = lead(`I`);
       int s = ncols(@leadI@);
       setring BR;
       ideal @leadI@ = simplify(imap(`R`,@leadI@),32);
       intvec vi;
       for (k=1; k<=s; k++)
       {
         vi[k] = @leadI@[k]==0;
       }
       kill @leadI@;

       setring `R`;
       kill @leadI@;
       for (k=1;  k<=s; k++)
       {
           if( vi[k]==1 )
           {
              `I`[k]=0;
           }
       }
       `I` = simplify(`I`,2);

       setring BR;
       return(imap(`R`,`I`));
}
example
{ "EXAMPLE:"; echo = 2;
   ring  r = 0,(x,y,z,t),(dp(3),dp);
   ideal i = x+y+z+t,xy+yz+xt+zt,xyz+xyt+xzt+yzt,xyzt-1;
   i = std(i); i;

   ring s = (0,t),(x,y,z),dp;
   imapDownsize("r","i");     //i[5] is omitted since lead(i[2]) | lead(i[5])
}
///////////////////////////////////////////////////////////////////////////////
//die folgende proc war fuer groebner mit fglm vorgesehen, ist aber zu teuer.
//Um die projektive Dimension korrekt zu berechnen, muss man aber teuer
//voerher ein SB bzgl. einer Gradordnung berechnen und dann homogenisieren.
//Sonst koennen hoeherdimensionale Komponenten in Unendlich entstehen

proc projInvariants(ideal i,list #)
"SYNTAX: @code{projInvariants (} ideal_expression @code{)} @*
         @code{projInvariants (} ideal_expression@code{,} list of string_expres          sions@code{)}
TYPE:    list, say L, with L[1] and L[2] of type int and L[3] of type intvec
PURPOSE: Computes the (projective) dimension (L[1]), degree (L[2]) and the
         first Hilbert series (L[3], as intvec) of the homogenized ideal
         in the ring given by the procedure @code{hilbRing} with global
         ordering dp (resp. wp if the variables have weights >1)
         If an argument of type string @code{\"std\"} resp. @code{\"slimgb\"}
         is given, the standard basis computatuion uses @code{std} or
         @code{slimgb}, otherwise a heuristically chosen method (default)
NOTE:    Homogenized means weighted homogenized with respect to the weights
         w[i] of the variables var(i) of the basering. The returned dimension,
         degree and Hilbertseries are the respective invariants of the
         projective variety defined by the homogenized ideal. The dimension
         is equal to the (affine) dimension of the ideal in the basering
         (degree and Hilbert series make only sense for homogeneous ideals).
SEE ALSO: dim, dmult, hilb
KEYWORDS: dimension, degree, Hilbert function
EXAMPLE: example projInvariants;  shows an example"
{
  def P = basering;
  int p_opt;
  string s_opt = option();
  if (find(option(), "prot"))  { p_opt = 1; }

//---------------- check method and clear denomintors --------------------
  int k;
  string method;
  for (k=1; k<=size(#); k++)
  {
     if (typeof(#[k]) == "string")
     {
       method = method + "," + #[k];
     }
  }

  if (npars(P) > 0)             //clear denominators of parameters
  {
    for( k=ncols(i); k>0; k-- )
    {
       i[k]=cleardenom(i[k]);
    }
  }

//------------------------ change to hilbRing ----------------------------
     list hiRi = hilbRing(i);
     intvec W = hiRi[2];
     def Philb = hiRi[1];      //note: Philb is no qring and the predefined
     setring Philb;            //ideal Id(1) in Philb is homogeneous
     int di, de;               //for dimension, degree
     intvec hi;                //for hilbert series

//-------- compute Hilbert function of homogenized ideal in Philb ---------
//Philb has only 1 block. There are three cases

     string algorithm;       //possibilities: std, slimgb, stdorslimgb
     //define algorithm:
     if( find(method,"std") && !find(method,"slimgb") )
     {
        algorithm = "std";
     }
     if( find(method,"slimgb") && !find(method,"std") )
     {
         algorithm = "slimgb";
     }
     if( find(method,"std") && find(method,"slimgb") ||
         (!find(method,"std") && !find(method,"slimgb")) )
     {
         algorithm = "stdorslimgb";
     }

     if ( algorithm=="std" || ( algorithm=="stdorslimgb" && char(P)>0 ) )
     {
        if (p_opt) {"std in ring " + string(Philb);}
        Id(1) = std(Id(1));
        di = dim(Id(1))-1;
        de = mult(Id(1));
        hi = hilb( Id(1),1,W );
     }
     if ( algorithm=="slimgb" || ( algorithm=="stdorslimgb" && char(P)==0 ) )
     {
        if (p_opt) {"slimgb in ring " + string(Philb);}
        Id(1) = slimgb(Id(1));
        di = dim( Id(1) );
        if (di > -1)
        {
           di = di-1;
        }
        de = mult( Id(1) );
        hi = hilb( Id(1),1,W );
     }
     kill Philb;
     list L = di,de,hi;
     return(L);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r = 32003,(x,y,z),lp;
   ideal i = y2-xz,x2-z;
   projInvariants(i);

   ring R = (0),(x,y,z,u,v),lp;
   //minpoly = x2+1;
   ideal i = x2+1,x2+y+z+u+v,xyzuv-1;
   projInvariants(i);
   qring S =std(x2+1);
   ideal i = imap(R,i);
   projInvariants(i);
}

*/
///////////////////////////////////////////////////////////////////////////////
//                           EXAMPLES
///////////////////////////////////////////////////////////////////////////////
/*
example stdfglm;
example stdhilb;
example groebner;
example res;
example sprintf;
example fprintf;
example printf;
example weightKB;
example qslimgb;
example par2varRing;
*/
static proc mod_init()
{
  if(!defined(Singmathic))
  {
    load("singmathic.so","try");
  }
  //int pagelength=24;
  //exportto(Top,pagelength);
}