/usr/share/singular/LIB/standard.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 | ///////////////////////////////////////////////////////////////////////////
version="version standard.lib 4.1.0.0 Dec_2016 "; // $Id: 41f483e7be270cb0c6050c85587e557f8a077b2e $
category="Miscellaneous";
info="
LIBRARY: standard.lib Procedures which are always loaded at Start-up
PROCEDURES:
stdfglm(ideal[,ord]) standard basis of ideal via fglm [and ordering ord]
stdhilb(ideal[,h]) Hilbert driven Groebner basis of ideal
groebner(ideal,...) standard basis using a heuristically chosen method
res(ideal/module,[i]) free resolution of ideal or module
sprintf(fmt,...) returns fomatted string
fprintf(link,fmt,..) writes formatted string to link
printf(fmt,...) displays formatted string
weightKB(stc,dd,vl) degree dd part of a kbase w.r.t. some weigths
qslimgb(i) computes a standard basis with slimgb in a qring
par2varRing([i]) create a ring making pars to vars, together with i
datetime() return date and time as a string
max(i_1,...,i_k) maximum of i_1, ..., i_k
min(i_1,...,i_k) minimum of i_1, ..., i_k
";
//AUXILIARY PROCEDURES:
// hilbRing([i]) ring for computing the (weighted) hilbert series
// quotientList(L,...) ringlist for creating a correct quotient ring
//////////////////////////////////////////////////////////////////////////////
proc stdfglm (ideal i, list #)
"SYNTAX: @code{stdfglm (} ideal_expression @code{)} @*
@code{stdfglm (} ideal_expression@code{,} string_expression @code{)}
TYPE: ideal
PURPOSE: computes the standard basis of the ideal in the basering
via @code{fglm} from the ordering given as the second argument
to the ordering of the basering. If no second argument is given,
\"dp\" is used. The standard basis for the given ordering (resp. for
\"dp\") is computed via the command groebner except if a further
argument \"std\" or \"slimgb\" is given in which case std resp.
slimgb is used.
SEE ALSO: fglm, groebner, std, slimgb, stdhilb
KEYWORDS: fglm
EXAMPLE: example stdfglm; shows an example"
{
string os;
int s = size(#);
def P= basering;
string algorithm;
int ii;
for( ii=1; ii<=s; ii++)
{
if ( typeof(#[ii])== "string" )
{
if ( #[ii]=="std" || #[ii]=="slimgb" )
{
algorithm = #[ii];
# = delete(#,ii);
s--;
ii--;
}
}
}
if((s > 0) && (typeof(#[1]) == "string"))
{
os = #[1];
ideal Qideal = ideal(P);
int sQ = size(Qideal);
int sM = size(minpoly);
if ( sM!=0 )
{
string mpoly = string(minpoly);
}
if (sQ!=0 )
{
execute("ring Rfglm=("+charstr(P)+"),("+varstr(P)+"),"+os+";");
ideal Qideal = fetch(P,Qideal);
qring Pfglm = groebner(Qideal,"std","slimgb");
}
else
{
execute("ring Pfglm=("+charstr(P)+"),("+varstr(P)+"),"+os+";");
}
if ( sM!=0 )
{
execute("minpoly="+mpoly+";");
}
}
else
{
list BRlist = ringlist(P);
int nvarP = nvars(P);
intvec w; //for ringweights of basering P
int k;
for(k=1; k <= nvarP; k++)
{
w[k]=deg(var(k));
}
BRlist[3] = list();
if( s==0 or (typeof(#[1]) != "string") )
{
if( w==1 )
{
BRlist[3][1]=list("dp",w);
}
else
{
BRlist[3][1]=list("wp",w);
}
BRlist[3][2]=list("C",intvec(0));
def Pfglm = ring(quotientList(BRlist));
setring Pfglm;
}
}
ideal i = fetch(P,i);
intvec opt = option(get); //save options
option(redSB);
if (size(algorithm) > 0)
{
i = groebner(i,algorithm);
}
else
{
i = groebner(i);
}
option(set,opt);
setring P;
return (fglm(Pfglm,i));
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(x,y,z),lp;
ideal i = y3+x2,x2y+x2,x3-x2,z4-x2-y;
stdfglm(i); //uses fglm from "dp" (with groebner) to "lp"
stdfglm(i,"std"); //uses fglm from "dp" (with std) to "lp"
ring s = (0,x),(y,z,u,v),lp;
minpoly = x2+1;
ideal i = u5-v4,zv-u2,zu3-v3,z2u-v2,z3-uv,yv-zu,yu-z2,yz-v,y2-u,u-xy2;
weight(i);
stdfglm(i,"(a(2,3,4,5),dp)"); //uses fglm from "(a(2,3,4,5),dp)" to "lp"
}
/////////////////////////////////////////////////////////////////////////////
proc stdhilb(def i,list #)
"SYNTAX: @code{stdhilb (} ideal_expression @code{)} @*
@code{stdhilb (} module_expression @code{)} @*
@code{stdhilb (} ideal_expression, intvec_expression @code{)}@*
@code{stdhilb (} module_expression, intvec_expression @code{)}@*
@code{stdhilb (} ideal_expression@code{,} list of string_expressions,
and intvec_expression @code{)} @*
TYPE: type of the first argument
PURPOSE: Compute a Groebner basis of the ideal/module in the basering by
using the Hilbert driven Groebner basis algorithm.
If an argument of type string, stating @code{\"std\"} resp. @code{\"slimgb\"},
is given, the standard basis computation uses @code{std} or
@code{slimgb}, otherwise a heuristically chosen method (default)@*
If an optional second argument w of type intvec is given, w is used
as variable weights. If w is not given, it is computed as w[i] =
deg(var(i)). If the ideal is homogeneous w.r.t. w then the
Hilbert series is computed w.r.t. to these weights.
THEORY: If the ideal is not homogeneous compute first a Groebner basis
of the homogenization [w.r.t. the weights w] of the ideal/module,
then the Hilbert function and, finally, a Groebner basis in the
original ring by using the computed Hilbert function. If the given
w does not coincide with the variable weights of the basering, the
result may not be a groebner basis in the original ring.
NOTE: 'Homogeneous' means weighted homogeneous with respect to the weights
w[i] of the variables var(i) of the basering. Parameters are not
converted to variables.
SEE ALSO: stdfglm, std, slimgb, groebner
KEYWORDS: Hilbert function
EXAMPLE: example stdhilb; shows an example"
{
//--------------------- save data from basering --------------------------
def P=basering;
int nr;
if (typeof(i)=="ideal") { nr=1;}
else { nr= nrows(i); } //nr=1 if i is an ideal
ideal Qideal = ideal(P); //defining the quotient ideal if P is a qring
int was_qring; //remembers if basering was a qring
int is_homog =homog(i); //check for homogeneity of i and Qideal
if (size(Qideal) > 0)
{
was_qring = 1;
}
// save ordering of basering P for later use
list ord_P = ringlist(P)[3]; //ordering of basering in ringlist
string ordstr_P = ordstr(P); //ordering of basering as string
int nvarP = nvars(P);
//save options:
intvec gopt = option(get);
int p_opt;
string s_opt = option();
if (find(s_opt, "prot")) { p_opt = 1; }
//-------------------- check the given method and weights ---------------------
//Note: stdhilb is used in elim where it is applied to an elimination ordering
//a(1..1,0..0),wp(w). In such a ring deg(var(k)=0 for all vars corresponding to
//0 in a(1..1,0..0), hence we cannot identify w via w[k] = deg(var(k));
//Therefore hilbstd has the option to give ringweights.
int k;
string method;
for (k=1; k<=size(#); k++)
{
if (typeof(#[k]) == "intvec")
{
intvec w = #[k]; //given ringweights of basering P
}
if (typeof(#[k]) == "string")
{
method = method + "," + #[k];
}
}
if ( defined(w)!=voice )
{
intvec w;
for(k=nvarP; k>=1; k--)
{
w[k] = deg(var(k)); //compute ring weights
}
}
if (npars(P) > 0) //clear denominators of parameters
{
for( k=ncols(i); k>0; k-- )
{
i[k]=cleardenom(i[k]);
}
}
//---------- exclude cases to which stdhilb should no be applied ----------
//Note that quotient ideal of qring must be homogeneous too
int neg=1-attrib (P,"global");
if( //find(ordstr_P,"s") ||// covered by neg
find(ordstr_P,"M") || neg )
{
// if( defined(hi) && is_homog )
// {
// if (p_opt){"std with given Hilbert function in basering";}
// return( std(i,hi,w) );
//### here we would need Hibert-Samuel function
// }
if (p_opt)
{"//-- stdhilb not implemented, we use std in ring:"; string(P);}
return( std(i) );
}
//------------------------ change to hilbRing ----------------------------
//The ground field of P and Philb coincide, Philb has an extra variable
//@ or @(k). Philb is no qring and the predefined ideal/module Id(1) in
//Philb is homogeneous (it is the homogenized i w.r.t. @ or @(k))
//Parameters of P are not converted in Philb
//Philb has only 1 block dp or wp(w)
list hiRi = hilbRing(i,w);
intvec W = hiRi[2];
def Philb = hiRi[1];
setring Philb;
//-------- compute Hilbert series of homogenized ideal in Philb ---------
//There are three cases
string algorithm; //possibilities: std, slimgb, stdorslimgb
//define algorithm:
if( find(method,"std") && !find(method,"slimgb") )
{
algorithm = "std";
}
if( find(method,"slimgb") && !find(method,"std") )
{
algorithm = "slimgb";
}
if( find(method,"std") && find(method,"slimgb") ||
(!find(method,"std") && !find(method,"slimgb")) )
{
algorithm = "stdorslimgb";
}
//### geaendert Dez08: es wird std(Id(1)) statt Id(1) aus Philb nach Phelp
// weitergegeben fuer hilbertgetriebenen std
if (( algorithm=="std" || ( algorithm=="stdorslimgb" && char(P)>0 ) )
&& (defined(hi)!=voice))
{
if (p_opt) {"compute hilbert series with std in ring " + string(Philb);
"weights used for hilbert series:",W;}
Id(1) = std(Id(1));
intvec hi = hilb( Id(1),1,W );
}
if (( algorithm=="slimgb" || ( algorithm=="stdorslimgb" && char(P)==0 ) )
&& (defined(hi)!=voice))
{
if (p_opt) {"compute hilbert series with slimgb in ring " + string(Philb);
"weights used for hilbert series:",W;}
Id(1) = qslimgb(Id(1));
intvec hi = hilb( Id(1),1,W );
}
//-------------- we need another intermediate ring Phelp ----------------
//In Phelp we change only the ordering from Philb (otherwise it coincides
//with Philb). Phelp has in addition to P an extra homogenizing variable
//with name @ (resp. @(i) if @ and @(1), ..., @(i-1) are defined) with
//ordering an extra last block dp(1).
//Phelp has the same ordering as P on common variables. In Phelp
//a quotient ideal from P is added to the input
list BRlist = ringlist(Philb);
BRlist[3] = list();
int so = size(ord_P);
if( ord_P[so][1] =="c" || ord_P[so][1] =="C" )
{
list moduleord = ord_P[so];
so = so-1;
}
for (k=1; k<=so; k++)
{
BRlist[3][k] = ord_P[k];
}
BRlist[3][so+1] = list("dp",1);
w = w,1;
if( defined(moduleord)==voice )
{
BRlist[3][so+2] = moduleord;
}
//--- change to extended ring Phelp and compute std with hilbert series ----
def Phelp = ring(quotientList(BRlist));
setring Phelp;
def i = imap(Philb, Id(1));
kill Philb;
// compute std with Hilbert series
option(redThrough);
if (w == 1)
{
if (p_opt){ "std with hilb in " + string(Phelp);}
i = std(i, hi);
}
else
{
if(p_opt){"std with weighted hilb in "+string(Phelp);}
i = std(i, hi, w);
}
//-------------------- go back to original ring ---------------------------
//The main computation is done. Do not forget to simplfy before maping.
// subst 1 for homogenizing var
if ( p_opt ) { "dehomogenization"; }
i = subst(i, var(nvars(basering)), 1);
if (p_opt) { "simplification"; }
i= simplify(i,34);
setring P;
if (p_opt) { "imap to ring "+string(P); }
i = imap(Phelp,i);
kill Phelp;
if( was_qring )
{
i = NF(i,std(0));
}
i = simplify(i,34);
// compute reduced SB
if (find(s_opt, "redSB") > 0)
{
if (p_opt) { "//interreduction"; }
i=interred(i);
}
attrib(i, "isSB", 1);
option(set,gopt);
return (i);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(x,y,z),lp;
ideal i = y3+x2,x2y+x2z2,x3-z9,z4-y2-xz;
ideal j = stdhilb(i); j;
ring r1 = 0,(x,y,z),wp(3,2,1);
ideal i = y3+x2,x2y+x2z2,x3-z9,z4-y2-xz; //ideal is homogeneous
ideal j = stdhilb(i,"std"); j;
//this is equivalent to:
intvec v = hilb(std(i),1);
ideal j1 = std(i,v,intvec(3,2,1)); j1;
size(NF(j,j1))+size(NF(j1,j)); //j and j1 define the same ideal
}
///////////////////////////////////////////////////////////////////////////////
proc quotientList (list RL, list #)
"SYNTAX: @code{quotientList (} list_expression @code{)} @*
@code{quotientList (} list_expression @code{,} string_expression@code{)}
TYPE: list
PURPOSE: define a ringlist, say QL, of the first argument, say RL, which is
assumed to be the ringlist of a qring, but where the quotient ideal
RL[4] is not a standard basis with respect to the given monomial
order in RL[3]. Then QL will be obtained from RL just by replacing
RL[4] by a standard of it with respect to this order. RL itself
will be returnd if size(RL[4]) <= 1 (in which case it is known to be
a standard basis w.r.t. any ordering) or if a second argument
\"isSB\" of type string is given.
NOTE: the command ring(quotientList(RL)) defines a quotient ring correctly
and should be used instead of ring(RL) if the quotient ideal RL[4]
is not (or not known to be) a standard basis with respect to the
monomial ordering specified in RL[3].
SEE ALSO: ringlist, ring
EXAMPLE: example quotientList; shows an example"
{
def P = basering;
if( size(#) > 0 )
{
if ( #[1] == "isSB")
{
return (RL);
}
}
ideal Qideal = RL[4]; //##Achtung: falls basering Nullteiler hat, kann
//die SB eines Elements mehrere Elemente enthalten
if( size(Qideal) <= 0)
{
return (RL);
}
RL[4] = ideal(0);
def Phelp = ring(RL);
setring Phelp;
ideal Qideal = groebner(fetch(P,Qideal));
setring P;
RL[4]=fetch(Phelp,Qideal);
return (RL);
}
example
{ "EXAMPLE:"; echo = 2;
ring P = 0,(y,z,u,v),lp;
ideal i = y+u2+uv3, z+uv3; //i is an lp-SB but not a dp_SB
qring Q = std(i);
list LQ = ringlist(Q);
LQ[3][1][1]="dp";
def Q1 = ring(quotientList(LQ));
setring Q1;
Q1;
setring Q;
ideal q1 = uv3+z, u2+y-z, yv3-zv3-zu; //q1 is a dp-standard basis
LQ[4] = q1;
def Q2 = ring(quotientList(LQ,"isSB"));
setring Q2;
Q2;
}
///////////////////////////////////////////////////////////////////////////////
proc par2varRing (list #)
"USAGE: par2varRing([l]); l list of ideals/modules [default:l=empty list]
RETURN: list, say L, with L[1] a ring where the parameters of the
basering have been converted to an additional last block of
variables, all of weight 1, and ordering dp.
If a list l with l[i] an ideal/module is given, then
l[i] + minpoly*freemodule(nrows(l[i])) is mapped to an ideal/module
in L[1] with name Id(i).
If the basering has no parameters then L[1] is the basering.
EXAMPLE: example par2varRing; shows an example"
{
def P = basering;
int npar = npars(P); //number of parameters
int s = size(#);
int ii;
if ( npar == 0)
{
dbprint(printlevel-voice+3,"// ** no parameters, ring was not changed");
for( ii = 1; ii <= s; ii++)
{
def Id(ii) = #[ii];
export (Id(ii));
}
return(list(P));
}
list rlist = ringlist(P);
list parlist = rlist[1];
rlist[1] = parlist[1];
string @Minpoly = string(minpoly); //check for minpoly:
int sm = size(minpoly);
//now create new ring
for( ii = 1; ii <= s; ii++)
{
def Id(ii) = #[ii];
}
int nvar = size(rlist[2]);
int nblock = size(rlist[3]);
int k;
for (k=1; k<=npar; k++)
{
rlist[2][nvar+k] = parlist[2][k]; //change variable list
}
//converted parameters get one block dp. If module ordering was in front
//it stays in front, otherwise it will be moved to the end
intvec OW = 1:npar;
if( rlist[3][nblock][1] =="c" || rlist[3][nblock][1] =="C" )
{
rlist[3][nblock+1] = rlist[3][nblock];
rlist[3][nblock] = list("dp",OW);
}
else
{
rlist[3][nblock+1] = list("dp",OW);
}
def Ppar2var = ring(quotientList(rlist));
setring Ppar2var;
if ( sm == 0 )
{
for( ii = 1; ii <= s; ii++)
{
def Id(ii) = imap(P,Id(ii));
export (Id(ii));
}
}
else
{
if( find(option(),"prot") ){"//add minpoly to input";}
execute("poly Minpoly = " + @Minpoly + " ;");
for( ii = 1; ii <= s; ii++)
{
def Id(ii) = imap(P,Id(ii));
if (typeof(Id(ii))=="module")
{
Id(ii) = Id(ii),Minpoly*freemodule(nrows(Id(ii)));
}
else
{
Id(ii) = Id(ii),Minpoly;
}
export (Id(ii));
}
}
list Lpar2var = Ppar2var;
return(Lpar2var);
}
example
{ "EXAMPLE:"; echo = 2;
ring R = (0,x),(y,z,u,v),lp;
minpoly = x2+1;
ideal i = x3,x2+y+z+u+v,xyzuv-1; i;
def P = par2varRing(i)[1]; P;
setring(P);
Id(1);
setring R;
module m = x3*[1,1,1], (xyzuv-1)*[1,0,1];
def Q = par2varRing(m)[1]; Q;
setring(Q);
print(Id(1));
}
//////////////////////////////////////////////////////////////////////////////
proc hilbRing ( list # )
"USAGE: hilbRing([w,l]); w = intvec, l = list of ideals/modules
RETURN: list, say L: L[1] is a ring and L[2] an intvec
L[1] is a ring whith an extra homogenizing variable with name @,
resp. @(i) if @ and @(1), ..., @(i-1) are defined.
The monomial ordering of L[1] is consists of 1 block: dp if the
weights of the variables of the basering, say R, are all 1, resp.
wp(w,1) wehre w is either given or the intvec of weights of the
variables of R, i.e. w[k]=deg(var(k)).
If R is a quotient ring P/Q, then L[1] is not a quotient ring but
contains the ideal @Qidealhilb@, the homogenized ideal Q of P.
(Parameters of R are not touched).
If a list l is given with l[i] an ideal/module, then l[i] is mapped
to Id(i), the homogenized l[i]+Q*freemodule(nrows(l[i]) in L[1]
(Id(i) = l[i] if l[i] is already homogeneous).
L[2] is the intvec (w,1).
PURPOSE: Prepare a ring for computing the (weighted) hilbert series of
an ideal/module with an easy monomial ordering.
NOTE: For this purpose we need w[k]=deg(var(k)). However, if the ordering
contains an extra weight vector a(v,0..0)) deg(var(k)) returns 0 for
k being an index which is 0 in a. Therefore we must compute w
beforehand and give it to hilbRing.
EXAMPLE: example hilbRing; shows an example
"
{
def P = basering;
ideal Qideal = ideal(P); //defining the quotient ideal if P is a qring
if( size(Qideal) != 0 )
{
int is_qring =1;
}
list BRlist = ringlist(P);
BRlist[4] = ideal(0); //kill quotient ideal in BRlist
int nvarP = nvars(P);
int s = size(#);
int k;
for(k = 1; k <= s; k++)
{
if ( typeof(#[k]) == "intvec" )
{
intvec w = #[k]; //given weights for the variables
# = delete (#,k);
}
}
s = size(#);
for(k = 1; k <= s; k++)
{
def Id(k) = #[k];
int nr(k) = nrows(Id(k));
}
if ( defined(w)!=voice )
{
intvec w; //for ringweights of basering P
for(k=1; k<=nvarP; k++)
{
w[k]=deg(var(k)); //degree of kth variable
}
}
//--------------------- a homogenizing variable is added ------------------
// call it @, resp. @(k) if @(1),...,@(k-1) are defined
string homvar;
if ( defined(@)==0 )
{
homvar = "@";
}
else
{
k=1;
while( defined(@(k)) != 0 )
{
k++;
}
homvar = "@("+string(k)+")";
}
BRlist[2][nvarP+1] = homvar;
w[nvarP +1]=1;
//ordering is set to (dp,C) if weights of all variables are 1
//resp. to (wp(w,1),C) where w are the ringweights of basering P
//homogenizing var gets weight 1:
BRlist[3] = list();
BRlist[3][2]=list("C",intvec(0)); //put module ordering always last
if(w==1)
{
BRlist[3][1]=list("dp",w);
}
else
{
BRlist[3][1]=list("wp",w);
}
//-------------- change ring and get ideal from previous ring ---------------
def Philb = ring(quotientList(BRlist));
kill BRlist;
setring Philb;
if( defined(is_qring)==voice )
{
ideal @Qidealhilb@ = imap(P,Qideal);
if ( ! homog(@Qidealhilb@) )
{
@Qidealhilb@ = homog( @Qidealhilb@, `homvar` );
}
export(@Qidealhilb@);
if( find(option(),"prot") ){"add quotient ideal to input";}
for(k = 1; k <= s; k++)
{ //homogenize if necessary
def Id(k) = imap(P,Id(k));
if ( ! homog(Id(k)) )
{
Id(k) = homog( imap(P,Id(k)), `homvar` );
}
if (typeof(Id(k))=="module")
{
Id(k) = Id(k),@Qidealhilb@*freemodule(nr(k)) ;
}
else
{
Id(k) = Id(k),@Qidealhilb@ ;
}
export(Id(k));
}
}
else
{
for(k = 1; k <= s; k++)
{ //homogenize if necessary
def Id(k) = imap(P,Id(k));
if ( ! homog(Id(k)) )
{
Id(k) = homog( imap(P,Id(k)), `homvar` );
}
export(Id(k));
}
}
list Lhilb = Philb,w;
setring(P); return(Lhilb);
}
example
{ "EXAMPLE:"; echo = 2;
ring R = 0,(x,y,z,u,v),lp;
ideal i = x+y2+z3,xy+xv+yz+zu+uv,xyzuv-1;
intvec w = 6,3,2,1,1;
hilbRing(i,w);
def P = hilbRing(w,i)[1];
setring P;
Id(1);
hilb(std(Id(1)),1);
ring S = 0,(x,y,z,u,v),lp;
qring T = std(x+y2+z3);
ideal i = xy+xv+yz+zu+uv,xyzuv-v5;
module m = i*[0,1,1] + (xyzuv-v5)*[1,1,0];
def Q = hilbRing(m)[1]; Q;
setring Q;
print(Id(1));
}
//////////////////////////////////////////////////////////////////////////////
proc qslimgb (def i)
"USAGE: qslimgb(i); i ideal or module
RETURN: same type as input, a standard basis of i computed with slimgb
NOTE: Only as long as slimgb does not know qrings qslimgb should be used
in case the basering is (possibly) a quotient ring.
The quotient ideal is added to the input and slimgb is applied.
EXAMPLE: example qslimgb; shows an example"
{
def P = basering;
ideal Qideal = ideal(P); //defining the quotient ideal if P is a qring
int p_opt;
if( find(option(),"prot") )
{
p_opt=1;
}
if (size(Qideal) == 0)
{
if (p_opt) { "slimgb in ring " + string(P); }
return(slimgb(i));
}
//case of a qring; since slimgb does not know qrings we
//delete the quotient ideal and add it to i
list BRlist = ringlist(P);
BRlist[4] = ideal(0);
def Phelp = ring(BRlist);
kill BRlist;
setring Phelp;
// module case:
def iq = imap(P,i);
iq = iq, imap(P,Qideal)*freemodule(nrows(iq));
if (p_opt)
{
"slimgb in ring " + string(Phelp);
"(with quotient ideal added to input)";
}
iq = slimgb(iq);
setring P;
if (p_opt) { "//imap to original ring"; }
i = imap(Phelp,iq);
kill Phelp;
if (find(option(),"redSB") > 0)
{
if (p_opt) { "//interreduction"; }
i=reduce(i,std(0));
i=interred(i);
}
attrib(i, "isSB", 1);
return (i);
}
example
{ "EXAMPLE:"; echo = 2;
ring R = (0,v),(x,y,z,u),dp;
qring Q = std(x2-y3);
ideal i = x+y2,xy+yz+zu+u*v,xyzu*v-1;
ideal j = qslimgb(i); j;
module m = [x+y2,1,0], [1,1,x2+y2+xyz];
print(qslimgb(m));
}
//////////////////////////////////////////////////////////////////////////////
proc groebner(def i_par, list #)
"SYNTAX: @code{groebner (} ideal_expression @code{)} @*
@code{groebner (} module_expression @code{)} @*
@code{groebner (} ideal_expression@code{,} list of string_expressions
@code{)} @*
@code{groebner (} ideal_expression@code{,} list of string_expressions
and int_expression @code{)}
TYPE: type of the first argument
PURPOSE: computes a standard basis of the first argument @code{I}
(ideal or module) by a heuristically chosen method (default)
or by a method specified by further arguments of type string.
Possible methods are: @*
- the direct methods @code{\"std\"} or @code{\"slimgb\"} without
conversion, @*
- conversion methods @code{\"hilb\"} or @code{\"fglm\"} where
a Groebner basis is first computed with an \"easy\" ordering
and then converted to the ordering of the basering by the
Hilbert driven Groebner basis computation or by linear algebra.
The actual computation of the Groebner basis can be
specified by @code{\"std\"} or by @code{\"slimgb\"}
(not for all orderings implemented). @*
A further string @code{\"par2var\"} converts parameters to an extra
block of variables before a Groebner basis computation (and
afterwards back).
@code{option(prot)} informs about the chosen method.
HINT: Since there exists no uniform best method for computing standard
bases, and since the difference in performance of a method on
different examples can be huge, it is recommended to test, for hard
examples, first various methods on a simplified example (e.g. use
characteristic 32003 instead of 0 or substitute a subset of
parameters/variables by integers, etc.). @*
SEE ALSO: stdhilb, stdfglm, std, slimgb, modstd_lib, ffmodstd_lib, nfmodstd_lib
KEYWORDS: groebner basis computations
EXAMPLE: example groebner; shows an example"
{
//Vorgabe einer Teilmenge aus {hilb,fglm,par2var,std,slimgb}
//V1: Erste Einstellungen (Jan 2007)
//V2: Aktuelle Aenderungen (Juni 2008)
//---------------------------------
//0. Immer Aufruf von std unabhaengig von der Vorgabe:
// gemischte Ordnungen, extra Gewichtsvektor, Matrix Ordnungen
// ### Todo: extra Gewichtsvektor sollte nicht immer mit std wirken,
// sondern z.B. mit "hilb" arbeiten koennen
// ### Todo: es sollte ein Gewichtsvektor mitgegeben werden koennen (oder
// berechnet werden), z.B. groebner(I,"hilb",w) oder groebner(I,"withWeights")
// wie bei elim in elim.lib
//1. Keine Vorgabe: es wirkt die aktuelle Heuristk:
// - Char = p: std
//V1 - Char = 0: slimgb (im qring wird Quotientenideal zum Input addiert)
//V2 - Char = 0: std
// - 1-Block-Ordnungen/non-commutative: direkt Aufruf von std oder slimgb
// - Komplizierte Ordnungen (lp oder > 1 Block): hilb
//V1 - Parameter werden grundsaetzlich nicht in Variable umgewandelt
//V2 - Mehr als ein Parmeter wird zu Variable konvertiert
// - fglm is keine Heuristik, da sonst vorher dim==0 peprueft werden muss
//2. Vorgabe aus {std,slimgb}: es wird wo immer moeglich das Angegebene
// gewaehlt (da slimgb keine Hilbertfunktion kennt, wird std verwendet).
// Bei slimgb im qring, wird das Quotientenideal zum Ideal addiert.
// Bei Angabe von std zusammen mit slimgb (aequivalent zur Angabe von
// keinem von beidem) wirkt obige Heuristik.
//3. Nichtleere Vorgabe aus {hilb,fglm,std,slimgb}:
// es wird nur das Angegebene und Moegliche sowie das Notwendige verwendet
// und bei Wahlmoeglickeit je nach Heuristik.
// Z.B. Vorgabe von {hilb} ist aequivalent zu {hilb,std,slimgb} und es wird
// hilb und nach Heuristik std oder slimgb verwendet,
// (V1: aber nicht par2var)
// bei Vorgabe von {hilb,slimgb} wird hilb und wo moeglich slimgb verwendet.
//4. Bei Vorgabe von {par2var} wird par2var immer mit hilb und nach Heuristik
// std oder slimgb verwendet. Zu Variablen konvertierte Parameter haben
// extra letzten Block und Gewichte 1.
def P=basering;
if ((typeof(i_par)=="vector")||(typeof(i_par)=="module")||(typeof(i_par)=="matrix")) {module i=i_par;}
else {ideal i=i_par; } // int, poly, number, ideal
kill i_par;
// check for integer etc coefficients
if (attrib(basering,"ring_cf")==1) // either integer or integer,q
{
if (find(option(),"prot")) { "calling std for ideals in ring with ring coefficients"; }
return (std(i));
}
//----------------------- save the given method ---------------------------
string method; //all given methods as a coma separated string
list Method; //all given methods as a list
int k;
for (k=1; k<=size(#); k++)
{
if (typeof(#[k]) == "string")
{
method = method + "," + #[k];
Method = Method + list(#[k]);
}
}
//--------------------- save data from basering ---------------------------
string @Minpoly = string(minpoly); //minimal polynomial
int was_minpoly; //remembers if there was a minpoly in P
if (size(minpoly) > 0)
{
was_minpoly = 1;
}
ideal Qideal = ideal(P); //defining the quotient ideal if P is a qring
int was_qring; //remembers if basering was a qring
//int is_homog = 1;
if (size(Qideal) > 0)
{
was_qring = 1;
//is_homog = homog(Qideal); //remembers if Qideal was homog (homog(0)=1)
}
list BRlist = ringlist(P); //ringlist of basering
// save ordering of basering P for later use
list ord_P = BRlist[3]; //should be available in all rings
string ordstr_P = ordstr(P);
int nvars_P = nvars(P);
int npars_P = npars(P);
intvec w; //for ringweights of basering P
for(k=1; k<=nvars_P; k++)
{
w[k]=deg(var(k));
}
int neg=1-attrib (P,"global");
//save options:
intvec opt=option(get);
string s_opt = option();
int p_opt;
if (find(s_opt, "prot")) { p_opt = 1; }
//------------------ cases where std is always used ------------------------
//If other methods are not implemented or do not make sense, i.e. for
//local or mixed orderings, matrix orderings, extra weight vector
//### Todo: extra weight vector should be allowed for e.g. with "hilb"
if( //( find(ordstr_P,"s") > 0 ) || // covered by neg
( find(ordstr_P,"M") > 0 ) || ( find(ordstr_P,"a") > 0 ) || neg )
{
if (p_opt) { "std in basering"; }
return(std(i));
}
//now we have:
//ideal or module, global ordering, no matrix ordering, no extra weight vector
//The interesting cases start now.
//------------------ classify the possible settings ---------------------
string algorithm; //possibilities: std, slimgb, stdorslimgb, mathicgb
string conversion; //possibilities: hilb, fglm, hilborfglm, no
string partovar; //possibilities: yes, no
string order; //possibilities: simple, !simple
string direct; //possibilities: yes, no
//define algorithm:
if( (was_minpoly == 0) && (npars_P == 0) && (was_qring == 0) && (attrib (P,"global") == 1) && (char(P) > 0) && (size(BRlist)<=4) )
{
if( defined(Singmathic) )
{
algorithm = "mathicgb"; // make it default for any appropriate setting... if mathicgb is available...
} else
{
if( p_opt && find(method,"mathicgb") ) { "Sorry Singmathic::mathicgb is not available!"; }
}
}
if( find(method,"std") && !find(method,"slimgb") )
{
algorithm = "std";
}
if( find(method,"slimgb") && !find(method,"std") )
{
algorithm = "slimgb";
}
if( find(method,"std") && find(method,"slimgb") ||
(!find(method,"std") && !find(method,"slimgb")) )
{
algorithm = "stdorslimgb";
}
//define conversion:
if( find(method,"hilb") && !find(method,"fglm") )
{
conversion = "hilb";
}
if( find(method,"fglm") && !find(method,"hilb") )
{
conversion = "fglm";
}
if( find(method,"fglm") && find(method,"hilb") )
{
conversion = "hilborfglm";
}
if( !find(method,"fglm") && !find(method,"hilb") )
{
conversion = "no";
}
//define partovar:
//if( find(method,"par2var") && npars_P > 0 ) //V1
if( find(method,"par2var") || npars_P > 1 ) //V2
{
partovar = "yes";
}
else
{
partovar = "no";
}
//define order:
if (system("nblocks") <= 2)
{
if ( find(ordstr_P,"M")+find(ordstr_P,"lp")+find(ordstr_P,"rp") <= 0 )
{
order = "simple";
}
}
//define direct:
if ( (order=="simple" && (size(method)==0)) ||
(size(BRlist)>4) ||
(order=="simple" && (method==",par2var" && npars_P==0 )) ||
(conversion=="no" && partovar=="no" &&
(algorithm=="std" || algorithm=="slimgb" || algorithm=="mathicgb" ||
(find(method,"std") && find(method,"slimgb"))
)
)
)
{
direct = "yes";
}
else
{
direct = "no";
}
//order=="simple" means that the ordering of the variables consists of one
//block which is not a matrix ordering and not a lexicographical ordering.
//(Note:Singular counts always least 2 blocks, one is for module component):
//Call a method "direct" if conversion=="no" && partovar="no" which means
//that we apply std or slimgb dircet in the basering (exception
//as long as slimgb does not know qrings: in a qring of a ring P
//the ideal Qideal is added to the ideal and slimgb is applied in P).
//We apply a direct method if we have a simple monomial ordering, if no
//conversion (fglm or hilb) is specified and if the parameters shall
//not be made to variables
//BRlist (=ringlist of basering) > 4 if the basering is non-commutative
//---------------------------- direct methods -----------------------------
if ( algorithm=="mathicgb" )
{
if (p_opt) { algorithm + " in " + string(P); }
return( mathicgb(i) );
}
if ( direct == "yes" )
{
//if ( algorithm=="std" || (algorithm=="stdorslimgb" && char(P)>0) ) //V1
if ( algorithm=="std" || (algorithm=="stdorslimgb") ) //V2
{
if (p_opt) { "std in " + string(P); }
return(std(i));
}
//if( algorithm=="slimgb" || (algorithm=="stdorslimgb" && char(P)==0)) //V1
if ( algorithm=="slimgb" ) //V2
{
return(qslimgb(i));
}
}
//--------------------------- indirect methods -----------------------------
//indirect methods are methods where a conversion is used with a ring change
//We are in the following situation:
//direct=="no" (i.e. "hilb" or "fglm" or "par2var" is given)
//or no method is given and we have a complicated monomial ordering
//V1: "par2var" is not a default strategy, it must be explicitely
//given in order to be performed.
//V2: "par2var" is a default strategy if there are more than 1 parameters
//------------ case where no parameters are made to variables -------------
if ( partovar == "no" && conversion == "hilb"
|| (partovar == "no" && conversion == "fglm" )
|| (partovar == "no" && conversion == "hilborfglm" )
|| (partovar == "no" && conversion == "no" && direct == "no") )
//last case: heuristic
{
if ( conversion=="fglm" )
{
//if ( algorithm=="std" || (algorithm=="stdorslimgb" && char(P)>0) ) //V1
if ( algorithm=="std" || (algorithm=="stdorslimgb") ) //V2
{
return (stdfglm(i,"std"));
}
//if(algorithm=="slimgb" || (algorithm=="stdorslimgb" && char(P)==0))//V1
if( algorithm=="slimgb" ) //V2
{
return (stdfglm(i,"slimgb"));
}
}
else
{
//if ( algorithm=="std" || (algorithm=="stdorslimgb" && char(P)>0) )//V1
if ( algorithm=="std" || (algorithm=="stdorslimgb" ) ) //V2
{
return (stdhilb(i,"std"));
}
//if(algorithm=="slimgb" || (algorithm=="stdorslimgb" && char(P)==0))//V1
if ( algorithm=="slimgb" ) //V2
{
return (stdhilb(i,"slimgb"));
}
}
}
//------------ case where parameters are made to variables ----------------
//define a ring Phelp via par2varRing in which the parameters are variables
else
{
// reset options
option(none);
// turn on options prot, mem, redSB, intStrategy if previously set
if ( find(s_opt, "prot") )
{ option(prot); }
if ( find(s_opt, "mem") )
{ option(mem); }
if ( find(s_opt, "redSB") )
{ option(redSB); }
if ( find(s_opt, "intStrategy") )
{ option(intStrategy); }
//first clear denominators of parameters
if (npars_P > 0)
{
for( k=ncols(i); k>0; k-- )
{ i[k]=cleardenom(i[k]); }
}
def Phelp = par2varRing(i)[1]; //minpoly is mapped with i
setring Phelp;
def i = Id(1);
//is_homog = homog(i);
//If parameters are converted to ring variables, they appear in an extra
//block. Therefore we use always hilb for this block ordering:
if ( conversion=="fglm" )
{
i = (stdfglm(i)); //only uesful for 1 parameter with minpoly
}
else
{
//if ( algorithm=="std" || (algorithm=="stdorslimgb" && char(P)>0) )//V1
if ( algorithm=="std" || (algorithm=="stdorslimgb" )) //V2
{
i = stdhilb(i,"std");
}
//if(algorithm=="slimgb" || (algorithm=="stdorslimgb" && char(P)==0))//V1
if ( algorithm=="slimgb" ) //V2
{
i = stdhilb(i,"slimgb");
}
}
}
//-------------------- go back to original ring ---------------------------
//The main computation is done. However, the SB coming from a ring with
//extra variables is in general too big. We simplify it before mapping it
//to the basering.
if (p_opt) { "//simplification"; }
if (was_minpoly)
{
execute("ideal Minpoly = " + @Minpoly + ";");
attrib(Minpoly,"isSB",1);
i = simplify(NF(i,Minpoly),2);
}
def Li = lead(i);
setring P;
def Li = imap(Phelp,Li);
Li = simplify(Li,32);
intvec vi;
for (k=1; k<=ncols(Li); k++)
{
vi[k] = Li[k]==0;
}
setring Phelp;
for (k=1; k<=size(i) ;k++)
{
if(vi[k]==1)
{
i[k]=0;
}
}
i = simplify(i,2);
setring P;
if (p_opt) { "//imap to original ring"; }
i = imap(Phelp,i);
kill Phelp;
i = simplify(i,34);
// clean-up time
option(set, opt);
if (find(s_opt, "redSB") > 0)
{
if (p_opt) { "//interreduction"; }
i=interred(i);
}
attrib(i, "isSB", 1);
return (i);
}
example
{ "EXAMPLE: "; echo=2;
intvec opt = option(get);
option(prot);
ring r = 0,(a,b,c,d),dp;
ideal i = a+b+c+d,ab+ad+bc+cd,abc+abd+acd+bcd,abcd-1;
groebner(i);
ring s = 0,(a,b,c,d),lp;
ideal i = imap(r,i);
groebner(i,"hilb");
ring R = (0,a),(b,c,d),lp;
minpoly = a2+1;
ideal i = a+b+c+d,ab+ad+bc+cd,abc+abd+acd+bcd,d2-c2b2;
groebner(i,"par2var","slimgb");
groebner(i,"fglm"); //computes a reduced standard basis
option(set,opt);
}
//////////////////////////////////////////////////////////////////////////
proc res(list #)
"@c we do texinfo here:
@cindex resolution, computation of
@table @code
@item @strong{Syntax:}
@code{res (} ideal_expression@code{,} int_expression @code{[,} any_expression @code{])}
@*@code{res (} module_expression@code{,} int_expression @code{[,} any_expression @code{])}
@item @strong{Type:}
resolution
@item @strong{Purpose:}
computes a (possibly minimal) free resolution of an ideal or module using
a heuristically chosen method.
@* The second (int) argument (say @code{k}) specifies the length of
the resolution. If it is not positive then @code{k} is assumed to be the
number of variables of the basering.
@* If a third argument is given, the returned resolution is minimized.
Depending on the input, the returned resolution is computed using the
following methods:
@table @asis
@item @strong{quotient rings:}
@code{nres} (classical method using syzygies) , see @ref{nres}.
@item @strong{homogeneous ideals and k=0:}
@code{lres} (La'Scala's method), see @ref{lres}.
@item @strong{not minimized resolution and (homogeneous input with k not 0, or local rings):}
@code{sres} (Schreyer's method), see @ref{sres}.
@item @strong{all other inputs:}
@code{mres} (classical method), see @ref{mres}.
@end table
@item @strong{Note:}
Accessing single elements of a resolution may require some partial
computations to be finished and may therefore take some time.
@end table
@c ref
See also
@ref{betti};
@ref{ideal};
@ref{minres};
@ref{module};
@ref{mres};
@ref{nres};
@ref{lres};
@ref{hres};
@ref{sres};
@ref{resolution}.
@c ref
"
{
def P=basering;
if (size(#) < 2)
{
ERROR("res: need at least two arguments: ideal/module, int");
}
def m=#[1]; //the ideal or module
int i=#[2]; //the length of the resolution
if (i< 0) { i=0;}
string varstr_P = varstr(P);
int p_opt;
string s_opt = option();
// set p_opt, if option(prot) is set
if (find(s_opt, "prot"))
{
p_opt = 1;
}
if( (size(ideal(basering)) > 0) || (size(ringlist(P)) > 4) )
{
// the quick hack for qrings - seems to fit most needs
// (lres is not implemented for qrings, sres is not so efficient)
// || non-commutative, since only n/m-res are implemented for NC rings
if (p_opt) { "using nres";}
return(nres(m,i));
}
/* if( attrib(basering, "global") == 1 ) // preparations for s_res usage. in testing!
{
if (p_opt) { "using s_res";}
if( !defined(s_res) )
{
def @@v=option(get); option(noloadLib); option(noloadProc); LIB( "schreyer.lib" ); // for s_res
option(set, @@v); kill @@v;
}
resolution re = s_res(m,i);
if(size(#)>2)
{
re=minres(re);
}
return(re);
}*/
if(homog(m)==1)
{
resolution re;
if (((i==0) or (i>=nvars(basering))) && (typeof(m) != "module") && (nvars(basering)>1))
{
//LaScala for the homogeneous case and i == 0
if (p_opt) { "using lres";}
re=lres(m,i);
if(size(#)>2)
{
re=minres(re);
}
}
else
{
if(size(#)>2)
{
if (p_opt) { "using mres";}
re=mres(m,i);
}
else
{
if (p_opt) { "using sres";}
re=sres(std(m),i);
}
}
return(re);
}
//mres for the global non homogeneous case
if(find(ordstr(P),"s")==0)
{
string ri= "ring Phelp ="
+string(char(P))+",("+varstr_P+"),(dp,C);";
ri = ri + "minpoly = "+string(minpoly) + ";";
execute(ri);
def m=imap(P,m);
if (p_opt) { "using mres in another ring";}
list re=mres(m,i);
setring P;
resolution result=imap(Phelp,re);
if (size(#) > 2) {result = minres(result);}
return(result);
}
//sres for the local case and not minimal resolution
if(size(#)<=2)
{
string ri= "ring Phelp ="
+string(char(P))+",("+varstr_P+"),(ls,c);";
ri = ri + "minpoly = "+string(minpoly) + ";";
execute(ri);
def m=imap(P,m);
m=std(m);
if (p_opt) { "using sres in another ring";}
list re=sres(m,i);
setring P;
resolution result=imap(Phelp,re);
return(result);
}
//mres for the local case and minimal resolution
string ri= "ring Phelp ="
+string(char(P))+",("+varstr_P+"),(ls,C);";
ri = ri + "minpoly = "+string(minpoly) + ";";
execute(ri);
def m=imap(P,m);
if (p_opt) { "using mres in another ring";}
list re=mres(m,i);
setring P;
resolution result=imap(Phelp,re);
result = minres(result);
return(result);
}
example
{"EXAMPLE:"; echo = 2;
ring r=0,(x,y,z),dp;
ideal i=xz,yz,x3-y3;
def l=res(i,0); // homogeneous ideal: uses lres
l;
print(betti(l), "betti"); // input to betti may be of type resolution
l[2]; // element access may take some time
i=i,x+1;
l=res(i,0); // inhomogeneous ideal: uses mres
l;
ring rs=0,(x,y,z),ds;
ideal i=imap(r,i);
def l=res(i,0); // local ring not minimized: uses sres
l;
res(i,0,0); // local ring and minimized: uses mres
}
/////////////////////////////////////////////////////////////////////////
proc quot (def m1,def m2,list #)
"SYNTAX: @code{quot (} module_expression@code{,} module_expression @code{)}
@*@code{quot (} module_expression@code{,} module_expression@code{,}
int_expression @code{)}
@*@code{quot (} ideal_expression@code{,} ideal_expression @code{)}
@*@code{quot (} ideal_expression@code{,} ideal_expression@code{,}
int_expression @code{)}
TYPE: ideal
SYNTAX: @code{quot (} module_expression@code{,} ideal_expression @code{)}
TYPE: module
PURPOSE: computes the quotient of the 1st and the 2nd argument.
If a 3rd argument @code{n} is given the @code{n}-th method is used
(@code{n}=1...5).
SEE ALSO: quotient
EXAMPLE: example quot; shows an example"
{
if (((typeof(m1)!="ideal") and (typeof(m1)!="module"))
or ((typeof(m2)!="ideal") and (typeof(m2)!="module")))
{
"USAGE: quot(m1, m2[, n]); m1, m2 two submodules of k^s,";
" n (optional) integer (1<= n <=5)";
"RETURN: the quotient of m1 and m2";
"EXAMPLE: example quot; shows an example";
return();
}
if (typeof(m1)!=typeof(m2))
{
return(quotient(m1,m2));
}
if (size(#)>0)
{
if (typeof(#[1])=="int" )
{
return(quot1(m1,m2,#[1]));
}
}
else
{
return(quot1(m1,m2,2));
}
}
example
{ "EXAMPLE:"; echo = 2;
ring r=181,(x,y,z),(c,ls);
ideal id1=maxideal(4);
ideal id2=x2+xyz,y2-z3y,z3+y5xz;
option(prot);
ideal id3=quotient(id1,id2);
id3;
ideal id4=quot(id1,id2,1);
id4;
ideal id5=quot(id1,id2,2);
id5;
}
static proc quot1 (module m1, module m2,int n)
"USAGE: quot1(m1, m2, n); m1, m2 two submodules of k^s,
n integer (1<= n <=5)
RETURN: the quotient of m1 and m2
EXAMPLE: example quot1; shows an example"
{
if (n==1)
{
return(quotient1(m1,m2));
}
else
{
if (n==2)
{
return(quotient2(m1,m2));
}
else
{
if (n==3)
{
return(quotient3(m1,m2));
}
else
{
if (n==4)
{
return(quotient4(m1,m2));
}
else
{
if (n==5)
{
return(quotient5(m1,m2));
}
else
{
return(quotient(m1,m2));
}
}
}
}
}
}
example
{ "EXAMPLE:"; echo = 2;
ring r=181,(x,y,z),(c,ls);
ideal id1=maxideal(4);
ideal id2=x2+xyz,y2-z3y,z3+y5xz;
option(prot);
ideal id6=quotient(id1,id2);
id6;
ideal id7=quot1(id1,id2,1);
id7;
ideal id8=quot1(id1,id2,2);
id8;
}
static proc quotient0(module a,module b)
{
module mm=b+a;
resolution rs=lres(mm,0);
list I=list(rs);
matrix M=I[2];
matrix A[1][nrows(M)]=M[1..nrows(M),1];
ideal i=A;
return (i);
}
proc quotient1(module a,module b) //17sec
"USAGE: quotient1(m1, m2); m1, m2 two submodules of k^s,
RETURN: the quotient of m1 and m2"
{
int i;
a=std(a);
module dummy;
module B=NF(b,a)+dummy;
ideal re=quotient(a,module(B[1]));
for(i=2;i<=ncols(B);i++)
{
re=intersect1(re,quotient(a,module(B[i])));
}
return(re);
}
proc quotient2(module a,module b) //13sec
"USAGE: quotient2(m1, m2); m1, m2 two submodules of k^s,
RETURN: the quotient of m1 and m2"
{
a=std(a);
module dummy;
module bb=NF(b,a)+dummy;
int i=ncols(bb);
ideal re=quotient(a,module(bb[i]));
bb[i]=0;
module temp;
module temp1;
module bbb;
int mx;
i=i-1;
while (1)
{
if (i==0) break;
temp = a+bb*re;
temp1 = lead(interred(temp));
mx=ncols(a);
if (ncols(temp1)>ncols(a))
{
mx=ncols(temp1);
}
temp1 = matrix(temp1,1,mx)-matrix(lead(a),1,mx);
temp1 = dummy+temp1;
if (deg(temp1[1])<0) break;
re=intersect1(re,quotient(a,module(bb[i])));
bb[i]=0;
i = i-1;
}
return(re);
}
proc quotient3(module a,module b) //89sec
"USAGE: quotient3(m1, m2); m1, m2 two submodules of k^s,
only for global rings
RETURN: the quotient of m1 and m2"
{
string s="ring @newr=("+charstr(basering)+
"),("+varstr(basering)+",@t,@w),dp;";
def @newP=basering;
execute(s);
module b=imap(@newP,b);
module a=imap(@newP,a);
int i;
int j=ncols(b);
vector @b;
for(i=1;i<=j;i++)
{
@b=@b+@t^(i-1)*@w^(j-i+1)*b[i];
}
ideal re=quotient(a,module(@b));
setring @newP;
ideal re=imap(@newr,re);
return(re);
}
proc quotient5(module a,module b) //89sec
"USAGE: quotient5(m1, m2); m1, m2 two submodules of k^s,
only for global rings
RETURN: the quotient of m1 and m2"
{
string s="ring @newr=("+charstr(basering)+
"),("+varstr(basering)+",@t),dp;";
def @newP=basering;
execute(s);
module b=imap(@newP,b);
module a=imap(@newP,a);
int i;
int j=ncols(b);
vector @b;
for(i=1;i<=j;i++)
{
@b=@b+@t^(i-1)*b[i];
}
@b=homog(@b,@w);
ideal re=quotient(a,module(@b));
setring @newP;
ideal re=imap(@newr,re);
return(re);
}
proc quotient4(module a,module b) //95sec
"USAGE: quotient4(m1, m2); m1, m2 two submodules of k^s,
only for global rings
RETURN: the quotient of m1 and m2"
{
string s="ring @newr=("+charstr(basering)+
"),("+varstr(basering)+",@t),dp;";
def @newP=basering;
execute(s);
module b=imap(@newP,b);
module a=imap(@newP,a);
int i;
vector @b=b[1];
for(i=2;i<=ncols(b);i++)
{
@b=@b+@t^(i-1)*b[i];
}
matrix sy=modulo(@b,a);
ideal re=sy;
setring @newP;
ideal re=imap(@newr,re);
return(re);
}
static proc intersect1(ideal i,ideal j)
{
def R=basering;
execute("ring gnir = ("+charstr(basering)+"),
("+varstr(basering)+",@t),(C,dp);");
ideal i=var(nvars(basering))*imap(R,i)+(var(nvars(basering))-1)*imap(R,j);
ideal j=eliminate(i,var(nvars(basering)));
setring R;
map phi=gnir,maxideal(1);
return(phi(j));
}
//////////////////////////////////////////////////////////////////
///
/// sprintf, fprintf printf
///
proc sprintf(string fmt, list #)
"SYNTAX: @code{sprintf (} string_expression @code{[,} any_expressions
@code{] )}
RETURN: string
PURPOSE: @code{sprintf(fmt,...);} performs output formatting. The first
argument is a format control string. Additional arguments may be
required, depending on the content of the control string. A series
of output characters is generated as directed by the control string;
these characters are returned as a string. @*
The control string @code{fmt} is simply text to be copied,
except that the string may contain conversion specifications.@*
Type @code{help print;} for a listing of valid conversion
specifications. As an addition to the conversions of @code{print},
the @code{%n} and @code{%2} conversion specification does not
consume an additional argument, but simply generates a newline
character.
NOTE: If one of the additional arguments is a list, then it should be
wrapped in an additional @code{list()} command, since passing a list
as an argument flattens the list by one level.
SEE ALSO: fprintf, printf, print, string
EXAMPLE : example sprintf; shows an example
"
{
int sfmt = size(fmt);
if (sfmt <= 1)
{
return (fmt);
}
int next, l, nnext;
string ret;
list formats = "%l", "%s", "%2l", "%2s", "%t", "%;", "%p", "%b", "%n", "%2";
while (1)
{
if (size(#) <= 0)
{
return (ret + fmt);
}
nnext = 0;
while (nnext < sfmt)
{
nnext = find(fmt, "%", nnext + 1);
if (nnext == 0)
{
next = 0;
break;
}
l = 1;
while (l <= size(formats))
{
next = find(fmt, formats[l], nnext);
if (next == nnext) break;
l++;
}
if (next == nnext) break;
}
if (next == 0)
{
return (ret + fmt);
}
if (formats[l] != "%2" && formats[l] != "%n")
{
ret = ret + fmt[1, next - 1] + print(#[1], formats[l]);
# = delete(#, 1);
}
else
{
ret = ret + fmt[1, next - 1] + print("", "%2s");
}
if (size(fmt) <= (next + size(formats[l]) - 1))
{
return (ret);
}
fmt = fmt[next + size(formats[l]), size(fmt)-next-size(formats[l]) + 1];
}
}
example
{ "EXAMPLE:"; echo=2;
ring r=0,(x,y,z),dp;
module m=[1,y],[0,x+z];
intmat M=betti(mres(m,0));
list l = r, m, M;
string s = sprintf("s:%s,%n l:%l", 1, 2); s;
s = sprintf("s:%n%s", l); s;
s = sprintf("s:%2%s", list(l)); s;
s = sprintf("2l:%n%2l", list(l)); s;
s = sprintf("%p", list(l)); s;
s = sprintf("%;", list(l)); s;
s = sprintf("%b", M); s;
}
proc printf(string fmt, list #)
"SYNTAX: @code{printf (} string_expression @code{[,} any_expressions@code{] )}
RETURN: none
PURPOSE: @code{printf(fmt,...);} performs output formatting. The first
argument is a format control string. Additional arguments may be
required, depending on the content of the control string. A series
of output characters is generated as directed by the control string;
these characters are displayed (i.e., printed to standard out). @*
The control string @code{fmt} is simply text to be copied, except
that the string may contain conversion specifications. @*
Type @code{help print;} for a listing of valid conversion
specifications. As an addition to the conversions of @code{print},
the @code{%n} and @code{%2} conversion specification does not
consume an additional argument, but simply generates a newline
character.
NOTE: If one of the additional arguments is a list, then it should be
enclosed once more into a @code{list()} command, since passing a
list as an argument flattens the list by one level.
SEE ALSO: sprintf, fprintf, print, string
EXAMPLE : example printf; shows an example
"
{
write("", sprintf(fmt, #));
}
example
{ "EXAMPLE:"; echo=2;
ring r=0,(x,y,z),dp;
module m=[1,y],[0,x+z];
intmat M=betti(mres(m,0));
list l=r,m,matrix(M);
printf("s:%s,l:%l",1,2);
printf("s:%s",l);
printf("s:%s",list(l));
printf("2l:%2l",list(l));
printf("%p",matrix(M));
printf("%;",matrix(M));
printf("%b",M);
}
proc fprintf(link l, string fmt, list #)
"SYNTAX: @code{fprintf (} link_expression@code{,} string_expression @code{[,}
any_expressions@code{] )}
RETURN: none
PURPOSE: @code{fprintf(l,fmt,...);} performs output formatting.
The second argument is a format control string. Additional
arguments may be required, depending on the content of the
control string. A series of output characters is generated as
directed by the control string; these characters are
written to the link l.
The control string @code{fmt} is simply text to be copied, except
that the string may contain conversion specifications.@*
Type @code{help print;} for a listing of valid conversion
specifications. As an addition to the conversions of @code{print},
the @code{%n} and @code{%2} conversion specification does not
consume an additional argument, but simply generates a newline
character.
NOTE: If one of the additional arguments is a list, then it should be
enclosed once more into a @code{list()} command, since passing
a list as an argument flattens the list by one level.
SEE ALSO: sprintf, printf, print, string
EXAMPLE : example fprintf; shows an example
"
{
write(l, sprintf(fmt, #));
}
example
{ "EXAMPLE:"; echo=2;
ring r=0,(x,y,z),dp;
module m=[1,y],[0,x+z];
intmat M=betti(mres(m,0));
list l=r,m,M;
link li=""; // link to stdout
fprintf(li,"s:%s,l:%l",1,2);
fprintf(li,"s:%s",l);
fprintf(li,"s:%s",list(l));
fprintf(li,"2l:%2l",list(l));
fprintf(li,"%p",list(l));
fprintf(li,"%;",list(l));
fprintf(li,"%b",M);
}
//////////////////////////////////////////////////////////////////////////
/*
proc minres(list #)
{
if (size(#) == 2)
{
if (typeof(#[1]) == "ideal" || typeof(#[1]) == "module")
{
if (typeof(#[2] == "int"))
{
return (res(#[1],#[2],1));
}
}
}
if (typeof(#[1]) == "resolution")
{
return minimizeres(#[1]);
}
else
{
return minimizeres(#);
}
}
*/
///////////////////////////////////////////////////////////////////////////////
proc weightKB(def stc, int dd, list wim)
"SYNTAX: @code{weightKB (} module_expression@code{,} int_expression @code{,}
list_expression @code{)}@*
@code{weightKB (} ideal_expression@code{,} int_expression@code{,}
list_expression @code{)}
RETURN: the same as the input type of the first argument
PURPOSE: If @code{I,d,wim} denotes the three arguments then weightKB
computes the weighted degree- @code{d} part of a vector space basis
(consisting of monomials) of the quotient ring, resp. of the
quotient module, modulo @code{I} w.r.t. weights given by @code{wim}
The information about the weights is given as a list of two intvec:
@code{wim[1]} weights for all variables (positive),
@code{wim[2]} weights for the module generators.
NOTE: This is a generalization of the command @code{kbase} with the same
first two arguments.
SEE ALSO: kbase
EXAMPLE: example weightKB; shows an example
"
{
if(checkww(wim)){ERROR("wrong weights";);}
kbclass();
wwtop=wim[1];
stc=interred(lead(stc));
if(typeof(stc)=="ideal")
{
stdtop=stc;
ideal out=widkbase(dd);
delkbclass();
out=simplify(out,2); // delete 0
return(out);
}
list mbase=kbprepare(stc);
module mout;
int im,ii;
if(size(wim)>1){mmtop=wim[2];}
else{mmtop=0;}
for(im=size(mbase);im>0;im--)
{
stdtop=mbase[im];
if(im>size(mmtop)){ii=dd;}
else{ii=dd-mmtop[im];}
mout=mout+widkbase(ii)*gen(im);
}
delkbclass();
mout=simplify(mout,2); // delete 0
return(mout);
}
example
{ "EXAMPLE:"; echo=2;
ring R=0, (x,y), wp(1,2);
weightKB(ideal(0),3,intvec(1,2));
}
///////////////////////////////////////////////////////////////////////////////
proc datetime()
"SYNTAX: @code{datetime ()}
RETURN: string
PURPOSE: return the curent date and time as a string
EXAMPLE: example datetime; shows an example
"
{
return(read("|: date"));
}
example
{ "EXAMPLE:"; echo=2;
datetime();
}
///////////////////////////////////////////////////////////////////////////////
// construct global values
static proc kbclass()
{
intvec wwtop,mmtop;
export (wwtop,mmtop);
ideal stdtop,kbtop;
export (stdtop,kbtop);
}
// delete global values
static proc delkbclass()
{
kill wwtop,mmtop;
kill stdtop,kbtop;
}
// select parts of the modul
static proc kbprepare(module mstc)
{
list rr;
ideal kk;
int i1,i2;
mstc=transpose(mstc);
for(i1=ncols(mstc);i1>0;i1--)
{
kk=0;
for(i2=nrows(mstc[i1]);i2>0;i2--)
{
kk=kk+mstc[i1][i2];
}
rr[i1]=kk;
}
return(rr);
}
// check for weights
static proc checkww(list vv)
{
if(typeof(vv[1])!="intvec"){return(1);}
intvec ww=vv[1];
int mv=nvars(basering);
if(size(ww)<mv){return(1);}
while(mv>0)
{
if(ww[mv]<=0){return(1);}
mv--;
}
if(size(vv)>1)
{
if(typeof(vv[2])!="intvec"){return(1);}
}
return(0);
}
///////////////////////////////////////////////////////
// The "Caller" for ideals
// dd - the degree of the result
static proc widkbase(int dd)
{
if((size(stdtop)==1)&&(deg(stdtop[1])==0)){return(0);}
if(dd<=0)
{
if(dd<0){return(0);}
else{return(1);}
}
int m1,m2;
m1=nvars(basering);
while(wwtop[m1]>dd)
{
m1--;
if(m1==0){return(0);}
}
attrib(stdtop,"isSB",1);
poly mo=1;
if(m1==1)
{
m2=dd div wwtop[1];
if((m2*wwtop[1])==dd)
{
mo=var(1)^m2;
if(reduce(mo,stdtop)==mo){return(mo);}
else{return(0);}
}
}
kbtop=0;
m2=dd;
weightmon(m1-1,m2,mo);
while(m2>=wwtop[m1])
{
m2=m2-wwtop[m1];
mo=var(m1)*mo;
if(m2==0)
{
if((mo!=0) and (reduce(mo,stdtop)==mo))
{
kbtop[ncols(kbtop)+1]=mo;
return(kbtop);
}
}
weightmon(m1-1,m2,mo);
}
return(kbtop);
}
/////////////////////////////////////////////////////////
// the recursive procedure
// va - number of the variable
// drest - rest of the degree
// mm - the candidate
static proc weightmon(int va, int drest, poly mm)
{
if(va==0){return();}
while(wwtop[va]>drest)
{
va--;
if(va==0){return();}
}
int m2;
if(va==1)
{
m2=drest div wwtop[1];
if((m2*wwtop[1])==drest)
{
mm=var(1)^m2*mm;
if ((mm!=0) and (reduce(mm,stdtop)==mm))
{
kbtop[ncols(kbtop)+1]=mm;
}
}
return();
}
m2=drest;
if ((mm!=0) and (reduce(mm,stdtop)==mm))
{
weightmon(va-1,m2,mm);
}
while(m2>=wwtop[va])
{
m2=m2-wwtop[va];
mm=var(va)*mm;
if(m2==0)
{
if ((mm!=0) and (reduce(mm,stdtop)==mm))
{
kbtop[ncols(kbtop)+1]=mm;
return();
}
}
if ((mm!=0) and (reduce(mm,stdtop)==mm))
{
weightmon(va-1,m2,mm);
}
}
return();
}
example
{ "EXAMPLE:"; echo=2;
ring r=0,(x,y,z),dp;
ideal i = x6,y4,xyz;
intvec w = 2,3,6;
weightKB(i, 12, list(w));
}
///////////////////////////////////////////////////////////////////////////////
proc max(def i,list #)
"SYNTAX: max (i_1, ..., i_k)
TYPE: same as type of i_1, ..., i_k resp.
PURPOSE: returns the maximum for any arguments of a type
for which '>' is defined
SEE ALSO: min
EXAMPLE: example max; shows an example"
{
def maximum = i;
for (int j=1; j<=size(#); j++)
{
if(#[j]>maximum)
{
maximum = #[j];
}
}
return(maximum);
}
example
{ "EXAMPLE:"; echo=2;
// biggest int
max(2,3);
max(1,4,3);
// lexicographically biggest intvec
max(intvec(1,2),intvec(0,1),intvec(1,1));
// polynopmial with biggest leading monomial
ring r = 0,x,dp;
max(x+1,x2+x);
}
///////////////////////////////////////////////////////////////////////////////
proc min(def i,list #)
"SYNTAX: min (i_1, ..., i_k)
TYPE: same as type of i_1, ..., i_k resp.
PURPOSE: returns the minimum for any arguments of a type
for which '>' is defined
SEE ALSO: max
EXAMPLE: example min; shows an example"
{
def minimum = i;
for (int j=1; j<=size(#); j++)
{
if(#[j]<minimum)
{
minimum = #[j];
}
}
return(minimum);
}
example
{ "EXAMPLE:"; echo=2;
// smallest int
min(2,3);
min(1,4,3);
// lexicographically smallest intvec
min(intvec(1,2),intvec(0,1),intvec(1,1));
// polynopmial with smallest leading monomial
ring r = 0,x,dp;
min(x+1,x2+x);
}
///////////////////////////////////////////////////////////////////////////////
/*
Versuche:
///////////////////////////////////////////////////////////////////////////////
proc downsizeSB (def I, list #)
"USAGE: downsizeSB(I [,l]); I ideal, l list of integers [default: l=0]
RETURN: intvec, say v, with v[j] either 1 or 0. We have v[j]=1 if
leadmonom(I[j]) is divisible by some leadmonom(I[k]) or if
leadmonom(i[j]) == leadmonom(i[k]) and l[j] >= l[k], with k!=j.
PURPOSE: The procedure is applied in a situation where the standard basis
computation in the basering R is done via a conversion through an
overring Phelp with additional variables and where a direct
imap from Phelp to R is too expensive.
Assume Phelp is created by the procedure @code{par2varRing} or
@code{hilbRing} and IPhelp is a SB in Phelp [ with l[j]=
length(IPhelp(j)) or any other integer reflecting the complexity
of a IPhelp[j] ]. Let I = lead(IPhelp) mapped to R and compute
v = downsizeSB(imap(Phelp,I),l) in R. Then, if Ihelp[j] is deleted
for all j with v[j]=1, we can apply imap to the remaining generators
of Ihelp and still get SB in R (in general not minimal).
EXAMPLE: example downsizeSB; shows an example"
{
int k,j;
intvec v,l;
poly M,N,W;
int c=size(I);
if( size(#) != 0 )
{
if ( typeof(#[1]) == "intvec" )
{
l = #[1];
}
else
{
ERROR("// 2nd argument must be an intvec");
}
}
l[c+1]=0;
v[c]=0;
j=0;
while(j<c-1)
{
j++;
M = leadmonom(I[j]);
if( M != 0 )
{
for( k=j+1; k<=c; k++ )
{
N = leadmonom(I[k]);
if( N != 0 )
{
if( (M==N) && (l[j]>l[k]) )
{
I[j]=0;
v[j]=1;
break;
}
if( (M==N) && (l[j]<=l[k]) || N/M != 0 )
{
I[k]=0;
v[k]=1;
}
}
}
}
}
return(v);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(x,y,z,t),(dp(3),dp);
ideal i = x+y+z+t,xy+yz+xt+zt,xyz+xyt+xzt+yzt,xyzt-t4;
ideal Id = std(i);
ideal I = lead(Id); I;
ring S = (0,t),(x,y,z),dp;
downsizeSB(imap(r,I));
//Id[5] can be deleted, we still have a SB of i in the ring S
ring R = (0,x),(y,z,u),lp;
ideal i = x+y+z+u,xy+xu+yz+zu,xyz+xyu+xzu+yzu,xyzu-1;
def Phelp = par2varRing()[1];
setring Phelp;
ideal IPhelp = std(imap(R,i));
ideal I = lead(IPhelp);
setring R;
ideal I = imap(Phelp,I); I;
intvec v = downsizeSB(I); v;
}
///////////////////////////////////////////////////////////////////////////
// PROBLEM: Die Prozedur funktioniert nur fuer Ringe die global bekannt
// sind, also interaktiv, aber nicht aus einer Prozedur.
// Z.B. funktioniert example imapDownsize; nicht
proc imapDownsize (string R, string I)
"SYNTAX: @code{imapDownsize (} string @code{,} string @code{)} *@
First string must be the string of the name of a ring, second
string must be the string of the name of an object in the ring.
TYPE: same type as the object with name the second string
PURPOSE: maps the object given by the second string to the basering.
If R resp. I are the first resp. second string, then
imapDownsize(R,I) is equivalent to simplify(imap(`R`,`I`),34).
NOTE: imapDownsize is usually faster than imap if `I` is large and if
simplify has a great effect, since the procedure maps only those
generators from `I` which are not killed by simplify( - ,34).
This is useful if `I` is a standard bases for a block ordering of
`R` and if some variables from the last block in `R` are mapped
to parameters. Then the returned result is a standard basis in
the basering.
SEE ALSO: imap, fetch, map
EXAMPLE: example imapDownsize; shows an example"
{
def BR = basering;
int k;
setring `R`;
def @leadI@ = lead(`I`);
int s = ncols(@leadI@);
setring BR;
ideal @leadI@ = simplify(imap(`R`,@leadI@),32);
intvec vi;
for (k=1; k<=s; k++)
{
vi[k] = @leadI@[k]==0;
}
kill @leadI@;
setring `R`;
kill @leadI@;
for (k=1; k<=s; k++)
{
if( vi[k]==1 )
{
`I`[k]=0;
}
}
`I` = simplify(`I`,2);
setring BR;
return(imap(`R`,`I`));
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(x,y,z,t),(dp(3),dp);
ideal i = x+y+z+t,xy+yz+xt+zt,xyz+xyt+xzt+yzt,xyzt-1;
i = std(i); i;
ring s = (0,t),(x,y,z),dp;
imapDownsize("r","i"); //i[5] is omitted since lead(i[2]) | lead(i[5])
}
///////////////////////////////////////////////////////////////////////////////
//die folgende proc war fuer groebner mit fglm vorgesehen, ist aber zu teuer.
//Um die projektive Dimension korrekt zu berechnen, muss man aber teuer
//voerher ein SB bzgl. einer Gradordnung berechnen und dann homogenisieren.
//Sonst koennen hoeherdimensionale Komponenten in Unendlich entstehen
proc projInvariants(ideal i,list #)
"SYNTAX: @code{projInvariants (} ideal_expression @code{)} @*
@code{projInvariants (} ideal_expression@code{,} list of string_expres sions@code{)}
TYPE: list, say L, with L[1] and L[2] of type int and L[3] of type intvec
PURPOSE: Computes the (projective) dimension (L[1]), degree (L[2]) and the
first Hilbert series (L[3], as intvec) of the homogenized ideal
in the ring given by the procedure @code{hilbRing} with global
ordering dp (resp. wp if the variables have weights >1)
If an argument of type string @code{\"std\"} resp. @code{\"slimgb\"}
is given, the standard basis computatuion uses @code{std} or
@code{slimgb}, otherwise a heuristically chosen method (default)
NOTE: Homogenized means weighted homogenized with respect to the weights
w[i] of the variables var(i) of the basering. The returned dimension,
degree and Hilbertseries are the respective invariants of the
projective variety defined by the homogenized ideal. The dimension
is equal to the (affine) dimension of the ideal in the basering
(degree and Hilbert series make only sense for homogeneous ideals).
SEE ALSO: dim, dmult, hilb
KEYWORDS: dimension, degree, Hilbert function
EXAMPLE: example projInvariants; shows an example"
{
def P = basering;
int p_opt;
string s_opt = option();
if (find(option(), "prot")) { p_opt = 1; }
//---------------- check method and clear denomintors --------------------
int k;
string method;
for (k=1; k<=size(#); k++)
{
if (typeof(#[k]) == "string")
{
method = method + "," + #[k];
}
}
if (npars(P) > 0) //clear denominators of parameters
{
for( k=ncols(i); k>0; k-- )
{
i[k]=cleardenom(i[k]);
}
}
//------------------------ change to hilbRing ----------------------------
list hiRi = hilbRing(i);
intvec W = hiRi[2];
def Philb = hiRi[1]; //note: Philb is no qring and the predefined
setring Philb; //ideal Id(1) in Philb is homogeneous
int di, de; //for dimension, degree
intvec hi; //for hilbert series
//-------- compute Hilbert function of homogenized ideal in Philb ---------
//Philb has only 1 block. There are three cases
string algorithm; //possibilities: std, slimgb, stdorslimgb
//define algorithm:
if( find(method,"std") && !find(method,"slimgb") )
{
algorithm = "std";
}
if( find(method,"slimgb") && !find(method,"std") )
{
algorithm = "slimgb";
}
if( find(method,"std") && find(method,"slimgb") ||
(!find(method,"std") && !find(method,"slimgb")) )
{
algorithm = "stdorslimgb";
}
if ( algorithm=="std" || ( algorithm=="stdorslimgb" && char(P)>0 ) )
{
if (p_opt) {"std in ring " + string(Philb);}
Id(1) = std(Id(1));
di = dim(Id(1))-1;
de = mult(Id(1));
hi = hilb( Id(1),1,W );
}
if ( algorithm=="slimgb" || ( algorithm=="stdorslimgb" && char(P)==0 ) )
{
if (p_opt) {"slimgb in ring " + string(Philb);}
Id(1) = slimgb(Id(1));
di = dim( Id(1) );
if (di > -1)
{
di = di-1;
}
de = mult( Id(1) );
hi = hilb( Id(1),1,W );
}
kill Philb;
list L = di,de,hi;
return(L);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 32003,(x,y,z),lp;
ideal i = y2-xz,x2-z;
projInvariants(i);
ring R = (0),(x,y,z,u,v),lp;
//minpoly = x2+1;
ideal i = x2+1,x2+y+z+u+v,xyzuv-1;
projInvariants(i);
qring S =std(x2+1);
ideal i = imap(R,i);
projInvariants(i);
}
*/
///////////////////////////////////////////////////////////////////////////////
// EXAMPLES
///////////////////////////////////////////////////////////////////////////////
/*
example stdfglm;
example stdhilb;
example groebner;
example res;
example sprintf;
example fprintf;
example printf;
example weightKB;
example qslimgb;
example par2varRing;
*/
static proc mod_init()
{
if(!defined(Singmathic))
{
load("singmathic.so","try");
}
//int pagelength=24;
//exportto(Top,pagelength);
}
|