/usr/share/singular/LIB/ring.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 | /////////////////////////////////////////////////////////////////////////////
version="version ring.lib 4.0.3.5 Nov_2016 "; // $Id: 1a61f66421c99785aae727235efa84a1927c538e $
category="General purpose";
info="
LIBRARY: ring.lib Manipulating Rings and Maps
AUTHORS: Singular team
PROCEDURES:
changechar(c[,r]); make a copy of basering [ring r] with new char c
changeord(o[,r]); make a copy of basering [ring r] with new ord o
changevar(v[,r]); make a copy of basering [ring r] with new vars v
defring(\"R\",c,n,v,o); define a ring R in specified char c, n vars v, ord o
defrings(n[,p]); define ring Sn in n vars, char 32003 [p], ord ds
defringp(n[,p]); define ring Pn in n vars, char 32003 [p], ord dp
extendring(\"R\",n,v,o); extend given ring by n vars v, ord o and name it R
fetchall(R[,str]); fetch all objects of ring R to basering
imapall(R[,str]); imap all objects of ring R to basering
mapall(R,i[,str]); map all objects of ring R via ideal i to basering
ord_test(R); test wether ordering of R is global, local or mixed
ringtensor(s,t,..); create ring, tensor product of rings s,t,...
ringweights(r); intvec of weights of ring variables of ring r
preimageLoc(R,phi,Q) computes preimage for non-global orderings
rootofUnity(n); the minimal polynomial for the n-th primitive root of unity
(parameters in square brackets [] are optional)
optionIsSet(opt) check if as a string given option is set or not.
hasFieldCoefficient check if the coefficient ring is considered a field
hasGFCoefficient check if the coefficient ring is GF(p,k)
hasZpCoefficient check if the coefficient ring is ZZ/p
hasZp_aCoefficient check if the coefficient ring is an elag. ext. of ZZ/p
hasQQCoefficient check if the coefficient ring is QQ
hasNumericCoeffs(rng) check for use of floating point numbers
hasCommutativeVars(rng) non-commutive or commnuative polynomial ring
hasGlobalOrdering(rng) global versus mixed/local monomial ordering
hasMixedOrdering() mixed versus global/local ordering
hasAlgExtensionCoefficient(r) coefficients are an algebraic extension
hasTransExtensionCoefficient(r) coefficients are rational functions
isQuotientRing(rng) ring is a qotient ring
isSubModule(I,J) check if I is in J as submodule
changeordTo(r,o) change the ordering of a ring to a simple one
addvarsTo(r,vars,i) add variables to a ring
addNvarsTo(r,N,name,i) add N variables to a ring
";
LIB "inout.lib";
LIB "general.lib";
LIB "primdec.lib";
///////////////////////////////////////////////////////////////////////////////
proc optionIsSet(string optionName)
"
USAGE: optionIsSet( optionName )
PARAMETERS: optionName: a name as string of an option of interest
RETURN: true, if the by optionName given option is active, false otherwise.
EXAMPLE: example optionIsSet;
"
{
intvec op = option(get);
//sanity check, if option is valid. will raise an error if not
option(optionName); option("no" + optionName);
option(set,op);
// first entry is currently a comment "//options:", which is not an option.
int pos = find(option(), optionName, 11 );
return(pos>0);
}
example
{
// check if the option "warn" is set.
optionIsSet("warn");
option("warn");
// now the option is set
optionIsSet("warn");
option("nowarn");
// now the option is unset
optionIsSet("warn");
}
static proc testOptionIsSet()
{
option("warn");
ASSUME(0, optionIsSet("warn") );
option("nowarn");
ASSUME(0, 0 == optionIsSet("warn") );
}
///////////////////////////////////////////////////////////////////////////////
proc changechar (list @L, list #)
"USAGE: changechar(c[,r]); c=list, r=ring
RETURN: ring R, obtained from the ring r [default: r=basering], by changing
ringlist(r)[1] to c.
EXAMPLE: example changechar; shows an example
"
{
def save_ring=basering;
if( size(#)==0 ) { def @r=basering; }
if(( size(#)==1 ) and (typeof(#[1])=="ring")) { def @r=#[1]; }
setring @r;
list rl=ringlist(@r);
if(defined(@L)!=voice) { def @L=fetch(save_ring,@L); }
if (size(@L)==1) { rl[1]=@L[1];} else { rl[1]=@L;}
def Rnew=ring(rl);
setring save_ring;
return(Rnew);
}
example
{ "EXAMPLE:"; echo = 2;
ring rr=2,A,dp;
ring r=0,(x,y,u,v),(dp(2),ds);
def R=changechar(ringlist(rr)); R;"";
def R1=changechar(32003,R); setring R1; R1;
kill R,R1;
}
///////////////////////////////////////////////////////////////////////////////
proc changeord (list @o, list #)
"USAGE: changeord(neword[,r]); newordstr=list, r=ring/qring
RETURN: ring R, obtained from the ring r [default: r=basering], by changing
order(r) to neword.
If, say, neword=list(list(\"wp\",intvec(2,3)),list(list(\"dp\",1:(n-2))));
and if the ring r exists and has n variables, the ring R will be
equipped with the monomial ordering wp(2,3),dp.
EXAMPLE: example changeord; shows an example
"
{
def save_ring=basering;
if( size(#)==0 ) { def @r=basering; }
if( size(#)==1 ) { def @r=#[1]; }
setring @r;
list rl=ringlist(@r);
rl[3]=@o;
def Rnew=ring(rl);
setring save_ring;
return(Rnew);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y,u,v),(dp(2),ds);
def R=changeord(list(list("wp",intvec(2,3)),list("dp",1:2))); R; "";
ideal i = x^2,y^2-u^3,v;
qring Q = std(i);
def Q'=changeord(list(list("lp",nvars(Q))),Q); setring Q'; Q';
kill R,Q,Q';
}
///////////////////////////////////////////////////////////////////////////////
proc changevar (string vars, list #)
"USAGE: changevar(vars[,r]); vars=string, r=ring/qring
RETURN: ring R, obtained from the ring r [default: r=basering], by changing
varstr(r) according to the value of vars.
If, say, vars = \"t()\" and the ring r exists and has n
variables, the new basering will have name R and variables
t(1),...,t(n).
If vars = \"a,b,c,d\", the new ring will have the variables a,b,c,d.
NOTE: This procedure is useful in connection with the procedure ringtensor,
when a conflict between variable names must be avoided.
This proc uses 'execute' or calls a procedure using 'execute'.
EXAMPLE: example changevar; shows an example
"
{
if( size(#)==0 ) { def @r=basering; }
if( size(#)==1 ) { def @r=#[1]; }
setring @r;
ideal i = ideal(@r); int @q = size(i);
if( @q!=0 )
{ string @s = "Rnew1"; }
else
{ string @s = "Rnew"; }
string @newring = @s+"=("+charstr(@r)+"),(";
if( vars[size(vars)-1]=="(" and vars[size(vars)]==")" )
{
@newring = @newring+vars[1,size(vars)-2]+"(1.."+string(nvars(@r))+")";
}
else { @newring = @newring+vars; }
string ords=ordstr(@r);
int l=size(ords);
int l1,l2;
while(l>0)
{
if (ords[l]=="(") { l1=l; break; }
if (ords[l]==")") { l2=l; }
l--;
}
string last_ord=string(ords[l1-3..l1-1]);
if ((last_ord[1]!="w")
&& (last_ord[1]!="W")
&& (last_ord[2]!="M"))
{
if (l2==size(ords)) { ords=string(ords[1..l1-1]); }
else { ords=string(ords[1..l1-1])+string(ords[l2+1..size(ords)]); }
}
@newring = @newring+"),("+ords+");";
execute("ring "+@newring);
if( @q!=0 )
{
map phi = @r,maxideal(1);
ideal i = phi(i);
attrib(i,"isSB",1); //*** attrib funktioniert ?
qring Rnew=i;
}
return(Rnew);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y,u,v),(dp(2),ds);
ideal i = x^2,y^2-u^3,v;
qring Q = std(i);
setring(r);
def R=changevar("A()"); R; "";
def Q'=changevar("a,b,c,d",Q); setring Q'; Q';
kill R,Q,Q';
}
///////////////////////////////////////////////////////////////////////////////
proc defring (string s2, int n, string s3, string s4)
"USAGE: defring(ch,n,va,or); ch,va,or=strings, n=integer
RETURN: ring R with characteristic 'ch', ordering 'or' and n variables with
names derived from va.
If va is a single letter, say va=\"a\", and if n<=26 then a and the
following n-1 letters from the alphabet (cyclic order) are taken as
variables. If n>26 or if va is a single letter followed by a bracket,
say va=\"T(\", the variables are T(1),...,T(n).
NOTE: This proc is useful for defining a ring in a procedure.
This proc uses 'execute' or calls a procedure using 'execute'.
EXAMPLE: example defring; shows an example
"
{
string @newring = "ring newring =("+s2+"),(";
if( n>26 or s3[2]=="(" ) { string @v = s3[1]+"(1.."+string(n)+")"; }
else { string @v = A_Z(s3,n); }
@newring=@newring+@v+"),("+s4+");";
execute(@newring);
return(newring);
}
example
{ "EXAMPLE:"; echo = 2;
def r=defring("0",5,"u","ls"); r; setring r;"";
def R=defring("2,A",10,"x(","dp(3),ws(1,2,3),ds"); R; setring R;
kill R,r;
}
///////////////////////////////////////////////////////////////////////////////
proc defrings (int n, list #)
"USAGE: defrings(n,[p]); n,p integers
RETURN: ring R with characteristic p [default: p=32003], ordering ds and n
variables x,y,z,a,b,...if n<=26 (resp. x(1..n) if n>26)
NOTE: This proc uses 'execute' or calls a procedure using 'execute'.
EXAMPLE: example defrings; shows an example
"
{
int p;
if (size(#)==0) { p=32003; }
else { p=#[1]; }
if (n >26)
{
string s="ring S ="+string(p)+",x(1.."+string(n)+"),ds;";
}
else
{
string s="ring S ="+string(p)+",("+A_Z("x",n)+"),ds;";
}
execute(s);
dbprint(printlevel-voice+2,"
// 'defrings' created a ring. To see the ring, type (if the name R was
// assigned to the return value):
show R;
// To make the ring the active basering, type
setring R; ");
return(S);
}
example
{ "EXAMPLE:"; echo = 2;
def S5=defrings(5,0); S5; "";
def S30=defrings(30); S30;
kill S5,S30;
}
///////////////////////////////////////////////////////////////////////////////
proc defringp (int n,list #)
"USAGE: defringp(n,[p]); n,p=integers
RETURN: ring R with characteristic p [default: p=32003], ordering dp and n
variables x,y,z,a,b,...if n<=26 (resp. x(1..n) if n>26)
NOTE: This proc uses 'execute' or calls a procedure using 'execute'.
EXAMPLE: example defringp; shows an example
"
{
int p;
if (size(#)==0) { p=32003; }
else { p=#[1]; }
if (n >26)
{
string s="ring P="+string(p)+",x(1.."+string(n)+"),dp;";
}
else
{
string s="ring P="+string(p)+",("+A_Z("x",n)+"),dp;";
}
execute(s);
dbprint(printlevel-voice+2,"
// 'defringp' created a ring. To see the ring, type (if the name R was
// assigned to the return value):
show R;
// To make the ring the active basering, type
setring R; ");
return(P);
}
example
{ "EXAMPLE:"; echo = 2;
def P5=defringp(5,0); P5; "";
def P30=defringp(30); P30;
kill P5,P30;
}
///////////////////////////////////////////////////////////////////////////////
proc extendring (int n, string va, string o, list #)
"USAGE: extendring(n,va,o[,iv,i,r]); va,o=strings, n,i=integers, r=ring,
iv=intvec of positive integers or iv=0
RETURN: ring R, which extends the ring r by adding n new variables in front
of (resp. after, if i!=0) the old variables.
[default: (i,r)=(0,basering)].
@* -- The characteristic is the characteristic of r.
@* -- The new vars are derived from va. If va is a single letter, say
va=\"T\", and if n<=26 then T and the following n-1 letters from
T..Z..T (resp. T(1..n) if n>26) are taken as additional variables.
If va is a single letter followed by a bracket, say va=\"x(\",
the new variables are x(1),...,x(n).
@* -- The ordering is the product ordering of the ordering of r and of an
ordering derived from `o` [and iv].
@* - If o contains a 'c' or a 'C' in front resp. at the end, this is
taken for the whole ordering in front, resp. at the end. If o does
not contain a 'c' or a 'C' the same rule applies to ordstr(r).
@* - If no intvec iv is given, or if iv=0, o may be any allowed ordstr,
like \"ds\" or \"dp(2),wp(1,2,3),Ds(2)\" or \"ds(a),dp(b),ls\" if
a and b are globally (!) defined integers and if a+b+1<=n.
If, however, a and b are local to a proc calling extendring, the
intvec iv must be used to let extendring know the values of a and b
@* - If a non-zero intvec iv is given, iv[1],iv[2],... are taken for the
1st, 2nd,... block of o, if o contains no substring \"w\" or \"W\"
i.e. no weighted ordering (in the above case o=\"ds,dp,ls\"
and iv=a,b).
If o contains a weighted ordering (only one (!) weighted block is
allowed) iv[1] is taken as size for the weight-vector, the next
iv[1] values of iv are taken as weights and the remaining values of
iv as block size for the remaining non-weighted blocks.
e.g. o=\"dp,ws,Dp,ds\", iv=3,2,3,4,2,5 creates the ordering
dp(2),ws(2,3,4),Dp(5),ds
NOTE: This proc is useful for adding deformation parameters.
This proc uses 'execute' or calls a procedure using 'execute'.
If you use it in your own proc, it may be advisable to let the local
names of your proc start with a @
EXAMPLE: example extendring; shows an example
"
{
//--------------- initialization and place c/C of ordering properly -----------
string @o1,@o2,@ro,@wstr,@v,@newring;
int @i,@w,@ii,@k;
intvec @iv,@iw;
if( find(o,"c")+find(o,"C") != 0)
{
@k=1;
if( o[1]=="c" or o[1]=="C" ) { @o1=o[1,2]; o=o[3..size(o)]; }
else { @o2=o[size(o)-1,2]; o=o[1..size(o)-2]; }
}
if( size(#)==0 ) { #[1]=0; }
if( typeof(#[1])!="intvec" )
{
if( size(#)==1 ) { @i=#[1]; def @r=basering; }
if( size(#)==2 ) { @i=#[1]; def @r=#[2]; }
if( o[size(o)]!=")" and find(o,",")==0 ) { o=o+"("+string(n)+")"; }
}
else
{
@iv=#[1];
if( size(#)==2 ) { @i=#[2]; def @r=basering; }
if( size(#)==3 ) { @i=#[2]; def @r=#[3]; }
if( @iv==0 && o[size(o)]!=")" && find(o,",")==0 ) {o=o+"("+string(n)+")";}
}
@ro=ordstr(@r);
if( @ro[1]=="c" or @ro[1]=="C" )
{ @v=@ro[1,2]; @ro=@ro[3..size(@ro)]; }
else
{ @wstr=@ro[size(@ro)-1,2]; @ro=@ro[1..size(@ro)-2]; }
if( @k==0) { @o1=@v; @o2=@wstr; }
//----------------- prepare ordering if an intvec is given --------------------
if( typeof(#[1])=="intvec" and #[1]!=0 )
{
@k=n; //@k counts no of vars not yet ordered
@w=find(o,"w")+find(o,"W");o=o+" ";
if( @w!=0 )
{
@wstr=o[@w..@w+1];
o=o[1,@w-1]+"@"+o[@w+2,size(o)];
@iw=@iv[2..@iv[1]+1];
@wstr=@wstr+"("+string(@iw)+")";
@k=@k-@iv[1];
@iv=@iv[@iv[1]+2..size(@iv)];
@w=0;
}
for( @ii=1; @ii<=size(@iv); @ii=@ii+1 )
{
if( find(o,",",@w+1)!=0 )
{
@w=find(o,",",@w+1);
if( o[@w-1]!="@" )
{
o=o[1,@w-1]+"("+string(@iv[@ii])+")"+o[@w,size(o)];
@w=find(o,",",@w+1);
@k=@k-@iv[@ii];
}
else { @ii=@ii-1; }
}
}
@w=find(o,"@");
if( @w!=0 ) { o=o[1,@w-1] + @wstr + o[@w+1,size(o)]; }
if( @k>0 and o[size(o)]!=")" ) { o=o+"("+string(@k)+")"; }
}
//------------------------ prepare string of new ring -------------------------
@newring = "ring na =("+charstr(@r)+"),(";
if( n>26 or va[2]=="(" ) { @v = va[1]+"(1.."+string(n)+")"; }
else { @v = A_Z(va,n); }
if( @i==0 )
{
@v=@v+","+varstr(@r);
o=@o1+o+","+@ro+@o2;
}
else
{
@v=varstr(@r)+","+@v;
o=@o1+@ro+","+o+@o2;
}
@newring=@newring+@v+"),("+o+");";
//---------------------------- execute and export -----------------------------
execute(@newring);
dbprint(printlevel-voice+2,"
// 'extendring' created a new ring.
// To see the ring, type (if the name 'R' was assigned to the return value):
show(R);
");
return(na);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y,z),ds;
show(r);"";
// blocksize is derived from no of vars:
int t=5;
def R1=extendring(t,"a","dp"); //t global: "dp" -> "dp(5)"
show(R1); setring R1; "";
def R2=extendring(4,"T(","c,dp",1,r); //"dp" -> "c,..,dp(4)"
show(R2); setring R2; "";
// no intvec given, blocksize given: given blocksize is used:
def R3=extendring(4,"T(","dp(2)",0,r); // "dp(2)" -> "dp(2)"
show(R3); setring R3; "";
// intvec given: weights and blocksize is derived from given intvec
// (no specification of a blocksize in the given ordstr is allowed!)
// if intvec does not cover all given blocks, the last block is used
// for the remaining variables, if intvec has too many components,
// the last ones are ignored
intvec v=3,2,3,4,1,3;
def R4=extendring(10,"A","ds,ws,Dp,dp",v,0,r);
// v covers 3 blocks: v[1] (=3) : no of components of ws
// next v[1] values (=v[2..4]) give weights
// remaining components of v are used for the remaining blocks
show(R4);
kill r,R1,R2,R3,R4;
}
///////////////////////////////////////////////////////////////////////////////
proc fetchall (def R, list #)
"USAGE: fetchall(R[,s]); R=ring/qring, s=string
CREATE: fetch all objects of ring R (of type poly/ideal/vector/module/number/matrix)
into the basering.
If no 2nd argument is present, the names are the same as in R. If,
say, f is a polynomial in R and the 2nd argument is the string \"R\", then f
is mapped to f_R etc.
RETURN: no return value
NOTE: As fetch, this procedure maps the 1st, 2nd, ... variable of R to the
1st, 2nd, ... variable of the basering.
The 2nd argument is useful in order to avoid conflicts of names, the
empty string is allowed
CAUTION: fetchall does not work for locally defined names.
It does not work if R contains a map.
SEE ALSO: imapall
EXAMPLE: example fetchall; shows an example
"
{
list @L@=names(R);
int @ii@; string @s@;
if( size(#) > 0 ) { @s@=@s@+"_"+#[1]; }
for( @ii@=size(@L@); @ii@>0; @ii@-- )
{
execute("def "+@L@[@ii@]+@s@+"=fetch(R,`@L@[@ii@]`);");
execute("export "+@L@[@ii@]+@s@+";");
}
return();
}
example
{ "EXAMPLE:"; echo=2;
// The example is not shown since fetchall does not work in a procedure;
// (and hence not in the example procedure). Try the following commands:
// ring R=0,(x,y,z),dp;
// ideal j=x,y2,z2;
// matrix M[2][3]=1,2,3,x,y,z;
// j; print(M);
// ring S=0,(a,b,c),ds;
// fetchall(R); //map from R to S: x->a, y->b, z->c;
// names(S);
// j; print(M);
// fetchall(S,"1"); //identity map of S: copy objects, change names
// names(S);
// kill R,S;
}
///////////////////////////////////////////////////////////////////////////////
proc imapall (def R, list #)
"USAGE: imapall(R[,s]); R=ring/qring, s=string
CREATE: map all objects of ring R (of type poly/ideal/vector/module/number/matrix)
into the basering by applying imap to all objects of R.
If no 2nd argument is present, the names are the same as in R. If,
say, f is a polynomial in R and the 3rd argument is the string \"R\", then f
is mapped to f_R etc.
RETURN: no return value
NOTE: As imap, this procedure maps the variables of R to the variables with
the same name in the basering, the other variables are mapped to 0.
The 2nd argument is useful in order to avoid conflicts of names, the
empty string is allowed
CAUTION: imapall does not work for locally defined names.
It does not work if R contains a map
SEE ALSO: fetchall
EXAMPLE: example imapall; shows an example
"
{
list @L@=names(R);
int @ii@; string @s@;
if( size(#) > 0 ) { @s@=@s@+"_"+#[1]; }
for( @ii@=size(@L@); @ii@>0; @ii@-- )
{
execute("def "+@L@[@ii@]+@s@+"=imap(R,`@L@[@ii@]`);");
execute("export "+@L@[@ii@]+@s@+";");
}
return();
}
example
{ "EXAMPLE:"; echo = 2;
// The example is not shown since imapall does not work in a procedure
// (and hence not in the example procedure). Try the following commands:
// ring R=0,(x,y,z,u),dp;
// ideal j=x,y,z,u2+ux+z;
// matrix M[2][3]=1,2,3,x,y,uz;
// j; print(M);
// ring S=0,(a,b,c,x,z,y),ds;
// imapall(R); //map from R to S: x->x, y->y, z->z, u->0
// names(S);
// j; print(M);
// imapall(S,"1"); //identity map of S: copy objects, change names
// names(S);
// kill R,S;
}
///////////////////////////////////////////////////////////////////////////////
proc mapall (def R, ideal i, list #)
"USAGE: mapall(R,i[,s]); R=ring/qring, i=ideal of basering, s=string
CREATE: map all objects of ring R (of type poly/ideal/vector/module/number/
matrix, map) into the basering by mapping the j-th variable of R to
the j-th generator of the ideal i. If no 3rd argument is present, the
names are the same as in R. If, say, f is a polynomial in R and the 3rd
argument is the string \"R\", then f is mapped to f_R etc.
RETURN: no return value.
NOTE: This procedure has the same effect as defining a map, say psi, by
map psi=R,i; and then applying psi to all objects of R. In particular,
maps from R to some ring S are composed with psi, creating thus a map
from the basering to S.
mapall may be combined with copyring to change vars for all objects.
The 3rd argument is useful in order to avoid conflicts of names, the
empty string is allowed.
CAUTION: mapall does not work for locally defined names.
EXAMPLE: example mapall; shows an example
"
{
list @L@=names(R); map @psi@ = R,i;
int @ii@; string @s@;
if( size(#) > 0 ) { @s@=@s@+"_"+#[1]; }
for( @ii@=size(@L@); @ii@>0; @ii@-- )
{
execute("def "+@L@[@ii@]+@s@+"=@psi@(`@L@[@ii@]`);");
execute("export "+@L@[@ii@]+@s@+";");
}
return();
}
example
{ "EXAMPLE:"; echo = 2;
// The example is not shown since mapall does not work in a procedure
// (and hence not in the example procedure). Try the following commands:
// ring R=0,(x,y,z),dp;
// ideal j=x,y,z;
// matrix M[2][3]=1,2,3,x,y,z;
// map phi=R,x2,y2,z2;
// ring S=0,(a,b,c),ds;
// ideal i=c,a,b;
// mapall(R,i); //map from R to S: x->c, y->a, z->b
// names(S);
// j; print(M); phi; //phi maps R to S: x->c2, y->a2, z->b2
// ideal i1=a2,a+b,1;
// mapall(R,i1,\"\"); //map from R to S: x->a2, y->a+b, z->1
// names(S);
// j_; print(M_); phi_;
// changevar(\"T\",\"x()\",R); //change vars in R and call result T
// mapall(R,maxideal(1)); //identity map from R to T
// names(T);
// j; print(M); phi;
// kill R,S,T;
}
///////////////////////////////////////////////////////////////////////////////
proc ord_test (def r)
"USAGE: ord_test(r); r ring/qring
RETURN: int 1 (resp. -1, resp. 0) if ordering of r is global (resp. local,
resp. mixed)
SEE ALSO: attrib
EXAMPLE: example ord_test; shows an example
"
{
if (typeof(r) != "ring")
{
ERROR("ord_test requires a ring/qring as input");
}
if (attrib(r,"global")==1) { return(1);}
def BAS = basering;
setring r;
poly f;
int n,o,u = nvars(r),1,1;
int ii;
for ( ii=1; ii<=n; ii++ )
{
f = 1+var(ii);
o = o*(lead(f) == var(ii));
u = u*(lead(f) == 1);
}
setring BAS;
if ( o==1 ) { return(1); }
if ( u==1 ) { return(-1); }
else { return(0); }
}
example
{ "EXAMPLE:"; echo = 2;
ring R = 0,(x,y),dp;
ring S = 0,(u,v),ls;
ord_test(R);
ord_test(S);
ord_test(R+S);
}
///////////////////////////////////////////////////////////////////////////////
proc ringtensor (list #)
"USAGE: ringtensor(r1,r2,...); r1,r2,...=rings
RETURN: ring R whose variables are the variables from all rings r1,r2,...
and whose monomial ordering is the block (product) ordering of the
respective monomial orderings of r1,r2,... . Hence, R
is the tensor product of the rings r1,r2,... with ordering matrix
equal to the direct sum of the ordering matrices of r1,r2,...
NOTE: The characteristic of the new ring will be p if one ring has
characteristic p. The names of variables in the rings r1,r2,...
must differ.
The procedure works also for quotient rings ri, if the characteristic
of ri is compatible with the characteristic of the result
(i.e. if imap from ri to the result is implemented)
SEE ALSO: ring operations
EXAMPLE: example ringtensor; shows an example
"
{
int @i;
int @n = size(#);
if (@n<=1) { ERROR("at least 2 rings required"); }
def @s=#[1]+#[2];
for (@i=3; @i<=@n;@i++)
{
def @ss=@s+#[@i];
kill @s;
def @s=@ss;
kill @ss;
}
dbprint(printlevel-voice+2,"
// 'ringtensor' created a ring. To see the ring, type (if the name R was
// assigned to the return value):
show(R);
// To make the ring the active basering, type
setring R; ");
return(@s);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=32003,(x,y,u,v),dp;
ring s=0,(a,b,c),wp(1,2,3);
ring t=0,x(1..5),(c,ls);
def R=ringtensor(r,s,t);
type R;
setring s;
ideal i = a2+b3+c5;
def S=changevar("x,y,z"); //change vars of s
setring S;
qring qS =std(fetch(s,i)); //create qring of S mod i (mapped to S)
def T=changevar("d,e,f,g,h",t); //change vars of t
setring T;
qring qT=std(d2+e2-f3); //create qring of T mod d2+e2-f3
def Q=ringtensor(s,qS,t,qT);
setring Q; type Q;
kill R,S,T,Q;
}
///////////////////////////////////////////////////////////////////////////////
proc ringweights (def P)
"USAGE: ringweights(P); P=name of an existing ring (true name, not a string)
RETURN: intvec consisting of the weights of the variables of P, as they
appear when typing P;.
NOTE: This is useful when enlarging P but keeping the weights of the old
variables.
EXAMPLE: example ringweights; shows an example
"
{
int i;
intvec rw;
//------------------------- find weights -------------------------
for(i=nvars(P);i>0;i--)
{ rw[i]=ord(var(i)); }
return(rw);
}
example
{"EXAMPLE:"; echo = 2;
ring r0 = 0,(x,y,z),dp;
ringweights(r0);
ring r1 = 0,x(1..5),(ds(3),wp(2,3));
ringweights(r1);"";
// an example for enlarging the ring, keeping the first weights:
intvec v = ringweights(r1),6,2,3,4,5;
ring R = 0,x(1..10),(a(v),dp);
ordstr(R);
}
///////////////////////////////////////////////////////////////////////////////
proc preimageLoc(string R_name,string phi_name,string Q_name )
"USAGE: preimageLoc ( ring_name, map_name, ideal_name );
all input parameters of type string
RETURN: ideal
PURPOSE: compute the preimage of an ideal under a given map for non-global
orderings.
The 2nd argument has to be the name of a map from the basering to
the given ring (or the name of an ideal defining such a map), and
the ideal has to be an ideal in the given ring.
SEE ALSO: preimage
KEYWORDS: preimage under a map between local rings, map between local rings, map between local and global rings
EXAMPLE: example preimageLoc ; shows an example
"{
def S=basering;
int i;
string newRing,minpoly_string;
if(attrib(S,"global")!=1)
{
if(size(ideal(S))>0) /*qring*/
{
ideal I=ideal(S);
newRing="ring S0=("+charstr(S)+"),("+varstr(S)+"),dp;";
minpoly_string=string(minpoly);
execute(newRing);
execute("minpoly="+minpoly_string+";");
ideal I=imap(S,I);
list pr=primdecGTZ(I);
newRing="ring SL=("+charstr(S)+"),("+varstr(S)+"),("+ordstr(S)+");";
execute(newRing);
execute("minpoly="+minpoly_string+";");
list pr=imap(S0,pr);
ideal I0=std(pr[1][1]);
for(i=2;i<=size(pr);i++)
{
I0=intersect(I0,std(pr[i][1]));
}
setring S0;
ideal I0=imap(SL,I0);
qring S1=std(I0);
}
else
{
def S1=S;
}
}
else
{
def S1=S;
}
def @R=`R_name`;
setring @R;
def @phi=`phi_name`;
ideal phiId=ideal(@phi);
def Q=`Q_name`;
if(attrib(@R,"global")!=1)
{
if(size(ideal(@R))>0) /*qring*/
{
ideal J=ideal(@R);
newRing="ring R0=("+charstr(@R)+"),("+varstr(@R)+"),dp;";
minpoly_string=string(minpoly);
execute(newRing);
execute("minpoly="+minpoly_string+";");
ideal J=imap(@R,J);
list pr=primdecGTZ(J);
newRing="ring RL=("+charstr(@R)+"),("+varstr(@R)+"),("+ordstr(@R)+");";
execute(newRing);
execute("minpoly="+minpoly_string+";");
list pr=imap(R0,pr);
ideal J0=std(pr[1][1]);
for(i=2;i<=size(pr);i++)
{
J0=intersect(J0,std(pr[i][1]));
}
setring R0;
ideal J0=imap(RL,J0);
qring R1=std(J0);
ideal Q=imap(@R,Q);
map @phi=S1,imap(@R,phiId);
}
else
{
def R1=@R;
}
}
else
{
def R1=@R;
}
setring S1;
ideal preQ=preimage(R1,@phi,Q);
setring S;
ideal prQ=imap(S1,preQ);
return(prQ);
}
example
{ "EXAMPLE:"; echo=2;
ring S =0,(x,y,z),dp;
ring R0=0,(x,y,z),ds;
qring R=std(x+x2);
map psi=S,x,y,z;
ideal null;
setring S;
ideal nu=preimageLoc("R","psi","null");
nu;
}
//////////////////////////////////////////////////////////////////////////////
/* moved here from the nctools.lib */
///////////////////////////////////////////////////////////////////////////////
proc rootofUnity(int n)
"USAGE: rootofUnity(n); n an integer
RETURN: number
PURPOSE: compute the minimal polynomial for the n-th primitive root of unity
NOTE: works only in field extensions by one element
EXAMPLE: example rootofUnity; shows examples
"
{
if ( npars(basering) !=1 )
{
ERROR(" the procedure works only with one ring parameter variable");
}
if (n<0) { ERROR(" cannot compute ("+string(n)+")-th primitive root of unity"); }
if (n==0) { return(number(0));}
number mp = par(1);
if (n==1) { return(mp-1); }
if (n==2) { return(mp+1); }
def OldRing = basering;
string CH = charstr(basering);
string MCH;
int j=1;
while ( (CH[j] !=",") && (j<=size(CH)))
{
MCH=MCH+CH[j]; j++;
}
string SR = "ring @@rR="+MCH+","+parstr(basering)+",dp;";
execute(SR);
poly @t=var(1)^n-1; // (x^2i-1)=(x^i-1)(x^i+1)
list l=factorize(@t);
ideal @l=l[1];
list @d;
int s=size(@l);
int d=deg(@l[s]);
int cnt=1;
poly res;
for (j=s-1; j>=1; j--)
{
if ( deg(@l[j]) > d) { d=deg(@l[j]); }
}
for (j=1; j<=s; j++)
{
if ( deg(@l[j]) == d) { @d[cnt]=@l[j]; cnt++; }
}
j=1;
int i;
number pw;
int @sized = size(@d);
if (@sized==1)
{
setring OldRing;
list @rl = imap(@@rR,@d);
mp = number(@rl[1]);
kill @@rR;
return(mp);
}
def @rng;
setring OldRing;
list rl = ringlist( OldRing);
while ( j<=@sized )
{
ASSUME(0, n%2 ==0);
setring OldRing;
@rng = ring(rl);
setring @rng;
list @rl = imap(@@rR,@d);
number mp = leadcoef( @rl[j] );
minpoly = mp;
number mp = minpoly;
number pw = par(1)^(n div 2);
if ( (pw != 1) || n==1 ) { break; }
j = j+1;
}
setring OldRing;
list @rl=imap(@@rR,@d);
mp = leadcoef( @rl[j] );
kill @@rR;
return(mp);
}
example
{
"EXAMPLE:";echo=2;
ring r = (0,q),(x,y,z),dp;
rootofUnity(6);
rootofUnity(7);
minpoly = rootofUnity(8);
r;
}
proc isQuotientRing(def rng )
"USAGE: isQuotientRing ( rng );
RETURN: 1 if rng is a quotient ring, 0 otherwise.
PURPOSE: check if typeof a rng "qring"
KEYWORDS: qring ring ideal 'factor ring'
EXAMPLE: example isQuotientRing ; shows an example
"
{
if ( defined(basering) ) { def BAS=basering; }
else { return (0); }
//access to quotient ideal will fail, if basering and rng differs.
setring rng;
int result = ( size(ideal(rng)) != 0);
setring BAS;
return (result);
}
example
{
"EXAMPLE:";echo=2;
ring rng = 0,x,dp;
isQuotientRing(rng); //no
// if a certain method does not support quotient rings,
// then a parameter test could be performed:
ASSUME( 0, 0==isQuotientRing(basering));
qring q= ideal(x); // constructs rng/ideal(x)
isQuotientRing(q); // yes
}
static proc testIsQuotientRing()
{
ring rng7 = 7, x, dp;
ring rng = real,x,dp;
ASSUME(0, 0== isQuotientRing(rng) ) ;
ASSUME(0, 0== isQuotientRing(rng7) ) ;
ASSUME(0, char(basering)==0); // check that basering was not changed
qring qrng = 1;
ASSUME(0, isQuotientRing(qrng) ) ;
ring rng2 = integer,x,dp;
ASSUME(0, 0 == isQuotientRing(rng2) ) ;
qring qrng2=0;
ASSUME(0, not isQuotientRing(qrng2) ) ;
ring rng3 = 0,x,dp;
ASSUME(0, 0 == isQuotientRing(rng3) ) ;
qring qrng3=1;
ASSUME(0, isQuotientRing(qrng3) ) ;
}
proc hasFieldCoefficient(def rng )
"USAGE: hasFieldCoefficient ( rng );
RETURN: 1 if the coefficients form (and are considered to be) a field, 0 otherwise.
KEYWORDS: ring coefficients
EXAMPLE: example hasFieldCoefficient; shows an example
SEE ALSO: attrib
"
{
return (attrib(rng,"ring_cf")==0);
}
example
{
"EXAMPLE:";echo=2;
ring rng = integer,x,dp;
hasFieldCoefficient(rng); //no
// if a certain method supports only rings with integer coefficients,
// then a parameter test could be performed:
ring rng2 = 0, x, dp;
hasFieldCoefficient(rng2); // yes
}
proc hasAlgExtensionCoefficient(def rng )
"USAGE: hasAlgExtensionCoefficient ( rng );
RETURN: 1 if the coeffcients are an algebraic extension, 0 otherwise.
KEYWORDS: ring coefficients
EXAMPLE: example hasAlgExtensionCoefficient; shows an example
"
{
return(attrib(rng,"cf_class")==7);
}
example
{
"EXAMPLE:";echo=2;
ring rng = integer,x,dp;
hasAlgExtensionCoefficient(rng); //no
ring rng2 = (0,a), x, dp; minpoly=a2-1;
hasAlgExtensionCoefficient(rng2); // yes
ring rng3=(49,a),x,dp;
hasAlgExtensionCoefficient(rng3); // no
}
proc hasTransExtensionCoefficient(def rng )
"USAGE: hasTransExtensionCoefficient ( rng );
RETURN: 1 if the coeffcients are rational functions, 0 otherwise.
KEYWORDS: ring coefficients
EXAMPLE: example hasTransExtensionCoefficient; shows an example
"
{
return(attrib(rng,"cf_class")==8);
}
example
{
"EXAMPLE:";echo=2;
ring rng = integer,x,dp;
hasTransExtensionCoefficient(rng); //no
ring rng2 = (0,a), x, dp;
hasTransExtensionCoefficient(rng2); // yes
ring rng3=(49,a),x,dp;
hasTransExtensionCoefficient(rng3); // no
}
proc hasGFCoefficient(def rng )
"USAGE: hasGFCoefficient ( rng );
RETURN: 1 if the coeffcients are of the form GF(p,k), 0 otherwise.
KEYWORDS: ring coefficients
EXAMPLE: example hasGFCoefficient; shows an example
"
{
//return((charstr(rng)!=string(char(rng))) &&
//(npars(rng)==1) &&
//(find(charstr(rng),string(char(rng)))!=1) &&
//(charstr(basering)<>"real")&&
//(charstr(basering)<>"complex") );
return(attrib(rng,"cf_class")==4);
}
example
{
"EXAMPLE:";echo=2;
ring r1 = integer,x,dp;
hasGFCoefficient(r1);
ring r2 = (4,a),x,dp;
hasGFCoefficient(r2);
ring r3 = (2,a),x,dp;
minpoly=a2+a+1;
hasGFCoefficient(r2);
}
proc hasZp_aCoefficient(def rng )
"USAGE: hasZp_aCoefficient ( rng );
RETURN: 1 if the coeffcients are of the form Zp_a(p,k), 0 otherwise.
KEYWORDS: ring coefficients
EXAMPLE: example hasZp_aCoefficient; shows an example
"
{
return((attrib(rng,"cf_class")==7) and (char(rng)>0));
}
example
{
"EXAMPLE:";echo=2;
ring r1 = integer,x,dp;
hasZp_aCoefficient(r1);
ring r2 = (4,a),x,dp;
hasZp_aCoefficient(r2);
ring r3 = (2,a),x,dp;
minpoly=a2+a+1;
hasZp_aCoefficient(r2);
}
proc hasZpCoefficient(def rng )
"USAGE: hasZpCoefficient ( rng );
RETURN: 1 if the coeffcients are of the form ZZ/p, 0 otherwise.
KEYWORDS: ring coefficients
EXAMPLE: example hasZpCoefficient; shows an example
"
{
return(attrib(rng,"cf_class")==1);
}
example
{
"EXAMPLE:";echo=2;
ring r1 = integer,x,dp;
hasZpCoefficient(r1);
ring r2 = 7,x,dp;
hasZpCoefficient(r2);
}
proc hasQQCoefficient(def rng )
"USAGE: hasQQCoefficient ( rng );
RETURN: 1 if the coeffcients are QQ, 0 otherwise.
KEYWORDS: ring coefficients
EXAMPLE: example hasQQCoefficient; shows an example
"
{
return(attrib(rng,"cf_class")==2);
}
example
{
"EXAMPLE:";echo=2;
ring r1 = integer,x,dp;
hasQQCoefficient(r1);
ring r2 = QQ,x,dp;
hasQQCoefficient(r2);
}
proc hasGlobalOrdering (def rng)
"USAGE: hasGlobalOrdering ( rng );
RETURN: 1 if rng has a global monomial ordering, 0 otherwise.
KEYWORDS: monomial ordering
EXAMPLE: example hasGlobalOrdering; shows an example
"
{
return (attrib(rng,"global")==1);
}
example
{
ring rng = integer,x,dp;
hasGlobalOrdering(rng); //yes
ring rng2 = 0, x, ds;
hasGlobalOrdering(rng2); // no
}
proc hasCommutativeVars (def rng)
"USAGE: hasCommutativeVars ( rng );
RETURN: 1 if rng is a commutative polynomial ring, 0 otherwise.
KEYWORDS: plural
EXAMPLE: example hasCommutativeVars; shows an example
"
{
list rl=ringlist(rng);
return (size(rl)==4);
}
example
{
ring r=0,(x,y,z),dp;
hasCommutativeVars(r);
}
proc hasNumericCoeffs(def rng)
"USAGE: hasNumericCoeffs ( rng );
RETURN: 1 if rng has inexact coeffcients, 0 otherwise.
KEYWORDS: floating point
EXAMPLE: example hasNumericCoeffs; shows an example
"
{
return((attrib(rng,"cf_class")==3) /*real*/
or (attrib(rng,"cf_class")==5) /*gmp real*/
or (attrib(rng,"cf_class")==9) /*gmp complex*/);
}
example
{
"EXAMPLE:";echo=2;
ring r1 = integer,x,dp;
hasNumericCoeffs(r1);
ring r2 = complex,x,dp;
hasNumericCoeffs(r2);
}
proc isSubModule(def I,def J)
"USAGE: isSubModule(I,J): I, J: ideal or module
RETURN: 1 if module(I) is in module(J), 0 otherwise
EXAMPLE: isSubModule; shows an example
{
if (attrib(J,"isSB"))
{ return(size(reduce(I,J,1))==0); }
else
{ return(size(reduce(I,groebner(J),1))==0); }
}
example
{
"EXAMPLE:"; echo = 2;
ring r=0,x,dp;
ideal I1=x2;
ideal I2=x3;
isSubModule(I1, I2);
isSubModule(I2, I1);
}
proc hasMixedOrdering()
"USAGE: hasMixedOrdering();
RETURN: 1 if ordering of basering is mixed, 0 else
EXAMPLE: example hasMixedOrdering(); shows an example
"
{
int i,p,m;
for(i = 1; i <= nvars(basering); i++)
{
if(var(i) > 1)
{
p++;
}
else
{
m++;
}
}
if((p > 0) && (m > 0)) { return(1); }
return(0);
}
example
{ "EXAMPLE:"; echo = 2;
ring R1 = 0,(x,y,z),dp;
hasMixedOrdering();
ring R2 = 31,(x(1..4),y(1..3)),(ds(4),lp(3));
hasMixedOrdering();
ring R3 = 181,x(1..9),(dp(5),lp(4));
hasMixedOrdering();
}
proc changeordTo(def r,string o)
"USAGE: changeordTo(ring, string s);
RETURN: a ring with the oderinging changed to the (simple) ordering s
EXAMPLE: example changeordTo(); shows an example
"
{
list rl=ringlist(r);
rl[3]=list(list("C",0),list(o,1:nvars(r)));
def rr=ring(rl);
return(rr);
}
example
{
"EXAMPLE:"; echo = 2;
ring r=0,(x,y),lp;
def rr=changeordTo(r,"dp");
rr;
}
proc addvarsTo(def r,list vars,int blockorder)
"USAGE: addvarsTo(ring,list_of_strings, int);
int may be: 0:ordering: dp
1:ordering dp,dp
2:oring.ordering,dp
RETURN: a ring with the addtional variables
EXAMPLE: example addvarsTo(); shows an example
"
{
list rl=ringlist(r);
int n=nvars(r);
rl[2]=rl[2]+vars;
if (blockorder==0)
{
rl[3]=list(list("C",0),list("dp",1:(nvars(r)+size(vars))));
}
else
{
if (blockorder==2)
{
rl[3]=rl[3]+list(list("dp",1:size(vars)));
}
else
{
rl[3]=list(list("C",0),list("dp",1:nvars(r)),list("dp",1:size(vars)));
}
}
def rr=ring(rl);
return(rr);
}
example
{
"EXAMPLE:"; echo = 2;
ring r=0,(x,y),lp;
def rr=addvarsTo(r,list("a","b"),0);
rr; kill rr;
def rr=addvarsTo(r,list("a","b"),1);
rr; kill rr;
def rr=addvarsTo(r,list("a","b"),2);
rr;
}
proc addNvarsTo(def r,int N,string n,int blockorder)
"USAGE: addNvarsTo(ring,int N, string name, int b);
b may be: 0:ordering: dp
1:ordering dp,dp
2:oring.ordering,dp
RETURN: a ring with N addtional variables
EXAMPLE: example addNvarsTo(); shows an example
"
{
list v;
for(int i=N;i>0;i--) { v[i]=n+"("+string(i)+")"; }
return(addvarsTo(r,v,blockorder));
}
example
{
"EXAMPLE:"; echo = 2;
ring r=0,(x,y),lp;
def rr=addNvarsTo(r,2,"@",0);
rr; kill rr;
def rr=addNvarsTo(r,2,"@",1);
rr; kill rr;
def rr=addNvarsTo(r,2,"@",2);
rr;
}
|