This file is indexed.

/usr/share/singular/LIB/random.lib is in singular-data 1:4.1.0-p3+ds-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
///////////////////////////////////////////////////////////////////////////
version="version random.lib 4.0.0.0 Jun_2013 "; // $Id: 9f9b7db9c658deb04a5d368847264ad29af5405f $
category="General purpose";
info="
LIBRARY:  random.lib    Creating Random and Sparse Matrices, Ideals, Polys

PROCEDURES:
 genericid(i[,p,b]);     generic sparse linear combinations of generators of i
 randomid(id,[k,b]);     random linear combinations of generators of id
 randommat(n,m[,id,b]);  nxm matrix of random linear combinations of id
 sparseid(k,u[,o,p,b]);  ideal of k random sparse poly's of degree d [u<=d<=o]
 sparsematrix(n,m,o[,.]);nxm sparse matrix of polynomials of degree<=o
 sparsemat(n,m[,p,b]);   nxm sparse integer matrix with random coefficients
 sparsepoly(u[,o,p,b]);  random sparse polynomial with terms of degree in [u,o]
 sparsetriag(n,m[,.]);   nxm sparse lower-triag intmat with random coefficients
 sparseHomogIdeal(k,u,[,.]); ideal with k sparse homogeneous generators of degree in [u, o]
 triagmatrix(n,m,o[,.]); nxm sparse lower-triag matrix of poly's of degree<=o
 randomLast(b);          random transformation of the last variable
 randomBinomial(k,u,..); binomial ideal, k random generators of degree >=u
           (parameters in square brackets [] are optional)
";

LIB "inout.lib";
LIB "general.lib";
LIB "matrix.lib";
///////////////////////////////////////////////////////////////////////////////

proc genericid (def id, list #)
"USAGE:   genericid(id[,p,b]);  id ideal/module, p,b integers
RETURN:  system of generators of id which are generic, sparse, triagonal linear
         combinations of given generators with coefficients in [1,b] and
         sparsety p percent, bigger p being sparser (default: p=75, b=30000)
NOTE:    For performance reasons try small bound b in characteristic 0
EXAMPLE: example genericid; shows an example
"
{
//----------------------------- set defaults ----------------------------------
   if( size(#)>=2 ) { int p=#[1]; int b=#[2];}
   if( size(#)==1 ) { int p=#[1]; int b=30000;}
   if( size(#)==0 ) { int p=75; int b=30000;}
//---------------- use sparsetriag for creation of genericid ------------------
   def i = simplify(id,10);
   i = i*sparsetriag(ncols(i),ncols(i),p,b);
   return(i);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r=0,(t,x,y,z),ds;
   ideal i= x3+y4,z4+yx,t+x+y+z;
   genericid(i,0,10);
   module m=[x,0,0,0],[0,y2,0,0],[0,0,z3,0],[0,0,0,t4];
   print(genericid(m));
}
///////////////////////////////////////////////////////////////////////////////

proc randomid (def id, list #)
"USAGE:   randomid(id[,k,b]);  id ideal/module, b,k integers
RETURN:  ideal/module having k generators which are random linear combinations
         of generators of id with coefficients in the interval [-b,b]
         (default: b=30000, k=size(id))
NOTE:    For performance reasons try small bound b in characteristic 0
EXAMPLE: example randomid; shows an example
"
{
//----------------------------- set defaults ----------------------------------
   if( size(#)>=2 ) { int k=#[1]; int b=#[2]; }
   if( size(#)==1 ) { int k=#[1]; int b=30000; }
   if( size(#)==0 ) { int k=size(id); int b=30000; }
//--------------------------- create randomid ---------------------------------
   def i = id;
   i = matrix(id)*random(b,ncols(id),k);
   return(i);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r=0,(x,y,z),dp;
   randomid(maxideal(2),2,9);
   module m=[x,0,1],[0,y2,0],[y,0,z3];
   show(randomid(m));
}
///////////////////////////////////////////////////////////////////////////////

proc randommat (int n, int m, list #)
"USAGE:   randommat(n,m[,id,b]);  n,m,b integers, id ideal
RETURN:  nxm matrix, entries are random linear combinations of elements
         of id and coefficients in [-b,b]
         [default: (id,b) = (maxideal(1),30000)]
NOTE:    For performance reasons try small bound b in char 0
EXAMPLE:  example randommat; shows an example
"
{
//----------------------------- set defaults ----------------------------------
   if( size(#)>=2 ) { ideal id=#[1]; int b=#[2]; }
   if( size(#)==1 ) { ideal id=#[1]; int b=30000; }
   if( size(#)==0 ) { ideal id=maxideal(1); int b=30000; }
//--------------------------- create randommat --------------------------------
   id=simplify(id,2);
   int g=ncols(id);
   matrix rand[n][m]; matrix ra[1][m];
   for (int k=1; k<=n; k=k+1)
   {
      ra = id*random(b,g,m);
      rand[k,1..m]=ra[1,1..m];
   }
   return(rand);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r=0,(x,y,z),dp;
   matrix A=randommat(3,3,maxideal(2),9);
   print(A);
   A=randommat(2,3);
   print(A);
}
///////////////////////////////////////////////////////////////////////////////

proc sparseid (int k, int u, list #)
"USAGE:   sparseid(k,u[,o,p,b]);  k,u,o,p,b integers
RETURN:  ideal having k generators, each of degree d, u<=d<=o, p percent of
         terms in degree d are 0, the remaining have random coefficients
         in the interval [1,b], (default: o=u, p=75, b=30000)
EXAMPLE: example sparseid; shows an example
"
{
//----------------------------- set defaults ----------------------------------
   if( size(#)>=3 ) { int o=#[1]; int p=#[2]; int b=#[3]; }
   else {if( size(#)==2 ) { int o=#[1]; int p=#[2]; int b=30000; }
   else {if( size(#)==1 ) { int o=#[1]; int p=75; int b=30000; }
   else {if( size(#)==0 ) { int o=u; int p=75; int b=30000; }}}}
//------------------ use sparsemat for creation of sparseid -------------------
   int ii; matrix i[1][k]; intmat m;
   if( u <=0 )
   {
      m = sparsemat(1,k,p,b);
      i = m;
      u=1;
   }
   for ( ii=u; ii<=o; ii++)
   {
       m = sparsemat(size(maxideal(ii)),k,p,b);
       i = i+matrix(maxideal(ii))*m;
   }
   return(ideal(i));
}
example
{ "EXAMPLE:"; echo = 2;
   ring r = 0,(a,b,c,d),ds;
   sparseid(2,3);"";
   sparseid(3,0,4,90,9);
}

///////////////////////////////////////////////////////////////////////////////
proc sparseHomogIdeal (int k, int u, list #)
"USAGE:   sparseid(k,u[,o,p,b]);  k,u,o,p,b integers
RETURN:  ideal having k homogeneous generators, each of random degree in the
         interval [u,o], p percent of terms in degree d are 0, the remaining
         have random coefficients in the interval [1,b], (default: o=u, p=75,
         b=30000)
EXAMPLE: example sparseid; shows an example
"
{
//----------------------------- set defaults ----------------------------------
   if( size(#)>=3 ) { int o=#[1]; int p=#[2]; int b=#[3]; }
   if( size(#)==2 ) { int o=#[1]; int p=#[2]; int b=30000; }
   if( size(#)==1 ) { int o=#[1]; int p=75; int b=30000; }
   if( size(#)==0 ) { int o=u; int p=75; int b=30000; }
//------------------ use sparsemat for creation of sparseid -------------------
   int ii; ideal i; intmat m; ideal id;

   for ( ii=k; ii>0; ii--)
   {
       id = maxideal(random(u, o)); // monomial basis of some degree
       m = sparsemat(size(id),1,p,b); // random coefficients
       i[ii] = (matrix(id)*m)[1,1];
   }
   return(i);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r = 0,(a,b,c,d),dp;
   sparseHomogIdeal(2,3);"";
   sparseHomogIdeal(3,0,4,90,9);
}


///////////////////////////////////////////////////////////////////////////////

proc sparsemat (int n, int m, list #)
"USAGE:   sparsemat(n,m[,p,b]);  n,m,p,b integers
RETURN:  nxm integer matrix, p percent of the entries are 0, the remaining
         are random coefficients >=1 and <= b; [defaults: (p,b) = (75,1)]
EXAMPLE: example sparsemat; shows an example
"
{
   int r,h,ii;
   int t = n*m;
   intmat v[1][t];
//----------------------------- set defaults ----------------------------------
   if( size(#)>=2 ) { int p=#[1]; int b=#[2]; }
   if( size(#)==1 ) { int p=#[1]; int b=1; }
   if( size(#)==0 ) { int p=75; int b=1; }
//------------------------- check trivial cases ------------------------------
   if( p<0 ) { p = 0; }
   if(p>100) { p=100; }
//--------------- this is faster for not very sparse matrices ----------------
   if( p<40 )
   {
      for( ii=1; ii<=t; ii++ )
      { r=( random(1,100)>p ); v[1,ii]=r*random(1,b); h=h+r; }
   }
  int bb = t*(100-p);
  if( 100*h > bb )
  {
     while( 100*h > bb )
     { r=random(1,t); h=h-( v[1,r]>0 ); v[1,r]=0; }
  }
  else
  {
//------------------- this is faster for sparse matrices ---------------------
     while ( 100*h < bb )
     { r=random(1,t); h=h+(v[1,r]==0); v[1,r]=random(1,b); }
  }
  intmat M[n][m] = v[1,1..t];
  return(M);
}
example
{ "EXAMPLE:"; echo = 2;
   sparsemat(5,5);"";
   sparsemat(5,5,95);"";
   sparsemat(5,5,5);"";
   sparsemat(5,5,50,100);
}
///////////////////////////////////////////////////////////////////////////////
proc sparsematrix (int n, int m, int o, list #)
"USAGE:   sparsematrix(n,m,o[,u,pe,pp,b]);  n,m,o,u,pe,pp,b integers
RETURN:  nxm matrix, about pe percent of the entries are 0, the remaining
         are random polynomials of degree d, u<=d<=o, with  pp percent of
         the terms being 0, the remaining have random coefficients
         in the interval [1,b] [default: (pe,u,pp,b) = (0,50,75,100)]
EXAMPLE: example sparsematrix; shows an example
"
{
   int ii,jj;
   ideal id;
   matrix M[n][m];
//----------------------------- set defaults ----------------------------------
   int pe=50;int u=0;int pp=75;int b=100;
   if( size(#)==4 ) { u=#[1]; pe=#[2]; pp=#[3]; b=#[4]; }
   else { if( size(#)==3 ) { u=#[1]; pe=#[2]; pp=#[3]; }
   else { if( size(#)==2 ) { u=#[1]; pe=#[2]; }
   else {if( size(#)==1 ) { u=#[1]; }}}}
//------------------- use sparsemat and sparseid  -----------------------------
   intmat I = sparsemat(n,m,pe,1);
   for(ii=n; ii>0;ii--)
   {
     id = sparseid(m,u,o,pp,b);
     for(jj=m; jj>0; jj--)
     {
        if( I[ii,jj] !=0)
        {
          M[ii,jj]=id[jj];
        }
     }
   }
   return(M);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r = 0,(a,b,c,d),dp;
   // sparse matrix of sparse polys of degree <=2:
   print(sparsematrix(3,4,2));"";
   // dense matrix of sparse linear forms:
   print(sparsematrix(3,3,1,1,0,55,9));
}
///////////////////////////////////////////////////////////////////////////////

proc sparsepoly (int u, list #)
"USAGE:   sparsepoly(u[,o,p,b]);  u,o,p,b integers
RETURN:  poly having only terms in degree d, u<=d<=o, p percentage of the terms
         in degree d are 0, the remaining have random coefficients in [1,b),
         (defaults: o=u, p=75, b=30000)
EXAMPLE:  example sparsepoly; shows an example
"
{
//----------------------------- set defaults ----------------------------------
   if( size(#)>=3 ) { int o=#[1]; int p=#[2]; int b=#[3]; }
   else {if( size(#)==2 ) { int o=#[1]; int p=#[2]; int b=30000; }
   else {if( size(#)==1 ) { int o=#[1]; int p=75; int b=30000; }
   else {if( size(#)==0 ) { int o=u; int p=75; int b=30000; }}}}
   int ii; poly f;
//----------------- use sparseid for creation of sparsepoly -------------------
   for( ii=u; ii<=o; ii++ ) { f=f+sparseid(1,ii,ii,p,b)[1]; }
   return(f);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r=0,(x,y,z),dp;
   sparsepoly(5);"";
   sparsepoly(3,5,90,9);
}
///////////////////////////////////////////////////////////////////////////////

proc sparsetriag (int n, int m, list #)
"USAGE:   sparsetriag(n,m[,p,b]);  n,m,p,b integers
RETURN:  nxm lower triagonal integer matrix, diagonal entries equal to 1, about
         p percent of lower diagonal entries are 0, the remaining are random
         integers >=1 and <= b; [defaults: (p,b) = (75,1)]
EXAMPLE: example sparsetriag; shows an example
"
{
   int ii,min,l,r; intmat M[n][m];
   int t=(n*(n-1)) div 2;
//----------------------------- set defaults ----------------------------------
   if( size(#)>=2 ) { int p=#[1]; int b=#[2]; }
   if( size(#)==1 ) { int p=#[1]; int b=1; }
   if( size(#)==0 ) { int p=75; int b=1; }
//---------------- use sparsemat for creation of sparsetriag ------------------
   intmat v[1][t]=sparsemat(1,t,p,b);
   if( n<=m ) { min=n-1; M[n,n]=1; }
   else { min=m; }
   for( ii=1; ii<=min; ii++ )
   {
      l=r+1; r=r+n-ii;
      M[ii..n,ii]=1,v[1,l..r];
   }
   return(M);
}
example
{ "EXAMPLE:"; echo = 2;
   sparsetriag(5,7);"";
   sparsetriag(7,5,90);"";
   sparsetriag(5,5,0);"";
   sparsetriag(5,5,50,100);
}
///////////////////////////////////////////////////////////////////////////////
proc triagmatrix (int n, int m, int o, list #)
"USAGE:   triagmatrix(n,m,o[,u,pe,pp,b]);  n,m,o,u,pe,pp,b integers
RETURN:  nxm lower triagonal matrix, diagonal entries equal to 1, about
         p percent of lower diagonal entries are 0, the remaining
         are random polynomials of degree d, u<=d<=o, with  pp percent of
         the terms being 0, the remaining have random coefficients
         in the interval [1,b] [default: (pe,u,pp,b) = (0,50,75,100)]
EXAMPLE: example triagmatrix; shows an example
"
{
   int ii,jj;
   ideal id;
   matrix M[n][m];
//----------------------------- set defaults ----------------------------------
   int pe=50;int u=0;int pp=75;int b=100;
   if( size(#)==4 ) { u=#[1]; pe=#[2]; pp=#[3]; b=#[4]; }
   if( size(#)==3 ) { u=#[1]; pe=#[2]; pp=#[3]; }
   if( size(#)==2 ) { u=#[1]; pe=#[2]; }
   if( size(#)==1 ) { u=#[1]; }
//------------------- use sparsemat and sparseid  -----------------------------
   intmat I = sparsetriag(n,m,pe,1);
   for(ii=1; ii<=n;ii++)
   {
     id = sparseid(m,u,o,pp,b);
     for(jj=1; jj<ii; jj++)
     {
        if( I[ii,jj] !=0)
        {
          M[ii,jj]=id[jj];
        }
     }
   }
   for(ii=1; ii<=n;ii++)
   {
      M[ii,ii]=1;
   }
   return(M);
}
example
{ "EXAMPLE:"; echo = 2;
   ring r = 0,(a,b,c,d),dp;
   // sparse triagonal matrix of sparse polys of degree <=2:
   print(triagmatrix(3,4,2));"";
   // dense triagonal matrix of sparse linear forms:
   print(triagmatrix(3,3,1,1,0,55,9));
}
///////////////////////////////////////////////////////////////////////////////

proc randomLast(int b)
"USAGE:   randomLast(b);  b int
RETURN:  ideal = maxideal(1), but the last variable is exchanged by a random
         linear combination of all variables, with coefficients in the
         interval [-b,b], except for the last variable which always has
         coefficient 1
EXAMPLE: example randomLast; shows an example
"
{
  ideal i=maxideal(1);
  int k=size(i);
  if (k<=1) { return(i);}
  i[k]=0;
  i=randomid(i,size(i),b);
  ideal ires=maxideal(1);
  ires[k]=i[1]+var(k);
  return(ires);
}
example
{ "EXAMPLE:"; echo = 2;
   ring  r = 0,(x,y,z),lp;
   ideal i = randomLast(10);
   i;
}
///////////////////////////////////////////////////////////////////////////////

proc randomBinomial(int k, int u, list #)
"USAGE:   randomBinomial(k,u[,o,b]);  k,u,o,b integers
RETURN:  binomial ideal, k homogeneous generators of degree d, u<=d<=o, with
         randomly chosen monomials and coefficients in the interval [-b,b]
         (default: u=o, b=10).
EXAMPLE: example randomBinomial; shows an example
"
{
//----------------------------- set defaults ----------------------------------
   if( size(#)>=2 ) { int o=#[1]; int b=#[2]; }
   if( size(#)==1 ) { int o=#[1]; int b=10; }
   if( size(#)==0 ) { int o=u; int b=10; }
//------------------ use sparsemat for creation of sparseid -------------------
   ideal i,m;
   int ii,jj,s,r1,r2;
   if ( o<u ) { o=u; }
   int a = k div (o-u+1);
   int c = k mod (o-u+1);
   for ( ii = u; ii<=o; ii++ )
   { m = maxideal(ii);
     s = size(m);
     for ( jj=1; jj<=a; jj++ )
     { r1 = random(-b,b);
       r1 = r1 + (r1==0)*random(1,b);
       r2 = random(-b,b);
       r2 = r2 + (r2==0)*random(-b,-1);
       i = i,r1*m[random(1,s div 2)] + r1*m[random(s div 2+1,s)];
       if ( ii < c+u )
       {  r1 = random(-b,b);
          r1 = r1 + (r1==0)*random(1,b);
          r2 = random(-b,b);
          r2 = r2 + (r2==0)*random(-b,-1);
          i = i,r1*m[random(1,s div 2)] + r2*m[random(s div 2+1,s)];
       }
     }
   }
   i = i[2..k+1];
   return(i);
}
example
{ "EXAMPLE:"; echo = 2;
   ring  r = 0,(x,y,z),lp;
   ideal i = randomBinomial(4,5,6);
   i;
}
///////////////////////////////////////////////////////////////////////////////