/usr/share/singular/LIB/random.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 | ///////////////////////////////////////////////////////////////////////////
version="version random.lib 4.0.0.0 Jun_2013 "; // $Id: 9f9b7db9c658deb04a5d368847264ad29af5405f $
category="General purpose";
info="
LIBRARY: random.lib Creating Random and Sparse Matrices, Ideals, Polys
PROCEDURES:
genericid(i[,p,b]); generic sparse linear combinations of generators of i
randomid(id,[k,b]); random linear combinations of generators of id
randommat(n,m[,id,b]); nxm matrix of random linear combinations of id
sparseid(k,u[,o,p,b]); ideal of k random sparse poly's of degree d [u<=d<=o]
sparsematrix(n,m,o[,.]);nxm sparse matrix of polynomials of degree<=o
sparsemat(n,m[,p,b]); nxm sparse integer matrix with random coefficients
sparsepoly(u[,o,p,b]); random sparse polynomial with terms of degree in [u,o]
sparsetriag(n,m[,.]); nxm sparse lower-triag intmat with random coefficients
sparseHomogIdeal(k,u,[,.]); ideal with k sparse homogeneous generators of degree in [u, o]
triagmatrix(n,m,o[,.]); nxm sparse lower-triag matrix of poly's of degree<=o
randomLast(b); random transformation of the last variable
randomBinomial(k,u,..); binomial ideal, k random generators of degree >=u
(parameters in square brackets [] are optional)
";
LIB "inout.lib";
LIB "general.lib";
LIB "matrix.lib";
///////////////////////////////////////////////////////////////////////////////
proc genericid (def id, list #)
"USAGE: genericid(id[,p,b]); id ideal/module, p,b integers
RETURN: system of generators of id which are generic, sparse, triagonal linear
combinations of given generators with coefficients in [1,b] and
sparsety p percent, bigger p being sparser (default: p=75, b=30000)
NOTE: For performance reasons try small bound b in characteristic 0
EXAMPLE: example genericid; shows an example
"
{
//----------------------------- set defaults ----------------------------------
if( size(#)>=2 ) { int p=#[1]; int b=#[2];}
if( size(#)==1 ) { int p=#[1]; int b=30000;}
if( size(#)==0 ) { int p=75; int b=30000;}
//---------------- use sparsetriag for creation of genericid ------------------
def i = simplify(id,10);
i = i*sparsetriag(ncols(i),ncols(i),p,b);
return(i);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(t,x,y,z),ds;
ideal i= x3+y4,z4+yx,t+x+y+z;
genericid(i,0,10);
module m=[x,0,0,0],[0,y2,0,0],[0,0,z3,0],[0,0,0,t4];
print(genericid(m));
}
///////////////////////////////////////////////////////////////////////////////
proc randomid (def id, list #)
"USAGE: randomid(id[,k,b]); id ideal/module, b,k integers
RETURN: ideal/module having k generators which are random linear combinations
of generators of id with coefficients in the interval [-b,b]
(default: b=30000, k=size(id))
NOTE: For performance reasons try small bound b in characteristic 0
EXAMPLE: example randomid; shows an example
"
{
//----------------------------- set defaults ----------------------------------
if( size(#)>=2 ) { int k=#[1]; int b=#[2]; }
if( size(#)==1 ) { int k=#[1]; int b=30000; }
if( size(#)==0 ) { int k=size(id); int b=30000; }
//--------------------------- create randomid ---------------------------------
def i = id;
i = matrix(id)*random(b,ncols(id),k);
return(i);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y,z),dp;
randomid(maxideal(2),2,9);
module m=[x,0,1],[0,y2,0],[y,0,z3];
show(randomid(m));
}
///////////////////////////////////////////////////////////////////////////////
proc randommat (int n, int m, list #)
"USAGE: randommat(n,m[,id,b]); n,m,b integers, id ideal
RETURN: nxm matrix, entries are random linear combinations of elements
of id and coefficients in [-b,b]
[default: (id,b) = (maxideal(1),30000)]
NOTE: For performance reasons try small bound b in char 0
EXAMPLE: example randommat; shows an example
"
{
//----------------------------- set defaults ----------------------------------
if( size(#)>=2 ) { ideal id=#[1]; int b=#[2]; }
if( size(#)==1 ) { ideal id=#[1]; int b=30000; }
if( size(#)==0 ) { ideal id=maxideal(1); int b=30000; }
//--------------------------- create randommat --------------------------------
id=simplify(id,2);
int g=ncols(id);
matrix rand[n][m]; matrix ra[1][m];
for (int k=1; k<=n; k=k+1)
{
ra = id*random(b,g,m);
rand[k,1..m]=ra[1,1..m];
}
return(rand);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y,z),dp;
matrix A=randommat(3,3,maxideal(2),9);
print(A);
A=randommat(2,3);
print(A);
}
///////////////////////////////////////////////////////////////////////////////
proc sparseid (int k, int u, list #)
"USAGE: sparseid(k,u[,o,p,b]); k,u,o,p,b integers
RETURN: ideal having k generators, each of degree d, u<=d<=o, p percent of
terms in degree d are 0, the remaining have random coefficients
in the interval [1,b], (default: o=u, p=75, b=30000)
EXAMPLE: example sparseid; shows an example
"
{
//----------------------------- set defaults ----------------------------------
if( size(#)>=3 ) { int o=#[1]; int p=#[2]; int b=#[3]; }
else {if( size(#)==2 ) { int o=#[1]; int p=#[2]; int b=30000; }
else {if( size(#)==1 ) { int o=#[1]; int p=75; int b=30000; }
else {if( size(#)==0 ) { int o=u; int p=75; int b=30000; }}}}
//------------------ use sparsemat for creation of sparseid -------------------
int ii; matrix i[1][k]; intmat m;
if( u <=0 )
{
m = sparsemat(1,k,p,b);
i = m;
u=1;
}
for ( ii=u; ii<=o; ii++)
{
m = sparsemat(size(maxideal(ii)),k,p,b);
i = i+matrix(maxideal(ii))*m;
}
return(ideal(i));
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(a,b,c,d),ds;
sparseid(2,3);"";
sparseid(3,0,4,90,9);
}
///////////////////////////////////////////////////////////////////////////////
proc sparseHomogIdeal (int k, int u, list #)
"USAGE: sparseid(k,u[,o,p,b]); k,u,o,p,b integers
RETURN: ideal having k homogeneous generators, each of random degree in the
interval [u,o], p percent of terms in degree d are 0, the remaining
have random coefficients in the interval [1,b], (default: o=u, p=75,
b=30000)
EXAMPLE: example sparseid; shows an example
"
{
//----------------------------- set defaults ----------------------------------
if( size(#)>=3 ) { int o=#[1]; int p=#[2]; int b=#[3]; }
if( size(#)==2 ) { int o=#[1]; int p=#[2]; int b=30000; }
if( size(#)==1 ) { int o=#[1]; int p=75; int b=30000; }
if( size(#)==0 ) { int o=u; int p=75; int b=30000; }
//------------------ use sparsemat for creation of sparseid -------------------
int ii; ideal i; intmat m; ideal id;
for ( ii=k; ii>0; ii--)
{
id = maxideal(random(u, o)); // monomial basis of some degree
m = sparsemat(size(id),1,p,b); // random coefficients
i[ii] = (matrix(id)*m)[1,1];
}
return(i);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(a,b,c,d),dp;
sparseHomogIdeal(2,3);"";
sparseHomogIdeal(3,0,4,90,9);
}
///////////////////////////////////////////////////////////////////////////////
proc sparsemat (int n, int m, list #)
"USAGE: sparsemat(n,m[,p,b]); n,m,p,b integers
RETURN: nxm integer matrix, p percent of the entries are 0, the remaining
are random coefficients >=1 and <= b; [defaults: (p,b) = (75,1)]
EXAMPLE: example sparsemat; shows an example
"
{
int r,h,ii;
int t = n*m;
intmat v[1][t];
//----------------------------- set defaults ----------------------------------
if( size(#)>=2 ) { int p=#[1]; int b=#[2]; }
if( size(#)==1 ) { int p=#[1]; int b=1; }
if( size(#)==0 ) { int p=75; int b=1; }
//------------------------- check trivial cases ------------------------------
if( p<0 ) { p = 0; }
if(p>100) { p=100; }
//--------------- this is faster for not very sparse matrices ----------------
if( p<40 )
{
for( ii=1; ii<=t; ii++ )
{ r=( random(1,100)>p ); v[1,ii]=r*random(1,b); h=h+r; }
}
int bb = t*(100-p);
if( 100*h > bb )
{
while( 100*h > bb )
{ r=random(1,t); h=h-( v[1,r]>0 ); v[1,r]=0; }
}
else
{
//------------------- this is faster for sparse matrices ---------------------
while ( 100*h < bb )
{ r=random(1,t); h=h+(v[1,r]==0); v[1,r]=random(1,b); }
}
intmat M[n][m] = v[1,1..t];
return(M);
}
example
{ "EXAMPLE:"; echo = 2;
sparsemat(5,5);"";
sparsemat(5,5,95);"";
sparsemat(5,5,5);"";
sparsemat(5,5,50,100);
}
///////////////////////////////////////////////////////////////////////////////
proc sparsematrix (int n, int m, int o, list #)
"USAGE: sparsematrix(n,m,o[,u,pe,pp,b]); n,m,o,u,pe,pp,b integers
RETURN: nxm matrix, about pe percent of the entries are 0, the remaining
are random polynomials of degree d, u<=d<=o, with pp percent of
the terms being 0, the remaining have random coefficients
in the interval [1,b] [default: (pe,u,pp,b) = (0,50,75,100)]
EXAMPLE: example sparsematrix; shows an example
"
{
int ii,jj;
ideal id;
matrix M[n][m];
//----------------------------- set defaults ----------------------------------
int pe=50;int u=0;int pp=75;int b=100;
if( size(#)==4 ) { u=#[1]; pe=#[2]; pp=#[3]; b=#[4]; }
else { if( size(#)==3 ) { u=#[1]; pe=#[2]; pp=#[3]; }
else { if( size(#)==2 ) { u=#[1]; pe=#[2]; }
else {if( size(#)==1 ) { u=#[1]; }}}}
//------------------- use sparsemat and sparseid -----------------------------
intmat I = sparsemat(n,m,pe,1);
for(ii=n; ii>0;ii--)
{
id = sparseid(m,u,o,pp,b);
for(jj=m; jj>0; jj--)
{
if( I[ii,jj] !=0)
{
M[ii,jj]=id[jj];
}
}
}
return(M);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(a,b,c,d),dp;
// sparse matrix of sparse polys of degree <=2:
print(sparsematrix(3,4,2));"";
// dense matrix of sparse linear forms:
print(sparsematrix(3,3,1,1,0,55,9));
}
///////////////////////////////////////////////////////////////////////////////
proc sparsepoly (int u, list #)
"USAGE: sparsepoly(u[,o,p,b]); u,o,p,b integers
RETURN: poly having only terms in degree d, u<=d<=o, p percentage of the terms
in degree d are 0, the remaining have random coefficients in [1,b),
(defaults: o=u, p=75, b=30000)
EXAMPLE: example sparsepoly; shows an example
"
{
//----------------------------- set defaults ----------------------------------
if( size(#)>=3 ) { int o=#[1]; int p=#[2]; int b=#[3]; }
else {if( size(#)==2 ) { int o=#[1]; int p=#[2]; int b=30000; }
else {if( size(#)==1 ) { int o=#[1]; int p=75; int b=30000; }
else {if( size(#)==0 ) { int o=u; int p=75; int b=30000; }}}}
int ii; poly f;
//----------------- use sparseid for creation of sparsepoly -------------------
for( ii=u; ii<=o; ii++ ) { f=f+sparseid(1,ii,ii,p,b)[1]; }
return(f);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y,z),dp;
sparsepoly(5);"";
sparsepoly(3,5,90,9);
}
///////////////////////////////////////////////////////////////////////////////
proc sparsetriag (int n, int m, list #)
"USAGE: sparsetriag(n,m[,p,b]); n,m,p,b integers
RETURN: nxm lower triagonal integer matrix, diagonal entries equal to 1, about
p percent of lower diagonal entries are 0, the remaining are random
integers >=1 and <= b; [defaults: (p,b) = (75,1)]
EXAMPLE: example sparsetriag; shows an example
"
{
int ii,min,l,r; intmat M[n][m];
int t=(n*(n-1)) div 2;
//----------------------------- set defaults ----------------------------------
if( size(#)>=2 ) { int p=#[1]; int b=#[2]; }
if( size(#)==1 ) { int p=#[1]; int b=1; }
if( size(#)==0 ) { int p=75; int b=1; }
//---------------- use sparsemat for creation of sparsetriag ------------------
intmat v[1][t]=sparsemat(1,t,p,b);
if( n<=m ) { min=n-1; M[n,n]=1; }
else { min=m; }
for( ii=1; ii<=min; ii++ )
{
l=r+1; r=r+n-ii;
M[ii..n,ii]=1,v[1,l..r];
}
return(M);
}
example
{ "EXAMPLE:"; echo = 2;
sparsetriag(5,7);"";
sparsetriag(7,5,90);"";
sparsetriag(5,5,0);"";
sparsetriag(5,5,50,100);
}
///////////////////////////////////////////////////////////////////////////////
proc triagmatrix (int n, int m, int o, list #)
"USAGE: triagmatrix(n,m,o[,u,pe,pp,b]); n,m,o,u,pe,pp,b integers
RETURN: nxm lower triagonal matrix, diagonal entries equal to 1, about
p percent of lower diagonal entries are 0, the remaining
are random polynomials of degree d, u<=d<=o, with pp percent of
the terms being 0, the remaining have random coefficients
in the interval [1,b] [default: (pe,u,pp,b) = (0,50,75,100)]
EXAMPLE: example triagmatrix; shows an example
"
{
int ii,jj;
ideal id;
matrix M[n][m];
//----------------------------- set defaults ----------------------------------
int pe=50;int u=0;int pp=75;int b=100;
if( size(#)==4 ) { u=#[1]; pe=#[2]; pp=#[3]; b=#[4]; }
if( size(#)==3 ) { u=#[1]; pe=#[2]; pp=#[3]; }
if( size(#)==2 ) { u=#[1]; pe=#[2]; }
if( size(#)==1 ) { u=#[1]; }
//------------------- use sparsemat and sparseid -----------------------------
intmat I = sparsetriag(n,m,pe,1);
for(ii=1; ii<=n;ii++)
{
id = sparseid(m,u,o,pp,b);
for(jj=1; jj<ii; jj++)
{
if( I[ii,jj] !=0)
{
M[ii,jj]=id[jj];
}
}
}
for(ii=1; ii<=n;ii++)
{
M[ii,ii]=1;
}
return(M);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(a,b,c,d),dp;
// sparse triagonal matrix of sparse polys of degree <=2:
print(triagmatrix(3,4,2));"";
// dense triagonal matrix of sparse linear forms:
print(triagmatrix(3,3,1,1,0,55,9));
}
///////////////////////////////////////////////////////////////////////////////
proc randomLast(int b)
"USAGE: randomLast(b); b int
RETURN: ideal = maxideal(1), but the last variable is exchanged by a random
linear combination of all variables, with coefficients in the
interval [-b,b], except for the last variable which always has
coefficient 1
EXAMPLE: example randomLast; shows an example
"
{
ideal i=maxideal(1);
int k=size(i);
if (k<=1) { return(i);}
i[k]=0;
i=randomid(i,size(i),b);
ideal ires=maxideal(1);
ires[k]=i[1]+var(k);
return(ires);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(x,y,z),lp;
ideal i = randomLast(10);
i;
}
///////////////////////////////////////////////////////////////////////////////
proc randomBinomial(int k, int u, list #)
"USAGE: randomBinomial(k,u[,o,b]); k,u,o,b integers
RETURN: binomial ideal, k homogeneous generators of degree d, u<=d<=o, with
randomly chosen monomials and coefficients in the interval [-b,b]
(default: u=o, b=10).
EXAMPLE: example randomBinomial; shows an example
"
{
//----------------------------- set defaults ----------------------------------
if( size(#)>=2 ) { int o=#[1]; int b=#[2]; }
if( size(#)==1 ) { int o=#[1]; int b=10; }
if( size(#)==0 ) { int o=u; int b=10; }
//------------------ use sparsemat for creation of sparseid -------------------
ideal i,m;
int ii,jj,s,r1,r2;
if ( o<u ) { o=u; }
int a = k div (o-u+1);
int c = k mod (o-u+1);
for ( ii = u; ii<=o; ii++ )
{ m = maxideal(ii);
s = size(m);
for ( jj=1; jj<=a; jj++ )
{ r1 = random(-b,b);
r1 = r1 + (r1==0)*random(1,b);
r2 = random(-b,b);
r2 = r2 + (r2==0)*random(-b,-1);
i = i,r1*m[random(1,s div 2)] + r1*m[random(s div 2+1,s)];
if ( ii < c+u )
{ r1 = random(-b,b);
r1 = r1 + (r1==0)*random(1,b);
r2 = random(-b,b);
r2 = r2 + (r2==0)*random(-b,-1);
i = i,r1*m[random(1,s div 2)] + r2*m[random(s div 2+1,s)];
}
}
}
i = i[2..k+1];
return(i);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(x,y,z),lp;
ideal i = randomBinomial(4,5,6);
i;
}
///////////////////////////////////////////////////////////////////////////////
|