This file is indexed.

/usr/share/singular/LIB/qhmoduli.lib is in singular-data 1:4.1.0-p3+ds-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
/////////////////////////////////////////////////////////////////////////////
version="version qhmoduli.lib 4.0.0.0 Jun_2013 "; // $Id: bebbc37438a50e1faca24d907fdd18672a015f47 $
category="Singularities";
info="
LIBRARY:  qhmoduli.lib    Moduli Spaces of Semi-Quasihomogeneous Singularities
AUTHOR:   Thomas Bayer, email: bayert@in.tum.de

PROCEDURES:
 ArnoldAction(f, [G, w])  Induced action of G_f on T_.
 ModEqn(f)                Equations of the moduli space for principal part f
 QuotientEquations(G,A,I) Equations of Variety(I)/G w.r.t. action 'A'
 StabEqn(f)               Equations of the stabilizer of f.
 StabEqnId(I, w)          Equations of the stabilizer of the qhom. ideal I.
 StabOrder(f)             Order of the stabilizer of f.
 UpperMonomials(f, [w])   Upper basis of the Milnor algebra of f.

 Max(data)                maximal integer contained in 'data'
 Min(data)                minimal integer contained in  'data'
";

// NOTE: This library has been written in the frame of the diploma thesis
// 'Computing moduli spaces of semiquasihomogeneous singularities and an
//  implementation in Singular', Arbeitsgruppe Algebraische Geometrie,
// Fachbereich Mathematik, University Kaiserslautern,
// Advisor: Prof. Gert-Martin Greuel

LIB "rinvar.lib";

///////////////////////////////////////////////////////////////////////////////

proc ModEqn(poly f, list #)
"USAGE:   ModEqn(f [, opt]); poly f; int opt;
PURPOSE: compute equations of the moduli space of semiquasihomogenos hypersurface         singularity with principal part f w.r.t. right equivalence
ASSUME:  f quasihomogeneous polynomial with an isolated singularity at 0
RETURN:  polynomial ring, possibly a simple extension of the ground field of
         the basering, containing the ideal 'modid'
         - 'modid' is the ideal of the moduli space  if opt is even (> 0).
           otherwise it contains generators of the coordinate ring R of the
           moduli space (note : Spec(R) is the moduli space)
OPTIONS: 1 compute equations of the mod. space,
         2 use a primary decomposition,
         4 compute E_f0, i.e., the image of G_f0,
         to combine options, add their value, default: opt =7
EXAMPLE: example ModEqn; shows an example
"
{
  int sizeOfAction, i, dimT, nonLinearQ, milnorNr, dbPrt;
  int imageQ, opt;
  intvec wt;
  ideal B;
  list Gf, tIndex, sList;
  string ringSTR;

  dbPrt = printlevel-voice+2;
  if(size(#) > 0) { opt = #[1]; }
  else { opt = 7; }
  if(opt div 4 > 0) { imageQ = 1; opt = opt - 4;}
  else { imageQ = 0; }

  wt = weight(f);
  milnorNr = vdim(std(jacob(f)));
  if(milnorNr == -1) {
                ERROR("the polynomial " + string(f) + " has a nonisolated singularity at 0");
        }       // singularity not isolated

  // 1st step : compute a basis of T_

  B = UpperMonomials(f, wt);
  dimT = size(B);
  dbprint(dbPrt, "moduli equations of f = " + string(f) + ", f has Milnor number = " + string(milnorNr));
  dbprint(dbPrt, " upper basis = " + string(B));
  if(size(B) > 1) {

    // 2nd step : compute the stabilizer G_f of f

    dbprint(dbPrt, " compute equations of the stabilizer of f, called G_f");
    Gf = StabEqn(f);
    dbprint(dbPrt, " order of the stabilizer = " + string(StabOrder(Gf)));

    // 3rd step : compute the induced action of G_f on T_ by means of a theorem of Arnold

    dbprint(dbPrt, " compute the induced action");
    def RME1 = ArnoldAction(f, Gf, B);
    setring(RME1);
    export(RME1);
    dbprint(dbPrt, " G_f = " + string(stabid));
    dbprint(dbPrt, " action of G_f : " + string(actionid));

    // 4th step : linearize the action of G_f

    sizeOfAction = size(actionid);
    def RME2 = LinearizeAction(stabid, actionid, nvars(Gf[1]));
    setring RME2;
    export(RME2);
    kill RME1;

    if(size(actionid) == sizeOfAction) { nonLinearQ = 0;}
    else  {
      nonLinearQ = 1;
      dbprint(dbPrt, " linearized action = " + string(actionid));
      dbprint(dbPrt, " embedding of T_ = " + string(embedid));
    }



    if(!imageQ) {        // do not compute the image of Gf
      // 5th step : set E_f = G_f,
      dbprint(dbPrt, " compute equations of the quotient T_/G_f");
      def RME3 = basering;
    }
    else {

      // 5th step : compute the ideal and the action of E_f

      dbprint(dbPrt, " compute E_f");
      def RME3 = ImageGroup(groupid, actionid);
      setring(RME3);
      ideal embedid = imap(RME2, embedid);
      dbprint(dbPrt, " E_f  = (" + string(groupid) + ")");
      dbprint(dbPrt, " action of E'f = " + string(actionid));
      dbprint(dbPrt, " compute equations of the quotient T_/E_f");
    }
    export(RME3);
    kill RME2;

    // 6th step : compute the equations of the quotient T_/E_f

                ideal G = groupid; ideal variety = embedid;
                kill groupid,embedid;
    def RME4 = QuotientEquations(G, actionid, variety, opt);
    setring RME4;
    string @mPoly = string(minpoly);
    kill RME3;
    export(RME4);

    // simplify the ideal and create a new ring with propably less variables

    if(opt == 1 || opt == 3) {      // equations computed ?
      sList = SimplifyIdeal(id, 0, "Y");
      ideal newid = sList[1];
      dbprint(dbPrt, " number of equations = " + string(size(sList[1])));
      dbprint(dbPrt, " number of variables = " + string(size(sList[3])));
      ringSTR = "ring RME5 = (" + charstr(basering) + "), (Y(1.." + string(size(sList[3])) + ")),dp;";
      execute(ringSTR);
      execute("minpoly = number(" + @mPoly + ");");
      ideal modid = imap(RME4, newid);
    }
    else {
      def RME5 = RME4;
      setring(RME5);
      ideal modid = imap(RME4, id);
    }
    export(modid);
    kill RME4;
  }
  else {
                def RME5 = basering;
                ideal modid = maxideal(1);
                if(size(B) == 1) {                      // 1-dimensional
                        modid[size(modid)] = 0;
                        modid = simplify(modid,2);
                }
                export(modid);
        }
dbprint(dbPrt, "
// 'ModEqn' created a new ring.
// To see the ring, type (if the name of the ring is R):
     show(R);
// To access the ideal of the moduli space of semiquasihomogeneous singularities
// with principal part f, type
     def R = ModEqn(f); setring R;  modid;
// 'modid' is the ideal of the moduli space.
// if 'opt' = 0 or even, then 'modid' contains algebra generators of S s.t.
// spec(S) = moduli space of f.
");
  return(RME5);
}
example
{"EXAMPLE:";  echo = 2;
  ring B   = 0,(x,y), ls;
  poly f = -x4 + xy5;
  def R = ModEqn(f);
  setring R;
  modid;
}


///////////////////////////////////////////////////////////////////////////////

proc QuotientEquations(ideal G, ideal Gaction, ideal embedding, list#)
"USAGE:   QuotientEquations(G,action,emb [, opt]); ideal G,action,emb;int opt
PURPOSE: compute the quotient of the variety given by the parameterization
         'emb'  by the linear action 'action' of the algebraic group G.
ASSUME:  'action' is linear, G must be finite if the Reynolds operator is
         needed (i.e., NullCone(G,action) returns some non-invariant polys)
RETURN:   polynomial ring over a simple extension of the ground field of the
          basering, containing the ideals 'id' and 'embedid'.
          - 'id' contains the equations of the quotient, if opt = 1;
            if opt = 0, 2, 'id' contains generators of the coordinate ring R
            of the quotient (Spec(R) is the quotient)
          - 'embedid' = 0, if opt = 1;
            if opt = 0, 2, it is the ideal defining the equivariant embedding
OPTIONS: 1 compute equations of the quotient,
         2 use a primary decomposition when computing the Reynolds operator,@*
         to combine options, add their value, default: opt =3.
EXAMPLE: example QuotientEquations; shows an example
"
{
  int i, opt, primaryDec, relationsQ, dbPrt;
  ideal Gf, variety;
  intvec wt;

  dbPrt = printlevel-voice+3;
  if(size(#) > 0) { opt = #[1]; }
  else { opt = 3; }

  if(opt div 2 > 0) { primaryDec = 1; opt = opt - 2; }
  else { primaryDec = 0; }
  if(opt > 0) { relationsQ = 1;}
  else { relationsQ = 0; }

  Gf = std(G);
  variety = EquationsOfEmbedding(embedding, nvars(basering) - size(Gaction));

  if(size(variety) == 0) {    // use Hilbert function !
    //for(i = 1; i <= ncols(Gaction); i ++) { wt[i] = 1;}
    for(i = 1; i <= nvars(basering); i ++) { wt[i] = 1;}
  }
  def RQER = InvariantRing(Gf, Gaction, primaryDec);    // compute the nullcone of the linear action

  def RQEB = basering;
  setring(RQER);
  export(RQER);

  if(relationsQ > 0) {
    dbprint(dbPrt, " compute equations of the variety (" + string(size(imap(RQER, invars))) + " invariants) ");
    if(!defined(variety)) { ideal variety = imap(RQEB, variety); }
    if(wt[1] > 0) {
      def RQES = ImageVariety(variety, imap(RQER, invars), wt);
    }
    else {
      def RQES = ImageVariety(variety, imap(RQER, invars));  // forget imap
    }
    setring(RQES);
    ideal id = imageid;
    ideal embedid = 0;
  }
  else {
    def RQES = basering;
    ideal id =  imap(RQER, invars);
    ideal embedid = imap(RQEB, variety);
  }
  kill RQER;
  export(id);
  export(embedid);
  return(RQES);
}

///////////////////////////////////////////////////////////////////////////////

proc UpperMonomials(poly f, list #)
"USAGE:   UpperMonomials(poly f, [intvec w])
PURPOSE: compute the upper monomials of the milnor algebra of f.
ASSUME:  f is quasihomogeneous (w.r.t. w)
RETURN:  ideal
EXAMPLE: example UpperMonomials; shows an example
"
{
  int i,d;
  intvec wt;
  ideal I, J;

  if(size(#) == 0) { wt = weight(f);}
  else { wt = #[1];}
   J = kbase(std(jacob(f)));
  d = deg(f, wt);
  for(i = 1; i <= size(J); i++) { if(deg(J[i], wt) > d) {I = I, J[i];} }
  return(simplify(I, 2));
}
example
{"EXAMPLE:";  echo = 2;
  ring B   = 0,(x,y,z), ls;
  poly f = -z5+y5+x2z+x2y;
  UpperMonomials(f);
}

///////////////////////////////////////////////////////////////////////////////

proc ArnoldAction(poly f, list #)
"USAGE:   ArnoldAction(f, [Gf, B]); poly f; list Gf, B;
         'Gf' is a list of two rings (coming from 'StabEqn')
PURPOSE: compute the induced action of the stabilizer G of f on T_, where
         T_ is given by the upper monomials B of the Milnor algebra of f.
ASSUME:  f is quasihomogeneous
RETURN:  polynomial ring over the same ground field, containing the ideals
         'actionid' and 'stabid'.
         - 'actionid' is the ideal defining the induced action of Gf on T_ @*
         - 'stabid' is the ideal of the stabilizer Gf in the new ring
EXAMPLE: example ArnoldAction; shows an example
"
{
  int i, offset, ub, pos, nrStabVars, dbPrt;
  intvec wt = weight(f);
  ideal B;
  list Gf, parts, baseDeg;
  string ringSTR1, ringSTR2, parName, namesSTR, varSTR;

  dbPrt = printlevel-voice+2;
  if(size(#) == 0) {
    Gf = StabEqn(f);
    B = UpperMonomials(f, wt);
  }
  else {
    Gf = #[1];
    if(size(#) > 1) { B = #[2];}
    else {B = UpperMonomials(f, wt);}
  }
  if(size(B) == 0) { ERROR("the principal part " + string(f) + " has no upper monomials");}
  for(i = 1; i <= size(B); i = i + 1) {
    baseDeg[i] = deg(B[i], wt);
  }
  ub = Max(baseDeg) + 1;          // max degree of an upper mono.
  def RAAB = basering;
  def STR1 = Gf[1];
  def STR2 = Gf[2];
  nrStabVars = nvars(STR1);

  dbprint(dbPrt, "ArnoldAction of f = ", f, ", upper base = " + string(B));

  setring STR1;
  string @mPoly = string(minpoly);
  setring RAAB;

  // setup new ring with s(..) and t(..) as parameters

  varSTR = string(maxideal(1));
  ringSTR2 = "ring RAAS = ";
  if(npars(basering) == 1) {
    parName = parstr(basering);
    ringSTR2 = ringSTR2 + "(0, " + parstr(1) + "), ";
  }
  else {
    parName = "a";
    ringSTR2 = ringSTR2 + "0, ";
  }
  offset = 1 + nrStabVars;
  namesSTR = "s(1.." + string(nrStabVars) + "), t(1.." + string(size(B)) + ")";
  ringSTR2 = ringSTR2 + "(" + namesSTR + "), lp;";
  ringSTR1 = "ring RAAR = (0, " + parName + "," + namesSTR + "), (" + varSTR + "), ls;";  // lp ?

  execute(ringSTR1);
  export(RAAR);
  ideal upperBasis, stabaction, action, reduceIdeal;
  poly f, F, monos, h;

  execute("reduceIdeal = " + @mPoly + ";"); reduceIdeal = reduceIdeal, imap(STR1, stabid);
  f = imap(RAAB, f);
  F = f;
  upperBasis = imap(RAAB, B);
  for(i = 1; i <= size(upperBasis); i = i + 1) {
    F = F + par(i + offset)*upperBasis[i];
  }
  monos = F - f;
  stabaction = imap(STR2, actionid);

  // action of the stabilizer on the semiuniversal unfolding of f

  F = f + APSubstitution(monos, stabaction, reduceIdeal, wt, ub, nrStabVars, size(upperBasis));

  // apply the theorem of Arnold

  h = ArnoldFormMain(f, upperBasis, F, reduceIdeal, nrStabVars, size(upperBasis)) - f;

  // extract the polynomials of the action of the stabilizer on T_

  parts = MonosAndTerms(h, wt, ub);
  for(i = 1; i <= size(parts[1]); i = i + 1)
  {
    pos = FirstEntryQHM(upperBasis, parts[1][i]);
    if (pos!=0) { action[pos] = parts[2][i]/parts[1][i];}
  }
  execute(ringSTR2);
  execute("minpoly = number(" + @mPoly + ");");
  ideal actionid = imap(RAAR, action);
  ideal stabid = imap(STR1, stabid);
  export(actionid);
  export(stabid);
  kill RAAR;
dbprint(dbPrt, "
// 'ArnoldAction' created a new ring.
// To see the ring, type (if the name of the ring is R):
     show(R);
// To access the ideal of the stabilizer G of f and its group action,
// where f is the quasihomogeneous principal part, type
     def R = ArnoldAction(f); setring R;  stabid; actionid;
// 'stabid' is the ideal of the group G and 'actionid' is the ideal defining
// the group action of the group G on T_. Note: this action might be nonlinear
");
  return(RAAS);
}
example
{"EXAMPLE:";  echo = 2;
  ring B   = 0,(x,y,z), ls;
  poly f = -z5+y5+x2z+x2y;
  def R = ArnoldAction(f);
  setring R;
  actionid;
  stabid;
}

///////////////////////////////////////////////////////////////////////////////

proc StabOrder(list #)
"USAGE:   StabOrder(f); poly f
PURPOSE: compute the order of the stabilizer group of f.
ASSUME:  f quasihomogeneous polynomial with an isolated singularity at 0
RETURN:  int
GLOBAL: varSubsList
"
{
  list stab;

  if(size(#) == 1) { stab = StabEqn(#[1]); }
  else {  stab = #;}

  def RSTO = stab[1];
  setring(RSTO);
  return(vdim(std(stabid)));
}

///////////////////////////////////////////////////////////////////////////////

proc StabEqn(poly f)
"USAGE:   StabEqn(f); f polynomial
PURPOSE: compute the equations of the isometry group of f.
ASSUME:  f semiquasihomogeneous polynomial with an isolated singularity at 0
RETURN:  list of two rings 'S1', 'S2'
         - 'S1' contians the equations of the stabilizer (ideal 'stabid') @*
         - 'S2' contains the action of the stabilizer (ideal 'actionid')
EXAMPLE: example StabEqn; shows an example
GLOBAL: varSubsList, contains the index j s.t. x(i) -> x(i)t(j) ...
"
{
dbprint(dbPrt, "
// 'StabEqn' created a list of 2 rings.
// To see the rings, type (if the name of your list is stab):
     show(stab);
// To access the 1-st ring and map (and similair for the others), type:
     def S1 = stab[1]; setring S1;  stabid;
// S1/stabid is the coordinate ring of the variety of the
// stabilizer, say G. If G x K^n --> K^n is the action of G on
// K^n, then the ideal 'actionid' in the second ring describes
// the dual map on the ring level.
// To access the 2-nd ring and map (and similair for the others), type:
     def S2 = stab[2]; setring S2;  actionid;
");

        return(StabEqnId(ideal(f), qhweight(f)));
}
example
{"EXAMPLE:";  echo = 2;
  ring B = 0,(x,y,z), ls;
  poly f = -z5+y5+x2z+x2y;
  list stab = StabEqn(f);
  def S1 = stab[1]; setring S1;  stabid;
  def S2 = stab[2]; setring S2;  actionid;
}

///////////////////////////////////////////////////////////////////////////////

proc StabEqnId(ideal data, intvec wt)
"USAGE:   StabEqn(I, w); I ideal, w intvec
PURPOSE: compute the equations of the isometry group of the ideal I,
         each generator of I is fixed by the stabilizer.
ASSUME:  I semiquasihomogeneous ideal w.r.t. 'w' with an isolated singularity at 0
RETURN:  list of two rings 'S1', 'S2'
         - 'S1' contians the equations of the stabilizer (ideal 'stabid') @*
         - 'S2' contains the action of the stabilizer (ideal 'actionid')
EXAMPLE: example StabEqnId; shows an example
GLOBAL: varSubsList, contains the index j s.t. t(i) -> t(i)t(j) ...
"
{
  int i, j, c, k, r, nrVars, offset, n, sln, dbPrt;
  list Variables, rd, temp, sList, varSubsList;
  string ringSTR, ringSTR1, varString, parString;

  dbPrt = printlevel-voice+2;
  dbprint(dbPrt, "StabilizerEquations of " + string(data));

  export(varSubsList);
  n = nvars(basering);
  Variables = StabVar(wt);    // possible quasihomogeneous substitutions
  nrVars = 0;
  for(i = 1; i <= size(wt); i++)
  {
    nrVars = nrVars + size(Variables[i]);
  }

  // set the new basering needed for the substitutions

  varString = "s(1.." + string(nrVars) + ")";
  if(npars(basering) == 1)
  {
    parString = "(0, " + parstr(basering) + ")";
  }
  else { parString = "0"; }

  def RSTB = basering;
  string @mPoly = string(minpoly);
  ringSTR = "ring RSTR = " + parString + ", (" + varstr(basering) + ", " + varString + "), dp;";  // dp
        ringSTR1 = "ring RSTT = " + parString + ", (" + varString + ", " + varstr(basering) + "), dp;";

  if(defined(RSTR)) { kill RSTR;}
        if(defined(RSTT)) { kill RSTT;}
        execute(ringSTR1);      // this ring is only used for the result, where the variables
  export(RSTT);           // are s(1..m),t(1..n), as needed for Derksens algorithm (NullCone)
  execute("minpoly = number(" + @mPoly + ");");

  execute(ringSTR);
  export(RSTR);
  execute("minpoly = number(" + @mPoly + ");");
  poly f, f1, g, h, vars, pp;      // f1 is the polynomial after subs,
  ideal allEqns, qhsubs, actionid, stabid, J;
  list ringList;          // all t(i)`s which do not appear in f1
  ideal data = simplify(imap(RSTB, data), 2);

  // generate the quasihomogeneous substitution map F

  nrVars = 0;
  offset = 0;
  for(i = 1; i <= size(wt); i++)
  {    // build the substitution t(i) -> ...
    if(i > 1) { offset = offset + size(Variables[i - 1]); }
    g = 0;
    for(j = 1; j <= size(Variables[i]); j++)
    {
      pp = 1;
      for(k = 2; k <= size(Variables[i][j]); k++)
      {
        pp = pp * var(Variables[i][j][k]);
        if(Variables[i][j][k] == i) { varSubsList[i] = offset + j;}
      }
      g = g + s(offset + j) * pp;
    }
    qhsubs[i] = g;
  }
  dbprint(dbPrt, "  qhasihomogenous substituion =" + string(qhsubs));
  map F = RSTR, qhsubs;
  kill varSubsList;

  // get the equations of the stabilizer by comparing coefficients
  // in the equation f = F(f).

  vars = RingVarProduct(Table("i", "i", 1, size(wt)));

  allEqns = 0;

  matrix newcoMx, coMx;
  int d;
  for(r = 1; r <= ncols(data); r++)
  {

  f = data[r];
  f1 = F(f);
  d = deg(f);
  newcoMx = coef(f1, vars);        // coefficients of F(f)
  coMx = coef(f, vars);          // coefficients of f

  for(i = 1; i <= ncols(newcoMx); i++)
  {      // build the system of eqns via coeff. comp.
    j = 1;
    h = 0;
    while(j <= ncols(coMx))
    {        // all monomials in f
      if(coMx[j][1] == newcoMx[i][1]) { h = coMx[j][2]; j = ncols(coMx) + 1;}
      else {j = j + 1;}
    }
    J = J, newcoMx[i][2] - h;        // add equation
  }
  allEqns =  allEqns, J;

  }
  allEqns = std(allEqns);

  // simplify the equations, i.e., if s(i) in J then remove s(i) from J
  // and from the basering

  sList = SimplifyIdeal(allEqns, n, "s");
  stabid = sList[1];
  map phi = basering, sList[2];
        sln = size(sList[3]) - n;

  // change the substitution

  actionid = phi(qhsubs);

        // change to new ring, auxillary construction

        setring(RSTT);
        ideal actionid, stabid;

        actionid = imap(RSTR, actionid);
        stabid = imap(RSTR, stabid);
        export(stabid);
  export(actionid);
  ringList[2] = RSTT;

  dbprint(dbPrt, "  substitution = " + string(actionid));
  dbprint(dbPrt, "  equations of stabilizer = " + string(stabid));

  varString = "s(1.." + string(sln) + ")";
  ringSTR = "ring RSTS = " + parString + ", (" + varString + "), dp;";
  execute(ringSTR);
  execute("minpoly = number(" + @mPoly + ");");
  ideal stabid = std(imap(RSTR, stabid));
  export(stabid);
  ringList[1] = RSTS;
dbprint(dbPrt, "
// 'StabEqnId' created a list of 2 rings.
// To see the rings, type (if the name of your list is stab):
     show(stab);
// To access the 1-st ring and map (and similair for the others), type:
     def S1 = stab[1]; setring S1;  stabid;
// S1/stabid is the coordinate ring of the variety of the
// stabilizer, say G. If G x K^n --> K^n is the action of G on
// K^n, then the ideal 'actionid' in the second ring describes
// the dual map on the ring level.
// To access the 2-nd ring and map (and similair for the others), type:
     def S2 = stab[2]; setring S2;  actionid;
");
  return(ringList);
}
example
{"EXAMPLE:";  echo = 2;
  ring B   = 0,(x,y,z), ls;
  ideal I = x2,y3,z6;
  intvec w = 3,2,1;
  list stab = StabEqnId(I, w);
  def S1 = stab[1]; setring S1;  stabid;
  def S2 = stab[2]; setring S2;  actionid;
}

///////////////////////////////////////////////////////////////////////////////
static
proc ArnoldFormMain(poly f,def B, poly Fs, ideal reduceIdeal, int nrs, int nrt)
"USAGE:   ArnoldFormMain(f, B, Fs, rI, nrs, nrt);
   poly f,Fs; ideal B, rI; int nrs, nrt
PURPOSE: compute the induced action of 'G_f' on T_, where f is the principal
         part and 'Fs' is the semiuniversal unfolding of 'f' with x_i
         substituted by actionid[i], 'B' is a list of upper basis monomials
         for the milnor algebra of 'f', 'nrs' = number of variables for 'G_f'
         and 'nrt' = dimension of T_
ASSUME:  f is quasihomogeneous with an isolated singularity at 0,
         s(1..r), t(1..m) are parameters of the basering
RETURN:  poly
EXAMPLE: example ArnoldAction; shows an example
"
{
  int i, j, d, ub, dbPrt;
  list upperBasis, basisDegList, gmonos, common, parts;
  ideal jacobianId, jacobIdstd, mapId;    // needed for phi
  intvec wt = weight(f);
  matrix gCoeffMx;        // for lift command
  poly newFs, g, gred, tt;        // g = sum of all monomials of degree d, gred is needed for lift
  map phi;          // the map from Arnold's Theorem

  dbPrt = printlevel-voice+2;
  jacobianId = jacob(f);
  jacobIdstd = std(jacobianId);
  newFs = Fs;
  for(i = 1; i <= size(B); i++)
  {
    basisDegList[i] = deg(B[i], wt);
  }
  ub = Max(basisDegList) + 1;          // max degree of an upper monomial

  parts = MonosAndTerms(newFs - f, wt, ub);
  gmonos = parts[1];
  d = deg(f, wt);

  for(i = d + 1; i < ub; i++)
  {    // base[1] = monomials of degree i
    upperBasis[i] = SelectMonos(list(B, B), wt, i);    // B must not contain 0's
  }

  // test if each monomial of Fs is contained in B, if not,
  // compute a substitution via Arnold's theorem and substitutite
  // it into newFs

  for(i = d + 1; i < ub; i = i + 1)
  {  // ub instead of @UB
    dbprint(dbPrt, "-- degree = " + string(i) + " of " + string(ub - 1) + " ---------------------------");
    if(size(newFs) < 80) { dbprint(dbPrt, "  polynomial = " + string(newFs - f));}
    else {  dbprint(dbPrt, "  poly has deg (not weighted) " + string(deg(newFs)) + " and contains " + string(size(newFs)) + " monos");}

    // select monomials of degree i and intersect them with upperBasis[i]

    gmonos = SelectMonos(parts, wt, i);
    common = IntersectionQHM(upperBasis[i][1], gmonos[1]);
    if(size(common) == size(gmonos[1]))
    {
      dbprint(dbPrt, " no additional monomials ");
    }

    // other monomials than those in upperBasis occur, compute
    // the map constructed in the proof of Arnold's theorem
    // write g = c[i] * jacobianId[i]

    else
    {
      dbprint(dbPrt, "  additional Monomials found, compute the map ");
      g = PSum(gmonos[2]);      // sum of all monomials in g of degree i
      dbprint(dbPrt, "  sum of degree " + string(i) + " is " + string(g));

      gred = reduce(g, jacobIdstd);
      gCoeffMx = lift(jacobianId, g - gred);    // compute c[i]
      mapId = var(1) - gCoeffMx[1][1];    // generate the map
      for(j = 2; j <= size(gCoeffMx); j++)
      {
        mapId[j] = var(j) - gCoeffMx[1][j];
      }
      dbprint(dbPrt, "  map = " + string(mapId));
      // apply the map to newFs
      newFs = APSubstitution(newFs, mapId, reduceIdeal, wt, ub, nrs, nrt);
      parts = MonosAndTerms(newFs - f, wt, ub);  // monos and terms of deg < ub
      newFs = PSum(parts[2]) + f;      // result of APS... is already reduced
      dbprint(dbPrt, "  monomials of degree " + string(i));
    }
  }
  return(newFs);
}

///////////////////////////////////////////////////////////////////////////////

static proc MonosAndTerms(poly f,def wt, int ub)
"USAGE:   MonosAndTerms(f, w, ub); poly f, intvec w, int ub
PURPOSE: returns a list of all monomials and terms occuring in f of
         weighted degree < ub
RETURN:  list
         _[1]  list of monomials
         _[2]  list of terms
EXAMPLE: example MonosAndTerms shows an example
"
{
  int i, k;
  list monomials, terms;
  poly mono, lcInv, data;

  data = jet(f, ub - 1, wt);
  k = 0;
  for(i = 1; i <= size(data); i++)
  {
    mono = lead(data[i]);
    if(deg(mono, wt) < ub)
    {
      k = k + 1;
      lcInv = 1/leadcoef(mono);
      monomials[k] = mono * lcInv;
      terms[k] = mono;
    }
  }
  return(list(monomials, terms));
}
example
{"EXAMPLE:";  echo = 2;
  ring B = 0,(x,y,z), lp;
  poly f = 6*x2 + 2*x3 + 9*x*y2 + z*y + x*z6;
  MonosAndTerms(f, intvec(2,1,1), 5);
}

///////////////////////////////////////////////////////////////////////////////

static proc SelectMonos(def parts, intvec wt, int d)
"USAGE:   SelectMonos(parts, w, d); list/ideal parts, intvec w, int d
PURPOSE: returns a list of all monomials and terms occuring in f of
         weighted degree = d
RETURN:  list
         _[1]  list of monomials
         _[2]  list of terms
EXAMPLE: example SelectMonos; shows an example
"
{
  int i, k;
  list monomials, terms;
  poly mono;

  k = 0;
  for(i = 1; i <= size(parts[1]); i++)
  {
    mono = parts[1][i];
    if(deg(mono, wt) == d)
    {
      k++;
      monomials[k] = mono;
      terms[k] = parts[2][i];
    }
  }
  return(list(monomials, terms));
}
example
{"EXAMPLE:";  echo = 2;
  ring B = 0,(x,y,z), lp;
  poly f = 6*x2 + 2*x3 + 9*x*y2 + z*y + x*z6;
  list mt =  MonosAndTerms(f, intvec(2,1,1), 5);
  SelectMonos(mt, intvec(2,1,1), 4);
}

///////////////////////////////////////////////////////////////////////////////

static proc Expand(def substitution,def degVec, ideal reduceI, intvec w1, int ub, list truncated)
"USAGE:   Expand(substitution, degVec, reduceI, w, ub, truncated);
         ideal/list substitution, list/intvec degVec, ideal reduceI, intvec w,
         int ub, list truncated
PURPOSE: substitute 'substitution' in the monomial given by the list of
         exponents 'degVec', omit all terms of weighted degree > ub and reduce
         the result w.r.t. 'reduceI'. If truncated[i] = 0 then the result is
         stored for later use.
RETURN:  poly
NOTE:    used by APSubstitution
GLOBAL:  computedPowers
"
{
  int i, minDeg;
  list powerList;
  poly g, h;

  // compute substitution[1]^degVec[1],...,subs[n]^degVec[n]

  for(i = 1; i <= ncols(substitution); i++)
  {
    if(size(substitution[i]) < 3 || degVec[i] < 4)
    {
      powerList[i] = reduce(substitution[i]^degVec[i], reduceI); // new
    }  // directly for small exponents
    else
    {
      powerList[i] = PolyPower1(i, substitution[i], degVec[i], reduceI, w1, truncated[i], ub);
    }
  }
  // multiply the terms obtained by using PolyProduct();
  g = powerList[1];
  minDeg = w1[1] * degVec[1];
  for(i = 2; i <= ncols(substitution); i++)
  {
    g = jet(g, ub - w1[i] * degVec[i] - 1, w1);
    h = jet(powerList[i], ub - minDeg - 1, w1);
    g = PolyProduct(g, h, reduceI, w1, ub);
    if(g == 0) { Print(" g = 0 "); break;}
    minDeg = minDeg + w1[i] * degVec[i];
  }
  return(g);
}

///////////////////////////////////////////////////////////////////////////////

static proc PolyProduct(poly g1, poly h1, ideal reduceI, intvec wt, int ub)
"USAGE:   PolyProduct(g, h, reduceI, wt, ub); poly g, h; ideal reduceI,
          intvec wt, int ub.
PURPOSE: compute g*h and reduce it w.r.t 'reduceI' and omit terms of weighted
         degree > ub.
RETURN:  poly
NOTE:    used by 'Expand'
"
{
  int SUBSMAXSIZE = 3000;
  int i, nrParts, sizeOfPart, currentPos, partSize, maxSIZE;
  poly g, h, gxh, prodComp, @g2;    // replace @g2 by subst.

  g = g1;
  h = h1;

  if(size(g)*size(h) > SUBSMAXSIZE)
  {
    // divide the polynomials with more terms in parts s.t.
    // the product of each part with the other polynomial
    // has at most SUBMAXSIZE terms

    if(size(g) < size(h)) { poly @h = h; h = g; g = @h;@h = 0; }
    maxSIZE = SUBSMAXSIZE / size(h);
    //print(" SUBSMAXSIZE = "+string(SUBSMAXSIZE)+" exceeded by "+string(size(g)*size(h)) + ", maxSIZE = ", string(maxSIZE));
    nrParts = size(g) div maxSIZE + 1;
    partSize = size(g) div nrParts;
    gxh = 0;  // 'g times h'
    for(i = 1; i <= nrParts; i++)
    {
      //print(" loop #" + string(i) + " of " + string(nrParts));
      currentPos = (i - 1) * partSize;
      if(i < nrParts) {sizeOfPart = partSize;}
      else { sizeOfPart = size(g) - (nrParts - 1) * partSize; print(" last #" + string(sizeOfPart) + " terms ");}
      prodComp = g[currentPos + 1..sizeOfPart + currentPos] * h;  // multiply a part
      @g2 = jet(prodComp, ub - 1, wt);  // eventual reduce ...
      if(size(@g2) < size(prodComp)) { print(" killed " + string(size(prodComp) - size(@g2)) + " terms ");}
      gxh =  reduce(gxh + @g2, reduceI);
    }
  }
  else
  {
    gxh = reduce(jet(g * h,ub - 1, wt), reduceI);
  }  // compute directly
  return(gxh);
}

///////////////////////////////////////////////////////////////////////////////

static proc PolyPower1(int varIndex, poly f, int e, ideal reduceI, intvec wt,
                       int truncated, int ub)
"USAGE:   PolyPower1(i, f, e, reduceI, wt, truncated, ub);int i, e, ub;poly f;
         ideal reduceI; intvec wt; list truncated;
PURPOSE: compute f^e, use previous computations if possible, and reduce it
         w.r.t reudecI and omit terms of weighted degree > ub.
RETURN:  poly
NOTE:    used by 'Expand'
GLOBAL:  'computedPowers'
"
{
  int i, ordOfg, lb, maxPrecomputedPower;
  poly g, fn;

  if(e == 0) { return(1);}
  if(e == 1) { return(f);}
  if(f == 0) { return(1); }
  else
  {
    // test if f has been computed to some power
    if(computedPowers[varIndex][1] > 0)
    {
      maxPrecomputedPower = computedPowers[varIndex][1];
      if(maxPrecomputedPower >= e)
      {
        // no computation necessary, f^e has already benn computed
        g = computedPowers[varIndex][2][e - 1];
        //Print("No computation, from list : g = elem [", varIndex, ", 2, ", e - 1, "]");
        lb = e + 1;
      }
      else {  // f^d computed, where d < e
        g = computedPowers[varIndex][2][maxPrecomputedPower - 1];
        ordOfg = maxPrecomputedPower * wt[varIndex];
        lb = maxPrecomputedPower + 1;
      }
    }
    else
    {    // no precomputed data
      lb = 2;
      ordOfg = wt[varIndex];
      g = f;
    }
    for(i = lb; i <= e; i++)
    {
      fn = jet(f, ub - ordOfg - 1, wt); // reduce w.r.t. reduceI
      g = PolyProduct(g, fn, reduceI, wt, ub);
      ordOfg = ordOfg + wt[varIndex];
      if(g == 0) { break; }
      if((i > maxPrecomputedPower) && !truncated)
      {
        if(maxPrecomputedPower == 0)
        {  // init computedPowers
          computedPowers[varIndex] = list(i, list(g));
        }
        computedPowers[varIndex][1] = i;  // new degree
        computedPowers[varIndex][2][i - 1] = g;
        maxPrecomputedPower = i;
      }
    }
  }
  return(g);
}

///////////////////////////////////////////////////////////////////////////////

static proc RingVarsToList(list @index)
{
  int i;
  list temp;

  for(i = 1; i <= size(@index); i++) { temp[i] = string(var(@index[i])); }
  return(temp);
}

///////////////////////////////////////////////////////////////////////////////
static
proc APSubstitution(poly f, ideal substitution, ideal reduceIdeal, intvec wt, int ub, int nrs, int nrt)
"USAGE:   APSubstitution(f, subs, reduceI, w, ub, int nrs, int nrt); poly f
         ideal subs, reduceI, intvec w, int ub, nrs, nrt;
         nrs = number of parameters s(1..nrs),
         nrt = number of parameters t(1..nrt)
PURPOSE: substitute 'subs' in f, omit all terms with weighted degree > ub and
         reduce the result w.r.t. 'reduceI'.
RETURN:  poly
GLOBAL:  'computedPowers'
"
{
  int i, j, k, d, offset;
  int n = nvars(basering);
  list  coeffList, parts, degVecList, degOfMonos;
  list computedPowers, truncatedQ, degOfSubs, @temp;
  string ringSTR, @ringVars;

  export(computedPowers);

  // store arguments in strings

  def RASB = basering;

  parts = MonosAndTerms(f, wt, ub);
  for(i = 1; i <= size(parts[1]); i = i + 1)
  {
    coeffList[i] = parts[2][i]/parts[1][i];
    degVecList[i] = leadexp(parts[1][i]);
    degOfMonos[i] = deg(parts[1][i], wt);
  }

  // built new basering with no parameters and order dp !
  // the parameters of the basering are appended to
  // the variables of the basering !
  // set ideal mpoly = minpoly for reduction !

  @ringVars = "(" + varstr(basering) + ", " + parstr(1) + ",";  // precondition
  if(nrs > 0)
  {
    @ringVars = @ringVars + "s(1.." + string(nrs) + "), ";
  }
  @ringVars = @ringVars + "t(1.." + string(nrt) + "))";
  ringSTR = "ring RASR = 0, " + @ringVars + ", dp;";    // new basering

  // built the "reduction" ring with the reduction ideal

  execute(ringSTR);
  export(RASR);
  ideal reduceIdeal, substitution, newSubs;
  intvec w1, degVec;
  list minDeg, coeffList, degList;
  poly f, g, h, subsPoly;

  w1 = wt;            // new weights
  offset = nrs + nrt + 1;
  for(i = n + 1; i <= offset + n; i = i + 1) { w1[i] = 0; }

  reduceIdeal = std(imap(RASB, reduceIdeal)); // omit later !
  coeffList = imap(RASB, coeffList);
  substitution = imap(RASB, substitution);

  f = imap(RASB, f);

  for(i = 1; i <= n; i++)
  {      // all "base" variables
    computedPowers[i] = list(0);
    for(j = 1; j <= size(substitution[i]); j++) { degList[j] = deg(substitution[i][j], w1);}
    degOfSubs[i] = degList;
  }

  // substitute in each monomial seperately

  g = 0;
  for(i = 1; i <= size(degVecList); i++)
  {
    truncatedQ = Table("0", "i", 1, n);
    newSubs = 0;
    degVec = degVecList[i];
    d = degOfMonos[i];

    // check if some terms in the substitution can be omitted
    // degVec = list of exponents of the monomial m
    // minDeg[j] denotes the weighted degree of the monomial m'
    // where m' is the monomial m without the j-th variable

    for(j = 1; j <= size(degVec); j++) { minDeg[j] = d - degVec[j] * wt[j]; }

    for(j = 1; j <= size(degVec); j++)
    {
      subsPoly = 0;      // set substitution to 0
      if(degVec[j] > 0)
      {
        // if variable occurs then check if
        // substitution[j][k] * (linear part)^(degVec[j]-1) + minDeg[j] < ub
        // i.e. look for the smallest possible combination in subs[j]^degVec[j]
        // which comes from the term substitution[j][k]. This term is multiplied
        // with the rest of the monomial, which has at least degree minDeg[j].
        // If the degree of this product is < ub then substitution[j][k] contributes
        // to the result and cannot be omitted

        for(k = 1; k <= size(substitution[j]); k++)
        {
          if(degOfSubs[j][k] + (degVec[j] - 1) * wt[j] + minDeg[j]  < ub)
          {
            subsPoly = subsPoly + substitution[j][k];
          }
        }
      }
      newSubs[j] = subsPoly;        // set substitution
      if(substitution[j] - subsPoly != 0) { truncatedQ[j] = 1;}  // mark that substitution[j] is truncated
    }
    h = Expand(newSubs, degVec, reduceIdeal, w1, ub, truncatedQ) * coeffList[i];  // already reduced
    g = reduce(g + h, reduceIdeal);
  }
  kill computedPowers;
  setring RASB;
  poly fnew = imap(RASR, g);
  kill RASR;
  return(fnew);
}

///////////////////////////////////////////////////////////////////////////////

static proc StabVar(intvec wt)
"USAGE:   StabVar(w); intvec w
PURPOSE: compute the indicies for quasihomogeneous substitutions of each
         variable.
ASSUME:  f semiquasihomogeneous polynomial with an isolated singularity at 0
RETURN:  list
         _[i]  list of combinations for var(i) (i must be appended
         to each comb)
GLOBAL:  'varSubsList', contains the index j s.t. x(i) -> x(i)t(j) ...
"
{
  int i, j, k, uw, ic;
  list varList, Variables, subs;
  string str, varString;

  varList = StabVarComb(wt);
  for(i = 1; i <= size(wt); i = i + 1)
  {
    subs = 0;
    // built linear substituitons
    for(j = 1; j <= size(varList[1][i]); j++)
    {
      subs[j] = list(i) + list(varList[1][i][j]);
    }
    Variables[i] = subs;
    if(size(varList[2][i]) > 0)
    {
      // built nonlinear substituitons
      subs = 0;
      for(j = 1; j <= size(varList[2][i]); j++)
      {
        subs[j] = list(i) + varList[2][i][j];
      }
      Variables[i] = Variables[i] + subs;
    }
  }
  return(Variables);
}

///////////////////////////////////////////////////////////////////////////////

static proc StabVarComb(intvec wt)
"USAGE:   StabVarComb(w); intvec w
PURPOSE: list all possible indices of indeterminates for a quasihom. subs.
RETURN:  list
         _[1] linear substitutions
         _[2] nonlinear substiutions
GLOBAL: 'varSubsList', contains the index j s.t. x(i) -> x(i)t(j) ...
"
{
  int mmi, mma, ii, j, k, uw, ic;
  list index, indices, usedWeights, combList, combinations;
  list linearSubs, nonlinearSubs;
  list partitions, subs, temp;        // subs[i] = substitution for var(i)

  linearSubs = Table("0", "i", 1, size(wt));
  nonlinearSubs = Table("0", "i", 1, size(wt));

  uw = 0;
  ic = 0;
  mmi = Min(wt);
  mma = Max(wt);

  for(ii = mmi; ii <= mma; ii++)
  {
    if(containedQ(wt, ii))
    {    // find variables of weight ii
      k = 0;
      index = 0;
      // collect the indices of all variables of weight i
      for(j = 1; j <= size(wt); j++)
      {
        if(wt[j] == ii)
        {
          k++;
          index[k] = j;
        }
      }
      uw++;
      usedWeights[uw] = ii;
      ic++;
      indices[ii] = index;

      // linear part of the substitution

      for(j = 1; j <= size(index); j++)
      {
        linearSubs[index[j]] = index;
      }

      // nonlinear part of the substitution

      if(uw > 1)
      {    // variables of least weight do not allow nonlinear subs.

        partitions = Partitions(ii, delete(usedWeights, uw));
        for(j = 1; j <= size(partitions); j++)
        {
          combinations[j] = AllCombinations(partitions[j], indices);
        }
        for(j = 1; j <= size(index); j++)
        {
          nonlinearSubs[index[j]] = FlattenQHM(combinations);   // flatten one level !
        }
      }
    }
  }
  combList[1] = linearSubs;
  combList[2] = nonlinearSubs;
  return(combList);
}

///////////////////////////////////////////////////////////////////////////////

static proc AllCombinations(list partition, list indices)
"USAGE:   AllCombinations(partition,indices); list partition, indices)
PURPOSE: all combinations for a given partititon
RETURN:  list
GLOBAL: varSubsList, contains the index j s.t. x(i) -> x(i)t(j) ...
"
{
  int i, k, m, ok, p, offset;
  list nrList, indexList;

  k = 0;
  offset = 0;
  i = 1;
  ok = 1;
  m = partition[1];
  while(ok)
  {
    if(i > size(partition))
    {
      ok = 0;
      p = 0;
    }
    else { p = partition[i];}
    if(p == m) { i = i + 1;}
    else
    {
      k = k + 1;
      nrList[k] = i - 1 - offset;
      offset = offset + i - 1;
      indexList[k] = indices[m];
      if(ok) { m = partition[i];}
    }
  }
  return(AllCombinationsAux(nrList, indexList));
}

///////////////////////////////////////////////////////////////////////////////

static proc AllSingleCombinations(int n, list index)
"USAGE:   AllSingleCombinations(n index); int n, list index
PURPOSE: all combinations for var(n)
RETURN:  list
"
{
  int i, j, k;
  list comb, newC, temp, newIndex;

  if(n == 1)
  {
    for(i = 1; i <= size(index); i++)
    {
      temp = index[i];
      comb[i] = temp;
    }
    return(comb);
  }
  if(size(index) == 1)
  {
    temp = Table(string(index[1]), "i", 1, n);
    comb[1] = temp;
    return(comb);
  }
  newIndex = index;
  for(i = 1; i <= size(index); i = i + 1)
  {
    if(i > 1) { newIndex = delete(newIndex, 1); }
    newC = AllSingleCombinations(n - 1, newIndex);
    k = size(comb);
    temp = 0;
    for(j = 1; j <= size(newC); j++)
    {
      temp[1] = index[i];
      temp = temp + newC[j];
      comb[k + j] = temp;
      temp = 0;
    }
  }
  return(comb);
}

///////////////////////////////////////////////////////////////////////////////

static proc AllCombinationsAux(list parts, list index)
"USAGE:  AllCombinationsAux(parts ,index); list parts, index
PURPOSE: all compbinations for nonlinear substituiton
RETURN:  list
"
{
  int i, j, k;
  list comb, firstC, restC;

  if(size(parts) == 0 || size(index) == 0) { return(comb);}

  firstC = AllSingleCombinations(parts[1], index[1]);
  restC = AllCombinationsAux(delete(parts, 1), delete(index, 1));

  if(size(restC) == 0) { comb = firstC;}
  else
  {
    for(i = 1; i <= size(firstC); i++)
    {
      k = size(comb);
      for(j = 1; j <= size(restC); j++)
      {
        //elem = firstC[i] + restC[j];
        // comb[k + j] = elem;
        comb[k + j] = firstC[i] + restC[j];
      }
    }
  }
  return(comb);
}

///////////////////////////////////////////////////////////////////////////////

static proc Partitions(int n, list nr)
"USAGE:   Partitions(n, nr); int n, list nr
PURPOSE: partitions of n consisting of elements from nr
RETURN:  list
"
{
  int i, j, k;
  list parts, temp, restP, newP, decP;

  if(size(nr) == 0) { return(list());}
  if(size(nr) == 1)
  {
    if(NumFactor(nr[1], n) > 0)
    {
      parts[1] = Table(string(nr[1]), "i", 1, NumFactor(nr[1], n));
    }
    return(parts);
  }
  else
  {
    parts =  Partitions(n, nr[1]);
    restP = Partitions(n, delete(nr, 1));

    parts = parts + restP;
    for(i = 1; i <= n div nr[1]; i = i + 1)
    {
      temp = Table(string(nr[1]), "i", 1, i);
      decP = Partitions(n - i*nr[1], delete(nr, 1));
      k = size(parts);
      for(j = 1; j <= size(decP); j++)
      {
        newP = temp + decP[j];        // new partition
        if(!containedQ(parts, newP, 1))
        {
          k = k + 1;
          parts[k] = newP;
        }
      }
    }
  }
  return(parts);
}

///////////////////////////////////////////////////////////////////////////////

static proc NumFactor(int a, int b)
" USAGE: NumFactor(a, b); int a, b
PURPOSE: if b divides a then return b/a, else return 0
RETURN:  int
"
{
  int c = b div a;
  if(c*a == b) { return(c); }
  else {return(0)}
}

///////////////////////////////////////////////////////////////////////////////

static proc Table(string cmd, string iterator, int lb, int ub)
" USAGE: Table(cmd,i, lb, ub); string cmd, i; int lb, ub
PURPOSE: generate a list of size ub - lb + 1 s.t. _[i] = cmd(i)
RETURN:  list
"
{
  list data;
  execute("int " + iterator + ";");

  for(int @i = lb; @i <= ub; @i++)
  {
    execute(iterator + " = " + string(@i));
    execute("data[" + string(@i) + "] = " + cmd + ";");
  }
  return(data);
}

///////////////////////////////////////////////////////////////////////////////

static proc FlattenQHM(list data)
" USAGE: FlattenQHM(n, nr); list data
PURPOSE: flatten the list (one level) 'data', which is a list of lists
RETURN:  list
"
{
  int i, j, c;
  list fList, temp;

  c = 1;

  for(i = 1; i <= size(data); i++)
  {
    for(j = 1; j <= size(data[i]); j++)
    {
      fList[c] = data[i][j];
      c = c + 1;
    }
  }
  return(fList);
}

///////////////////////////////////////////////////////////////////////////////

static proc IntersectionQHM(list l1, list l2)
// Type : list
// Purpose : Intersection of l1 and l2
{
  list l;
  int b, c;

  c = 1;

  for(int i = 1; i <= size(l1); i++)
  {
    b = containedQ(l2, l1[i]);
    if(b == 1)
    {
      l[c] = l1[i];
      c++;
    }
  }
  return(l);
}

///////////////////////////////////////////////////////////////////////////////

static proc FirstEntryQHM(def data,def elem)
// Type : int
// Purpose : position of first entry equal to elem in data (from left to right)
{
  int i, pos;

  i = 0;
  pos = 0;
  while(i < size(data))
  {
    i++;
    if(data[i] == elem) { pos = i; break;}
  }
  return(pos);
}

///////////////////////////////////////////////////////////////////////////////

static proc PSum(def e)
{
  poly f;
  for(int i = size(e);i>=1;i--)
  {
    f = f + e[i];
  }
  return(f);
}

///////////////////////////////////////////////////////////////////////////////

proc Max(def data)
"USAGE:   Max(data); intvec/list of integers
PURPOSE: find the maximal integer contained in 'data'
RETURN:  list
ASSUME:  'data' contains only integers and is not empty
"
{
  int i;
  int max = data[1];

  for(i = size(data); i>1;i--)
  {
    if(data[i] > max) { max = data[i]; }
  }
  return(max);
}
example
{"EXAMPLE:";  echo = 2;
  Max(list(1,2,3));
}

///////////////////////////////////////////////////////////////////////////////

proc Min(def data)
"USAGE:   Min(data); intvec/list of integers
PURPOSE: find the minimal integer contained in 'data'
RETURN:  list
ASSUME:  'data' contians only integers and is not empty
"
{
  int i;
  int min = data[1];

  for(i = size(data);i>1; i--)
  {
    if(data[i] < min) { min = data[i]; }
  }
  return(min);
}
example
{"EXAMPLE:";  echo = 2;
  Min(intvec(1,2,3));
}

///////////////////////////////////////////////////////////////////////////////