/usr/share/singular/LIB/presolve.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 | ////////////////////////////////////////////////////////////////////////////
version="version presolve.lib 4.0.2.2 Jan_2016 "; // $Id: 2ac12b348c2a03fbe7250da7af20f66f71bc4457 $
category="Symbolic-numerical solving";
info="
LIBRARY: presolve.lib Pre-Solving of Polynomial Equations
AUTHOR: Gert-Martin Greuel, email: greuel@mathematik.uni-kl.de,
PROCEDURES:
degreepart(id,d1,d2); elements of id of total degree >= d1 and <= d2, and rest
elimlinearpart(id); linear part eliminated from id
elimpart(id[,n]); partial elimination of vars [among first n vars]
elimpartanyr(i,p); factors of p partially eliminated from i in any ring
fastelim(i,p[..]); fast elimination of factors of p from i [options]
findvars(id); variables occuring/not occurring in id
hilbvec(id[,c,o]); intvec of Hilberseries of id [in char c and ord o]
linearpart(id); elements of id of total degree <=1
tolessvars(id[,]); maps id to new basering having only vars occuring in id
solvelinearpart(id); reduced std-basis of linear part of id
sortandmap(id[..]); map to new basering with vars sorted w.r.t. complexity
sortvars(id[n1,p1..]); sort vars w.r.t. complexity in id [different blocks]
valvars(id[..]); valuation of vars w.r.t. to their complexity in id
idealSplit(id,tF,fS); a list of ideals such that their intersection
has the same radical as id
( parameters in square brackets [] are optional)
";
LIB "inout.lib";
LIB "general.lib";
LIB "matrix.lib";
LIB "ring.lib";
LIB "elim.lib";
///////////////////////////////////////////////////////////////////////////////
proc shortid (def id,int n,list #)
"USAGE: shortid(id,n[,e]); id= ideal/module, n,e=integers
RETURN: - if called with two arguments or e=0:
@* same type as id, containing generators of id having <= n terms.
@* - if called with three arguments and e!=0:
@* a list L:
@* L[1]: same type as id, containing generators of id having <= n terms.
@* L[2]: number of corresponding generator of id
NOTE: May be used to compute partial standard basis in case id is to hard
EXAMPLE: example shortid; shows an example
"
{
intvec v;
int ii;
for(ii=1; ii<=ncols(id); ii++)
{
if (size(id[ii]) <=n and id[ii]!=0 )
{
v=v,ii;
}
if (size(id[ii]) > n )
{
id[ii]=0;
}
}
if( size(v)>1 )
{
v = v[2..size(v)];
}
id = simplify(id,2);
list L = id,v;
if ( size(#)==0 )
{
return(id);
}
if ( size(#)!=0 )
{
if(#[1]==0)
{
return(id);
}
if(#[1]!=0)
{
return(L);
}
}
}
example
{ "EXAMPLE:"; echo = 2;
ring s=0,(x,y,z,w),dp;
ideal i = (x3+y2+yw2)^2,(xz+z2)^2,xyz-w2-xzw;
shortid(i,3);
}
///////////////////////////////////////////////////////////////////////////////
proc degreepart (def id,int d1,int d2,list #)
"USAGE: degreepart(id,d1,d2[,v]); id=ideal/module, d1,d1=integers, v=intvec
RETURN: list of size 2,
_[1]: generators of id of [v-weighted] total degree >= d1 and <= d2
(default: v = 1,...,1)
_[2]: remaining generators of id
NOTE: if id is of type int/number/poly it is converted to ideal, if id is
of type intmat/matrix/vector to module and then the corresponding
generators are computed
EXAMPLE: example degreepart; shows an example
"
{
if( typeof(id)=="int" or typeof(id)=="number"
or typeof(id)=="ideal" or typeof(id)=="poly" )
{
ideal dpart = ideal(id);
}
if( typeof(id)=="intmat" or typeof(id)=="matrix"
or typeof(id)=="module" or typeof(id)=="vector")
{
module dpart = module(id);
}
def epart = dpart;
int s,ii = ncols(id),0;
if ( size(#)==0 )
{
for ( ii=1; ii<=s; ii++ )
{
dpart[ii] = (jet(id[ii],d1-1)==0)*(id[ii]==jet(id[ii],d2))*id[ii];
epart[ii] = (size(dpart[ii])==0) * id[ii];
}
}
else
{
for ( ii=1; ii<=s; ii=ii+1 )
{
dpart[ii]=(jet(id[ii],d1-1,#[1])==0)*(id[ii]==jet(id[ii],d2,#[1]))*id[ii];
epart[ii] = (size(dpart[ii])==0)*id[ii];
}
}
list L = simplify(dpart,2),simplify(epart,2);
return(L);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y,z),dp;
ideal i=1+x+x2+x3+x4,3,xz+y3+z8;
degreepart(i,0,4);
module m=[x,y,z],x*[x3,y2,z],[1,x2,z3,0,1];
intvec v=2,3,6;
show(degreepart(m,8,8,v));
}
///////////////////////////////////////////////////////////////////////////////
proc linearpart (def id)
"USAGE: linearpart(id); id=ideal/module
RETURN: list of size 2,
_[1]: generators of id of total degree <= 1
_[2]: remaining generators of id
NOTE: all variables have degree 1 (independent of ordering of basering)
EXAMPLE: example linearpart; shows an example
"
{
return(degreepart(id,0,1));
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y,z),dp;
ideal i=1+x+x2+x3,3,x+3y+5z;
linearpart(i);
module m=[x,y,z],x*[x3,y2,z],[1,x2,z3,0,1];
show(linearpart(m));
}
///////////////////////////////////////////////////////////////////////////////
proc elimlinearpart (ideal i,list #)
"USAGE: elimlinearpart(i[,n]); i=ideal, n=integer,@*
default: n=nvars(basering)
RETURN: list L with 5 entries:
@format
L[1]: ideal obtained from i by substituting from the first n variables those
which appear in a linear part of i, by putting this part into triangular
form
L[2]: ideal of variables which have been substituted
L[3]: ideal, j-th element defines substitution of j-th var in [2]
L[4]: ideal of variables of basering, eliminated ones are set to 0
L[5]: ideal, describing the map from the basering to itself such that
L[1] is the image of i
@end format
NOTE: the procedure always interreduces the ideal i internally w.r.t.
ordering dp.
EXAMPLE: example elimlinearpart; shows an example
"
{
int ii,n,k,ringchange;
string o;
intvec getoption = option(get);
option(redSB);
def BAS = basering;
n = nvars(BAS);
list gnirlist = ringlist(basering);
list g3 = gnirlist[3];
//---------------------------------- start ------------------------------------
if ( size(#)!=0 ) { n=#[1]; }
ideal maxi,rest = maxideal(1),0;
if ( n < nvars(BAS) )
{
rest = maxi[n+1..nvars(BAS)]; //variables which are not substituted
}
attrib(rest,"isSB",1);
//-------------------- find linear part and reduce rest ----------------------
// Perhaps for big systems, check only those generators of id
// which do not contain elements not to be eliminated
//ideal id = interred(i);
//## gmg, geaendert 9/2008: interred sehr lange z.B. bei Leonard1 in normal,
//daher interred ersetzt durch: std nur auf linearpart angewendet
//Wechsel zu dp Ordnung (da Lin affin linear)
//--------------- replace ordering different from dp by dp -------------------
o = "dp("+string(n)+")";
if( ! find(ordstr(BAS),o) or find(ordstr(BAS),"a") )
{
ringchange = 1; //remember change of ring
intvec V;
V[n]=0; V=V+1; //weights for dp ordering
gnirlist[3] = list("dp",V), list("C",0);
def newBAS = ring(gnirlist); //change of ring to dp ordering
setring newBAS;
ideal rest = imap(BAS,rest);
attrib(rest,"isSB",1);
ideal i = imap(BAS,i);
}
list Lin = linearpart(i);
ideal lin = std(Lin[1]); //SB of ideal generated by polys of i
//having at most degree 1
ideal id = Lin[2]; //remaining polys from i, of deg > 1
id = simplify(NF(id,lin),2); //instead of subst
ideal id1 = linearpart(id)[1];
while( size(id1) != 0 ) //repeat to find linear parts
{
lin = lin,id1;
lin = std(lin);
id = simplify(NF(id,lin),2); //instead of subst, (### is faster)
id1 = linearpart(id)[1];
}
//------------- check for special case of unit ideal and return ---------------
int check;
if( lin[1] == 1 )
{
check = 1;
}
else
{
for (ii=1; ii<=size(id); ii++ )
{
if ( id[ii] == 1 )
{
check = 1; break;
}
}
}
if (check == 1) //case of a unit ideal
{
setring BAS;
list L = ideal(1), ideal(0), ideal(0), maxideal(1), maxideal(1);
option(set,getoption);
return(L);
}
//----- remove generators from lin containing vars not to be eliminated ------
if ( n < nvars(BAS) )
{
for ( ii=1; ii<=size(lin); ii++ )
{
if ( reduce(lead(lin[ii]),rest) == 0 )
{
id=lin[ii],id;
lin[ii] = 0;
}
}
}
lin = simplify(lin,1);
ideal eva = lead(lin); //vars to be eliminated
attrib(eva,"isSB",1);
ideal neva = NF(maxideal(1),eva); //vars not to be eliminated
//------------------ go back to original ring end return ---------------------
if ( ringchange ) //i.e there was a ring change
{
setring BAS;
ideal id = imap(newBAS,id);
ideal eva = imap(newBAS,eva);
ideal lin = imap(newBAS,lin);
ideal neva = imap(newBAS,neva);
}
eva = eva[ncols(eva)..1]; // sorting according to variables in basering
lin = lin[ncols(lin)..1];
ideal phi = neva;
k = 1;
for( ii=1; ii<=n; ii++ )
{
if( neva[ii] == 0 )
{
phi[ii] = eva[k]-lin[k];
k=k+1;
}
}
list L = id, eva, lin, neva, phi;
option(set,getoption);
return(L);
}
example
{ "EXAMPLE:"; echo = 2;
ring s=0,(u,x,y,z),dp;
ideal i = u3+y3+z-x,x2y2+z3,y+z+1,y+u;
elimlinearpart(i);
}
///////////////////////////////////////////////////////////////////////////////
proc elimpart (ideal i,list #)
"USAGE: elimpart(i [,n,e] ); i=ideal, n,e=integers
n : only the first n vars are considered for substitution,@*
e =0: substitute from linear part of i (same as elimlinearpart)@*
e!=0: eliminate also by direct substitution@*
(default: n = nvars(basering), e = 1)
RETURN: list of 5 objects:
@format
[1]: ideal obtained by substituting from the first n variables those
from i, which appear in the linear part of i (or, if e!=0, which
can be expressed directly in the remaining vars)
[2]: ideal, variables which have been substituted
[3]: ideal, i-th element defines substitution of i-th var in [2]
[4]: ideal of variables of basering, substituted ones are set to 0
[5]: ideal, describing the map from the basering, say k[x(1..m)], to
itself onto k[..variables from [4]..] and [1] is the image of i
@end format
The ideal i is generated by [1] and [3] in k[x(1..m)], the map [5]
maps [3] to 0, hence induces an isomorphism
@format
k[x(1..m)]/i -> k[..variables from [4]..]/[1]
@end format
NOTE: Applying elimpart to interred(i) may result in more substitutions.
However, interred may be more expansive than elimpart for big ideals
EXAMPLE: example elimpart; shows an example
"
{
def BAS = basering;
int n,e = nvars(BAS),1;
if ( size(#)==1 ) { n=#[1]; }
if ( size(#)==2 ) { n=#[1]; e=#[2];}
//----------- interreduce linear part with proc elimlinearpart ----------------
// lin = ideal i after interreduction with linear part
// eva = eliminated (substituted) variables
// sub = polynomials defining substitution
// neva= not eliminated variables
// phi = map describing substitution
list L = elimlinearpart(i,n);
ideal lin, eva, sub, neva, phi = L[1], L[2], L[3], L[4], L[5];
if ( e == 0 )
{
return(L);
}
//-------- direct substitution of variables if possible and if e!=0 -----------
// first find terms lin1 in lin of pure degree 1 in each polynomial of lin
// k1 = pure degree 1 part, i.e. nonzero elts of lin1, renumbered
// k2 = lin2 (=matrix(lin) - matrix(lin2)), renumbered
// kin = matrix(k1)+matrix(k2) = those polys of lin which contained a pure
// degree 1 part.
/*
Alte Version mit interred:
// Then go to ring newBAS with ordering c,dp(n) and create a matrix with
// size(k1) colums and 2 rows, such that if [f1,f2] is a column of M then f1+f2
// is one of the polys of lin containing a pure degree 1 part and f1 is this
// part interreduce this matrix (i.e. Gauss elimination on linear part, with
// rest transformed accordingly).
//Ist jetzt durch direkte Substitution gemacht (schneller!)
//Variante falls wieder interred angewendet werden soll:
//ideal k12 = k1,k2;
//matrix M = matrix(k12,2,kk); //degree 1 part is now in row 1
//M = interred(M);
//### interred zu teuer, muss nicht sein. Wenn interred angewendet
//werden soll, vorher in Ring mit Ordnung (c,dp) wechseln!
//Abfrage: if( ordstr(BAS) != "c,dp("+string(n)+")" )
//auf KEINEN Fall std (wird zu gross)
//l = ncols(M);
//k1 = M[1,1..l];
//k2 = M[2,1..l];
Interred ist jetzt ganz weggelassen. Aber es gibt Beispiele wo interred polys
mit Grad 1 Teilen produziert, die vorher nicht da waren (aus polys, die einen konstanten Term haben).
z.B. i=xy2-xu4-x+y2,x2y2+z3+zy,y+z2+1,y+u2;, interred(i)=z2+y+1,y2-x,u2+y,x3-z
-z ergibt ich auch i[2]-z*i[3] mit option(redThrough)
statt interred kann man hier auch NF(i,i[3])+i[3] verwenden
hier lifert elimpart(i) 2 Substitutionen (x,y) elimpart(interred(i))
aber 3 (x,y,z)
Da interred oder NF aber die Laenge der polys vergroessern kann, nicht gemacht
*/
int ii, kk;
ideal k1, k2, lin2;
int l = ncols(lin); // lin=i after applying elimlinearpart
ideal lin1 = ideal(matrix(jet(lin,1))-matrix(jet(lin,0))); // part of pure degree 1
//Note: If i,i1,i2 are ideals, then i = i1 - i2 is equivalent to
//i = ideal(matrix(i1) - matrix(i2))
if (size(lin1) == 0 )
{
return(L);
}
//-------- check candidates for direct substitution of variables ----------
//since lin1 != 0 there are candidates for substituting variables
lin2 = matrix(lin) - matrix(lin1); //difference as matrix
// rest of lin, part of pure degree 1 substracted from each generator of lin
for( ii=1; ii<=l; ii++ )
{
if( lin1[ii] != 0 )
{
kk = kk+1;
k1[kk] = lin1[ii]; // part of pure degree 1, renumbered
k2[kk] = lin2[ii]; // rest of those polys which had a degree 1 part
lin2[ii] = 0;
}
}
//Now each !=0 generator of lin2 contains only constant terms or terms of
//degree >= 2, hence lin 2 can never be used for further substitutions
//We have: lin = ideal(matrix(k1)+matrix(k2)), lin2
ideal kin = matrix(k1)+matrix(k2);
//kin = polys of lin which contained a pure degree 1 part.
kin = simplify(kin,2);
l = size(kin); //l != 0 since lin1 != 0
poly p,kip,vip, cand;
int count=1;
while ( count != 0 )
{
count = 0;
for ( ii=1; ii<=n; ii++ ) //start direct substitution of var(ii)
{
for (kk=1; kk<=l; kk++ )
{
p = kin[kk]/var(ii);
//if ( deg(p) == 0 )
//old test, does not work if some var has deg 0
//geaendert Mai 09 gmg
if( p!=0 & p == jet(p,0) )
//this means that kin[kk]= p*var(ii) + h,
//with p=const !=0 and h not depending on var(ii)
{
//we look for the shortest candidate to substitute var(ii)
if ( cand == 0 )
{
cand = kin[kk]; //candidate for substituting var(ii)
}
else
{
if ( size(kin[kk]) < size(cand) )
{
cand = kin[kk];
}
}
}
}
if ( cand != 0 )
{
p = cand/var(ii);
kip = cand/p; //normalized polynomial of kin w.r.t var(ii)
eva = eva+var(ii); //var(ii) added to list of elimin. vars
neva[ii] = 0;
sub = sub+kip; //polynomial defining substituion
//## gmg: geaendert 08/2008, map durch subst ersetzt
//(viel schneller)
vip = var(ii) - kip; //polynomial to be substituted
lin = subst(lin, var(ii), vip); //subst in rest
lin = simplify(lin,2);
kin = subst(kin, var(ii), vip); //subst in pure dgree 1 part
kin = simplify(kin,2);
l = size(kin);
count = 1;
}
cand=0;
}
}
lin = kin+lin;
for( ii=1; ii<=size(lin); ii++ )
{
lin[ii] = cleardenom(lin[ii]);
}
for( ii=1; ii<=n; ii++ )
{
for( kk=1; kk<=size(eva); kk++ )
{
if (phi[ii] == eva[kk] )
{ phi[ii] = eva[kk]-sub[kk]; break; }
}
}
map psi = BAS,phi;
ideal phi1 = maxideal(1);
for(ii=1; ii<=size(eva); ii++)
{
phi1=psi(phi1);
}
L = lin, eva, sub, neva, phi1;
return(L);
}
example
{ "EXAMPLE:"; echo = 2;
ring s=0,(u,x,y,z),dp;
ideal i = xy2-xu4-x+y2,x2y2+z3+zy,y+z2+1,y+u2;
elimpart(i);
i = interred(i); i;
elimpart(i);
elimpart(i,2);
}
///////////////////////////////////////////////////////////////////////////////
proc elimpartanyr (ideal i, list #)
"USAGE: elimpartanyr(i [,p,e] ); i=ideal, p=polynomial, e=integer@*
p: product of vars to be eliminated,@*
e =0: substitute from linear part of i (same as elimlinearpart)@*
e!=0: eliminate also by direct substitution@*
(default: p=product of all vars, e=1)
RETURN: list of 6 objects:
@format
[1]: (interreduced) ideal obtained by substituting from i those vars
appearing in p, which occur in the linear part of i (or which can
be expressed directly in the remaining variables, if e!=0)
[2]: ideal, variables which have been substituted
[3]: ideal, i-th element defines substitution of i-th var in [2]
[4]: ideal of variables of basering, substituted ones are set to 0
[5]: ideal, describing the map from the basering, say k[x(1..m)], to
itself onto k[..variables fom [4]..] and [1] is the image of i
[6]: int, # of vars considered for substitution (= # of factors of p)
@end format
The ideal i is generated by [1] and [3] in k[x(1..m)], the map [5]
maps [3] to 0, hence induces an isomorphism
@format
k[x(1..m)]/i -> k[..variables fom [4]..]/[1]
@end format
NOTE: the procedure uses @code{execute} to create a ring with ordering dp
and vars placed correctly and then applies @code{elimpart}.
EXAMPLE: example elimpartanyr; shows an example
"
{
def P = basering;
int j,n,e = 0,0,1;
poly p = product(maxideal(1));
if ( size(#)==1 ) { p=#[1]; }
if ( size(#)==2 ) { p=#[1]; e=#[2]; }
string a,b;
for ( j=1; j<=nvars(P); j++ )
{
if (deg(p/var(j))>=0) { a = a+varstr(j)+","; n = n+1; }
else { b = b+varstr(j)+","; }
}
if ( size(b) != 0 ) { b = b[1,size(b)-1]; }
else { a = a[1,size(a)-1]; }
execute("ring gnir ="+charstr(P)+",("+a+b+"),dp;");
ideal i = imap(P,i);
list L = elimpart(i,n,e)+list(n);
setring P;
list L = imap(gnir,L);
return(L);
}
example
{ "EXAMPLE:"; echo = 2;
ring s=0,(x,y,z),dp;
ideal i = x3+y2+z,x2y2+z3,y+z+1;
elimpartanyr(i,z);
}
///////////////////////////////////////////////////////////////////////////////
proc fastelim (ideal i, poly p, list #)
"USAGE: fastelim(i,p[h,o,a,b,e,m]); i=ideal, p=polynomial; h,o,a,b,e=integers@*
p: product of variables to be eliminated;@*
Optional parameters:
@format
- h !=0: use Hilbert-series driven std-basis computation
- o !=0: use proc @code{valvars} for a - hopefully - optimal ordering of vars
- a !=0: order vars to be eliminated w.r.t. increasing complexity
- b !=0: order vars not to be eliminated w.r.t. increasing complexity
- e !=0: use @code{elimpart} first to eliminate easy part
- m !=0: compute a minimal system of generators
@end format
(default: h,o,a,b,e,m = 0,1,0,0,0,0)
RETURN: ideal obtained from i by eliminating those variables, which occur in p
EXAMPLE: example fastelim; shows an example.
"
{
def P = basering;
int h,o,a,b,e,m = 0,1,0,0,0,0;
if ( size(#) == 1 ) { h=#[1]; }
if ( size(#) == 2 ) { h=#[1]; o=#[2]; }
if ( size(#) == 3 ) { h=#[1]; o=#[2]; a=#[3]; }
if ( size(#) == 4 ) { h=#[1]; o=#[2]; a=#[3]; b=#[4];}
if ( size(#) == 5 ) { h=#[1]; o=#[2]; a=#[3]; b=#[4]; e=#[5]; }
if ( size(#) == 6 ) { h=#[1]; o=#[2]; a=#[3]; b=#[4]; e=#[5]; m=#[6]; }
list L = elimpartanyr(i,p,e);
poly q = product(L[2]); //product of vars which are already eliminated
if ( q==0 ) { q=1; }
p = p/q; //product of vars which must still be eliminated
int nu = size(L[5])-size(L[2]); //number of vars which must still be eliminated
if ( p==1 ) //ready if no vars are left
{ //compute minbase if 3-rd argument !=0
if ( m != 0 ) { L[1]=minbase(L[1]); }
return(L);
}
//---------------- create new ring with remaining variables -------------------
string newvar = string(L[4]);
L = L[1],p;
execute("ring r1=("+charstr(P)+"),("+newvar+"),"+"dp;");
list L = imap(P,L);
//------------------- find "best" ordering of variables ----------------------
newvar = string(maxideal(1));
if ( o != 0 )
{
list ordevar = valvars(L[1],a,L[2],b);
intvec v = ordevar[1];
newvar=string(sort(maxideal(1),v)[1]);
//------------ create new ring with "best" ordering of variables --------------
def r0=changevar(newvar);
setring r0;
list L = imap(r1,L);
kill r1;
def r1 = r0;
kill r0;
}
//----------------- h==0: eliminate remaining vars directly -------------------
if ( h == 0 )
{
L[1] = eliminate(L[1],L[2]);
def r2 = r1;
}
else
//------- h!=0: homogenize and compute Hilbert series using hilbvec ----------
{
intvec hi = hilbvec(L[1]); // Hilbert series of i
execute("ring r2=("+charstr(P)+"),("+varstr(basering)+",@homo),dp;");
list L = imap(r1,L);
L[1] = homog(L[1],@homo); // @homo = homogenizing var
//---- use Hilbert-series to eliminate variables with Hilbert-driven std -----
L[1] = eliminate(L[1],L[2],hi);
L[1]=subst(L[1],@homo,1); // dehomogenize by setting @homo=1
}
if ( m != 0 ) // compute minbase
{
if ( #[1] != 0 ) { L[1] = minbase(L[1]); }
}
def id = L[1];
setring P;
return(imap(r2,id));
}
example
{ "EXAMPLE:"; echo = 2;
ring s=31991,(e,f,x,y,z,t,u,v,w,a,b,c,d),dp;
ideal i = w2+f2-1, x2+t2+a2-1, y2+u2+b2-1, z2+v2+c2-1,
d2+e2-1, f4+2u, wa+tf, xy+tu+ab;
fastelim(i,xytua,1,1); //with hilb,valvars
fastelim(i,xytua,1,0,1); //with hilb,minbase
}
///////////////////////////////////////////////////////////////////////////////
proc faststd (def @id, list #)
"USAGE: faststd(id [,\"hilb\",\"sort\",\"dec\",o,\"blocks\"]);
id=ideal/module, o=string (allowed:\"lp\",\"dp\",\"Dp\",\"ls\",
\"ds\",\"Ds\"), \"hilb\",\"sort\",\"dec\",\"block\" options for
Hilbert-driven std, and the procedure sortandmap
RETURN: a ring R, in which an ideal STD_id is stored: @*
- the ring R differs from the active basering only in the choice
of monomial ordering and in the sorting of the variables.
- STD_id is a standard basis for the image (under imap) of the input
ideal/module id with respect to the new monomial ordering. @*
NOTE: Using the optional input parameters, we may modify the computations
performed: @*
- \"hilb\" : use Hilbert-driven standard basis computation@*
- \"sort\" : use 'sortandmap' for a best sorting of the variables@*
- \"dec\" : order vars w.r.t. decreasing complexity (with \"sort\")@*
- \"block\" : create block ordering, each block having ordstr=o, s.t.
vars of same complexity are in one block (with \"sort\")@*
- o : defines the basic ordering of the resulting ring@*
[default: o=ordering of 1st block of basering (if allowed, else o=\"dp\"],
\"sort\", if none of the optional parameters is given @*
This procedure is only useful for hard problems where other methods fail.@*
\"hilb\" is useful for hard orderings (as \"lp\") or for characteristic 0,@*
it is correct for \"lp\",\"dp\",\"Dp\" (and for block orderings combining
these) but not for s-orderings or if the vars have different weights.@*
There seem to be only few cases in which \"dec\" is fast.
SEE ALSO: groebner
EXAMPLE: example faststd; shows an example.
"
{
def @P = basering;
int @h,@s,@n,@m,@ii = 0,0,0,0,0;
string @o,@va,@c = ordstr(basering),"","";
//-------------------- prepare ordering and set options -----------------------
if ( @o[1]=="c" or @o[1]=="C")
{ @o = @o[3,2]; }
else
{ @o = @o[1,2]; }
if( @o[1]!="d" and @o[1]!="D" and @o[1]!="l")
{ @o="dp"; }
if (size(#) == 0 )
{ @s = 1; }
for ( @ii=1; @ii<=size(#); @ii++ )
{
if ( typeof(#[@ii]) != "string" )
{
"// wrong syntax! type: help faststd";
return();
}
else
{
if ( #[@ii] == "hilb" ) { @h = 1; }
if ( #[@ii] == "dec" ) { @n = 1; }
if ( #[@ii] == "block" ) { @m = 1; }
if ( #[@ii] == "sort" ) { @s = 1; }
if ( #[@ii]=="lp" or #[@ii]=="dp" or #[@ii]=="Dp" or #[@ii]=="ls"
or #[@ii]=="ds" or #[@ii]=="Ds" ) { @o = #[@ii]; }
}
}
if( voice==2 ) { "// chosen options, hilb sort dec block:",@h,@s,@n,@m; }
//-------------------- nosort: create ring with new name ----------------------
if ( @s==0 )
{
execute("ring @S1 =("+charstr(@P)+"),("+varstr(@P)+"),("+@o+");");
def STD_id = imap(@P,@id);
if ( @h==0 ) { STD_id = std(STD_id); }
}
//---------------------- no hilb: compute SB directly -------------------------
if ( @s != 0 and @h == 0 )
{
intvec getoption = option(get);
option(redSB);
@id = interred(sort(@id)[1]);
poly @p = product(maxideal(1),1..nvars(@P));
def @S1=sortandmap(@id,@n,@p,0,@o,@m);
setring @S1;
option(set,getoption);
def STD_id=imap(@S1,IMAG);
STD_id = std(STD_id);
}
//------- hilb: homogenize and compute Hilbert-series using hilbvec -----------
// this uses another standardbasis computation
if ( @h != 0 )
{
execute("ring @Q=("+charstr(@P)+"),("+varstr(@P)+",@homo),("+@o+");");
def @id = imap(@P,@id);
@id = homog(@id,@homo); // @homo = homogenizing var
if ( @s != 0 )
{
intvec getoption = option(get);
option(redSB);
@id = interred(sort(@id)[1]);
poly @p = product(maxideal(1),1..(nvars(@Q)-1));
def @S1=sortandmap(@id,@n,@p,0,@o,@m);
setring @S1;
option(set,getoption);
kill @Q;
def @Q= basering;
def @id = IMAG;
}
intvec @hi; // encoding of Hilbert-series of i
@hi = hilbvec(@id);
//if ( @s!=0 ) { @hi = hilbvec(@id,"32003",ordstr(@Q)); }
//else { @hi = hilbvec(@id); }
//-------------------------- use Hilbert-driven std --------------------------
@id = std(@id,@hi);
@id = subst(@id,@homo,1); // dehomogenize by setting @homo=1
@va = varstr(@Q)[1,size(varstr(@Q))-6];
if ( @s!=0 )
{
@o = ordstr(@Q);
if ( @o[1]=="c" or @o[1]=="C") { @o = @o[1,size(@o)-6]; }
else { @o = @o[1,size(@o)-8] + @o[size(@o)-1,2]; }
}
kill @S1;
execute("ring @S1=("+charstr(@Q)+"),("+@va+"),("+@o+");");
def STD_id = imap(@Q,@id);
}
attrib(STD_id,"isSB",1);
export STD_id;
if (defined(IMAG)) { kill IMAG; }
setring @P;
dbprint(printlevel-voice+3,"
// 'faststd' created a ring, in which an object STD_id is stored.
// To access the object, type (if the name R was assigned to the return value):
setring R; STD_id; ");
return(@S1);
}
example
{ "EXAMPLE:"; echo = 2;
system("--ticks-per-sec",100); // show time in 1/100 sec
ring s = 0,(e,f,x,y,z,t,u,v,w,a,b,c,d),(c,lp);
ideal i = w2+f2-1, x2+t2+a2-1, y2+u2+b2-1, z2+v2+c2-1,
d2+e2-1, f4+2u, wa+tf, xy+tu+ab;
option(prot); timer=1;
int time = timer;
ideal j=std(i);
timer-time;
dim(j),mult(j);
time = timer;
def R=faststd(i); // use "best" ordering of vars
timer-time;
show(R);setring R;dim(STD_id),mult(STD_id);
setring s;kill R;time = timer;
def R=faststd(i,"hilb"); // hilb-std only
timer-time;
show(R);setring R;dim(STD_id),mult(STD_id);
setring s;kill R;time = timer;
def R=faststd(i,"hilb","sort"); // hilb-std,"best" ordering
timer-time;
show(R);setring R;dim(STD_id),mult(STD_id);
setring s;kill R;time = timer;
def R=faststd(i,"hilb","sort","block","dec"); // hilb-std,"best",blocks
timer-time;
show(R);setring R;dim(STD_id),mult(STD_id);
setring s;kill R;time = timer;
timer-time;time = timer;
def R=faststd(i,"sort","block","Dp"); //"best",decreasing,Dp-blocks
timer-time;
show(R);setring R;dim(STD_id),mult(STD_id);
}
///////////////////////////////////////////////////////////////////////////////
proc findvars(def id, list #)
"USAGE: findvars(id ); id=poly/ideal/vector/module/matrix
RETURN: list L with 4 entries:
@format
L[1]: ideal of variables occuring in id
L[2]: intvec of variables occuring in id
L[3]: ideal of variables not occuring in id
L[4]: intvec of variables not occuring in id
@end format
SEE ALSO: variables
EXAMPLE: example findvars; shows an example
"
{
int ii,n;
ideal found, notfound;
intvec f,nf;
n = nvars(basering);
ideal i = simplify(ideal(matrix(id)),10);
matrix M[ncols(i)][1] = i;
vector v = module(M)[1];
ideal max = maxideal(1);
for (ii=1; ii<=n; ii++)
{
if ( v != subst(v,var(ii),0) )
{
found = found+var(ii);
f = f,ii;
}
else
{
notfound = notfound+var(ii);
nf = nf,ii;
}
}
if ( size(f)>1 ) { f = f[2..size(f)]; } //intvec of found vars
if ( size(nf)>1 ) { nf = nf[2..size(nf)]; } //intvec of vars not found
list L = found,f,notfound,nf; return(L);
}
example
{ "EXAMPLE:"; echo = 2;
ring s = 0,(e,f,x,y,t,u,v,w,a,d),dp;
ideal i = w2+f2-1, x2+t2+a2-1;
findvars(i);
}
///////////////////////////////////////////////////////////////////////////////
proc hilbvec (def @id, list #)
"USAGE: hilbvec(id[,c,o]); id=poly/ideal/vector/module/matrix, c,o=strings,@*
c=char, o=ordering used by @code{hilb} (default: c=\"32003\", o=\"dp\")
RETURN: intvec of 1st Hilbert-series of id, computed in char c and ordering o
NOTE: id must be homogeneous (i.e. all vars have weight 1)
EXAMPLE: example hilbvec; shows an example
"
{
def @P = basering;
string @c,@o = "32003", "dp";
if ( size(#) == 1 ) { @c = #[1]; }
if ( size(#) == 2 ) { @c = #[1]; @o = #[2]; }
string @si = typeof(@id)+" @i = "+string(@id)+";"; //** weg
execute("ring @r=("+@c+"),("+varstr(basering)+"),("+@o+");");
//**def i = imap(P,@id);
execute(@si); //** weg
//show(basering);
@i = std(@i);
intvec @hi = hilb(@i,1); // intvec of 1-st Hilbert-series of id
return(@hi);
}
example
{ "EXAMPLE:"; echo = 2;
ring s = 0,(e,f,x,y,z,t,u,v,w,a,b,c,d,H),dp;
ideal id = w2+f2-1, x2+t2+a2-1, y2+u2+b2-1, z2+v2+c2-1,
d2+e2-1, f4+2u, wa+tf, xy+tu+ab;
id = homog(id,H);
hilbvec(id);
}
///////////////////////////////////////////////////////////////////////////////
proc tolessvars (def id ,list #)
"USAGE: tolessvars(id [,s1,s2] ); id poly/ideal/vector/module/matrix,
s1=string (new ordering)@*
[default: s1=\"dp\" or \"ds\" depending on whether the first block
of the old ordering is a p- or an s-ordering, respectively]
RETURN: If id contains all vars of the basering: empty list. @*
Else: ring R with the same char as the basering, but possibly less
variables (only those variables which actually occur in id). In R
an object IMAG (image of id under imap) is stored.
DISPLAY: If printlevel >=0, display ideal of vars, which have been omitted
from the old ring.
EXAMPLE: example tolessvars; shows an example
"
{
//---------------- initialisation and check occurence of vars -----------------
int s,ii,n,fp,fs;
string s2,newvar;
int pr = printlevel-voice+3; // p = printlevel+1 (default: p=1)
def P = basering;
s2 = ordstr(P);
list L = findvars(id,1);
newvar = string(L[1]); // string of new variables
n = size(L[1]); // number of new variables
if( n == 0 )
{
dbprint( pr,"","// no variable occurred in "+typeof(id)+", no change of ring!");
return(id);
}
if( n == nvars(P) )
{
dbprint(printlevel-voice+3,"
// All variables appear in input object.
// empty list returned. ");
return(list());
}
//----------------- prepare new ring, map to it and return --------------------
if ( size(#) == 0 )
{
fp = find(s2,"p");
fs = find(s2,"s");
if( fs==0 or (fs>=fp && fp!=0) ) { s2="dp"; }
else { s2="ds"; }
}
if ( size(#) ==1 ) { s2=#[1]; }
dbprint( pr,"","// variables which did not occur:",L[3] );
execute("ring S1=("+charstr(P)+"),("+newvar+"),("+s2+");");
def IMAG = imap(P,id);
export IMAG;
dbprint(printlevel-voice+3,"
// 'tolessvars' created a ring, in which an object IMAG is stored.
// To access the object, type (if the name R was assigned to the return value):
setring R; IMAG; ");
return(S1);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(x,y,z),dp;
ideal i = y2-x3,x-3,y-2x;
def R_r = tolessvars(i,"lp");
setring R_r;
show(basering);
IMAG;
kill R_r;
}
///////////////////////////////////////////////////////////////////////////////
proc solvelinearpart (def id,list #)
"USAGE: solvelinearpart(id [,n] ); id=ideal/module, n=integer (default: n=0)
RETURN: (interreduced) generators of id of degree <=1 in reduced triangular
form if n=0 [non-reduced triangular form if n!=0]
ASSUME: monomial ordering is a global ordering (p-ordering)
NOTE: may be used to solve a system of linear equations,
see @code{gauss_row} from 'matrix.lib' for a different method
WARNING: the result is very likely to be false for 'real' coefficients, use
char 0 instead!
EXAMPLE: example solvelinearpart; shows an example
"
{
intvec getoption = option(get);
option(redSB);
if ( size(#)!=0 )
{
if(#[1]!=0) { option(noredSB); }
}
def lin = interred(degreepart(id,0,1)[1]);
if ( size(#)!=0 )
{
if(#[1]!=0)
{
return(lin);
}
}
option(set,getoption);
return(simplify(lin,1));
}
example
{ "EXAMPLE:"; echo = 2;
// Solve the system of linear equations:
// 3x + y + z - u = 2
// 3x + 8y + 6z - 7u = 1
// 14x + 10y + 6z - 7u = 0
// 7x + 4y + 3z - 3u = 3
ring r = 0,(x,y,z,u),lp;
ideal i= 3x + y + z - u,
13x + 8y + 6z - 7u,
14x + 10y + 6z - 7u,
7x + 4y + 3z - 3u;
ideal j= 2,1,0,3;
j = matrix(i)-matrix(j); // difference of 1x4 matrices
// compute reduced triangular form, setting
solvelinearpart(j); // the RHS equal 0 gives the solutions!
solvelinearpart(j,1); ""; // triangular form, not reduced
}
///////////////////////////////////////////////////////////////////////////////
proc sortandmap (def @id, list #)
"USAGE: sortandmap(id [,n1,p1,n2,p2...,o1,m1,o2,m2...]);@*
id=poly/ideal/vector/module,@*
p1,p2,...= polynomials (product of variables),@*
n1,n2,...= integers,@*
o1,o2,...= strings,@*
m1,m2,...= integers@*
(default: p1=product of all vars, n1=0, o1=\"dp\",m1=0)
the last pi (containing the remaining vars) may be omitted
RETURN: a ring R, in which a poly/ideal/vector/module IMAG is stored: @*
- the ring R differs from the active basering only in the choice
of monomial ordering and in the sorting of the variables.@*
- IMAG is the image (under imap) of the input ideal/module id @*
The new monomial ordering and sorting of vars is as follows:
@format
- each block of vars occuring in pi is sorted w.r.t. its complexity in id,
- ni controls the sorting in i-th block (= vars occuring in pi):
ni=0 (resp. ni!=0) means that least complex (resp. most complex) vars come
first
- oi and mi define the monomial ordering of the i-th block:
if mi =0, oi=ordstr(i-th block)
if mi!=0, the ordering of the i-th block itself is a blockordering,
each subblock having ordstr=oi, such that vars of same complexity are
in one block
@end format
Note that only simple ordstrings oi are allowed: \"lp\",\"dp\",\"Dp\",
\"ls\",\"ds\",\"Ds\". @*
NOTE: We define a variable x to be more complex than y (with respect to id)
if val(x) > val(y) lexicographically, where val(x) denotes the
valuation vector of x:@*
consider id as list of polynomials in x with coefficients in the
remaining variables. Then:@*
val(x) = (maximal occuring power of x, # of all monomials in leading
coefficient, # of all monomials in coefficient of next smaller power
of x,...).
EXAMPLE: example sortandmap; shows an example
"
{
def @P = basering;
int @ii,@jj;
intvec @v;
string @o;
//----------------- find o in # and split # into 2 lists ---------------------
# = # +list("dp",0);
for ( @ii=1; @ii<=size(#); @ii++)
{
if ( typeof(#[@ii])=="string" ) break;
}
if ( @ii==1 ) { list @L1 = list(); }
else { list @L1 = #[1..@ii-1]; }
list @L2 = #[@ii..size(#)];
list @L = sortvars(@id,@L1);
string @va = string(@L[1]);
list @l = @L[2]; //e.g. @l[4]=intvec describing permutation of 1-st block
//----------------- construct correct ordering with oi and mi ----------------
for ( @ii=4; @ii<=size(@l); @ii=@ii+4 )
{
@L2=@L2+list("dp",0);
if ( @L2[@ii div 2] != 0)
{
@v = @l[@ii];
for ( @jj=1; @jj<=size(@v); @jj++ )
{
@o = @o+@L2[@ii div 2 -1]+"("+string(@v[@jj])+"),";
}
}
else
{
@o = @o+@L2[@ii div 2 -1]+"("+string(size(@l[@ii]))+"),";
}
}
@o=@o[1..size(@o)-1];
execute("ring @S1 =("+charstr(@P)+"),("+@va+"),("+@o+");");
def IMAG = imap(@P,@id);
export IMAG;
dbprint(printlevel-voice+3,"
// 'sortandmap' created a ring, in which an object IMAG is stored.
// To access the object, type (if the name R was assigned to the return value):
setring R; IMAG; ");
return(@S1);
}
example
{ "EXAMPLE:"; echo = 2;
ring s = 32003,(x,y,z),dp;
ideal i=x3+y2,xz+z2;
def R_r=sortandmap(i);
show(R_r);
setring R_r; IMAG;
kill R_r; setring s;
def R_r=sortandmap(i,1,xy,0,z,0,"ds",0,"lp",0);
show(R_r);
setring R_r; IMAG;
kill R_r;
}
///////////////////////////////////////////////////////////////////////////////
proc sortvars (def id, list #)
"USAGE: sortvars(id[,n1,p1,n2,p2,...]);@*
id=poly/ideal/vector/module,@*
p1,p2,...= polynomials (product of vars),@*
n1,n2,...= integers@*
(default: p1=product of all vars, n1=0)
the last pi (containing the remaining vars) may be omitted
COMPUTE: sort variables with respect to their complexity in id
RETURN: list of two elements, an ideal and a list:
@format
[1]: ideal, variables of basering sorted w.r.t their complexity in id
ni controls the ordering in i-th block (= vars occuring in pi):
ni=0 (resp. ni!=0) means that less (resp. more) complex vars come first
[2]: a list with 4 entries for each pi:
_[1]: ideal ai : vars of pi in correct order,
_[2]: intvec vi: permutation vector describing the ordering in ai,
_[3]: intmat Mi: valuation matrix of ai, the columns of Mi being the
valuation vectors of the vars in ai
_[4]: intvec wi: size of 1-st, 2-nd,... block of identical columns of Mi
(vars with same valuation)
@end format
NOTE: We define a variable x to be more complex than y (with respect to id)
if val(x) > val(y) lexicographically, where val(x) denotes the
valuation vector of x:@*
consider id as list of polynomials in x with coefficients in the
remaining variables. Then:@*
val(x) = (maximal occuring power of x, # of all monomials in leading
coefficient, # of all monomials in coefficient of next smaller power
of x,...).
EXAMPLE: example sortvars; shows an example
"
{
int ii,jj,n,s;
list L = valvars(id,#);
list L2, L3 = L[2], L[3];
list K; intmat M; intvec v1,v2,w;
ideal i = sort(maxideal(1),L[1])[1];
for ( ii=1; ii<=size(L2); ii++ )
{
M = transpose(L3[2*ii]);
M = M[L2[ii],1..nrows(L3[2*ii])];
w = 0; s = 0;
for ( jj=1; jj<=nrows(M)-1; jj++ )
{
v1 = M[jj,1..ncols(M)];
v2 = M[jj+1,1..ncols(M)];
if ( v1 != v2 ) { n=jj-s; s=s+n; w = w,n; }
}
w=w,nrows(M)-s; w=w[2..size(w)];
K = K+sort(L3[2*ii-1],L2[ii])+list(transpose(M))+list(w);
}
L = i,K;
return(L);
}
example
{ "EXAMPLE:"; echo = 2;
ring s=0,(x,y,z,w),dp;
ideal i = x3+y2+yw2,xz+z2,xyz-w2;
sortvars(i,0,xy,1,zw);
}
///////////////////////////////////////////////////////////////////////////////
proc valvars (def id, list #)
"USAGE: valvars(id[,n1,p1,n2,p2,...]);@*
id=poly/ideal/vector/module,@*
p1,p2,...= polynomials (product of vars),@*
n1,n2,...= integers,
ni controls the ordering of vars occuring in pi: ni=0 (resp. ni!=0)
means that less (resp. more) complex vars come first (default: p1=product of all vars, n1=0),@*
the last pi (containing the remaining vars) may be omitted
COMPUTE: valuation (complexity) of variables with respect to id.@*
ni controls the ordering of vars occuring in pi:@*
ni=0 (resp. ni!=0) means that less (resp. more) complex vars come first.
RETURN: list with 3 entries:
@format
[1]: intvec, say v, describing the permutation such that the permuted
ring variables are ordered with respect to their complexity in id
[2]: list of intvecs, i-th intvec, say v(i) describing permutation
of vars in a(i) such that v=v(1),v(2),...
[3]: list of ideals and intmat's, say a(i) and M(i), where
a(i): factors of pi,
M(i): valuation matrix of a(i), such that the j-th column of M(i)
is the valuation vector of j-th generator of a(i)
@end format
NOTE: Use @code{sortvars} in order to actually sort the variables!
We define a variable x to be more complex than y (with respect to id)
if val(x) > val(y) lexicographically, where val(x) denotes the
valuation vector of x:@*
consider id as list of polynomials in x with coefficients in the
remaining variables. Then:@*
val(x) = (maximal occuring power of x, # of all monomials in leading
coefficient, # of all monomials in coefficient of next smaller power
of x,...).
EXAMPLE: example valvars; shows an example
"
{
//---------------------------- initialization ---------------------------------
int ii,jj,kk,n;
list L; // list of valuation vectors in one block
intvec vec; // describes permutation of vars (in one block)
list blockvec; // i-th element = vec of i-th block
intvec varvec; // result intvector
list Li; // result list of ideals
list LM; // result list of intmat's
intvec v,w,s; // w valuation vector for one variable
matrix C; // coefficient matrix for different variables
ideal i = simplify(ideal(matrix(id)),10);
//---- for each pii in # create ideal a(ii) intvec v(ii) and list L(ii) -------
// a(ii) = ideal of vars in product, v(ii)[j]=k <=> a(ii)[j]=var(k)
v = 1..nvars(basering);
int l = size(#);
if ( l >= 2 )
{
ideal m=maxideal(1);
for ( ii=2; ii<=l; ii=ii+2 )
{
int n(ii) = #[ii-1];
ideal a(ii);
intvec v(ii);
for ( jj=1; jj<=nvars(basering); jj++ )
{
if ( #[ii]/var(jj) != 0)
{
a(ii) = a(ii) + var(jj);
v(ii)=v(ii),jj;
m[jj]=0;
v[jj]=0;
}
}
v(ii)=v(ii)[2..size(v(ii))];
}
if ( size(m)!=0 )
{
l = 2*(l div 2)+2;
ideal a(l) = simplify(m,2);
intvec v(l) = compress(v);
int n(l);
if ( size(#)==l-1 ) { n(l) = #[l-1]; }
}
}
else
{
l = 2;
ideal a(2) = maxideal(1);
intvec v(2) = v;
int n(2);
if ( size(#)==1 ) { n(2) = #[1]; }
}
//------------- start loop to order variables in each a(ii) -------------------
for ( kk=2; kk<=l; kk=kk+2 )
{
L = list();
n = 0;
//---------------- get valuation of all variables in a(kk) --------------------
for ( ii=1; ii<=size(a(kk)); ii++ )
{
C = coeffs(i,a(kk)[ii]);
w = nrows(C); // =(maximal occuring power of a(kk)[ii])+1
for ( jj=w[1]; jj>1; jj-- )
{
s = size(C[jj,1..ncols(C)]);
w[w[1]-jj+2] = sum(s);
}
// w[1] should represent the maximal occuring power of a(kk)[ii] so it
// has to be decreased by 1 since otherwise the constant term is also
// counted
w[1]=w[1]-1;
L[ii]=w;
n = size(w)*(size(w) > n) + n*(size(w) <= n);
}
intmat M(kk)[size(a(kk))][n];
for ( ii=1; ii<=size(a(kk)); ii++ )
{
if ( n==1 ) { w = L[ii]; M(kk)[ii,1] = w[1]; }
else { M(kk)[ii,1..n] = L[ii]; }
}
LM[kk-1] = a(kk);
LM[kk] = transpose(compress(M(kk)));
//------------------- compare valuation and insert in vec ---------------------
vec = sort(L)[2];
if ( n(kk) != 0 ) { vec = vec[size(vec)..1]; }
blockvec[kk div 2] = vec;
vec = sort(v(kk),vec)[1];
varvec = varvec,vec;
}
varvec = varvec[2..size(varvec)];
list result = varvec,blockvec,LM;
return(result);
}
example
{ "EXAMPLE:"; echo = 2;
ring s=0,(x,y,z,a,b),dp;
ideal i=ax2+ay3-b2x,abz+by2;
valvars (i,0,xyz);
}
///////////////////////////////////////////////////////////////////////////////
proc idealSplit(ideal I,list #)
"USAGE: idealSplit(id,timeF,timeS); id ideal and optional
timeF, timeS integers to bound the time which can be used
for factorization resp. standard basis computation
RETURN: a list of ideals such that their intersection
has the same radical as id
EXAMPLE: example idealSplit; shows an example
"
{
option(redSB);
int j,k,e;
int i=1;
int l=attrib(I,"isSB");
ideal J;
int timeF;
int timeS;
list re,fac,te;
if(size(#)==1)
{
if(typeof(#[1])=="ideal")
{
re=#;
}
else
{
timeF=#[1];
}
}
if(size(#)==2)
{
if(typeof(#[1])=="list")
{
re=#[1];
timeF=#[2];
}
else
{
timeF=#[1];
timeS=#[2];
}
}
if(size(#)==3){re=#[1];timeF=#[2];timeS=#[3];}
fac=timeFactorize(I[1],timeF);
while((size(fac[1])==2)&&(i<size(I)))
{
i++;
fac=timeFactorize(I[i],timeF);
}
if(size(fac[1])>2)
{
for(j=2;j<=size(fac[1]);j++)
{
I[i]=fac[1][j];
attrib(I,"isSB",1);
e=1;
k=0;
while(k<size(re))
{
k++;
if(size(reduce(re[k],I))==0){e=0;break;}
attrib(re[k],"isSB",1);
if(size(reduce(I,re[k]))==0){re=delete(re,k);k--;}
}
if(e)
{
if(l)
{
J=I;
J[i]=0;
J=simplify(J,2);
attrib(J,"isSB",1);
re=idealSplit(std(J,fac[1][j]),re,timeF,timeS);
}
else
{
re=idealSplit(timeStd(I,timeS),re,timeF,timeS);
}
}
}
return(re);
}
J=timeStd(I,timeS);
attrib(I,"isSB",1);
if(size(reduce(J,I))==0){return(re+list(I));}
return(re+idealSplit(J,re,timeF,timeS));
}
example
{ "EXAMPLE:"; echo = 2;
ring r=32003,(b,s,t,u,v,w,x,y,z),dp;
ideal i=
bv+su,
bw+tu,
sw+tv,
by+sx,
bz+tx,
sz+ty,
uy+vx,
uz+wx,
vz+wy,
bvz;
idealSplit(i);
}
///////////////////////////////////////////////////////////////////////////////
proc idealSimplify(ideal J,list #)
"USAGE: idealSimplify(id); id ideal
RETURN: ideal I = eliminate(Id,m) m is a product of variables
which are only linearly involved in the generators of id
EXAMPLE: example idealSimplify; shows an example
"
{
ideal I=J;
if(size(#)!=0){I=#[1];}
def R=basering;
matrix M=jacob(I);
ideal ma=maxideal(1);
int i,j,k;
map phi;
for(i=1;i<=nrows(M);i++)
{
for(j=1;j<=ncols(M);j++)
{
if(deg(M[i,j])==0)
{
ma[j]=(-1/M[i,j])*(I[i]-M[i,j]*var(j));
phi=R,ma;
I=phi(I);
J=phi(J);
for(k=1;k<=ncols(I);k++){I[k]=cleardenom(I[k]);}
M=jacob(I);
}
}
}
J=simplify(J,2);
for(i=1;i<=size(J);i++){J[i]=cleardenom(J[i]);}
return(J);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y,z,w,t),dp;
ideal i=
t,
x3+y2+2z,
x2+3y,
x2+y2+z2,
w2+z;
ideal j=idealSimplify(i);
ideal k=eliminate(i,zyt);
reduce(k,std(j));
reduce(j,std(k));
}
///////////////////////////////////////////////////////////////////////////////
/*
ring s=31991,(e,f,x,y,z,t,u,v,w,a,b,c,d),dp;
ring s=31991,(x,y,z,t,u,v,w,a,b,c,d,f,e,h),dp; //standard
ring s1=31991,(y,u,b,c,a,z,t,x,v,d,w,e,f,h),dp; //gut
v;
13,12,11,10,8,7,6,5,4,3,2,1,9,14
print(matrix(sort(maxideal(1),v)));
f,e,w,d,x,t,z,a,c,b,u,y,v,h
print(matrix(maxideal(1)));
y,u,b,c,a,z,t,x,v,d,w,e,f,h
v0;
14,9,12,11,10,8,7,6,5,4,3,2,1,13
print(matrix(sort(maxideal(1),v0)));
h,v,e,w,d,x,t,z,a,c,b,u,y,f
v1;v2;
9,12,11,10,8,7,6,5,4,3,2,1,13,14
13,12,11,10,8,7,6,5,4,3,2,1,9,14
Ev. Gute Ordnung fuer i:
========================
i=ad*x^d+ad-1*x^(d-1)+...+a1*x+a0, ad!=0
mit ar=(ar1,...,ark), k=size(i)
arj in K[..x^..]
d=deg_x(i) := max{deg_x(i[k]) | k=1..size(i)}
size_x(i,deg_x(i)..0) := size(ad),...,size(a0)
x>y <==
1. deg_x(i)>deg_y(i)
2. "=" in 1. und size_x lexikographisch
hier im Beispiel:
f: 5,1,0,1,2
u: 3,1,4
y: 3,1,3
b: 3,1,3
c: 3,1,3
a: 3,1,3
z: 3,1,3
t: 3,1,3
x: 3,1,2
v: 3,1,2
d: 3,1,2
w: 3,1,2
e: 3,1,2
probier mal:
ring s=31991,(f,u,y,z,t,a,b,c,v,w,d,e,h),dp; //standard
*/
|