/usr/share/singular/LIB/nctools.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 | //////////////////////////////////////////////////////////////////////////////
version="version nctools.lib 4.0.3.3 Sep_2016 "; // $Id: 99a47c4dd42714426abfe09b61bdf10dba6fcb8d $
category="Noncommutative";
info="
LIBRARY: nctools.lib General tools for noncommutative algebras
AUTHORS: Levandovskyy V., levandov@mathematik.uni-kl.de,
@* Lobillo, F.J., jlobillo@ugr.es,
@* Rabelo, C., crabelo@ugr.es,
@* Motsak, O., U@D, where U={motsak}, D={mathematik.uni-kl.de}
OVERVIEW:
Support: DFG (Deutsche Forschungsgesellschaft) and Metodos algebraicos y efectivos
en grupos cuanticos, BFM2001-3141, MCYT, Jose Gomez-Torrecillas (Main researcher).
PROCEDURES:
Gweights(r); compute weights for a compatible ordering in a G-algebra,
weightedRing(r); change the ordering of a ring to a weighted one,
ndcond(); the ideal of non-degeneracy conditions in G-algebra,
Weyl([p]); create Weyl algebra structure in a basering (two different realizations),
makeWeyl(n, [p]); return n-th Weyl algebra in (x(i),D(i)) presentation,
makeHeisenberg(N, [p,d]); return n-th Heisenberg algebra in (x(i),y(i),h) realization,
Exterior(); return qring, the exterior algebra of a basering,
findimAlgebra(M,[r]); create finite dimensional algebra structure from the basering and the multiplication matrix M,
superCommutative([b,e,Q]); return qring, a super-commutative algebra over a basering,
rightStd(I); compute right Groebner basis of an ideal,
rightNF(f,I); compute right normal form wrt a submodule,
rightModulo(M,N); compute kernel of a homomorphism of right modules,
moduloSlim(A,B); compute modulo command via slimgb
ncRelations(r); recover the non-commutative relations of a G-algebra,
isCentral(p); check for the commutativity of a polynomial in the G-algebra,
isNC(); check whether basering is noncommutative,
isCommutative(); check whether basering is commutative
isWeyl(); check whether basering is a Weyl algebra
UpOneMatrix(); return NxN matrix with 1's in the whole upper triagle,
AltVarStart(); return first alternating variable of a super-commutative algebra,
AltVarEnd(); return last alternating variable of a super-commutative algebra,
IsSCA(); check whether current ring is a super-commutative algebra,
makeModElimRing(R); equip a ring with module elimination ordering,
embedMat(M,m,n); embeds matrix M in a left upper corner of m times n matrix
";
LIB "ring.lib"; // for rootofUnity
LIB "poly.lib"; // for newtonDiag
LIB "matrix.lib"; // for submat
///////////////////////////////////////////////////////////////////////////////
// This procedure computes a weights vector for a G-algebra r
proc Gweights(def r)
"USAGE: Gweights(r); r a ring or a square matrix
RETURN: intvec
PURPOSE: compute an appropriate weight int vector for a G-algebra, i.e., such that
\foral\;i<j\;\;lm_w(d_{ij}) <_w x_i x_j.
@* the polynomials d_{ij} are taken from r itself, if it is of the type ring
@* or defined by the given square polynomial matrix
THEORY: @code{Gweights} returns an integer vector, whose weighting should be used to redefine the G-algebra in order
to get the same non-commutative structure w.r.t. a weighted ordering. If the input is a matrix and the output is the zero
vector then there is not a G-algebra structure associated to these relations with respect to the given variables.
@*Another possibility is to use @code{weightedRing} to obtain directly a G-algebra with the new appropriate (weighted) ordering.
EXAMPLE: example Gweights; shows examples
SEE ALSO: weightedRing
"{
int novalid=0;
if (typeof(r)=="ring") //a ring is admissible as input
{
setring r;
matrix tails;
def l = ncRelations(r);
tails = l[2]; // l=C,D we need D, the tails of the relations
}
else
{
matrix tails;
if ( (typeof(r)=="matrix") || (typeof(r)=="intmat") )
{
if ( nrows(r)==ncols(r) ) //the input is a square matrix
{
tails = matrix(r);
}
else
{
novalid = 1;
}
}
else
{
novalid=1;
}
}
if (novalid==0)
{
intmat IM = SimplMat(tails);
if ( size(IM)>1 )
{
int n = ncols(tails);
int m = nrows(IM)-1;
int m1 = 0;
int m2 = m;
int m3 = 0;
ring simplexring=(real,10),(x),lp;// The simplex procedure requires a basering of this type
matrix M = IM;
list sol = simplex (M,m,n,m1,m2,m3);
return(weightvector(sol));
}
else
{
"Invalid input"; //usually because the input is a one variable ring
return();
}
}
else
{
"The input must be a ring or a square matrix";
return();
}
}
example
{
"EXAMPLE:";echo=2;
ring r = (0,q),(a,b,c,d),lp;
matrix C[4][4];
C[1,2]=q; C[1,3]=q; C[1,4]=1; C[2,3]=1; C[2,4]=q; C[3,4]=q;
matrix D[4][4];
D[1,4]=(q-1/q)*b*c;
def S = nc_algebra(C,D); setring S; S;
Gweights(S);
def D=fetch(r,D);
Gweights(D);
}
///////////////////////////////////////////////////////////////////////////////
// This procedure take a ring r, call to Gweights(r) and use the output
// of Gweights(r) to make a change of order in r
// The output is a new ring, equal to r but the order
// r must be a G-algebra
proc weightedRing(def r)
"USAGE: weightedRing(r); r a ring
RETURN: ring
PURPOSE: equip the variables of the given ring with weights such that the relations of new ring (with weighted variables) satisfies the ordering condition for G-algebras:
e.g. \forall\;i<j\;\;lm_w(d_{ij})<_w x_i x_j.
NOTE: activate this ring with the \"setring\" command
EXAMPLE: example weightedRing; shows examples
SEE ALSO: Gweights
"{
def wv=Gweights(r);
if (typeof(wv)=="intvec")
{
setring r;
int n=nvars(r);
// Generating an nxn-intmat order
intmat m[n][n];
m[1,1]=wv[1];
int i;
for (i=2; i<=n; i++)
{
m[1,i]=wv[i];
m[i,n+2-i]=1;
}
// End of generation.
def lr=ncRelations(r);
string newringstring="ring newring=("+charstr(r)+"),("+varstr(r)+"),M("+string(m)+")";
execute (newringstring);
def lnewring=imap(r,lr);
return( nc_algebra(lnewring[1],lnewring[2]) );
}
else
{
"Invalid input.";//usually because the input is a one variable ring
return();
}
}
example
{
"EXAMPLE:";echo=2;
ring r = (0,q),(a,b,c,d),lp;
matrix C[4][4];
C[1,2]=q; C[1,3]=q; C[1,4]=1; C[2,3]=1; C[2,4]=q; C[3,4]=q;
matrix D[4][4];
D[1,4]=(q-1/q)*b*c;
def S = nc_algebra(C,D); setring S; S;
def t=weightedRing(S);
setring t; t;
}
///////////////////////////////////////////////////////////////////////////////
// This procedure computes ei+ej-f with f running in Newton(pij) and deletes the zero rows
static proc Cij(intmat M, int i,int j)
{
M=(-1)*M;
int nc=ncols(M);
intvec N;
int k;
for (k=1; k<=nrows(M); k++)
{
M[k,i]=M[k,i]+1;
M[k,j]=M[k,j]+1;
if (intvec(M[k,1..nc])!=0)
{
N=N,intvec(M[k,1..nc]);
} // we only want non-zero rows
}
if (size(N)>1)
{
N=N[2..size(N)]; // Deleting the zero added in the definition of N
M=intmat(N,size(N) div nc,nc); // Conversion from vector to matrix
}
else
{
intmat M[1][1]=0;
}
return (M);
}
///////////////////////////////////////////////////////////////////////////////
// This procedure run over the matrix of pij calculating Cij
static proc Ct(matrix P)
{
int k = ncols(P);
intvec T = 0;
int i,j;
// int notails=1;
def S;
for (j=2; j<=k; j++)
{
for (i=1; i<j; i++)
{
if ( P[i,j] != 0 )
{
// notails=0;
S = newtonDiag(P[i,j]);
S = Cij(S,i,j);
if ( size(S)>1 )
{
T = T,S;
}
}
}
}
if ( size(T)==1 )
{
intmat C[1][1] = 0;
}
else
{
T=T[2..size(T)]; // Deleting the zero added in the definition of T
intmat C = intmat(T,size(T) div k,k); // Conversion from vector to matrix
}
return (C);
}
///////////////////////////////////////////////////////////////////////////////
// The purpose of this procedure is to produce the input matrix required by simplex procedure
static proc SimplMat(matrix P)
{
intmat C=Ct(P);
if (size(C)>1)
{
int r = nrows(C);
int n = ncols(C);
int f = 1+n+r;
intmat M[f][n+1]=0;
int i;
for (i=2; i<=(n+1); i++)
{
M[1,i]=-1; // (0,-1,-1,-1,...) objective function in the first row
}
for (i=2; i<=f; i++) {M[i,1]=1;} // All the independent terms are 1
for (i=2; i<=(n+1); i++) {M[i,i]=-1;} // wi>=1 is an identity matrix
M[(n+2)..f,2..(n+1)]=(-1)*intvec(C); // <wi,a> >= 1, a in C ...
}
else
{
int n = ncols(P);
int f = 1+n;
intmat M[f][n+1]=0;
int i;
for (i=2; i<=(n+1); i++) {M[1,i]=-1;} // (0,-1,-1,-1,...) objective function in the first row
for (i=2; i<=f; i++) {M[i,1]=1;} // All the independent terms are 1
for (i=2; i<=(n+1); i++) {M[i,i]=-1;} // wi>=1 is an identity matrix
}
return (M);
}
///////////////////////////////////////////////////////////////////////////////
// This procedure generates a nice output of the simplex method consisting of a vector
// with the solutions. The vector is ordered.
static proc weightvector(list l)
"ASSUME: l is the output of simplex.
RETURN: if there is a solution, an intvec with it will be returned"
{
matrix m=l[1];
intvec nv=l[3];
int sol=l[2];
int rows=nrows(m);
int N=l[6];
intmat wv[1][N]=0;
int i;
if (sol)
{
"no solution satisfies the given constraints";
}
else
{
for ( i = 2; i <= rows; i++ )
{
if ( nv[i-1] <= N )
{
wv[1,nv[i-1]]=int(m[i,1]);
}
}
}
return (intvec(wv));
}
///////////////////////////////////////////////////////////////////////////////
// This procedure recover the non-conmutative relations (matrices C and D)
proc ncRelations(def r)
"USAGE: ncRelations(r); r a ring
RETURN: list L with two elements, both elements are of type matrix:
@* L[1] = matrix of coefficients C,
@* L[2] = matrix of polynomials D
PURPOSE: recover the noncommutative relations via matrices C and D from
a noncommutative ring
SEE ALSO: ringlist, G-algebras
EXAMPLE: example ncRelations; shows examples
"{
list l;
if (typeof(r)=="ring")
{
int n=nvars(r);
matrix C[n][n]=0;
matrix D[n][n]=0;
poly f; poly g;
if (n>1)
{
int i,j;
for (i=2; i<=n; i++)
{
for (j=1; j<i; j++)
{
f=var(i)*var(j); // yx=c*xy+...
g=var(j)*var(i); // xy
while (C[j,i]==0)
{
if (leadmonom(f)==leadmonom(g))
{
C[j,i]=leadcoef(f);
D[j,i]=D[j,i]+f-lead(f);
}
else
{
D[j,i]=D[j,i]+lead(f);
f=f-lead(f);
}
}
}
}
l=C,D;
}
else { "The ring must have two or more variables"; }
}
else { "The input must be of a type ring";}
return (l);
}
example
{
"EXAMPLE:";echo=2;
ring r = 0,(x,y,z),dp;
matrix C[3][3]=0,1,2,0,0,-1,0,0,0;
print(C);
matrix D[3][3]=0,1,2y,0,0,-2x+y+1;
print(D);
def S=nc_algebra(C,D);setring S; S;
def l=ncRelations(S);
print (l[1]);
print (l[2]);
}
///////////////////////////////////////////////////////////////////////////////
proc findimAlgebra(matrix M, list #)
"USAGE: findimAlgebra(M,[r]); M a matrix, r an optional ring
RETURN: ring
PURPOSE: define a finite dimensional algebra structure on a ring
NOTE: the matrix M is used to define the relations x(i)*x(j) = M[i,j] in the
basering (by default) or in the optional ring r.
@* The procedure equips the ring with the noncommutative structure.
@* The procedure exports the ideal (not a two-sided Groebner basis!), called @code{fdQuot}, for further qring definition.
THEORY: finite dimensional algebra can be represented as a factor algebra
of a G-algebra modulo certain two-sided ideal. The relations of a f.d. algebra are thus naturally divided into two groups: firstly, the relations
on the variables of the ring, making it into G-algebra and the rest of them, which constitute the ideal which will be factored out.
EXAMPLE: example findimAlgebra; shows examples
"
{
if (size(#) >0)
{
if ( typeof(#[1])!="ring" ) { return();}
else
{
def @R1 = #[1];
setring @R1;
}
}
int i,j;
int n=nvars(basering);
poly p;
ideal I;
number c;
matrix C[n][n];
matrix D[n][n];
for (i=1; i<=n; i++)
{
for (j=i; j<=n; j++)
{
p=var(i)*var(j)-M[i,j];
if ( (ncols(I)==1) && (I[1]==0) ) { I=p; }
else { I=I,p; }
if (j>i)
{
if ((M[i,j]!=0) && (M[j,i]!=0))
{
c = leadcoef(M[j,i])/leadcoef(M[i,j]);
}
else
{
c = 1;
}
C[i,j]=c;
D[i,j]= M[j,i] -c*M[i,j];
}
}
}
def save = basering;
def S = nc_algebra(C,D); setring S;
ideal fdQuot = fetch(save,I);
export fdQuot;
return(S);
}
example
{
"EXAMPLE:";echo=2;
ring r=(0,a,b),(x(1..3)),dp;
matrix S[3][3];
S[2,3]=a*x(1); S[3,2]=-b*x(1);
def A=findimAlgebra(S); setring A;
fdQuot = twostd(fdQuot);
qring Qr = fdQuot;
Qr;
}
///////////////////////////////////////////////////////////////////////////////
proc isCentral(poly p, list #)
"USAGE: isCentral(p); p poly
RETURN: int, 1 if p commutes with all variables and 0 otherwise
PURPOSE: check whether p is central in a basering (that is, commutes with every generator of the ring)
NOTE: if @code{printlevel} > 0, the procedure displays intermediate information (by default, @code{printlevel}=0 )
EXAMPLE: example isCentral; shows examples
"{
//v an integer (with v!=0, procedure will be verbose)
int N = nvars(basering);
int in;
int flag = 1;
poly q = 0;
for (in=1; in<=N; in++)
{
q = p*var(in)-var(in)*p;
if (q!=0)
{
if ( (size(#) >0 ) || (printlevel>0) )
{
"Non-central at:", var(in);
}
flag = 0;
}
}
return(flag);
}
example
{
"EXAMPLE:";echo=2;
ring r=0,(x,y,z),dp;
matrix D[3][3]=0;
D[1,2]=-z;
D[1,3]=2*x;
D[2,3]=-2*y;
def S = nc_algebra(1,D); setring S;
S; // this is U(sl_2)
poly c = 4*x*y+z^2-2*z;
printlevel = 0;
isCentral(c);
poly h = x*c;
printlevel = 1;
isCentral(h);
}
///////////////////////////////////////////////////////////////////////////////
proc UpOneMatrix(int N)
"USAGE: UpOneMatrix(n); n an integer
RETURN: intmat
PURPOSE: compute an n x n matrix with 1's in the whole upper triangle
NOTE: helpful for setting noncommutative algebras with complicated
coefficient matrices
EXAMPLE: example UpOneMatrix; shows examples
"{
int ii,jj;
intmat U[N][N]=0;
for (ii=1;ii<N;ii++)
{
for (jj=ii+1;jj<=N;jj++)
{
U[ii,jj]=1;
}
}
return(U);
}
example
{
"EXAMPLE:";echo=2;
ring r = (0,q),(x,y,z),dp;
matrix C = UpOneMatrix(3);
C[1,3] = q;
print(C);
def S = nc_algebra(C,0); setring S;
S;
}
///////////////////////////////////////////////////////////////////////////////
proc ndcond(list #)
"USAGE: ndcond();
RETURN: ideal
PURPOSE: compute the non-degeneracy conditions of the basering
NOTE: if @code{printlevel} > 0, the procedure displays intermediate information (by default, @code{printlevel}=0 )
EXAMPLE: example ndcond; shows examples
"
{
// internal documentation, for tests etc
// 1st arg: v an optional integer (if v!=0, will be verbose)
// if the second argument is given, produces ndc w.r.t. powers x^N
int N = 1;
int Verbose = 0;
if ( size(#)>=1 ) { Verbose = int(#[1]); }
if ( size(#)>=2 ) { N = int(#[2]); }
Verbose = ((Verbose) || (printlevel>0));
int cnt = 1;
int numvars = nvars(basering);
int a,b,c;
poly p = 1;
ideal res = 0;
for (cnt=1; cnt<=N; cnt++)
{
if (Verbose) { "Processing degree :",cnt;}
for (a=1; a<=numvars-2; a++)
{
for (b=a+1; b<=numvars-1; b++)
{
for(c=b+1; c<=numvars; c++)
{
p = (var(c)^cnt)*(var(b)^cnt);
p = p*(var(a)^cnt);
p = p-(var(c)^cnt)*((var(b)^cnt)*(var(a)^cnt));
if (Verbose) {a,".",b,".",c,".";}
if (p!=0)
{
if ( res==0 )
{
res[1] = p;
}
else
{
res = res,p;
}
if (Verbose) { "failed:",p; }
}
}
}
}
if (Verbose) { "done"; }
}
return(res);
}
example
{
"EXAMPLE:";echo=2;
ring r = (0,q1,q2),(x,y,z),dp;
matrix C[3][3];
C[1,2]=q2; C[1,3]=q1; C[2,3]=1;
matrix D[3][3];
D[1,2]=x; D[1,3]=z;
def S = nc_algebra(C,D); setring S;
S;
ideal j=ndcond(); // the silent version
j;
printlevel=1;
ideal i=ndcond(); // the verbose version
i;
}
///////////////////////////////////////////////////////////////////////////////
proc Weyl(list #)
"USAGE: Weyl()
RETURN: ring
PURPOSE: create a Weyl algebra structure on the basering
NOTE: Activate this ring using the command @code{setring}.
@*Assume the number of variables of a basering is 2k.
(if the number of variables is odd, an error message will be returned)
@* by default, the procedure treats first k variables as coordinates x_i and the last k as differentials d_i
@* if a non-zero optional argument is given, the procedure treats 2k variables of a basering as k pairs (x_i,d_i), i.e. variables with odd numbers are treated as coordinates and with even numbers as differentials
SEE ALSO: makeWeyl
EXAMPLE: example Weyl; shows examples
"
{
//there are two possibilities for choosing the PBW basis.
//The variables have names x(i) for coordinates and d(i) for partial
// differentiations. By default, the procedure
//creates a ring, where the variables are ordered as x(1..n),d(1..n). the
// tensor product-like realization x(1),d(1),x(2),d(2),... is used.
string rname=nameof(basering);
if ( rname == "basering") // i.e. no ring has been set yet
{
"You have to call the procedure from the ring";
return();
}
int @chr = 0;
if ( size(#) > 0 )
{
if ( typeof( #[1] ) == "int" )
{
@chr = #[1];
}
}
int nv = nvars(basering);
int N = nv div 2;
if ((nv % 2) != 0)
{
"Cannot create Weyl structure for an odd number of generators";
return();
}
matrix @D[nv][nv];
int i;
for ( i=1; i<=N; i++ )
{
if ( @chr==0 ) // default
{
@D[i,N+i]=1;
}
else
{
@D[2*i-1,2*i]=1;
}
}
def @R = nc_algebra(1,@D);
return(@R);
}
example
{
"EXAMPLE:";echo=2;
ring A1=0,(x(1..2),d(1..2)),dp;
def S=Weyl();
setring S; S;
kill A1,S;
ring B1=0,(x1,d1,x2,d2),dp;
def S=Weyl(1);
setring S; S;
}
///////////////////////////////////////////////////////////////////////////////
proc makeHeisenberg(int N, list #)
"USAGE: makeHeisenberg(n, [p,d]); int n (setting 2n+1 variables), optional int p (field characteristic), optional int d (power of h in the commutator)
RETURN: ring
PURPOSE: create the n-th Heisenberg algebra in the variables x(1),y(1),...,x(n),y(n),h over the rationals Q or F_p with the relations
\forall\;i\in\{1,2,\ldots,n\}\;\;y(j)x(i) = x(i)y(j)+h^d.
SEE ALSO: makeWeyl
NOTE: activate this ring with the @code{setring} command
@* If p is not prime, the next larger prime number will be used.
EXAMPLE: example makeHeisenberg; shows examples
"
{
int @chr = 0;
int @deg = 1;
if ( size(#) > 0 )
{
if ( typeof( #[1] ) == "int" )
{
@chr = #[1];
}
}
if ( size(#) > 1 )
{
if ( typeof( #[2] ) == "int" )
{
@deg = #[2];
if (@deg <1) { @deg = 1; }
}
}
ring @@r=@chr,(x(1..N),y(1..N),h),lp;
matrix D[2*N+1][2*N+1];
int i;
for (i=1;i<=N;i++)
{
D[i,N+i]=h^@deg;
}
return(nc_algebra(1,D));
}
example
{
"EXAMPLE:";echo=2;
def a = makeHeisenberg(2);
setring a; a;
def H3 = makeHeisenberg(3, 7, 2);
setring H3; H3;
}
///////////////////////////////////////////////////////////////////////////////
proc superCommutative(list #)
"USAGE: superCommutative([b,[e, [Q]]]);
RETURN: qring
PURPOSE: create a super-commutative algebra (as a GR-algebra) over a basering,
NOTE: activate this qring with the \"setring\" command.
NOTE: if b==e then the resulting ring is commutative.
@* By default, @code{b=1, e=nvars(basering), Q=0}.
THEORY: given a basering, this procedure introduces the anti-commutative relations
@* var(j)var(i)=-var(i)var(j) for all e>=j>i>=b and creates the quotient
@* of the anti-commutative algebra modulo the two-sided ideal, generated by
@* x(b)^2, ..., x(e)^2[ + Q]
DISPLAY: If @code{printlevel} > 1, warning debug messages will be printed
EXAMPLE: example superCommutative; shows examples
"
{
int fprot = (printlevel > 1); // (find(option(),"prot") != 0);
string rname=nameof(basering);
if ( rname == "basering") // i.e. no ring has been set yet
{
ERROR("You have to call the procedure from the ring");
}
def saveRing = basering;
int N = nvars(saveRing);
int b = 1;
int e = N;
int flag = 0;
ideal Q = 0;
if(size(#)>0)
{
if(typeof(#[1]) != "int")
{
ERROR("The argument 'b' must be an integer!");
}
b = #[1];
if((b < 1)||(b > N))
{
ERROR("The argument 'b' must within [1..nvars(basering)]!");
}
}
if(size(#)>1)
{
if(typeof(#[2]) != "int")
{
ERROR("The argument 'e' must be an integer!");
}
e = #[2];
if((e < 1)||(e > N))
{
ERROR("The argument 'e' must within [1..nvars(basering)]!");
}
if(e < b)
{
ERROR("The argument 'e' must be bigger or equal to 'b'!");
}
}
if(size(#)>2)
{
if(typeof(#[3]) != "ideal")
{
ERROR("The argument 'Q' must be an ideal!");
}
Q = #[3];
}
/* if(size(#)>3)
{
if(typeof(#[4]) != "int")
{
ERROR("The argument 'flag' must be an integer!");
}
flag = #[4];
}
*/
int iSavedDegBoung = degBound;
if( (b == e) && (flag == 0) ) // commutative ring!!!
{
if( fprot == 1)
{
print("Warning: (b==e) means that the resulting ring will be commutative!");
}
degBound=0;
Q = std(Q + (var(b)^2));
degBound = iSavedDegBoung;
qring @EA = Q; // and it will be internally commutative as well!!!
option(qringNF);
return(@EA);
}
/*
// Singular'(H.S.) politics: no ring copies!
// in future nc_algebra() should return a new ring!!!
list CurrRing = ringlist(basering);
def @R = ring(CurrRing);
setring @R; // @R;
*/
int i, j;
if( (char(basering)==2) && (flag == 0) )// commutative ring!!!
{
if( fprot == 1)
{
print("Warning: (char == 2) means that the resulting ring will be commutative!");
}
ideal I;
for (i = e - b + 1; i > 0; i--)
{
I[i] = var(i + b - 1)^2;
}
degBound=0;
Q = std(I + Q);
degBound = iSavedDegBoung;
qring @EA = Q; // and it will be internally commutative as well!!!
option(qringNF);
return(@EA);
}
if( (b == 1) && (e == N) ) // just an exterior algebra?
{
def S = nc_algebra(-1, 0); // define ground G-algebra!
setring S;
} else
{
matrix @E = UpOneMatrix(N);
for ( i = b; i < e; i++ )
{
for ( j = i+1; j <= e; j++ )
{
@E[i, j] = -1;
}
}
def S = nc_algebra(@E, 0); // define ground G-algebra!
setring S;
}
ideal @I;
for (i = e - b + 1; i > 0; i--)
{
@I[i] = var(i + b - 1)^2;
}
degBound=0;
@I = twostd(@I); // must be computed within the ground G-algebra => problems with local orderings!
degBound = iSavedDegBoung;
qring @EA = @I;
ideal @Q = twostd(fetch(saveRing, Q));
if( size(@Q) > 0 )
{
qring @EA2 = @Q;
}
attrib(basering, "isSCA", 1==1);
attrib(basering, "iAltVarStart", b);
attrib(basering, "iAltVarEnd", e);
//"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
return(basering);
}
example
{
"EXAMPLE:";echo=2;
ring R = 0,(x(1..4)),dp; // global!
def ER = superCommutative(); // the same as Exterior (b = 1, e = N)
setring ER; ER;
"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
kill R; kill ER;
ring R = 0,(x(1..4)),(lp(1), dp(3)); // global!
def ER = superCommutative(2); // b = 2, e = N
setring ER; ER;
"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
kill R; kill ER;
ring R = 0,(x, y, z),(ds(1), dp(2)); // mixed!
def ER = superCommutative(2,3); // b = 2, e = 3
setring ER; ER;
"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
x + 1 + z + y; // ordering on variables: y > z > 1 > x
std(x - x*x*x);
std(ideal(x - x*x*x, x*x*z + y, z + y*x*x));
kill R; kill ER;
ring R = 0,(x, y, z),(ds(1), dp(2)); // mixed!
def ER = superCommutative(2, 3, ideal(x - x*x, x*x*z + y, z + y*x*x )); // b = 2, e = 3
setring ER; ER;
"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
}
// Please, don't throw this away!!! Needed for backward compatibility.
proc SuperCommutative(list #)
"USAGE: please use @code{superCommutative} instead
"
{
"// This procedure is deprecated. Please use superCommutative instead";
return( superCommutative(#) );
}
example
{
"EXAMPLE:";
"Procedure is deprecated. Please use superCommutative instead";
}
static proc ParseSCA()
"
RETURN: list {AltVarStart, AltVarEnd} is currRing is SCA, returns undef otherwise.
NOTE: rings with only one non-commutative variable are commutative rings which are super-sommutative itself!
"
{
if(typeof(attrib(basering, "isSCA"))=="int") // workaround, if(defined()) doesn't work!!!!
{
if(typeof(attrib(basering, "iAltVarStart"))=="int")
{
if(typeof(attrib(basering, "iAltVarEnd"))=="int")
{
if(attrib(basering, "isSCA"))
{
return(list(
attrib(basering, "iAltVarStart"),
attrib(basering, "iAltVarEnd")
));
}
}
}
}
def saveRing = basering;
int i, j;
int N = nvars(saveRing);
int b = N+1;
int e = -1;
int fprot = 0; // (find(option(),"prot") != 0);
if( size(ideal(saveRing)) == 0 )
{
return("SCA rings are factors by (at least) squares!"); // no squares in the factor ideal!
}
list L = ringlist(saveRing);
if( size(L)!=6 )
{
if(fprot)
{
print("// Warning: The current ring is internally commutative!");
}
for( i = N; i > 0; i-- )
{
if( NF(var(i)^2, std(0)) == 0 )
{
if( (fprot == 1) and (i > 1) )
{
print("// Warning: the SCA representation of the current commutative factor ring may be ambiguous!");
}
return( list(i, i) ); // this is not unique in this case! there may be other squares in the factor ideal!
}
}
return("The current commutative ring is not SCA! (Wrong quotient ideal)"); // no squares in the factor ideal!
}
module D = simplify(L[6], 2 + 4);
if( size(D)>0 )
{
return("The current ring is not SCA! (D!=0)");
}
matrix C = L[5];
poly c;
for( i = 1; i < N; i++ )
{
for( j = i+1; j <= N; j++ )
{
c = C[i, j];
if( c == -1 )
{
if(i < b)
{
b = i;
}
if(j > e)
{
e = j;
}
} else
{ // should commute
if( c!=1 )
{
return("The current ring is not SCA! (C["+ string(i)+"," + string(j)+"]!=1)");
}
}
}
}
if( (b > N) || (e < 1))
{
if(fprot)
{
print("Warning: The current ring is a commutative GR-algebra!");
}
for( i = N; i > 0; i-- )
{
if( NF(var(i)^2, std(0)) == 0 )
{
if( (fprot == 1) and (i > 1) )
{
print("Warning: the SCA representation of the current factor ring may be ambiguous!");
}
return( list(i, i) ); // this is not unique in this case! there may be other squares in the factor ideal!
}
}
return("The current commutative GR-algebra is not SCA! (Wrong quotient ideal)"); // no squares in the factor ideal!
}
for( i = 1; i < N; i++ )
{
for( j = i+1; j <= N; j++ )
{
c = C[i, j];
if( (b <= i) && (j <= e) ) // S <= i < j <= E
{ // anticommutative part
if( c!= -1 )
{
return("The current ring is not SCA! (C["+ string(i)+"," + string(j)+"]!=-1)");
}
} else
{ // should commute
if( c!=1 )
{
return("The current ring is not SCA! (C["+ string(i)+"," + string(j)+"]!=1)");
}
}
}
}
for( i = b; i <= e; i++ )
{
if( NF(var(i)^2, std(0)) != 0 )
{
return("The current ring is not SCA! (Wrong quotient ideal)");
}
}
////////////////////////////////////////////////////////////////////////
// ok. this is a SCA!!!
return(list(b, e));
}
///////////////////////////////////////////////////////////////////////////////
proc AltVarStart()
"USAGE: AltVarStart();
RETURN: int
PURPOSE: returns the number of the first alternating variable of basering
NOTE: basering should be a super-commutative algebra constructed by
@* the procedure @code{superCommutative}, emits an error otherwise
EXAMPLE: example AltVarStart; shows examples
"
{
def l = ParseSCA();
if( typeof(l) != "string" )
{
return(l[1]);
}
ERROR(l);
}
example
{
"EXAMPLE:";echo=2;
ring R = 0,(x(1..4)),dp; // global!
def ER = superCommutative(2); // (b = 2, e = N)
setring ER; ER;
"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
setring R;
"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
kill R, ER;
//////////////////////////////////////////////////////////////////
ring R = 2,(x(1..4)),dp; // the same in char. = 2!
def ER = superCommutative(2); // (b = 2, e = N)
setring ER; ER;
"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
setring R;
"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
}
///////////////////////////////////////////////////////////////////////////////
proc AltVarEnd()
"USAGE: AltVarStart();
RETURN: int
PURPOSE: returns the number of the last alternating variable of basering
NOTE: basering should be a super-commutative algebra constructed by
@* the procedure @code{superCommutative}, emits an error otherwise
EXAMPLE: example AltVarEnd; shows examples
"
{
def l = ParseSCA();
if( typeof(l) != "string" )
{
return(l[2]);
}
ERROR(l);
}
example
{
"EXAMPLE:";echo=2;
ring R = 0,(x(1..4)),dp; // global!
def ER = superCommutative(2); // (b = 2, e = N)
setring ER; ER;
"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
setring R;
"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
kill R, ER;
//////////////////////////////////////////////////////////////////
ring R = 2,(x(1..4)),dp; // the same in char. = 2!
def ER = superCommutative(2); // (b = 2, e = N)
setring ER; ER;
"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
setring R;
"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
}
///////////////////////////////////////////////////////////////////////////////
proc IsSCA()
"USAGE: IsSCA();
RETURN: int
PURPOSE: returns 1 if basering is a super-commutative algebra and 0 otherwise
EXAMPLE: example IsSCA; shows examples
"
{
def l = ParseSCA();
if( typeof(l) != "string" )
{
return(1);
}
if( find(option(),"prot") != 0 )
{
print(l);
}
return(0);
}
example
{
"EXAMPLE:";echo=2;
/////////////////////////////////////////////////////////////////////
ring R = 0,(x(1..4)),dp; // commutative
if(IsSCA())
{ "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; }
else
{ "Not a super-commutative algebra!!!"; }
kill R;
/////////////////////////////////////////////////////////////////////
ring R = 0,(x(1..4)),dp;
def S = nc_algebra(1, 0); setring S; S; // still commutative!
if(IsSCA())
{ "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; }
else
{ "Not a super-commutative algebra!!!"; }
kill R, S;
/////////////////////////////////////////////////////////////////////
ring R = 0,(x(1..4)),dp;
list CurrRing = ringlist(R);
def ER = ring(CurrRing);
setring ER; // R;
matrix E = UpOneMatrix(nvars(R));
int i, j; int b = 2; int e = 3;
for ( i = b; i < e; i++ )
{
for ( j = i+1; j <= e; j++ )
{
E[i, j] = -1;
}
}
def S = nc_algebra(E,0); setring S; S;
if(IsSCA())
{ "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; }
else
{ "Not a super-commutative algebra!!!"; }
kill R, ER, S;
/////////////////////////////////////////////////////////////////////
ring R = 0,(x(1..4)),dp;
def ER = superCommutative(2); // (b = 2, e = N)
setring ER; ER;
if(IsSCA())
{ "This is a SCA! Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; }
else
{ "Not a super-commutative algebra!!!"; }
kill R, ER;
}
///////////////////////////////////////////////////////////////////////////////
proc Exterior(list #)
"USAGE: Exterior();
RETURN: qring
PURPOSE: create the exterior algebra of a basering
NOTE: activate this qring with the \"setring\" command
THEORY: given a basering, this procedure introduces the anticommutative relations x(j)x(i)=-x(i)x(j) for all j>i,
@* moreover, creates a factor algebra modulo the two-sided ideal, generated by x(i)^2 for all i
EXAMPLE: example Exterior; shows examples
"
{
string rname=nameof(basering);
if ( rname == "basering") // i.e. no ring has been set yet
{
"You have to call the procedure from the ring";
return();
}
int N = nvars(basering);
string NewRing = "ring @R=("+charstr(basering)+"),("+varstr(basering)+"),("+ordstr(basering)+");";
execute(NewRing);
matrix @E = UpOneMatrix(N);
@E = -1*(@E);
def @@RR = nc_algebra(@E,0); setring @@RR;
int i;
ideal Q;
for ( i=1; i<=N; i++ )
{
Q[i] = var(i)^2;
}
Q = twostd(Q);
qring @EA = Q;
return(@EA);
}
example
{
"EXAMPLE:";echo=2;
ring R = 0,(x(1..3)),dp;
def ER = Exterior();
setring ER;
ER;
}
///////////////////////////////////////////////////////////////////////////////
proc makeWeyl(int n, list #)
"USAGE: makeWeyl(n,[p]); n an integer, n>0; p an optional integer (field characteristic)
RETURN: ring
PURPOSE: create the n-th Weyl algebra over the rationals Q or F_p
NOTE: activate this ring with the \"setring\" command.
@* The presentation of an n-th Weyl algebra is classical: D(i)x(i)=x(i)D(i)+1,
@* where x(i) correspond to coordinates and D(i) to partial differentiations, i=1,...,n.
@* If p is not prime, the next larger prime number will be used.
SEE ALSO: Weyl
EXAMPLE: example makeWeyl; shows examples
"{
if (n<1)
{
print("Incorrect input");
return();
}
int @p = 0;
if ( size(#) > 0 )
{
if ( typeof( #[1] ) == "int" )
{
@p = #[1];
}
}
if (n ==1)
{
ring @rr = @p,(x,D),dp;
}
else
{
ring @rr = @p,(x(1..n),D(1..n)),dp;
}
setring @rr;
def @rrr = Weyl();
return(@rrr);
}
example
{ "EXAMPLE:"; echo = 2;
def a = makeWeyl(3);
setring a;
a;
}
//////////////////////////////////////////////////////////////////////
proc isNC()
"USAGE: isNC();
PURPOSE: check whether a basering is commutative or not
RETURN: int, 1 if basering is noncommutative and 0 otherwise
EXAMPLE: example isNC; shows examples
"{
string rname=nameof(basering);
if ( rname == "basering") // i.e. no ring has been set yet
{
"You have to call the procedure from the ring";
return();
}
int n = nvars(basering);
int i,j;
poly p;
for (i=1; i<n; i++)
{
for (j=i+1; j<=n; j++)
{
p = var(j)*var(i) - var(i)*var(j);
if (p!=0) { return(1);}
}
}
return(0);
}
example
{ "EXAMPLE:"; echo = 2;
def a = makeWeyl(2);
setring a;
isNC();
kill a;
ring r = 17,(x(1..7)),dp;
isNC();
kill r;
}
///////////////////////////////////////////////////////////////////////////////
proc rightStd(def I)
"USAGE: rightStd(I); I an ideal/ module
PURPOSE: compute a right Groebner basis of I
RETURN: the same type as input
EXAMPLE: example rightStd; shows examples
"
{
def A = basering;
def Aopp = opposite(A);
setring Aopp;
def Iopp = oppose(A,I);
def Jopp = groebner(Iopp);
setring A;
def J = oppose(Aopp,Jopp);
return(J);
}
example
{ "EXAMPLE:"; echo = 2;
LIB "ncalg.lib";
def A = makeUsl(2);
setring A;
ideal I = e2,f;
option(redSB);
option(redTail);
ideal LI = std(I);
LI;
ideal RI = rightStd(I);
RI;
}
///////////////////////////////////////////////////////////////////////////////
proc rightSyz(def I)
"USAGE: rightSyz(I); I an ideal/ module
PURPOSE: compute a right syzygy module of I
RETURN: the same type as input
EXAMPLE: example rightSyz; shows examples
"
{
def A = basering;
def Aopp = opposite(A);
setring Aopp;
def Iopp = oppose(A,I);
def Jopp = syz(Iopp);
setring A;
def J = oppose(Aopp,Jopp);
return(J);
}
example
{ "EXAMPLE:"; echo = 2;
ring r = 0,(x,d),dp;
def S = nc_algebra(1,1); setring S; // the first Weyl algebra
ideal I = x,d;
module LS = syz(I);
print(LS);
module RS = rightSyz(I);
print(RS);
}
///////////////////////////////////////////////////////////////////////////////
proc rightNF(def v, def M)
"USAGE: rightNF(I); v a poly/vector, M an ideal/module
PURPOSE: compute a right normal form of v w.r.t. M
RETURN: poly/vector (as of the 1st argument)
EXAMPLE: example rightNF; shows examples
"
{
def A = basering;
def Aopp = opposite(A);
setring Aopp;
def vopp = oppose(A,v);
def Mopp = oppose(A,M);
Mopp = std(Mopp);
def wopp = NF(vopp,Mopp);
setring A;
def w = oppose(Aopp,wopp);
w = simplify(w,2); // skip zeros in ideal/module
return(w);
}
example
{ "EXAMPLE:"; echo = 2;
LIB "ncalg.lib";
ring r = 0,(x,d),dp;
def S = nc_algebra(1,1); setring S; // Weyl algebra
ideal I = x; I = std(I);
poly p = x*d+1;
NF(p,I); // left normal form
rightNF(p,I); // right normal form
}
// **********************************
// * NF: Example for vector/module: *
// **********************************
// module M = [x,0],[0,d]; M = std(M);
// vector v = (x*d+1)*[1,1];
// print(NF(v,M));
// print(rightNF(v,M));
///////////////////////////////////////////////////////////////////////////////
proc rightModulo(def M, def N)
"USAGE: rightModulo(M,N); M,N are ideals/modules
PURPOSE: compute a right representation of the module (M+N)/N
RETURN: module
ASSUME: M,N are presentation matrices for right modules
EXAMPLE: example rightModulo; shows examples
"
{
def A = basering;
def Aopp = opposite(A);
setring Aopp;
def Mopp = oppose(A,M);
def Nopp = oppose(A,N);
def Kopp = modulo(Mopp,Nopp);
setring A;
def K = oppose(Aopp,Kopp);
return(K);
}
example
{ "EXAMPLE:"; echo = 2;
LIB "ncalg.lib";
def A = makeUsl(2);
setring A;
option(redSB);
option(redTail);
ideal I = e2,f2,h2-1;
I = twostd(I);
print(matrix(I));
ideal E = std(e);
ideal TL = e,h-1; // the result of left modulo
TL;
ideal T = rightModulo(E,I);
T = rightStd(T+I);
T = rightStd(rightNF(T,I)); // make the output canonic
T;
}
//////////////////////////////////////////////////////////////////////
proc isCommutative ()
"USAGE: isCommutative();
RETURN: int, 1 if basering is commutative, or 0 otherwise
PURPOSE: check whether basering is commutative
EXAMPLE: example isCommutative; shows an example
"
{
int iscom = 1;
list L = ringlist(basering);
if (size(L) > 4) // basering is nc_algebra
{
matrix C = L[5];
matrix D = L[6];
if (size(module(D)) <> 0) { iscom = 0; }
else
{
matrix U = UpOneMatrix(nvars(basering));
if (size(module(C-U)) <> 0) { iscom = 0; }
}
}
return(iscom);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
isCommutative();
def D = Weyl(); setring D;
isCommutative();
setring r;
def R = nc_algebra(1,0); setring R;
isCommutative();
}
//////////////////////////////////////////////////////////////////////
proc isWeyl ()
"USAGE: isWeyl();
RETURN: int, 1 if basering is a Weyl algebra, or 0 otherwise
PURPOSE: check whether basering is a Weyl algebra
EXAMPLE: example isWeyl; shows an example
"
{
int i,j;
int notW = 0;
int N = nvars(basering);
if (N mod 2 <> 0) { return(notW); } // odd number of generators
int n = N div 2;
list L = ringlist(basering);
if (size(L) < 6) { return(notW); } // basering is commutative
matrix C = L[5];
matrix D = L[6];
matrix U = UpOneMatrix(N);
if (size(ideal(C-U)) <> 0) { return(notW); } // lt(xy)<>lt(yx)
ideal I = ideal(D);
if (size(I) <> n) { return(notW); } // not n entries<>0
I = simplify(I,4+2);
int sI = size(I);
if (sI > 2) { return(notW); } // more than 2 distinct entries
for (i=1; i<=sI; i++)
{
if (I[i]<>1 && I[i]<>-1) { return (notW); } // other values apart from 1,-1
}
ideal Ro,Co;
for (i=1; i<=N; i++)
{
Ro = D[1..N,i];
Co = D[i,1..N];
if (size(Ro)>1 || size(Co)>1)
{
return(int(0)); // var(i) doesn't commute with more than 1 other vars
}
}
return(int(1)); // all tests passed: basering is Weyl algebra
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(a,b,c,d),dp;
isWeyl();
def D = Weyl(1); setring D; //make from r a Weyl algebra
b*a;
isWeyl();
ring t = 0,(Dx,x,y,Dy),dp;
matrix M[4][4]; M[1,2]=-1; M[3,4]=1;
def T = nc_algebra(1,M); setring T;
isWeyl();
}
//////////////////////////////////////////////////////////////////////
proc embedMat(matrix A, int m, int n)
"USAGE: embedMat(A,m,n); A,B matrix/module
RETURN: matrix
PURPOSE: embed A in the left upper corner of mxn matrix
EXAMPLE: example embedMat; shows an example
"
{
// returns A embedded in the left upper corner of mxn matrix
int rA = nrows(A);
int cA = ncols(A);
if ((rA >m) || (cA>n))
{
ERROR("wrong dimensions of the new matrix");
}
matrix @M[m][n];
int i,j;
for(i=1;i<=rA; i++)
{
for(j=1;j<=cA; j++)
{
@M[i,j]=A[i,j];
}
}
return(@M);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(a,b,c,d),dp;
matrix M[2][3]; M[1,1]=a; M[1,2]=b;M[2,2]=d;M[1,3]=c;
print(M);
print(embedMat(M,3,4));
matrix N = M; N[2,2]=0;
print(embedMat(N,3,4));
}
//proc moduloSlim (matrix A, matrix B)
proc moduloSlim (module A, module B)
"USAGE: moduloSlim(A,B); A,B module/matrix/ideal
RETURN: module
PURPOSE: compute @code{modulo} with slimgb as engine
EXAMPLE: example moduloSlim; shows an example
"
{
def save = basering;
int rA = nrows(A); int rB = nrows(B);
int cA = ncols(A); int cB = ncols(B);
int j;
int dab; // difference a,b
dab = rA - rB;
if (dab <0)
{
// rA<rB: add zero rows to A
dab = -dab;
A = embedMat(A,rB,cA);
}
else
{
// rA>rB: add zero rows to B
B = embedMat(B,rA,cB);
}
def mering = makeModElimRing(save);
setring mering;
module A = imap(save, A);
module B = imap(save, B);
// create matrix C
// matrix C[2*rA][cA+cB];
module C;
int i;
for(i=1; i<= cA; i++)
{
C = C, A[i] + gen(rA + i);
}
C = C,B;
// for(i=1; i<=cB; i++)
// {
// C = C, B[i];
// }
C = C[2..ncols(C)];
// print(C);
matrix D = slimgb(C);
module E; int k;
// TODO: why only first row? need smth like rA rows...
for(i=1; i<= ncols(D); i++)
{
k=1;
// determine first zero in the column
while ( (D[k,i]==0) && (k<= cA+rA) )
{
k++;
}
// what can that be: k = cA+rA+1=> zero column
// k<=rA => column not in ker
// rA+1 <= k <= rA+cA => column in ker
if ( ( k>=rA+1) && (k<=rA+cA) )
{
E = E,D[i];
}
}
// for(i=1; i<= ncols(D); i++)
// {
// if (D[1,i]==0)
// {
// E = E,D[i];
// }
// }
// // this E has 1st column and 1st row zero
// use submat@matrix.lib
// E = submat(E,intvec(2..nrows(E)),intvec(2..ncols(E)));
E = submat(E,intvec(rA+1..nrows(E)),intvec(2..ncols(E)));
setring save;
module E = imap(mering,E);
kill mering;
// TODO: clean components!
return(E);
}
example
{
"EXAMPLE:"; echo = 2;
LIB "ncalg.lib";
ring r; // first classical example for modulo
ideal h1=x,y,z; ideal h2=x;
module m=moduloSlim(h1,h2);
print(m);
// now, a noncommutative example
def A = makeUsl2(); setring A; // this algebra is U(sl_2)
ideal H2 = e2,f2,h2-1; H2 = twostd(H2);
print(matrix(H2)); // print H2 in a compact form
ideal H1 = std(e);
ideal T = moduloSlim(H1,H2);
T = std( NF(std(H2+T),H2) );
T;
// now, a matrix example:
ring r2 = 0,(x,d), (dp);
def R = nc_algebra(1,1); setring R;
matrix M[2][2] = d, 0, 0, d*(x*d);
matrix P[2][1] = (8x+7)*d+9x, (x2+1)*d + 5*x;
module X = moduloSlim(P,M);
print(X);
}
//////////////////////////////////////////////////////////////////////
proc makeModElimRing(list #)
"USAGE: makeModElimRing(L); L a list
RETURN: ring
PURPOSE: create a copy of a given ring equipped with the
@* elimination ordering for module components @code{(c,<)}
NOTE: usually the list argument contains a ring to work with
EXAMPLE: example makeModElimRing; shows an example
"
{
// supports qring;
// can be extended to handle C istead of c
/* input/basering business */
def save; int Noinput = 0;
if ( size(#)>0 )
{
if (typeof(#[1]) == "ring" )
{
save = #[1];
}
else
{
print("unsupported input type, proceeding with basering");
Noinput = 1;
}
}
if (Noinput)
{
if (nameof(basering)=="basering")
{
ERROR("no rings are given");
}
else
{
save = basering;
}
}
/* END input/basering business */
list L = ringlist(save);
list Ord = L[3];
int s = size(Ord); int done;
// detect where module ordering is located: either 1st or last entry
int i,j;
for(i=1; i<=s; i++)
{
if ( (Ord[i][1] == "C") || (Ord[i][1] == "c") )
{
Ord[i][1] = "c";
j = i; i=s;
}
}
if (j==0) { ERROR("no component entry found in the ringlist"); }
list N;
N[1] = Ord[j];
for(i=2; i<=j; i++)
{
N[i] = Ord[i-1];
}
for(i=j+1; i<=s; i++)
{
N[i] = Ord[i];
}
L[3] = N; def NR = ring(L);
return(NR);
}
example
{
"EXAMPLE:"; echo = 2;
ring r1 = 0,(x,y,z),(C,Dp);
def r2 = makeModElimRing(r1); setring r2; r2; kill r2;
ring r3 = 0,(z,t),(wp(2,3),c);
def r2 = makeModElimRing(r3); setring r2; r2; kill r2;
ring r4 = 0,(z,t,u,w),(a(1,2),C,wp(2,3,4,5));
def r2 = makeModElimRing(r4); setring r2; r2;
}
proc isLieType()
"USAGE: isLieType();
RETURN: int, 1 if basering is a G-algebra of Lie type, 0 otherwise
PURPOSE: G-algebra of Lie type has relations of the kind Y*X=X*Y+D
EXAMPLE: example isLieType; shows an example
"
{
def @B = basering; //save the name of basering
int NVars = nvars(@B); //number of variables in basering
int i, j;
int answer = 1;
// check basering is of Lie type:
matrix @@CC[NVars][NVars];
for(i=1; i<NVars; i++)
{
for(j=i+1; j<=NVars; j++)
{
@@CC[i,j]=leadcoef(var(j)*var(i));
}
}
ideal @C@ = simplify(ideal(@@CC),2+4);// skip zeroes and repeated entries
if ( (size(@C@) >1 ) || ( (size(@C@)==1) && (@C@[1]!=1) ) )
{
answer = 0;
}
return(answer);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
y*x;
isLieType(); //yes
def D = Weyl(); setring D;
y*x;
isLieType(); //yes
setring r;
def R = nc_algebra(-3,0); setring R;
y*x;
isLieType(); // no
kill R; kill r;
ring s = (0,q),(x,y),dp;
def S = nc_algebra(q,0); setring S;
y*x;
isLieType(); //no
kill S; setring s;
def S = nc_algebra(q,y^2); setring S;
y*x;
isLieType(); //no
}
|