/usr/share/singular/LIB/maxlike.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 | //////////////////////////////////////////////////////////////////////////////
version="version maxlike.lib 4.0.2.0 30.03.2015 "; //$Id: 1e92ee9258a6ee79be9704ba43bb9951e22b4536 $
category="Algebraic Statistics";
info="
LIBRARY: maxlike.lib Procedures to compute maximum likelihood estimates
AUTHOR: Adrian Koch (kocha at rhrk.uni-kl.de)
REFERENCES:
Lior Pachter, Bernd Sturmfels; Algebraic Statistics for Computational Biology;
published by Cambridge University Press
PROCEDURES:
likeIdeal(I,u); the likelihood ideal with respect to I and u
logHessian(I,u); modified Hessian of the loglikelihood function
getMaxPoints(Iu,H,prec,[..]); maximum likelihood estimates
maxPoints(I,u,prec,[..]); maximum likelihood estimates,combines the procedures above
maxPointsProb(I,u,prec,[..]); maximum likelihood estimates and probability distributions
KEYWORDS: algebraic statistics; likelihood ideal; maximum likelihood estimate
";
LIB "presolve.lib";
LIB "solve.lib";//already loads the matrix.lib
LIB "sing.lib";
static proc onesmat(n,m)
{//returns an nxm matrix filled with ones
matrix M[n][m];
int i,j;
for(i=1; i<=n; i++)
{
for(j=1; j<=m; j++)
{
M[i,j]=1;
}
}
return(M);
}
proc likeIdeal(ideal I, intvec u)
"USAGE: likeIdeal(I,u); ideal I, intvec u
I represents the algebraic statistical model and u is the data vector under
considerarion.
RETURN: ideal: the likelihood ideal with respect to I and u
EXAMPLE: example likeIdeal; shows an example
"
{//I contains the polys f_i giving the alg.stat.model: theta -> (f1(theta),...,fm(theta))
//this is an implementation of the first part of 3.3 MLE, namely pages 102-104
//i.e. it computes an ideal Iu such that V(Iu) contains all critical points
//of the parameter-log-likelihood-function given by the polys in I
//(more precisely, V(Iu) is the smallest
//variety with that property) (cf. elimination theory)
//(I must have the same number of elements as u)
def r=basering;
int n=nvars(basering);
int m=size(I);
ring bigring = 0, (t(1..n),z(1..m)), dp;
ideal I=fetch(r,I);
// here we generate the zf(theta)-part of Ju
matrix Z=diag(ideal(z(1..m)));
matrix F=diag(I);
matrix ZF1=Z*F-diag(1,m);
ideal J1=ideal(ZF1);
//here we generate the theta-part of Ju
matrix O=onesmat(m,m);
matrix U=diag(u);
matrix UZ=O*U*Z;
//compute the derivatives, but take only the submatrix corresponding to the variables
//in the original ring (other entries are 0)
matrix D=jacob(I);
intvec rD=1..nrows(D);
intvec cD=1..n;
matrix Dsub=submat(D,rD,cD);
matrix S=UZ*Dsub;
ideal J2=ideal(S);
// put the two parts together
ideal Ju=J1+J2;
poly el=1;
int i;
for(i=1; i<=m; i++)
{
el=el*z(i);
}
ideal Iu=eliminate(Ju,el);
setring r;
ideal Iu=fetch(bigring,Iu);
return(Iu);
}
example
{ "EXAMPLE:"; echo=2;
ring r = 0,(x,y),dp;
poly pA = -10x+2y+25;
poly pC = 8x-y+25;
poly pG = 11x-2y+25;
poly pT = -9x+y+25;
intvec u = 10,14,15,10;
ideal I = pA,pC,pG,pT;
ideal L = likeIdeal(I,u); L;
}
static proc prodideal(ideal I)
{//returns the product over all polys in I
int n=size(I);
int i;
poly f=I[1];
for(i=2; i<=n; i++)
{
f=f*I[i];
}
return(f);
}
proc logHessian(ideal I, intvec u)
"USAGE: logHessian(I,u); ideal I, intvec u
I represents the algebraic statistical model and u is the data vector under
considerarion.
RETURN: matrix: a modified version of the Hessian matrix of the loglikelihood function
defined by u and (the given generators of) I.
NOTE: This matrix has the following property: if it is negative definite at a point,
then the actual Hessian is also negative definite at that point. The same holds
for positive definiteness.
EXAMPLE: example logHessian; shows an example
"
{//computes the "Hessian" of the loglikelihoodfunction defined by I and u
//first we compute the products Fj=prod(f1,...,fm)/fj
int m=size(I);
int n=nvars(basering);
poly F=prodideal(I);
ideal Fj;
int j;
for(j=1; j<=m; j++)
{
Fj=Fj+ideal(F/I[j]);
}
//now, we compute the products of the first partial derivatives for each fj
matrix J=jacob(I);
matrix P[n][n];
list Jprod;
int i,k;
poly f;
for(j=1; j<=m; j++)
{
for(i=1; i<=n; i++)
{
for(k=i; k<=n; k++)
{
f=J[j,i]*J[j,k];
P[i,k]=f;
P[k,i]=f;
}
}
Jprod=Jprod+list(P);
}
//here, we compute the second partial derivatives
list secondJ=jacob(jacob(I[1]));
for(j=2; j<=m; j++)
{
secondJ=secondJ+list(jacob(jacob(I[j])));
}
//finally, we put everything together to get the "Hessian"
matrix H[n][n];
f=0;
for(i=1; i<=n; i++)
{
for(k=i; k<=n; k++)
{
for(j=1; j<=m; j++)
{
f=f+u[j]*Fj[j]*(secondJ[j][i,k]*I[j]-Jprod[j][i,k]);
}
H[i,k]=f;
H[k,i]=f;
f=0;
}
}
return(H);
}
example
{ "EXAMPLE:"; echo=2;
ring r = 0,(x,y),dp;
poly pA = -10x+2y+25;
poly pC = 8x-y+25;
poly pG = 11x-2y+25;
poly pT = -9x+y+25;
intvec u = 10,14,15,10;
ideal I = pA,pC,pG,pT;
matrix H = logHessian(I,u); H;
}
static proc is_neg_def(matrix H)
{//determines whether the given matrix is negative definite
//returns 1 if it is, 0 if it isnt
matrix M=H-diag(var(1),ncols(H));
poly f=det(M);
list S=laguerre_solve(f);
//this computes the eigenvalues of H. below, they are checked for neg. definiteness
int k;
//we now check, whether H is negative definite
//if it is, then we will go through the for-loop completely and return 1 at the end
//otherwise we return 0
for(k=1; k<=size(S); k++)
{
if(S[k] >= 0)
{
return(0);
}
}
return(1);
}
proc getMaxPoints(ideal Iu, matrix H, int prec, list #)
"USAGE: getMaxPoints(Iu, H, prec [, \"nodisplay\"]); ideal Iu, matrix H, int prec, int k
Iu the likelihood ideal, H the (modified) Hessian of the considered algebraic
statistical model, prec the precision with which to compute the maximum
likelihood estimates
RETURN: ring: a complex ring R in which you can find the following two lists:
- MPOINTS, points in which the loglikelihood function has a local maximum, and
- LHESSIANS, the (modified) Hessians at those points
also prints out the points in MPOINTS, unless a fourth argument is given
NOTE: it is assumed that the likelihood ideal is 0-dimensional
EXAMPLE: example getMaxPoints; shows an example
"
{//goes through the solutions computed by solve and keeps only those which have only
//(non-negative) real components
//then it plugs the solutions into the "Hessian" and checks whether or not it is
//negative definite
ideal G=groebner(Iu);
def r=basering;
int n=nvars(r);
def s=solve(G,prec,"nodisplay");
setring s;
list L;
list entk;//the k-th entry of SOL
int c; //will be 1 if we want the entry in our list L, 0 otherwise
int k,l;
for(k=1; k<=size(SOL); k++)
{
c=1;
entk=SOL[k];
for(l=1; l<=size(entk); l++)
{
if(impart(entk[l]) != 0)//throw away those with non-zero imaginary part
{
c=0;
break;
}
if(entk[l] < 0)//and those wich are negative
{
c=0;
break;
}
}
if(c == 1)//is 1 iff all components are real and non-negative
{
L=L+list(entk);
}
}
ring R=(complex,prec,i),x(1..n),dp;
ideal Iu=fetch(r,Iu);
list L=fetch(s,L);
list Lk;//k-th entry of L
matrix H=fetch(r,H);
matrix Hsubst;
list hessi;//contains the Hessians with solutions plugged in
for(k=1; k<=size(L); k++)
{
Lk=L[k];
Hsubst=H;
for(l=1; l<=size(Lk); l++)
{
Hsubst=subst(Hsubst,x(l),Lk[l]);
}
hessi=hessi+list(Hsubst);
}
//now check all elements of hessi and only keep those which are negative definite
//also do the respective changes in the list of solutions L
list hessi2;
list L2;
for(k=1; k<=size(L); k++)
{
if(1)
{
if(is_neg_def(hessi[k]) == 1)
{
hessi2=hessi2+list(hessi[k]);
L2=L2+list(L[k]);
}
}
}
//execute("ring outR =(complex,"+string(prec)+"),(x(1.."+string(n)+")),dp;");
ring outR=(complex,prec),x(1..n),dp;
list MPOINTS = imap(R,L2);
list LHESSIANS = imap(R,hessi2);
export MPOINTS;
export LHESSIANS;
string display="
// In the ring created by getmaxpoints you can find the lists
// MPOINTS, containing points in which the loglikelihood function has a local maximum, and
// LHESSIANS, containing the (modified) Hessians at those points.
";
if(size(#)==0) { print(MPOINTS); print(display); }
return(outR);
}
example
{ "EXAMPLE:"; echo=2;
ring r = 0,(x,y),dp;
poly pA = -10x+2y+25;
poly pC = 8x-y+25;
poly pG = 11x-2y+25;
poly pT = -9x+y+25;
intvec u = 10,14,15,10;
ideal I = pA,pC,pG,pT;
ideal L = likeIdeal(I,u);
matrix H = logHessian(I,u);
def R = getMaxPoints(L, H, 50);
setring R;
MPOINTS;
LHESSIANS;
}
proc maxPoints(ideal I, intvec u, int prec, list #)
"USAGE: maxPoints(I,u,prec [, \"nodisplay\"]); ideal I, intvec u, int prec
I represents the algebraic statistical model, u is the data vector under
considerarion, and prec is the precision to be used in the computations
RETURN: ring: a complex ring R in which you can find the following two lists:
- MPOINTS, points in which the loglikelihood function has a local maximum, and
- LHESSIANS, the (modified) Hessians at those points
also prints out the points in MPOINTS, unless a fourth argument is given
NOTE: Just uses likeideal, loghessian and getmaxpoints.
EXAMPLE: example maxPoints; shows an example
"
{
ideal Iu=likeIdeal(I,u);
return(getMaxPoints(Iu,logHessian(I,u),prec,#));
}
example
{ "EXAMPLE:"; echo=2;
ring r = 0,(x,y),dp;
poly pA = -10x+2y+25;
poly pC = 8x-y+25;
poly pG = 11x-2y+25;
poly pT = -9x+y+25;
intvec u = 10,14,15,10;
ideal I = pA,pC,pG,pT;
def R = maxPoints(I, u, 50);
setring R;
MPOINTS;
LHESSIANS;
}
proc maxPointsProb(ideal I, intvec u, int prec, list #)
"USAGE: maxPointsProb(I,u,prec [, \"nodisplay\"]); ideal I, intvec u, int prec
I represents the algebraic statistical model, u is the data vector under
considerarion, and prec is the precision to be used in the computations
RETURN: ring: a complex ring R in which you can find the following two lists:
- MPOINTS, points in which the loglikelihood function has a local maximum,
- LHESSIANS, the (modified) Hessians at those points, and
- VALS, the resulting probability distributions (that is, the values of the
polynomials given by I at the points in MPOINTS).
Also prints out the points in MPOINTS, unless a fourth argument is given.
NOTE: Does not compute the likelihood ideal via elimination, but rather computes
the critical points by projection.
EXAMPLE: example maxPointsProb; shows an example
"
{//as opposed to (get)maxpoints, which first eliminates and then solves, this procedure
//solves and then projects
//furthermore, it also creates a list of the values the generators of I have at the
//points in MPOINTS (that is, a list of the probability distributions)
matrix H=logHessian(I,u);
def r=basering;
int n=nvars(basering);
int m=size(I);
ring bigring = 0, (t(1..n),z(1..m)), dp;
ideal I=fetch(r,I);
// here we generate the zf(theta)-part of Ju
matrix Z=diag(ideal(z(1..m)));
matrix F=diag(I);
matrix ZF1=Z*F-diag(1,m);
ideal J1=ideal(ZF1);
//here we generate the theta-part of Ju
matrix O=onesmat(m,m);
matrix U=diag(u);
matrix UZ=O*U*Z;
//compute the derivatives, but take only the submatrix corresponding to the variables
//in the original ring (other entries are 0)
matrix D=jacob(I);
intvec rD=1..nrows(D);
intvec cD=1..n;
matrix Dsub=submat(D,rD,cD);
matrix S=UZ*Dsub;
ideal J2=ideal(S);
// put the two parts together
ideal Ju=J1+J2;
def s=solve(Ju,prec,"nodisplay");
setring s;
list L;
list entk;//the k-th entry of SOL
int c; //will be 1 if we want the entry in our list L, 0 otherwise
int k,l;
for(k=1; k<=size(SOL); k++)
{
c=1;
entk=SOL[k];
entk=entk[1..n];
for(l=1; l<=size(entk); l++)
{
if(impart(entk[l]) != 0)//throw away those with non-zero imaginary part
{
c=0;
break;
}
if(entk[l] < 0)//and those wich are negative
{
c=0;
break;
}
}
if(c == 1)//is 1 iff all components are real and non-negative
{
L=L+list(entk);
}
}
ring R=(complex,prec,i),x(1..n),dp;
list L=fetch(s,L);
list Lk;//k-th entry of L
matrix H=fetch(r,H);
matrix Hsubst;
list hessi;//contains the Hessians with solutions plugged in
for(k=1; k<=size(L); k++)
{
Lk=L[k];
Hsubst=H;
for(l=1; l<=size(Lk); l++)
{
Hsubst=subst(Hsubst,x(l),Lk[l]);
}
hessi=hessi+list(Hsubst);
}
//now check all elements of hessi and only keep those which are neg def
//also do the respective changes in the list of solutions L
list hessi2;
list L2;
for(k=1; k<=size(L); k++)
{
if(1)
{
if(is_neg_def(hessi[k]) == 1)
{
hessi2=hessi2+list(hessi[k]);
L2=L2+list(L[k]);
}
}
}
//Output
ideal I=fetch(r,I);
list p, vals, VAL;
int j;
poly f;
for(l=1; l<=size(L2); l++)
{
p=L2[l];
for(j=1; j<=size(I); j++)
{
f=I[j];
for(k=1; k<=nvars(basering); k++)
{
f=subst(f,var(k),p[k]);
}
vals=vals+list(f);
}
VAL=VAL+list(vals);
vals=list();
}
//execute("ring outR =(complex,"+string(prec)+"),(x(1.."+string(n)+")),dp;");
ring outR=(complex,prec),x(1..n),dp;
list MPOINTS = imap(R,L2);
list LHESSIANS = imap(R,hessi2);
list VALS = imap(R,VAL);
export MPOINTS;
export LHESSIANS;
export VALS;
string display="
// In the ring created by getmaxpoints you can find the lists
// MPOINTS, containing points in which the loglikelihood function has a local maximum,
// LHESSIANS, containing the (modified) Hessians at those points, and
// VALS, containing the probability distributions at those points.
";
if(size(#)==0) { print(MPOINTS); print(display); }
return(outR);
}
example
{ "EXAMPLE:"; echo=2;
ring r = 0,(x,y),dp;
poly pA = -10x+2y+25;
poly pC = 8x-y+25;
poly pG = 11x-2y+25;
poly pT = -9x+y+25;
intvec u = 10,14,15,10;
ideal I = pA,pC,pG,pT;
def R = maxPointsProb(I, u, 50);
setring R;
MPOINTS;
LHESSIANS;
VALS;
}
//////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////// a few more examples /////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
//Here, we present an example of a data vector for which the likelihood function has more
//than one biologically meaningful local maximum.
//You can generate DNA sequence data, which has this data vector, using Seq-Gen with the
//following input:
//Tree: (Taxon1:0.6074796219,Taxon2:4.7911951859,Taxon3:0.5522879636);
//Seq-Gen options: -mHKY -l7647 -n1 -z28503
//You can find Seq-Gen at http://tree.bio.ed.ac.uk/software/seqgen/
//
//- write(":w ThreeTaxonClaw.tree",
//- "(Taxon1:0.6074796219,Taxon2:4.7911951859,Taxon3:0.5522879636);");
//- int i=system("sh",
//- "seq-gen -mHKY -l7647 -n1 -z28503 -q < ThreeTaxonClaw.tree > ThreeTaxonC
//law.dat");
//- intvec u=getintvec("ThreeTaxonClaw.dat");
//
/*
proc bad_seq_gen_example()
{
ring R = 0,(mu1,mu2,mu3),dp;
poly f1 = mu1*mu2*mu3 + 3*1/3*(1-mu1)*1/3*(1-mu2)*1/3*(1-mu3);
poly f2 = 6*mu1*1/3*(1-mu2)*1/3*(1-mu3) + 6*1/3*(1-mu1)*mu2*1/3*(1-mu3) +
6*1/3*(1-mu1)*1/3*(1-mu2)*mu3 + 6*1/3*(1-mu1)*1/3*(1-mu2)*1/3*(1-mu3);
poly f3 = 3*mu1*mu2*1/3*(1-mu3) + 3*1/3*(1-mu1)*1/3*(1-mu2)*mu3 +
6*1/3*(1-mu1)*1/3*(1-mu2)*1/3*(1-mu3);
poly f4 = 3*mu1*1/3*(1-mu2)*mu3 + 3*1/3*(1-mu1)*mu2*1/3*(1-mu3) +
6*1/3*(1-mu1)*1/3*(1-mu2)*1/3*(1-mu3);
poly f5 = 3*1/3*(1-mu1)*mu2*mu3 + 3*mu1*1/3*(1-mu2)*1/3*(1-mu3) +
6*1/3*(1-mu1)*1/3*(1-mu2)*1/3*(1-mu3);
ideal I = f1,f2,f3,f4,f5;
intvec u = 770,2234,1156,2331,1156;
maxPoints(I,u,50);
}
proc bad_seq_gen_example2()
{//same example, but a different method of computing the local maxima
ring bigring = 0,(mu1,mu2,mu3,z1,z2,z3,z4,z5),dp;
poly f1 = mu1*mu2*mu3 + 3*1/3*(1-mu1)*1/3*(1-mu2)*1/3*(1-mu3);
poly f2 = 6*mu1*1/3*(1-mu2)*1/3*(1-mu3) + 6*1/3*(1-mu1)*mu2*1/3*(1-mu3) +
6*1/3*(1-mu1)*1/3*(1-mu2)*mu3 + 6*1/3*(1-mu1)*1/3*(1-mu2)*1/3*(1-mu3);
poly f3 = 3*mu1*mu2*1/3*(1-mu3) + 3*1/3*(1-mu1)*1/3*(1-mu2)*mu3 +
6*1/3*(1-mu1)*1/3*(1-mu2)*1/3*(1-mu3);
poly f4 = 3*mu1*1/3*(1-mu2)*mu3 + 3*1/3*(1-mu1)*mu2*1/3*(1-mu3) +
6*1/3*(1-mu1)*1/3*(1-mu2)*1/3*(1-mu3);
poly f5 = 3*1/3*(1-mu1)*mu2*mu3 + 3*mu1*1/3*(1-mu2)*1/3*(1-mu3) +
6*1/3*(1-mu1)*1/3*(1-mu2)*1/3*(1-mu3);
ideal I = f1,f2,f3,f4,f5;
intvec u=770,2234,1156,2331,1156;
ideal Ju = z1*f1-1, z2*f2-1, z3*f3-1, z4*f4-1, z5*f5-1,
u[1]*z1*diff(f1,mu1) + u[2]*z2*diff(f2,mu1) + u[3]*z3*diff(f3,mu1)
+ u[4]*z4*diff(f4,mu1) + u[5]*z5*diff(f5,mu1),
u[1]*z1*diff(f1,mu2) + u[2]*z2*diff(f2,mu2) + u[3]*z3*diff(f3,mu2)
+ u[4]*z4*diff(f4,mu2) + u[5]*z5*diff(f5,mu2),
u[1]*z1*diff(f1,mu3) + u[2]*z2*diff(f2,mu3) + u[3]*z3*diff(f3,mu3)
+ u[4]*z4*diff(f4,mu3) + u[5]*z5*diff(f5,mu3);
ideal Iu = eliminate( Ju, z1*z2*z3*z4*z5 );
ring smallring = 0,(mu1,mu2,mu3),dp;
ideal Iu=imap(bigring,Iu);
ideal G=groebner(Iu);
solve(G,20);
ideal I = imap(bigring,I);
matrix H = logHessian(I,u);
ring complexring=(complex,20),(mu1,mu2,mu3),dp;
matrix H = imap(smallring,H);
H = subst(H,mu1,0.59152696273711385658);
H = subst(H,mu2,0.2529957197544537399);
H = subst(H,mu3,0.59152696273711385658);
H;
matrix M = H-diag(var(1),ncols(H));
laguerre_solve(det(M));
H = imap(smallring,H);
H = subst(H,mu1,0.55724214001951940648);
H = subst(H,mu2,0.25295468429185774898);
H = subst(H,mu3,0.62963746147721704588);
H;
M = H-diag(var(1),ncols(H));
laguerre_solve(det(M));
H = imap(smallring,H);
H = subst(H,mu1,0.62963746147721704588);
H = subst(H,mu2,0.25295468429185774898);
H = subst(H,mu3,0.55724214001951940648);
H;
M = H-diag(var(1),ncols(H));
laguerre_solve(det(M));
}
*/
//////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////
//These are some of the procedures I used to generate and test examples for my Master
//thesis. To use the ones incorporating Seq-Gen, you may have to adjust the shell command
//with which Singular calls Seq-Gen. You can find Seq-Gen at
//http://tree.bio.ed.ac.uk/software/seqgen/
//As the names of the procedures suggest, we always use the Jukes-Cantor model.
//They also tell you which of them use Seq-Gen.
/*
proc getguaranteedmaxPoints(ideal Iu, matrix H, list #)
{//an older version of the procedures above
ideal G=groebner(Iu);
def r=basering;
int n=nvars(r);
def s=solve(G,50,"nodisplay");
setring s;
list L;
list entk;//the k-th entry of SOL
int c; //will be 1 if we want the entry in our list L, 0 otherwise
int k,l;
for(k=1; k<=size(SOL); k++)
{
c=1;
entk=SOL[k];
for(l=1; l<=size(entk); l++)
{
if(impart(entk[l]) != 0)//throw away those with non-zero imaginary part
{
c=0;
break;
}
if(entk[l] < 0)//and those wich are negative
{
c=0;
break;
}
}
if(c == 1)//is 1 iff all components are real and non-negative
{
L=L+list(entk);
}
}
ring R=(complex,50,i),x(1..n),dp;
ideal Iu=fetch(r,Iu);
list L=fetch(s,L);
list Lk;//k-th entry of L
matrix H=fetch(r,H);
matrix Hsubst;
list hessi;//contains the Hessians with solutions plugged in
for(k=1; k<=size(L); k++)
{
Lk=L[k];
Hsubst=H;
for(l=1; l<=size(Lk); l++)
{
Hsubst=subst(Hsubst,x(l),Lk[l]);
}
hessi=hessi+list(Hsubst);
}
//now check all elements of hessi and only keep those which arent neg def or indef
//also do the respective changes in the list of solutions L
list hessi2;
list L2;
for(k=1; k<=size(L); k++)
{
if(1)
{
if(is_neg_def(hessi[k]) == 1)
{
hessi2=hessi2+list(hessi[k]);
L2=L2+list(L[k]);
}
}
}
if(size(#)>0)
{
list L2k;
c=0;//counts the number of biologically meaningful parameter vectors
int constrhold=1;//will be set to 0 temporarily if the constraints don't hold
for(k=1; k<=size(L2); k++)
{
L2k=L2[k];
for(l=1; l<=size(L2k); l++)
{
if(L2k[l] <= 1/4)
{
constrhold=0;
break;
}
if(L2k[l] > 1)
{
constrhold=0;
break;
}
}
if(constrhold == 1)
{
c++;
}
constrhold=1;
}
return(c);
}
print(L2);
}
proc getintvec(string linkstr)
{
//compares the sequences generated by seq-gen and outputs the frequencies
//u123, udis, u12, u13 and u23 (so only helpful, when we are considering three taxons)
//(distinguishes between the non-sequence-lines of the seq-gen-outputfile and those
//with sequences in them by the length of the lines, so use
//sequences with at least 20 nucleotides)
string st=read(linkstr);
string taxon, tax;
int i,j;
list taxons;
//first, get the DNA sequences as strings and store them in the list taxons
for (i=1; i<=size(st); i=i+1)
{
while (st[i]!=newline and i<=size(st))
{
taxon=taxon+st[i];
i=i+1;
}
if (size(taxon)>=20)
{
for(j=2; j<=size(taxon); j++)
{
if( (taxon[j-1] == " ") and (taxon[j] != " ") )
{
break;
}
}
tax=taxon[j..size(taxon)];//removes the part of the line containing the name
//of the taxon: in the textfile generated by seq-gen there are a few spaces
//between the name of the taxon and the corresponding sequence
taxons=taxons+list(tax);
}
taxon="";
}
//then compare the strings in the list taxons, store the frequencies in the intvec u
intvec u=0,0,0,0,0;//u123,udis,u12,u13,u23
for(i=1; i<=size(taxons[1]); i++)
{
if((taxons[1][i] == taxons[2][i]) and (taxons[2][i] == taxons[3][i]))
{
u[1]=u[1]+1;
i++;
continue;//continue does not execute the increment statement of the loop
}
if(taxons[1][i] == taxons[2][i])
{
u[3]=u[3]+1;
i++;
continue;
}
if(taxons[1][i] == taxons[3][i])
{
u[4]=u[4]+1;
i++;
continue;
}
if(taxons[2][i] == taxons[3][i])
{
u[5]=u[5]+1;
i++;
continue;
}
u[2]=u[2]+1;
}
return(u);
}
proc randintvec(int s, int a)
{//s the length of the intvecs, a the upper bound of the entries:
//computes intvecs of length s and entries between 1 and a
intvec u;
int i;
for(i=1; i<=s; i++)
{
u[i]=random(1,a);
}
return(u);
}
proc checkrandomJC69run(int a, int sta, int up)
{//a number of random intvecs to be considered, sta the starting point of random,
//up the upper bound of the entries of the intvecs
ring r=0,(mu1,mu2,mu3),dp;
poly f1=mu1*mu2*mu3+3*1/3*(1-mu1)*1/3*(1-mu2)*1/3*(1-mu3);
poly f2=6*mu1*1/3*(1-mu2)*1/3*(1-mu3)+6*1/3*(1-mu1)*mu2*1/3*(1-mu3)+
6*1/3*(1-mu1)*1/3*(1-mu2)*mu3+6*1/3*(1-mu1)*1/3*(1-mu2)*1/3*(1-mu3);
poly f3=3*mu1*mu2*1/3*(1-mu3)+3*1/3*(1-mu1)*1/3*(1-mu2)*mu3+
6*1/3*(1-mu1)*1/3*(1-mu2)*1/3*(1-mu3);
poly f4=3*mu1*1/3*(1-mu2)*mu3+3*1/3*(1-mu1)*mu2*1/3*(1-mu3)+
6*1/3*(1-mu1)*1/3*(1-mu2)*1/3*(1-mu3);
poly f5=3*1/3*(1-mu1)*mu2*mu3+3*mu1*1/3*(1-mu2)*1/3*(1-mu3)+
6*1/3*(1-mu1)*1/3*(1-mu2)*1/3*(1-mu3);
ideal I=f1,f2,f3,f4,f5;
link lu=":a UsedIntvecsJC69rand.txt";
link lf=":a FailedJC69rand.txt";
system("random",sta);
ideal Iu,G;
int d, nzd, num;
int i;
intvec u;
int eatoutput;
string display, writestr;
writestr=newline+newline+"number of random intvecs: "+string(a)+"; random seed: ";
writestr=writestr+string(sta)+"; upper bound:"+string(up)+newline;
write(lu,writestr);
write(lf,writestr);
for(i=1; i<=a; i++)
{
u=randintvec(5,up);
writestr=string(u);
write(lu,writestr);
Iu=likeIdeal(I,u);
Iu=std(Iu);
//Iu=groebner(Iu);
d=dim(Iu);
if(d != 0)
{
nzd++;
display="-*-*-*- not 0-dim. for u= "+string(u)+", i= "+string(i)+" -*-*-*-";
print(display);
write(lf,display);
i++;
continue;
}
eatoutput=getguaranteedmaxPoints(Iu,logHessian(I,u),1);
if(eatoutput >= 2)
{
num++;
write(lf,writestr+"; number: "+string(eatoutput));
display="-*-*-*- Failed for u= "+string(u)+", i= "+string(i)+" -*-*-*-";
print(display);
display="";
}
}
display="-------------- i = "+string(i)+" --------------";
display=display+newline+"not zero-dimensional in "+string(nzd)+" cases"+newline;
display=display+"no unique maximum in "+string(num)+" cases"+newline;
print(display);
write(lf,display);
close(lu);
close(lf);
return(nzd,num);
}
proc checkseqgenJC69run(int a, int sd, int len)
{//a number of random intvecs to be considered, sd the random seed for seq-gen,
//up the upper bound of the entries of the intvecs
ring r=0,(mu1,mu2,mu3),dp;
poly f1=mu1*mu2*mu3+3*1/3*(1-mu1)*1/3*(1-mu2)*1/3*(1-mu3);
poly f2=6*mu1*1/3*(1-mu2)*1/3*(1-mu3)+6*1/3*(1-mu1)*mu2*1/3*(1-mu3)+
6*1/3*(1-mu1)*1/3*(1-mu2)*mu3+6*1/3*(1-mu1)*1/3*(1-mu2)*1/3*(1-mu3);
poly f3=3*mu1*mu2*1/3*(1-mu3)+3*1/3*(1-mu1)*1/3*(1-mu2)*mu3+
6*1/3*(1-mu1)*1/3*(1-mu2)*1/3*(1-mu3);
poly f4=3*mu1*1/3*(1-mu2)*mu3+3*1/3*(1-mu1)*mu2*1/3*(1-mu3)+
6*1/3*(1-mu1)*1/3*(1-mu2)*1/3*(1-mu3);
poly f5=3*1/3*(1-mu1)*mu2*mu3+3*mu1*1/3*(1-mu2)*1/3*(1-mu3)+
6*1/3*(1-mu1)*1/3*(1-mu2)*1/3*(1-mu3);
ideal I=f1,f2,f3,f4,f5;
link lu=":a UsedIntvecsJC69seqgen.txt";
link lf=":a FailedJC69seqgen.txt";
string readstr="ThreeTaxonClaw.dat";
ideal Iu,G;
int d, nzd, num;
int i;
intvec u;
int eatoutput;
string display, writestr, shcmd;
writestr=newline+newline+"number of seqgened intvecs: "+string(a)+"; random seed: ";
writestr=writestr+string(sd)+"; sequence length: "+string(len)+newline;
write(lu,writestr);
write(lf,writestr);
for(i=1; i<=a; i++)
{
shcmd="seq-gen ";
shcmd=shcmd+"-mHKY -l"+string(len)+" -n1 -z"+string(sd);
shcmd=shcmd+" -q < ThreeTaxonClaw.tree > ThreeTaxonClaw.dat";
sd++;
eatoutput=system("sh",shcmd);
u=getintvec(readstr);
writestr=string(u);
write(lu,writestr);
Iu=likeIdeal(I,u);
Iu=std(Iu);
//Iu=groebner(Iu);
d=dim(Iu);
if(d != 0)
{
nzd++;
display="-*-*-*- not 0-dim. for u= "+string(u)+", i= "+string(i)+" -*-*-*-";
print(display);
write(lf,display);
i++;
continue;
}
eatoutput=getguaranteedmaxPoints(Iu,logHessian(I,u),1);
if(eatoutput >= 2)
{
num++;
write(lf,writestr+"; number: "+string(eatoutput));
display="-*-*-*- no unique maximum for u= "+
string(u)+", i= "+string(i)+" -*-*-*-";
print(display);
display="";
}
}
display="-------------- i = "+string(i)+" --------------";
display=display+newline+"not zero-dimensional in "+string(nzd)+" cases"+newline;
display=display+"no unique maximum in "+string(num)+" cases"+newline;
print(display);
write(lf,display);
close(lu);
close(lf);
return(nzd,num);
}
proc randclawtree(int a)
{
ring r=(complex,10),x,dp;
number n1,n2,n3;
int n;
int i;
for(i=1; i<=a; i++)
{
n=random(1,1000000);
n1=number(n)/1000000;
n2=number(random(1,1000000-n))/1000000;
n3=1-n1-n2;
print("(Taxon1:"+string(n1)+",Taxon2:"+string(n2)+",Taxon3:"+string(n3)+");");
}
}
proc checkrandomJC69writebeginning(int r, int a, int sta, int up)
{
string writestr=newline+newline+newline+newline+newline+newline;
writestr=writestr+"*****************************************************"+newline;
writestr=writestr+"starting new loop with the following parameters"+newline;
writestr=writestr+"number of runs: "+string(r)+newline;
writestr=writestr+"number of intvecs per run: "+string(a)+newline;
writestr=writestr+"starting random seed: "+string(sta)+newline;
writestr=writestr+"upper bound for the entries of the intvecs: "+string(up)+newline;
writestr=writestr+"*****************************************************";
link lu=":a UsedIntvecsJC69rand.txt";
link lf=":a FailedJC69rand.txt";
write(lu,writestr);
write(lf,writestr);
close(lu);
close(lf);
}
proc checkrandomJC69writeend(int r, int a, int sta, int up, int s, int t)
{
writestr=newline+newline+newline;
writestr=writestr+"*****************************************************"+newline;
writestr=writestr+"ending loop with the following parameters"+newline;
writestr=writestr+"number of runs: "+string(r)+newline;
writestr=writestr+"number of intvecs per run: "+string(a)+newline;
writestr=writestr+"starting random seed: "+string(sta)+newline;
writestr=writestr+"upper bound for the entries of the intvecs: "+string(up)+newline;
writestr=writestr+newline+"in the whole loop, there were a total of"+newline;
writestr=writestr+" "+string(s)+" examples with non-zero-dim. likeideal"+newline;
writestr=writestr+" "+string(t)+
" examples with more than one biol. meaningful local maximum";
writestr=writestr+newline+"*****************************************************";
write(lu,writestr);
write(lf,writestr);
close(lu);
close(lf);
}
proc checkrandomJC69loop(int r, int a, int sta, int up, int s, int t)
{
//r the number of runs, a the number of intvecs per run, sta the starting random
//seed, up the upper bound for the entries of the intvecs
checkrandomJC69writebeginning(r,a,sta,up);
int nzd, num, i, s, t;
for(i=1; i<=r; i++)
{
(nzd,num)=checkrandomJC69run(a,sta,up);
sta++;
s=s+nzd;
t=t+num;
}
checkrandomJC69writeend(r,a,sta,up,s,t);
}
proc checkseqgenJC69writebeginning(int r, int a, int sd, int sta, int len, int p)
{
string writestr=newline+newline+newline+newline+newline+newline;
writestr=writestr+"*****************************************************"+newline;
writestr=writestr+"starting new loop with the following parameters"+newline;
writestr=writestr+"number of runs: "+string(r)+newline;
writestr=writestr+"number of intvecs per run: "+string(a)+newline;
writestr=writestr+"starting random seed for seqgen: "+string(sd)+newline;
writestr=writestr+"starting random seed for random: "+string(sta)+newline;
writestr=writestr+"starting length of the generated sequences: "+string(len)+newline;
writestr=writestr+"*****************************************************";
link lu=":a UsedIntvecsJC69seqgen.txt";
link lf=":a FailedJC69seqgen.txt";
write(lu,writestr);
write(lf,writestr);
close(lu);
close(lf);
}
proc checkseqgenJC69writeend(int r, int a, int sd, int sta,
int len, int p, int s, int t, intvec ls)
{
writestr=newline+newline+newline;
writestr=writestr+"*****************************************************"+newline;
writestr=writestr+"ending loop with the following parameters"+newline;
writestr=writestr+"number of runs: "+string(r)+newline;
writestr=writestr+"number of intvecs per run: "+string(a)+newline;
writestr=writestr+"starting random seed for seqgen: "+string(sd)+newline;
writestr=writestr+"starting random seed for random: "+string(sta)+newline;
writestr=writestr+"length of the generated sequences: "+string(len)+newline;
writestr=writestr+newline+"in the whole loop, there were a total of"+newline;
writestr=writestr+" "+string(s)+" examples with non-zero-dim. likeideal"+newline;
writestr=writestr+" "+string(t)+
" examples with more than one biol. meaningful local maximum";
writestr=writestr+newline+"*****************************************************";
writestr=writestr+"used lengths:"+newline+string(ls);
writestr=writestr+newline+"*****************************************************";
write(lu,writestr);
write(lf,writestr);
close(lu);
close(lf);
}
proc checkseqgenJC69loop(int r, int a, int sd, int sta, int len, int p)
{
//r the number of runs, a the number of intvecs per run, sd the starting random
//seed, len the starting length, p the amount len will increase (on average)
//after each run (via + random(1,2*p-1))
//sta the random seed for random
checkseqgenJC69writebeginning(r,a,sd,sta,len,p);
system("random",sta);
intvec ls;
int nzd, num, i, s, t;
for(i=1; i<=r; i++)
{
(nzd,num)=checkseqgenJC69run(a,sd,len);
sd++;
ls[i]=len;
len=len+random(1,2*p-1);
s=s+nzd;
t=t+num;
}
checkseqgenJC69writeend(r,a,sd,sta,len,p,s,t,ls);
}
*/
|