/usr/share/singular/LIB/involut.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 | ///////////////////////////////////////////////////////////////////
version="version involut.lib 4.0.0.0 Jun_2013 "; // $Id: 864f88265ee45107261492c57d3979b1e7fa4982 $
category="Noncommutative";
info="
LIBRARY: involut.lib Computations and operations with involutions
AUTHORS: Oleksandr Iena, yena@mathematik.uni-kl.de,
@* Markus Becker, mbecker@mathematik.uni-kl.de,
@* Viktor Levandovskyy, levandov@mathematik.uni-kl.de
OVERVIEW:
Involution is an anti-automorphism of a non-commutative K-algebra
with the property that applied an involution twice, one gets an identity.
Involution is linear with respect to the ground field. In this library we
compute linear involutions, distinguishing the case of a diagonal matrix
(such involutions are called homothetic) and a general one.
Also, linear automorphisms of different order can be computed.
SUPPORT: Forschungsschwerpunkt 'Mathematik und Praxis' (Project of Dr. E. Zerz
and V. Levandovskyy), Uni Kaiserslautern
REMARK: This library provides algebraic tools for computations and operations
with algebraic involutions and linear automorphisms of non-commutative algebras
PROCEDURES:
findInvo(); computes linear involutions on a basering;
findInvoDiag(); computes homothetic (diagonal) involutions on a basering;
findAuto(n); computes linear automorphisms of order n of a basering;
ncdetection(); computes an ideal, presenting an involution map on some particular noncommutative algebras;
involution(m,theta); applies the involution to an object;
isInvolution(F); check whether a map F in an involution;
isAntiEndo(F); check whether a map F in an antiendomorphism.
";
LIB "nctools.lib";
LIB "ncalg.lib";
LIB "poly.lib";
LIB "primdec.lib";
///////////////////////////////////////////////////////////////////////////////
proc ncdetection()
"USAGE: ncdetection();
RETURN: ideal, representing an involution map
PURPOSE: compute classical involutions (i.e. acting rather on operators than on variables) for some particular noncommutative algebras
ASSUME: the procedure is aimed at non-commutative algebras with differential, shift or advance operators arising in Control Theory.
It has to be executed in a ring.
EXAMPLE: example ncdetection; shows an example
"{
// in this procedure an involution map is generated from the NCRelations
// that will be used in the function involution
// in dieser proc. wird eine matrix erzeugt, die in der i-ten zeile die indices
// der differential-, shift- oder advance-operatoren enthaelt mit denen die i-te
// variable nicht kommutiert.
if ( nameof(basering)=="basering" )
{
"No current ring defined.";
return(ideal(0));
}
def r = basering;
setring r;
int i,j,k,LExp;
int NVars = nvars(r);
matrix rel = ncRelations(r)[2];
intmat M[NVars][3];
int NRows = nrows(rel);
intvec v,w;
poly d,d_lead;
ideal I;
map theta;
for( j=NRows; j>=2; j-- )
{
if( rel[j] == w ) //the whole column is zero
{
j--;
continue;
}
for( i=1; i<j; i++ )
{
if( rel[i,j]==1 ) //relation of type var(j)*var(i) = var(i)*var(j) +1
{
M[i,1]=j;
}
if( rel[i,j] == -1 ) //relation of type var(i)*var(j) = var(j)*var(i) -1
{
M[j,1]=i;
}
d = rel[i,j];
d_lead = lead(d);
v = leadexp(d_lead); //in the next lines we check wether we have a relation of differential or shift type
LExp=0;
for(k=1; k<=NVars; k++)
{
LExp = LExp + v[k];
}
// if( (d-d_lead != 0) || (LExp > 1) )
if ( ( (d-d_lead) != 0) || (LExp > 1) || ( (LExp==0) && ((d_lead>1) || (d_lead<-1)) ) )
{
return(theta);
}
if( v[j] == 1) //relation of type var(j)*var(i) = var(i)*var(j) -lambda*var(j)
{
if (leadcoef(d) < 0)
{
M[i,2] = j;
}
else
{
M[i,3] = j;
}
}
if( v[i]==1 ) //relation of type var(j)*var(i) = var(i)*var(j) -lambda*var(i)
{
if (leadcoef(d) > 0)
{
M[j,2] = i;
}
else
{
M[j,3] = i;
}
}
}
}
// from here on, the map is computed
for(i=1;i<=NVars;i++)
{
I=I+var(i);
}
for(i=1;i<=NVars;i++)
{
if( M[i,1..3]==(0,0,0) )
{
i++;
continue;
}
if( M[i,1]!=0 )
{
if( (M[i,2]!=0) && (M[i,3]!=0) )
{
I[M[i,1]] = -var(M[i,1]);
I[M[i,2]] = var(M[i,3]);
I[M[i,3]] = var(M[i,2]);
}
if( (M[i,2]==0) && (M[i,3]==0) )
{
I[M[i,1]] = -var(M[i,1]);
}
if( ( (M[i,2]!=0) && (M[i,3]==0) )|| ( (M[i,2]!=0) && (M[i,3]==0) )
)
{
I[i] = -var(i);
}
}
else
{
if( (M[i,2]!=0) && (M[i,3]!=0) )
{
I[i] = -var(i);
I[M[i,2]] = var(M[i,3]);
I[M[i,3]] = var(M[i,2]);
}
else
{
I[i] = -var(i);
}
}
}
return(I);
}
example
{
"EXAMPLE:"; echo = 2;
ring R = 0,(x,y,z,D(1..3)),dp;
matrix D[6][6];
D[1,4]=1; D[2,5]=1; D[3,6]=1;
def r = nc_algebra(1,D); setring r;
ncdetection();
kill r, R;
//----------------------------------------
ring R=0,(x,S),dp;
def r = nc_algebra(1,-S); setring r;
ncdetection();
kill r, R;
//----------------------------------------
ring R=0,(x,D(1),S),dp;
matrix D[3][3];
D[1,2]=1; D[1,3]=-S;
def r = nc_algebra(1,D); setring r;
ncdetection();
}
static proc In_Poly(poly mm, list l, int NVars)
// applies the involution to the polynomial mm
// entries of a list l are images of variables under invo
// more general than invo_poly; used in many rings setting
{
int i,j;
intvec v;
poly pp, zz;
poly nn = 0;
i = 1;
while(mm[i]!=0)
{
v = leadexp(mm[i]);
zz = 1;
for( j=NVars; j>=1; j--)
{
if (v[j]!=0)
{
pp = l[j];
zz = zz*(pp^v[j]);
}
}
nn = nn + (leadcoef(mm[i])*zz);
i++;
}
return(nn);
}
static proc Hom_Poly(poly mm, list l, int NVars)
// applies the endomorphism to the polynomial mm
// entries of a list l are images of variables under endo
// should not be replaced by map-based stuff! used in
// many rings setting
{
int i,j;
intvec v;
poly pp, zz;
poly nn = 0;
i = 1;
while(mm[i]!=0)
{
v = leadexp(mm[i]);
zz = 1;
for( j=NVars; j>=1; j--)
{
if (v[j]!=0)
{
pp = l[j];
zz = (pp^v[j])*zz;
}
}
nn = nn + (leadcoef(mm[i])*zz);
i++;
}
return(nn);
}
static proc invo_poly(poly m, map theta)
// applies the involution map theta to m, where m=polynomial
{
// compatibility:
ideal l = ideal(theta);
int i;
list L;
for (i=1; i<=size(l); i++)
{
L[i] = l[i];
}
int nv = nvars(basering);
return (In_Poly(m,L,nv));
// if (m==0) { return(m); }
// int i,j;
// intvec v;
// poly p,z;
// poly n = 0;
// i = 1;
// while(m[i]!=0)
// {
// v = leadexp(m[i]);
// z =1;
// for(j=nvars(basering); j>=1; j--)
// {
// if (v[j]!=0)
// {
// p = var(j);
// p = theta(p);
// z = z*(p^v[j]);
// }
// }
// n = n + (leadcoef(m[i])*z);
// i++;
// }
// return(n);
}
///////////////////////////////////////////////////////////////////////////////////
proc involution(def m, map theta)
"USAGE: involution(m, theta); m is a poly/vector/ideal/matrix/module, theta is a map
RETURN: object of the same type as m
PURPOSE: applies the involution, presented by theta to the object m
THEORY: for an involution theta and two polynomials a,b from the algebra,
@* theta(ab) = theta(b) theta(a); theta is linear with respect to the ground field
NOTE: This is generalized ''theta(m)'' for data types unsupported by ''map''.
EXAMPLE: example involution; shows an example
"{
// applies the involution map theta to m,
// where m= vector, polynomial, module, matrix, ideal
int i,j;
intvec v;
poly p,z;
if (typeof(m)=="poly")
{
return (invo_poly(m,theta));
}
if ( typeof(m)=="ideal" )
{
ideal n;
for (i=1; i<=size(m); i++)
{
n[i] = invo_poly(m[i], theta);
}
return(n);
}
if (typeof(m)=="vector")
{
for(i=1; i<=size(m); i++)
{
m[i] = invo_poly(m[i], theta);
}
return (m);
}
if ( (typeof(m)=="matrix") || (typeof(m)=="module"))
{
matrix n = matrix(m);
int @R=nrows(n);
int @C=ncols(n);
for(i=1; i<=@R; i++)
{
for(j=1; j<=@C; j++)
{
if (m[i,j]!=0)
{
n[i,j] = invo_poly( m[i,j], theta);
}
}
}
if (typeof(m)=="module")
{
return (module(n));
}
else // matrix
{
return(n);
}
}
// if m is not of the supported type:
"Error: unsupported argument type!";
return();
}
example
{
"EXAMPLE:";echo = 2;
ring R = 0,(x,d),dp;
def r = nc_algebra(1,1); setring r; // Weyl-Algebra
map F = r,x,-d;
F(F); // should be maxideal(1) for an involution
poly f = x*d^2+d;
poly If = involution(f,F);
f-If;
poly g = x^2*d+2*x*d+3*x+7*d;
poly tg = -d*x^2-2*d*x+3*x-7*d;
poly Ig = involution(g,F);
tg-Ig;
ideal I = f,g;
ideal II = involution(I,F);
II;
matrix(I) - involution(II,F);
module M = [f,g,0],[g,0,x^2*d];
module IM = involution(M,F);
print(IM);
print(matrix(M) - involution(IM,F));
}
///////////////////////////////////////////////////////////////////////////////////
static proc new_var()
//generates a string of new variables
{
int NVars=nvars(basering);
int i,j;
// string s="@_1_1";
string s="a11";
for(i=1; i<=NVars; i++)
{
for(j=1; j<=NVars; j++)
{
if(i*j!=1)
{
s = s+ ","+NVAR(i,j);
}
}
}
return(s);
}
static proc NVAR(int i, int j)
{
// return("@_"+string(i)+"_"+string(j));
return("a"+string(i)+string(j));
}
///////////////////////////////////////////////////////////////////////////////////
static proc new_var_special()
//generates a string of new variables
{
int NVars=nvars(basering);
int i;
// string s="@_1_1";
string s="a11";
for(i=2; i<=NVars; i++)
{
s = s+ ","+NVAR(i,i);
}
return(s);
}
///////////////////////////////////////////////////////////////////////////////////
static proc RelMatr()
// returns the matrix of relations
// only Lie-type relations x_j x_i= x_i x_j + .. are taken into account
{
int i,j;
int NVars = nvars(basering);
matrix Rel[NVars][NVars];
for(i=1; i<NVars; i++)
{
for(j=i+1; j<=NVars; j++)
{
Rel[i,j]=var(j)*var(i)-var(i)*var(j);
}
}
return(Rel);
}
/////////////////////////////////////////////////////////////////
proc findInvo()
"USAGE: findInvo();
RETURN: a ring containing a list L of pairs, where
@* L[i][1] = ideal; a Groebner Basis of an i-th associated prime,
@* L[i][2] = matrix, defining a linear map, with entries, reduced with respect to L[i][1]
PURPOSE: computed the ideal of linear involutions of the basering
ASSUME: the relations on the algebra are of the form YX = XY + D, that is
the current ring is a G-algebra of Lie type.
NOTE: for convenience, the full ideal of relations @code{idJ}
and the initial matrix with indeterminates @code{matD} are exported in the output ring
SEE ALSO: findInvoDiag, involution
EXAMPLE: example findInvo; shows examples
"{
def @B = basering; //save the name of basering
int NVars = nvars(@B); //number of variables in basering
int i, j;
// check basering is of Lie type:
if (!isLieType())
{
ERROR("Assume violated: basering is of non-Lie type");
}
matrix Rel = RelMatr(); //the matrix of relations
string @ss = new_var(); //string of new variables
string Par = parstr(@B); //string of parameters in old ring
if (Par=="") // if there are no parameters
{
execute("ring @@@KK=0,("+varstr(@B)+","+@ss+"), dp;"); //new ring with new variables
}
else //if there exist parameters
{
execute("ring @@@KK=(0,"+Par+") ,("+varstr(@B)+","+@ss+"), dp;");//new ring with new variables
}
matrix Rel = imap(@B, Rel); //consider the matrix of relations in new ring
int Sz = NVars*NVars+NVars; // number of variables in new ring
matrix M[Sz][Sz]; //to be the matrix of relations in new ring
for(i=1; i<NVars; i++) //initialize that matrix of relations
{
for(j=i+1; j<=NVars; j++)
{
M[i,j] = Rel[i,j];
}
}
def @@K = nc_algebra(1, M); setring @@K; //now new ring @@K become a noncommutative ring
list l; //list to define an involution
poly @@F;
for(i=1; i<=NVars; i++) //initializing list for involution
{
@@F=0;
for(j=1; j<=NVars; j++)
{
execute( "@@F = @@F+"+NVAR(i,j)+"*"+string( var(j) )+";" );
}
l=l+list(@@F);
}
matrix N = imap(@@@KK,Rel);
for(i=1; i<NVars; i++)//get matrix by applying the involution to relations
{
for(j=i+1; j<=NVars; j++)
{
N[i,j]= l[j]*l[i] - l[i]*l[j] + In_Poly( N[i,j], l, NVars);
}
}
kill l;
//---------------------------------------------
//get the ideal of coefficients of N
ideal J;
ideal idN = simplify(ideal(N),2);
J = ideal(coeffs( idN, var(1) ) );
for(i=2; i<=NVars; i++)
{
J = ideal( coeffs( J, var(i) ) );
}
J = simplify(J,2);
//-------------------------------------------------
if ( Par=="" ) //initializes the ring of relations
{
execute("ring @@KK=0,("+@ss+"), dp;");
}
else
{
execute("ring @@KK=(0,"+Par+"),("+@ss+"), dp;");
}
ideal J = imap(@@K,J); // ideal, considered in @@KK now
string snv = "["+string(NVars)+"]";
execute("matrix @@D"+snv+snv+"="+@ss+";"); // matrix with entries=new variables
J = J, ideal( @@D*@@D-matrix( freemodule(NVars) ) ); // add the condition that involution to square is just identity
J = simplify(J,2); // without extra zeros
list mL = minAssGTZ(J); // components not in GB
int sL = size(mL);
intvec saveopt=option(get);
option(redSB); // important for reduced GBs
option(redTail);
matrix IM = @@D; // involution map
list L = list(); // the answer
list TL;
ideal tmp = 0;
for (i=1; i<=sL; i++) // compute GBs of components
{
TL = list();
TL[1] = std(mL[i]);
tmp = NF( ideal(IM), TL[1] );
TL[2] = matrix(tmp, NVars,NVars);
L[i] = TL;
}
export(L); // main export
ideal idJ = J; // debug-comfortable exports
matrix matD = @@D;
export(idJ);
export(matD);
option(set,saveopt);
return(@@KK);
}
example
{ "EXAMPLE:"; echo = 2;
def a = makeWeyl(1);
setring a; // this algebra is a first Weyl algebra
a;
def X = findInvo();
setring X; // ring with new variables, corr. to unknown coefficients
X;
L;
// look at the matrix in the new variables, defining the linear involution
print(L[1][2]);
L[1][1]; // where new variables obey these relations
idJ;
}
///////////////////////////////////////////////////////////////////////////
proc findInvoDiag()
"USAGE: findInvoDiag();
RETURN: a ring together with a list of pairs L, where
@* L[i][1] = ideal; a Groebner Basis of an i-th associated prime,
@* L[i][2] = matrix, defining a linear map, with entries, reduced with respect to L[i][1]
PURPOSE: compute homothetic (diagonal) involutions of the basering
ASSUME: the relations on the algebra are of the form YX = XY + D, that is
the current ring is a G-algebra of Lie type.
NOTE: for convenience, the full ideal of relations @code{idJ}
and the initial matrix with indeterminates @code{matD} are exported in the output ring
SEE ALSO: findInvo, involution
EXAMPLE: example findInvoDiag; shows examples
"{
def @B = basering; //save the name of basering
int NVars = nvars(@B); //number of variables in basering
int i, j;
// check basering is of Lie type:
if (!isLieType())
{
ERROR("Assume violated: basering is of non-Lie type");
}
matrix Rel = RelMatr(); //the matrix of relations
string @ss = new_var_special(); //string of new variables
string Par = parstr(@B); //string of parameters in old ring
if (Par=="") // if there are no parameters
{
execute("ring @@@KK=0,("+varstr(@B)+","+@ss+"), dp;"); //new ring with new variables
}
else //if there exist parameters
{
execute("ring @@@KK=(0,"+Par+") ,("+varstr(@B)+","+@ss+"), dp;");//new ring with new variables
}
matrix Rel = imap(@B, Rel); //consider the matrix of relations in new ring
int Sz = 2*NVars; // number of variables in new ring
matrix M[Sz][Sz]; //to be the matrix of relations in new ring
for(i=1; i<NVars; i++) //initialize that matrix of relations
{
for(j=i+1; j<=NVars; j++)
{
M[i,j] = Rel[i,j];
}
}
def @@K = nc_algebra(1, M); setring @@K; //now new ring @@K become a noncommutative ring
list l; //list to define an involution
for(i=1; i<=NVars; i++) //initializing list for involution
{
execute( "l["+string(i)+"]="+NVAR(i,i)+"*"+string( var(i) )+";" );
}
matrix N = imap(@@@KK,Rel);
for(i=1; i<NVars; i++)//get matrix by applying the involution to relations
{
for(j=i+1; j<=NVars; j++)
{
N[i,j]= l[j]*l[i] - l[i]*l[j] + In_Poly( N[i,j], l, NVars);
}
}
kill l;
//---------------------------------------------
//get the ideal of coefficients of N
ideal J;
ideal idN = simplify(ideal(N),2);
J = ideal(coeffs( idN, var(1) ) );
for(i=2; i<=NVars; i++)
{
J = ideal( coeffs( J, var(i) ) );
}
J = simplify(J,2);
//-------------------------------------------------
if ( Par=="" ) //initializes the ring of relations
{
execute("ring @@KK=0,("+@ss+"), dp;");
}
else
{
execute("ring @@KK=(0,"+Par+"),("+@ss+"), dp;");
}
ideal J = imap(@@K,J); // ideal, considered in @@KK now
matrix @@D[NVars][NVars]; // matrix with entries=new variables to square i.e. @@D=@@D^2
for(i=1;i<=NVars;i++)
{
execute("@@D["+string(i)+","+string(i)+"]="+NVAR(i,i)+";");
}
J = J, ideal( @@D*@@D - matrix( freemodule(NVars) ) ); // add the condition that involution to square is just identity
J = simplify(J,2); // without extra zeros
list mL = minAssGTZ(J); // components not in GB
int sL = size(mL);
intvec saveopt=option(get);
option(redSB); // important for reduced GBs
option(redTail);
matrix IM = @@D; // involution map
list L = list(); // the answer
list TL;
ideal tmp = 0;
for (i=1; i<=sL; i++) // compute GBs of components
{
TL = list();
TL[1] = std(mL[i]);
tmp = NF( ideal(IM), TL[1] );
TL[2] = matrix(tmp, NVars,NVars);
L[i] = TL;
}
export(L);
ideal idJ = J; // debug-comfortable exports
matrix matD = @@D;
export(idJ);
export(matD);
option(set,saveopt);
return(@@KK);
}
example
{ "EXAMPLE:"; echo = 2;
def a = makeWeyl(1);
setring a; // this algebra is a first Weyl algebra
a;
def X = findInvoDiag();
setring X; // ring with new variables, corresponding to unknown coefficients
X;
// print matrices, defining linear involutions
print(L[1][2]); // a first matrix: we see it is constant
print(L[2][2]); // and a second possible matrix; it is constant too
L; // let us take a look on the whole list
idJ;
}
/////////////////////////////////////////////////////////////////////
proc findAuto(int n)
"USAGE: findAuto(n); n an integer
RETURN: a ring together with a list of pairs L, where
@* L[i][1] = ideal; a Groebner Basis of an i-th associated prime,
@* L[i][2] = matrix, defining a linear map, with entries, reduced with respect to L[i][1]
PURPOSE: compute the ideal of linear automorphisms of the basering,
@* given by a matrix, n-th power of which gives identity (i.e. unipotent matrix)
ASSUME: the relations on the algebra are of the form YX = XY + D, that is
the current ring is a G-algebra of Lie type.
NOTE: if n=0, a matrix, defining an automorphism is not assumed to be unipotent
@* but just non-degenerate. A nonzero parameter @code{@@p} is introduced as the value of
@* the determinant of the matrix above.
@* For convenience, the full ideal of relations @code{idJ} and the initial matrix with indeterminates
@* @code{matD} are mutually exported in the output ring
SEE ALSO: findInvo
EXAMPLE: example findAuto; shows examples
"{
if ((n<0 ) || (n==1))
{
"The index of unipotency is too small.";
return(0);
}
def @B = basering; //save the name of basering
int NVars = nvars(@B); //number of variables in basering
int i, j;
// check basering is of Lie type:
if (!isLieType())
{
ERROR("Assume violated: basering is of non-Lie type");
}
matrix Rel = RelMatr(); //the matrix of relations
string @ss = new_var(); //string of new variables
string Par = parstr(@B); //string of parameters in old ring
if (Par=="") // if there are no parameters
{
execute("ring @@@K=0,("+varstr(@B)+","+@ss+"), dp;"); //new ring with new variables
}
else //if there exist parameters
{
execute("ring @@@K=(0,"+Par+") ,("+varstr(@B)+","+@ss+"), dp;");//new ring with new variables
}
matrix Rel = imap(@B, Rel); //consider the matrix of relations in new ring
int Sz = NVars*NVars+NVars; // number of variables in new ring
matrix M[Sz][Sz]; //to be the matrix of relations in new ring
for(i=1; i<NVars; i++) //initialize that matrix of relations
{
for(j=i+1; j<=NVars; j++)
{
M[i,j] = Rel[i,j];
}
}
def @@K = nc_algebra(1, M); setring @@K; //now new ring @@K become a noncommutative ring
list l; //list to define a homomorphism(isomorphism)
poly @@F;
for(i=1; i<=NVars; i++) //initializing list for involution
{
@@F=0;
for(j=1; j<=NVars; j++)
{
execute( "@@F = @@F+"+NVAR(i,j)+"*"+string( var(j) )+";" );
}
l=l+list(@@F);
}
matrix N = imap(@@@K,Rel);
for(i=1; i<NVars; i++)//get matrix by applying the homomorphism to relations
{
for(j=i+1; j<=NVars; j++)
{
N[i,j]= l[j]*l[i] - l[i]*l[j] - Hom_Poly( N[i,j], l, NVars);
}
}
kill l;
//---------------------------------------------
//get the ideal of coefficients of N
ideal J;
ideal idN = simplify(ideal(N),2);
J = ideal(coeffs( idN, var(1) ) );
for(i=2; i<=NVars; i++)
{
J = ideal( coeffs( J, var(i) ) );
}
J = simplify(J,2);
//-------------------------------------------------
if (( Par=="" ) && (n!=0)) //initializes the ring of relations
{
execute("ring @@KK=0,("+@ss+"), dp;");
}
if (( Par=="" ) && (n==0)) //initializes the ring of relations
{
execute("ring @@KK=(0,@p),("+@ss+"), dp;");
}
if ( Par!="" )
{
execute("ring @@KK=(0,"+Par+"),("+@ss+"), dp;");
}
// execute("setring @@KK;");
// basering;
ideal J = imap(@@K,J); // ideal, considered in @@KK now
string snv = "["+string(NVars)+"]";
execute("matrix @@D"+snv+snv+"="+@ss+";"); // matrix with entries=new variables
if (n>=2)
{
J = J, ideal( @@D*@@D-matrix( freemodule(NVars) ) ); // add the condition that homomorphism to square is just identity
}
if (n==0)
{
J = J, det(@@D)-@p; // det of non-unipotent matrix is nonzero
}
J = simplify(J,2); // without extra zeros
list mL = minAssGTZ(J); // components not in GB
int sL = size(mL);
intvec saveopt=option(get);
option(redSB); // important for reduced GBs
option(redTail);
matrix IM = @@D; // map
list L = list(); // the answer
list TL;
ideal tmp = 0;
for (i=1; i<=sL; i++)// compute GBs of components
{
TL = list();
TL[1] = std(mL[i]);
tmp = NF( ideal(IM), TL[1] );
TL[2] = matrix(tmp,NVars, NVars);
L[i] = TL;
}
export(L);
ideal idJ = J; // debug-comfortable exports
matrix matD = @@D;
export(idJ);
export(matD);
option(set,saveopt);
return(@@KK);
}
example
{ "EXAMPLE:"; echo = 2;
def a = makeWeyl(1);
setring a; // this algebra is a first Weyl algebra
a;
def X = findAuto(2); // in contrast to findInvo look for automorphisms
setring X; // ring with new variables - unknown coefficients
X;
size(L); // we have (size(L)) families in the answer
// look at matrices, defining linear automorphisms:
print(L[1][2]); // a first one: we see it is the identity
print(L[2][2]); // and a second possible matrix; it is diagonal
// L; // we can take a look on the whole list, too
idJ;
kill X; kill a;
//----------- find all the linear automorphisms --------------------
//----------- use the call findAuto(0) --------------------
ring R = 0,(x,s),dp;
def r = nc_algebra(1,s); setring r; // the shift algebra
s*x; // the only relation in the algebra is:
def Y = findAuto(0);
setring Y;
size(L); // here, we have 1 parametrized family
print(L[1][2]); // here, @p is a nonzero parameter
det(L[1][2]-@p); // check whether determinante is zero
}
proc isAntiEndo(def F)
"USAGE: isAntiEndo(F); F is a map from current ring to itself
RETURN: integer, 1 if F determines an antiendomorphism of
current ring and 0 otherwise
ASSUME: F is a map from current ring to itself
SEE ALSO: isInvolution, involution, findInvo
EXAMPLE: example isAntiEndo; shows examples
"
{
// assumes:
// (1) F is from br to br
// I don't see how to check it; in case of error it will happen in the body
// (2) do not assume: F is linear, F is bijective
int n = nvars(basering);
int i,j;
poly pi,pj,q;
int answer=1;
ideal @f = ideal(F); list L=@f[1..ncols(@f)];
for (i=1; i<n; i++)
{
for (j=i+1; j<=n; j++)
{
// F( x_j x_i) =def= F(x_i) F(x_j)
pi = var(i);
pj = var(j);
// q = involution(pj*pi,F) - F(pi)*F(pj);
q = In_Poly(pj*pi,L,n) - F[i]*F[j];
if (q!=0)
{
answer=0; return(answer);
}
}
}
return(answer);
}
example
{"EXAMPLE:";echo = 2;
def A = makeUsl(2); setring A;
map I = A,-e,-f,-h; //correct antiauto involution
isAntiEndo(I);
map J = A,3*e,1/3*f,-h; // antiauto but not involution
isAntiEndo(J);
map K = A,f,e,-h; // not antiendo
isAntiEndo(K);
}
proc isInvolution(def F)
"USAGE: isInvolution(F); F is a map from current ring to itself
RETURN: integer, 1 if F determines an involution and 0 otherwise
THEORY: involution is an antiautomorphism of order 2
ASSUME: F is a map from current ring to itself
SEE ALSO: involution, findInvo, isAntiEndo
EXAMPLE: example isInvolution; shows examples
"
{
// does not assume: F is an antiautomorphism, can be antiendo
// allows to detect endos which are not autos
// isInvolution == ( F isAntiEndo && F(F)==id )
if (!isAntiEndo(F))
{
return(0);
}
// def G = F(F);
int j; poly p; ideal @f = ideal(F); list L=@f[1..ncols(@f)];
int nv = nvars(basering);
for(j=nv; j>=1; j--)
{
// p = var(j); p = F(p); p = F(p) - var(j);
//p = G(p) - p;
p = In_Poly(var(j),L,nv);
p = In_Poly(p,L,nv) -var(j) ;
if (p!=0)
{
return(0);
}
}
return(1);
}
example
{"EXAMPLE:";echo = 2;
def A = makeUsl(2); setring A;
map I = A,-e,-f,-h; //correct antiauto involution
isInvolution(I);
map J = A,3*e,1/3*f,-h; // antiauto but not involution
isInvolution(J);
map K = A,f,e,-h; // not antiauto
isInvolution(K);
}
|