/usr/share/singular/LIB/goettsche.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 | ////////////////////////////////////////////////////////////////
version = "version goettsche.lib 0.9 Sep_2016 "; //$Id: 3c85f91451b99a4a0dfd39c3847565a88671cae8 $
category = "Betti numbers";
info="
LIBRARY: goettsche.lib Goettsche's formula for the Betti numbers of the Hilbert scheme
of points on a surface,
Macdonald's formula for the symmetric product
AUTHOR: Oleksandr Iena, o.g.yena@gmail.com, yena@mathematik.uni-kl.de
REFERENCES:
[1] Goettsche, Lothar, The Betti numbers of the Hilbert scheme of ponts
on a smooth projective surface.
Mathematische Annalen: 286, 193-208, (1990).
[2] Macdonald, I. G., The Poincare polynomial of a symmetric product,
Mathematical proceedings of the Cambridge Philosophical Society:
58, 563 - 568, (1962).
PROCEDURES:
GoettscheF(z, t, n, b); The Goettsche's formula up to n-th degree
PPolyH(z, n, b); Poincare Polynomial of the Hilbert scheme of n points on a surface
BettiNumsH(n, b); Betti numbers of the Hilbert scheme of n points on a surface
MacdonaldF(z, t, n, b); The Macdonald's formula up to n-th degree
PPolyS(z, n, b); Poincare Polynomial of the n-th symmetric power of a variety
BettiNumsS(n, b); Betti numbers of the n-th symmetric power of a variety
";
LIB "control.lib";
//----------------------------------------------------------
proc GoettscheF(poly z, poly t, int n, list b)
"USAGE: GoettscheF(z, t, n, b); z, t polynomials, n integer, b list of non-negative integers
RETURN: polynomial in z and t
PURPOSE: computes the Goettsche's formula up to degree n in t
EXAMPLE: example GoettscheF; shows an example
NOTE: zero is returned if n<0 or b is not a list of non-negative integers
or if there are not enough Betti numbers
"
{
// check the input data
if( !checkBetti(b) )
{
print("the Betti numbers must be non-negative integers");
print("zero polynomial is returned");
return( poly(0) );
}
if(n<0)
{
print("the number of points must be non-negative");
print("zero polynomial is returned");
return( poly(0) );
}
// now is non-negative and b is a list of non-negative integers
if(size(b) < 5) // if there are not enough Betti numbers
{
print("a surface must habe 5 Betti numbers b_0, b_1, b_2, b_3, b_4");
print("zero polynomial is returned");
return( poly(0) );
}
// now there are at least 5 non-negative Betti numbers b_0, b_1, b_2, b_3, b_4
def br@=basering; // remember the base ring
// add additional variables z@, t@ to the base ring
execute("ring r@= (" + charstr(basering) + "),("+varstr(basering)+", z@, t@), dp;" );
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
// compute the generating function by the Goettsche's formula up to degree n in t@
poly rez=1;
int k,i;
for(k=1;k<=n;k++)
{
for(i=0;i<=4;i++)
{
rez=rez*generFactor( z@^(2*k-2+i)*t@^k, k, i, b[i+1], n);
}
}
ideal I=std(t@^(n+1));
rez=NF(rez,I);
setring br@; // come back to the initial base ring
// define the specialization homomorphism z@=z, t@=t
execute( "map FF= r@,"+varstr(br@)+", z, t;" );
poly rez=FF(rez); // bring the result to the base ring
return(rez);
}
example
{
"EXAMPLE:"; echo=2;
ring r=0, (t, z), ls;
// consider the projective plane with Betti numbers 1,0,1,0,1
list b=1,0,1,0,1;
// get the Goettsche's formula up to degree 3
print( GoettscheF(z, t, 3, b) );
}
//----------------------------------------------------------
proc PPolyH(poly z, int n, list b)
"USAGE: PPolyH(z, n, b); z polynomial, n integer, b list of non-negative integers
RETURN: polynomial in z
PURPOSE: computes the Poincare polynomial of the Hilbert scheme
of n points on a surface with Betti numbers b
EXAMPLE: example PPolyH; shows an example
NOTE: zero is returned if n<0 or b is not a list of non-negative integers
or if there are not enough Betti numbers
"
{
// check the input data
if( !checkBetti(b) )
{
print("the Betti numbers must be non-negative integers");
print("zero polynomial is returned");
return( poly(0) );
}
if(n<0)
{
print("the number of points must be non-negative");
print("zero polynomial is returned");
return( poly(0) );
}
// now is non-negative and b is a list of non-negative integers
if(size(b) < 5) // if there are not enough Betti numbers
{
print("a surface must habe 5 Betti numbers b_0, b_1, b_2, b_3, b_4");
print("zero polynomial is returned");
return( poly(0) );
}
// now there are at least 5 non-negative Betti numbers b_0, b_1, b_2, b_3, b_4
def br@=basering; // remember the base ring
// add additional variables z@, t@ to the base ring
execute("ring r@= (" + charstr(basering) + "),("+varstr(basering)+", z@, t@), dp;" );
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
// compute the generating function by the Goettsche's formula up to degree n in t@
poly rez=1;
int k,i;
for(k=1;k<=n;k++)
{
for(i=0;i<=4;i++)
{
rez=rez*generFactor( z@^(2*k-2+i)*t@^k, k ,i,b[i+1], n);
}
}
ideal I=std(t@^(n+1));
rez=NF(rez,I);
rez= coeffs(rez, t@)[n+1, 1]; // take the coefficient of the n-th power of t@
setring br@; // come back to the initial base ring
// define the specialization homomorphism z@=z, t@=0
execute( "map FF= r@,"+varstr(br@)+",z, 0;" );
poly rez=FF(rez); // bring the result to the base ring
return(rez);
}
example
{
"EXAMPLE:"; echo=2;
ring r=0, (z), ls;
// consider the projective plane P_2 with Betti numbers 1,0,1,0,1
list b=1,0,1,0,1;
// get the Poincare polynomial of the Hilbert scheme of 3 points on P_2
print( PPolyH(z, 3, b) );
}
//----------------------------------------------------------
proc BettiNumsH(int n, list b)
"USAGE: BettiNumsH(n, b); n integer, b list of non-negative integers
RETURN: list of non-negative integers
PURPOSE: computes the Betti numbers of the Hilbert scheme
of n points on a surface with Betti numbers b
EXAMPLE: example BettiNumsH; shows an example
NOTE: an empty list is returned if n<0 or b is not a list of non-negative integers
or if there are not enough Betti numbers
"
{
// check the input data
if( !checkBetti(b) )
{
print("the Betti numbers must be non-negative integers");
print("an empty list is returned");
return( list() );
}
if(n<0)
{
print("the number of points must be non-negative");
print("an empty list is returned");
return(list());
}
// now is non-negative and b is a list of non-negative integers
if(size(b) < 5) // if there are not enough Betti numbers
{
print("a surface must habe 5 Betti numbers b_0, b_1, b_2, b_3, b_4");
print("an empty list is returned");
return( list() );
}
// now there are at least 5 non-negative Betti numbers b_0, b_1, b_2, b_3, b_4
def br@=basering; // remember the base ring
// add additional variables z@, t@ to the base ring
execute("ring r@= (" + charstr(basering) + "),("+varstr(basering)+", z@, t@), dp;" );
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
poly rez=1;
int k,i;
for(k=1;k<=n;k++)
{
for(i=0;i<=4;i++)
{
rez=rez*generFactor( z@^(2*k-2+i)*t@^k, k ,i,b[i+1], n);
}
}
ideal I=std(t@^(n+1));
rez=NF(rez,I);
rez= coeffs(rez, t@)[n+1, 1]; // take the coefficient of the n-th power of t@
matrix CF=coeffs(rez, z@); // take the matrix of the coefficients
list res; // and transform it to a list
int d=size(CF);
for(i=1; i<=d; i++)
{
res=res+ list(int(CF[i, 1])) ;
}
setring br@; // come back to the initial base ring
return(res);
}
example
{
"EXAMPLE:"; echo=2;
ring r=0, (z), ls;
// consider the projective plane P_2 with Betti numbers 1,0,1,0,1
list b=1,0,1,0,1;
// get the Betti numbers of the Hilbert scheme of 3 points on P_2
print( BettiNumsH(3, b) );
}
//----------------------------------------------------------
proc MacdonaldF(poly z, poly t, int n, list b)
"USAGE: MacdonaldF(z, t, n, b); z, t polynomials, n integer, b list of non-negative integers
RETURN: polynomial in z and t with integer coefficients
PURPOSE: computes the Macdonalds's formula up to degree n in t
EXAMPLE: example MacdonaldF; shows an example
NOTE: zero is returned if n<0 or b is not a list of non-negative integers
"
{
// check the input data
if( !checkBetti(b) )
{
print("the Betti numbers must be non-negative integers");
print("zero polynomial is returned");
return( poly(0) );
}
if(n<0)
{
print("the exponent of the symmetric power must be non-negative");
print("zero polynomial is returned");
return( poly(0) );
}
int d=size(b);
def br@=basering; // remember the base ring
// add additional variables z@, t@ to the base ring
execute("ring r@= (" + charstr(basering) + "),("+varstr(basering)+", z@, t@), dp;" );
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
poly rez=1;
int i;
for(i=0;i<d;i++)
{
rez=rez*generFactor( z@^i*t@, 1, i, b[i+1], n);
}
ideal I=std(t@^(n+1));
rez=NF(rez,I);
setring br@; // come back to the initial base ring
// define the specialization homomorphism z@=z, t@=t
execute( "map FF= r@,"+varstr(br@)+",z, t;" );
poly rez=FF(rez); // bring the result to the base ring
return(rez);
}
example
{
"EXAMPLE:"; echo=2;
ring r=0, (t, z), ls;
// consider the projective plane with Betti numbers 1,0,1,0,1
list b=1,0,1,0,1;
// get the Macdonald's formula up to degree 3
print( MacdonaldF(z, t, 3, b) );
}
//----------------------------------------------------------
proc PPolyS(poly z, int n, list b)
"USAGE: PPolyS(z, n, b); z polynomial, n integer, b list of non-negative integers
RETURN: polynomial in z with integer coefficients
PURPOSE: computes the Poincare polynomial of the n-th symmetric power
of a variety with Betti numbers b
EXAMPLE: example PPolyS; shows an example
NOTE: zero is returned if n<0 or b is not a list of non-negative integers
"
{
// check the input data
if( !checkBetti(b) )
{
print("the Betti numbers must be non-negative integers");
print("zero polynomial is returned");
return( poly(0) );
}
if(n<0)
{
print("the exponent of the symmetric power must be non-negative");
print("zero polynomial is returned");
return( poly(0) );
}
int d=size(b);
def br@=basering; // remember the base ring
// add additional variables z@, t@ to the base ring
execute("ring r@= (" + charstr(basering) + "),("+varstr(basering)+", z@, t@), dp;" );
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
poly rez=1;
int i;
for(i=0;i<d;i++)
{
rez=rez*generFactor( z@^i*t@, 1, i, b[i+1], n);
}
ideal I=std(t@^(n+1));
rez=NF(rez,I);
rez= coeffs(rez, t@)[n+1, 1]; // take the coefficient of the n-th power of t@
setring br@; // come back to the initial base ring
// define the specialization homomorphism z@=z, t@=0
execute( "map FF= r@,"+varstr(br@)+",z, 0;" );
poly rez=FF(rez); // bring the result to the base ring
return(rez);
}
example
{
"EXAMPLE:"; echo=2;
ring r=0, (z), ls;
// consider the projective plane P_2 with Betti numbers 1,0,1,0,1
list b=1,0,1,0,1;
// get the Poincare polynomial of the third symmetric power of P_2
print( PPolyS(z, 3, b) );
}
//----------------------------------------------------------
proc BettiNumsS(int n, list b)
"USAGE: BettiNumsS(n, b); n integer, b list of non-negative integers
RETURN: list of non-negative integers
PURPOSE: computes the Betti numbers of the n-th symmetric power of a variety with Betti numbers b
EXAMPLE: example BettiNumsS; shows an example
NOTE: an empty list is returned if n<0 or b is not a list of non-negative integers
"
{
// check the input data
if( !checkBetti(b) )
{
print("the Betti numbers must be non-negative integers");
print("an empty list is returned");
return( list() );
}
if(n<0)
{
print("the exponent of the symmetric power must be non-negative");
print("an empty list is returned");
return(list());
}
int d=size(b);
def br@=basering; // remember the base ring
// add additional variables z@, t@ to the base ring
execute("ring r@= (" + charstr(basering) + "),("+varstr(basering)+", z@, t@), dp;" );
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
poly rez=1;
int i;
for(i=0;i<d;i++)
{
rez=rez*generFactor( z@^i*t@, 1, i, b[i+1], n);
}
ideal I=std(t@^(n+1));
rez=NF(rez,I); // throw away the terms of higher degrees in t@
rez= coeffs(rez, t@)[n+1, 1]; // take the coefficient of the n-th power of t@
matrix CF=coeffs(rez, z@); // take the matrix of the coefficients
list res; // and transform it to a list
d=size(CF);
for(i=1; i<=d; i++)
{
res=res+ list(int(CF[i, 1])) ;
}
setring br@; // come back to the initial base ring
return(res);
}
example
{
"EXAMPLE:"; echo=2;
ring r=0, (z), ls;
// consider the projective plane P_2 with Betti numbers 1,0,1,0,1
list b=1,0,1,0,1;
// get the Betti numbers of the third symmetric power of P_2
print( BettiNumsS(3, b) );
}
//----------------------------------------------------------------------------------------
// The procedures below are for the internal usage only
//----------------------------------------------------------------------------------------
static proc checkBetti(list b)
"USAGE: checkBetti(b); b list of integers
RETURN: integer 1 or 0
PURPOSE: checks whether all entries of b are non-negative integers
EXAMPLE: example checkBetti; shows an example
NOTE:
"
{
int i;
int sz=size(b);
for(i=1;i<=sz;i++)
{
if( typeof(b[i])!="int" )
{
return(int(0));
}
if( b[i]<0 )
{
return(int(0));
}
}
return(int(1));
}
example
{
"EXAMPLE:"; echo=2;
ring r=0, (t), dp;
// not all entries are integers
list b=1,0,t,0,1;
print(checkBetti(b));
// all entries are integers but not all are non-negative
list b=1,0,-1,0,1;
print(checkBetti(b));
// all entries are non-negative integers
list b=1,0,1,0,1;
print(checkBetti(b));
}
//----------------------------------------------------------
static proc generFactor(poly X, int k, int i, int b, int n)
"USAGE: generFactor; X polynomial, k, b, n integers
RETURN: polynomial
PURPOSE: computes the corresponding factor from Goettsche's formula
EXAMPLE: example generFactor; shows an example
NOTE:
"
{
poly rez=0;
int j;
int pow;
pow=(-1)^(i+1)*b;
if(pow > 0)
{
rez=(1-X)^pow;
}
else
{
int m=n div k + 1;
for(j=0;j<m;j++)
{
rez=rez+ X^j;
}
rez=rez^(-pow);
}
//ideal I=std(t^(n+1));
//rez=NF(rez,I);
return(rez);
}
example
{
"EXAMPLE:"; echo=2;
ring r=0, (t), ds;
// get the polynomial expansion of 1/(1-t)^2
// using the Taylor expansion of 1/(1-t) up to degree 11
// and assuming that the degree of t is 3
print( generFactor(t, 3, 0, 2, 11) );
}
//----------------------------------------------------------
|