/usr/share/singular/LIB/gitfan.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 | ///////////////////////////////////////////////////////////////////
version="version gitfan.lib 4.0.2.0 Apr_2015 "; // $Id: b82d6a711b69ea1315d7c0610cf34ddae537dad7 $
category="Algebraic Geometry";
info="
LIBRARY: gitfan.lib Compute GIT-fans.
AUTHORS: Janko Boehm boehm@mathematik.uni-kl.de
@* Simon Keicher keicher@mail.mathematik.uni-tuebingen.de
@* Yue Ren ren@mathematik.uni-kl.de
OVERVIEW:
This library computes GIT-fans, torus orbits and GKZ-fans.
It uses the package 'gfanlib' by Anders N. Jensen
and some algorithms have been outsourced to C++ to improve the performance.
Check https://github.com/skeicher/gitfan_singular for updates.
KEYWORDS: library; gitfan; GIT; geometric invariant theory; quotients
PROCEDURES:
afaces(ideal); Returns a list of intvecs that correspond to all a-faces
gitCone(ideal,bigintmat,bigintmat); Returns the GIT-cone around the given weight vector w
gitFan(ideal,bigintmat); Returns the GIT-fan of the H-action defined by Q on V(a)
gkzFan(bigintmat); Returns the GKZ-fan of the matrix Q
isAface(ideal,intvec); Checks whether intvec corresponds to an ideal-face
orbitCones(ideal,bigintmat); Returns the list of all projected a-faces
";
LIB "parallel.lib"; // for parallelWaitAll
////////////////////////////////////////////////////
proc mod_init()
{
LIB"customstd.so";
LIB"gfanlib.so";
}
static proc int2face(int n, int r)
{
int k = r-1;
intvec v;
int n0 = n;
while(n0 > 0)
{
while(2^k > n0)
{
k--;
//v[size(v)+1] = 0;
}
v = k+1,v;
n0 = n0 - 2^k;
k--;
}
v = v[1..size(v)-1];
return(v);
}
/////////////////////////////////
proc isAface(ideal a, intvec gam0)
"USAGE: isAface(a,gam0); a: ideal, gam0:intvec
PURPOSE: Checks whether the face of the positive orthant,
that is spanned by all i-th unit vectors,
where i ranges amongst the entries of gam0,
is an a-face.
RETURN: int
EXAMPLE: example isaface; shows an example
"
{
poly pz;
// special case: gam0 is the zero-cone:
if (size(gam0) == 1 and gam0[1] == 0)
{
ideal G;
// is an a-face if and only if RL0(0,...,0) = const
// set all entries to 0:
int i;
for (int k = 1; k <= ncols(a); k++)
{
pz = subst(a[k], var(1), 0);
for (i = 2; i <= nvars(basering); i++)
{
pz = subst(pz, var(i), 0);
}
G = G, pz;
}
G = std(G);
// monomial inside?:
if(1 == G)
{
return(0);
}
return(1);
}
// ring is too big: Switch to KK[T_i; e_i\in gam0] instead:
def R = basering;
string initNewRing = "ring Rgam0 = 0,(";
for (int i=1; i<size(gam0); i++)
{
initNewRing = initNewRing + string(var(gam0[i])) + ",";
}
initNewRing = initNewRing + string(var(gam0[size(gam0)])) + "),dp;";
execute(initNewRing);
kill i;
ideal agam0 = imap(R,a);
poly p = var(1); // first entry of g; p = prod T_i with i element of g
for (int i = 2; i <= nvars(basering); i++ )
{
p = p * var(i);
}
// p is now the product over all T_i, with e_i in gam0
agam0 = agam0, p - 1; // rad-membership
ideal G = std(agam0);
// does G contain 1?, i.e. is G = 1?
if(G <> 1)
{
return(1); // true
}
return(0); // false
}
example
{
echo = 2;
ring R = 0,(T(1..4)),dp;
ideal I = T(1)*T(2)-T(4);
intvec w = 1,4;
intvec v = 1,2,4;
isAface(I,w); // should be 0
"-----------";
isAface(I,v); // should be 1
}
////////////////////////////////////////////////////
proc afacesPart(ideal a, int d, int start, int end, int r)
{
intvec gam0;
int i;
list AF;
for(i = start; i <= end; i++)
{
if(i < 2^r)
{
gam0 = int2face(i,r);
// take gam0 only if it has
// at least d rays:
if(size(gam0) >= d)
{
if (isAface(a,gam0))
{
AF[size(AF) + 1] = gam0;
}
}
}
}
return(AF);
}
////////////////////////////////////////////////////
proc afaces(ideal a, list #)
"USAGE: afaces(a, b, c); a: ideal, d: int, c: int
PURPOSE: Returns a list of all a-faces (represented by intvecs).
Moreover, it is possible to specify a dimensional bound b,
upon which only cones of that dimension and above are returned.
Lastly, as the computation is parallizable, one can specify c,
the number of cores to be used by the computation.
RETURN: a list of intvecs
EXAMPLE: example afaces; shows an example
"
{
int d = 1;
int ncores = 1;
if ((size(#) > 0) and (typeof(#[1]) == "int"))
{
d = #[1];
}
if ((size(#) > 1) and (typeof(#[2]) == "int"))
{
ncores = #[2];
}
list AF;
intvec gam0;
int r = nvars(basering);
// check if 0 is an a-face:
gam0 = 0;
if (isAface(a,gam0))
{
AF[size(AF) + 1] = gam0;
}
// check for other a-faces:
// make ncores processes:
int step = 2^r div ncores;
int i;
list args;
for(int k = 0; k < ncores; k++)
{
args[size(args) + 1] = list(a, d, k * step + 1, (k+1) * step, r);
}
string command = "afacesPart";
list out = parallelWaitAll(command, args);
// do remaining ones:
for(i = ncores * step +1; i < 2^r; i++)
{
"another one needed";
gam0 = int2face(i,r);
// take gam0 only if it has
// at least d rays:
if(size(gam0) >= d)
{
if (isAface(a,gam0))
{
AF[size(AF) + 1] = gam0;
}
}
}
// read out afaces of out into AF:
for(i = 1; i <= size(out); i++)
{
AF = AF + out[i];
}
return(AF);
}
example
{
echo = 2;
ring R = 0,T(1..3),dp;
ideal a = T(1)+T(2)+T(3);
list F = afaces(a,3,4);
print(F);
print(size(F));
// 2nd ex //
ring R2 = 0,T(1..3),dp;
ideal a2 = T(2)^2*T(3)^2+T(1)*T(3);
list F2 = afaces(a2,3,4);
print(F2);
print(size(F2));
// 3rd ex //
ring R3 = 0,T(1..3),dp;
ideal a3 = 0;
list F3 = afaces(a3,3,4);
print(F3);
print(size(F3));
// bigger example //
ring R = 0,T(1..15),dp;
ideal a =
T(1)*T(10)-T(2)*T(7)+T(3)*T(6),
T(1)*T(11)-T(2)*T(8)+T(4)*T(6),
T(1)*T(12)-T(2)*T(9)+T(5)*T(6),
T(1)*T(13)-T(3)*T(8)+T(4)*T(7),
T(1)*T(14)-T(3)*T(9)+T(5)*T(7),
T(1)*T(15)-T(4)*T(9)+T(5)*T(8),
T(2)*T(13)-T(3)*T(11)+T(4)*T(10),
T(2)*T(14)-T(3)*T(12)+T(5)*T(10),
T(2)*T(15)-T(4)*T(12)+T(5)*T(11),
T(3)*T(15)-T(4)*T(14)+T(5)*T(13),
T(6)*T(13)-T(7)*T(11)+T(8)*T(10),
T(6)*T(14)-T(7)*T(12)+T(9)*T(10),
T(6)*T(15)-T(8)*T(12)+T(9)*T(11),
T(7)*T(15)-T(8)*T(14)+T(9)*T(13),
T(10)*T(15)-T(11)*T(14)+T(12)*T(13);
int t = timer;
list F4 = afaces(a,0,2);
print(size(F4));
timer - t;
int t = timer;
list F4 = afaces(a,0);
print(size(F4));
timer - t;
}
///////////////////////////////////////
proc orbitCones(ideal a, bigintmat Q, list #)
"USAGE: orbitCones(a, Q, b, c); a: ideal, Q: bigintmat, b: int, c: int
PURPOSE: Returns a list consisting of all cones Q(gam0) where gam0 is an a-face.
Moreover, it is possible to specify a dimensional bound b,
upon which only cones of that dimension and above are returned.
Lastly, as the computation is parallizable, one can specify c,
the number of cores to be used by the computation.
RETURN: a list of cones
EXAMPLE: example orbitCones; shows an example
"
{
list AF;
if((size(#) > 1) and (typeof(#[2]) == "int"))
{
AF = afaces(a, nrows(Q), #[2]);
}
else
{
AF = afaces(a, nrows(Q));
}
int dimensionBound = 0;
if((size(#) > 0) and (typeof(#[1]) == "int"))
{
dimensionBound = #[1];
}
list OC;
intvec gam0;
int j;
for(int i = 1; i <= size(AF); i++)
{
gam0 = AF[i];
if(gam0 == 0)
{
bigintmat M[1][nrows(Q)];
}
else
{
bigintmat M[size(gam0)][nrows(Q)];
for (j = 1; j <= size(gam0); j++)
{
M[j,1..ncols(M)] = Q[1..nrows(Q),gam0[j]];
}
}
cone c = coneViaPoints(M);
if((dimension(c) >= dimensionBound) and (!(listContainsCone(OC, c))))
{
OC[size(OC)+1] = c;
}
kill M, c;
}
return(OC);
}
example
{
echo=2;
intmat Q[3][4] =
1,0,1,0,
0,1,0,1,
0,0,1,1;
ring R = 0,T(1..4),dp;
ideal a = 0;
orbitCones(a, Q);
}
///////////////////////////////////////
proc gitCone(ideal a, bigintmat Q, bigintmat w)
"USAGE: gitCone(a, Q, w); a: ideal, Q:bigintmat, w:bigintmat
PURPOSE: Returns the GIT-cone lambda(w), i.e. the intersection of all
orbit cones containing the vector w.
NOTE: call this only if you are interested in a single GIT-cone.
RETURN: a cone.
EXAMPLE: example gitCone; shows an example
"
{
list OC = orbitCones(a, Q);
cone lambda = nrows(Q);
for(int i = 1; i <= size(OC); i++)
{
cone c = OC[i];
if(containsInSupport(c, w))
{
lambda = convexIntersection(lambda, c);
}
kill c;
}
return(lambda);
}
example
{
echo=2;
intmat Q[3][4] =
1,0,1,0,
0,1,0,1,
0,0,1,1;
ring R = 0,T(1..4),dp;
ideal a = 0;
bigintmat w[1][3] = 3,3,1;
cone lambda = gitCone(a, Q, w);
rays(lambda);
bigintmat w2[1][3] = 1,1,1;
cone lambda2 = gitCone(a, Q, w2);
rays(lambda2);
}
/////////////////////////////////////
proc gitFan(ideal a, bigintmat Q, list #)
"USAGE: gitFan(a, Q); a: ideal, Q:bigintmat
PURPOSE: Returns the GIT-fan of the H-action defined by Q on V(a).
An optional third parameter of type 'int' is interpreted as the
number of CPU-cores you would like to use.
Note that 'system("--cpus");' returns the number of cpu available
in your system.
RETURN: a fan.
EXAMPLE: example gitFan; shows an example
"
{
list OC = orbitCones(a, Q, #);
fan f = refineCones(OC, Q);
return(f);
}
example
{
echo=2;
intmat Q[3][4] =
1,0,1,0,
0,1,0,1,
0,0,1,1;
ring R = 0,T(1..4),dp;
ideal a = 0;
gitFan(a, Q);
// 2nd example //
kill Q;
intmat Q[3][6] =
1,1,0,0,-1,-1,
0,1,1,-1,-1,0,
1,1,1,1,1,1;
ring R = 0,T(1..6),dp;
ideal a = T(1)*T(6) + T(2)*T(5) + T(3)*T(4);
int t = rtimer;
fan F = gitFan(a, Q);
t = rtimer - t;
int tt = rtimer;
fan F = gitFan(a, Q, 4);
tt = rtimer - tt;
t;
tt;
"--------";
kill R, Q, t, tt;
// next example //
ring R = 0,T(1..10),dp;
ideal a = T(5)*T(10)-T(6)*T(9)+T(7)*T(8),
T(1)*T(9)-T(2)*T(7)+T(4)*T(5),
T(1)*T(8)-T(2)*T(6)+T(3)*T(5),
T(1)*T(10)-T(3)*T(7)+T(4)*T(6),
T(2)*T(10)-T(3)*T(9)+T(4)*T(8);
bigintmat Q[4][10] =
1,0,0,0,1,1,1,0,0,0,
0,1,0,0,1,0,0,1,1,0,
0,0,1,0,0,1,0,1,0,1,
0,0,0,1,0,0,1,0,1,1;
int t = rtimer;
fan F = gitFan(a, Q);
t = rtimer - t;
int tt = rtimer;
fan F = gitFan(a, Q, 4);
tt = rtimer - tt;
t;
tt;
"--------";
kill R, Q, t, tt;
// next example //
ring R = 0,T(1..15),dp;
ideal a =
T(1)*T(10)-T(2)*T(7)+T(3)*T(6),
T(1)*T(11)-T(2)*T(8)+T(4)*T(6),
T(1)*T(12)-T(2)*T(9)+T(5)*T(6),
T(1)*T(13)-T(3)*T(8)+T(4)*T(7),
T(1)*T(14)-T(3)*T(9)+T(5)*T(7),
T(1)*T(15)-T(4)*T(9)+T(5)*T(8),
T(2)*T(13)-T(3)*T(11)+T(4)*T(10),
T(2)*T(14)-T(3)*T(12)+T(5)*T(10);
bigintmat Q[5][15] =
1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,
0,1,0,0,0,1,0,0,0,1,1,1,0,0,0,
0,0,1,0,0,0,1,0,0,1,0,0,1,1,0,
0,0,0,1,0,0,0,1,0,0,1,0,1,0,1,
0,0,0,0,1,0,0,0,1,0,0,1,0,1,1;
int t = rtimer;
fan F = gitFan(a, Q);
t = rtimer - t;
int tt = rtimer;
fan F = gitFan(a, Q, 4);
tt = rtimer - tt;
t;
tt;
}
/////////////////////////////////////
// Computes all simplicial orbit cones
// w.r.t. the 0-ideal:
static proc simplicialToricOrbitCones(bigintmat Q)
{
intvec gam0;
list OC;
cone c;
int r = ncols(Q);
int j;
for(int i = 1; i < 2^r; i++ )
{
gam0 = int2face(i,r);
// each simplicial cone is generated by
// exactly nrows(Q) many columns of Q:
if(size(gam0) == nrows(Q))
{
bigintmat M[size(gam0)][nrows(Q)];
for(j = 1; j <= size(gam0); j++)
{
M[j,1..ncols(M)] = Q[1..nrows(Q),gam0[j]];
}
c = coneViaPoints(M);
if((dimension(c) == nrows(Q)) and (!(listContainsCone(OC, c))))
{
OC[size(OC)+1] = c;
}
kill M;
}
}
return(OC);
}
/////////////////////////////////////
proc gkzFan(bigintmat Q)
"USAGE: gkzFan(Q); a: ideal, Q:bigintmat
PURPOSE: Returns the GKZ-fan of the matrix Q.
RETURN: a fan.
EXAMPLE: example gkzFan; shows an example
"
{
// only difference to gitFan:
// it suffices to consider all faces
// that are simplicial:
list OC = simplicialToricOrbitCones(Q);
fan f = refineCones(OC, Q);
return(f);
}
example
{
echo=2;
intmat Q[3][4] =
1,0,1,0,
0,1,0,1,
0,0,1,1;
gkzFan(Q);
}
|