This file is indexed.

/usr/share/singular/LIB/gitfan.lib is in singular-data 1:4.1.0-p3+ds-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
///////////////////////////////////////////////////////////////////
version="version gitfan.lib 4.0.2.0 Apr_2015 ";  // $Id: b82d6a711b69ea1315d7c0610cf34ddae537dad7 $
category="Algebraic Geometry";
info="
LIBRARY:  gitfan.lib       Compute GIT-fans.

AUTHORS:  Janko Boehm      boehm@mathematik.uni-kl.de
@*        Simon Keicher    keicher@mail.mathematik.uni-tuebingen.de
@*        Yue Ren          ren@mathematik.uni-kl.de

OVERVIEW:
This library computes GIT-fans, torus orbits and GKZ-fans.
It uses the package 'gfanlib' by Anders N. Jensen
and some algorithms have been outsourced to C++ to improve the performance.
Check https://github.com/skeicher/gitfan_singular for updates.

KEYWORDS: library; gitfan; GIT; geometric invariant theory; quotients

PROCEDURES:
afaces(ideal);                      Returns a list of intvecs that correspond to all a-faces
gitCone(ideal,bigintmat,bigintmat); Returns the GIT-cone around the given weight vector w
gitFan(ideal,bigintmat);            Returns the GIT-fan of the H-action defined by Q on V(a)
gkzFan(bigintmat);                  Returns the GKZ-fan of the matrix Q
isAface(ideal,intvec);              Checks whether intvec corresponds to an ideal-face
orbitCones(ideal,bigintmat);        Returns the list of all projected a-faces
";

LIB "parallel.lib"; // for parallelWaitAll

////////////////////////////////////////////////////
proc mod_init()
{
  LIB"customstd.so";
  LIB"gfanlib.so";
}

static proc int2face(int n, int r)
{
  int k = r-1;
  intvec v;
  int n0 = n;

  while(n0 > 0)
  {
    while(2^k > n0)
    {
      k--;
      //v[size(v)+1] = 0;
    }

    v = k+1,v;
    n0 = n0 - 2^k;
    k--;
  }
  v = v[1..size(v)-1];
  return(v);
}

/////////////////////////////////

proc isAface(ideal a, intvec gam0)
"USAGE:  isAface(a,gam0); a: ideal, gam0:intvec
PURPOSE: Checks whether the face of the positive orthant,
         that is spanned by all i-th unit vectors,
         where i ranges amongst the entries of gam0,
         is an a-face.
RETURN:  int
EXAMPLE: example isaface; shows an example
"
{
  poly pz;

  // special case: gam0 is the zero-cone:
  if (size(gam0) == 1 and gam0[1] == 0)
  {
    ideal G;

    // is an a-face if and only if RL0(0,...,0) = const
    // set all entries to 0:
    int i;
    for (int k = 1; k <= ncols(a); k++)
    {
      pz = subst(a[k], var(1), 0);
      for (i = 2; i <= nvars(basering); i++)
      {
        pz = subst(pz, var(i), 0);
      }
      G = G, pz;
    }

    G = std(G);

    // monomial inside?:
    if(1 == G)
    {
      return(0);
    }

    return(1);
  }


  // ring is too big: Switch to KK[T_i; e_i\in gam0] instead:
  def R = basering;
  string initNewRing = "ring Rgam0 = 0,(";
  for (int i=1; i<size(gam0); i++)
  {
    initNewRing = initNewRing + string(var(gam0[i])) + ",";
  }
  initNewRing = initNewRing + string(var(gam0[size(gam0)])) + "),dp;";
  execute(initNewRing);
  kill i;

  ideal agam0 = imap(R,a);

  poly p = var(1); // first entry of g; p = prod T_i with i element of g
  for (int i = 2; i <= nvars(basering); i++ )
  {
    p = p * var(i);
  }
  // p is now the product over all T_i, with e_i in gam0

  agam0 = agam0, p - 1; // rad-membership
  ideal G = std(agam0);

  // does G contain 1?, i.e. is G = 1?
  if(G <> 1)
  {
    return(1); // true
  }

  return(0); // false
}
example
{
  echo = 2;

  ring R = 0,(T(1..4)),dp;
  ideal I = T(1)*T(2)-T(4);

  intvec w = 1,4;
  intvec v = 1,2,4;

  isAface(I,w); // should be 0
  "-----------";
  isAface(I,v); // should be 1
}

////////////////////////////////////////////////////

proc afacesPart(ideal a, int d, int start, int end, int r)
{
  intvec gam0;
  int i;
  list AF;

  for(i = start; i <= end; i++)
  {
    if(i < 2^r)
    {
      gam0 = int2face(i,r);

      // take gam0 only if it has
      // at least d rays:
      if(size(gam0) >= d)
      {
        if (isAface(a,gam0))
        {
          AF[size(AF) + 1] = gam0;
        }
      }
    }
  }
  return(AF);
}

////////////////////////////////////////////////////

proc afaces(ideal a, list #)
"USAGE:  afaces(a, b, c); a: ideal, d: int, c: int
PURPOSE: Returns a list of all a-faces (represented by intvecs).
         Moreover, it is possible to specify a dimensional bound b,
         upon which only cones of that dimension and above are returned.
         Lastly, as the computation is parallizable, one can specify c,
         the number of cores to be used by the computation.
RETURN:  a list of intvecs
EXAMPLE: example afaces; shows an example
"
{
  int d = 1;
  int ncores = 1;

  if ((size(#) > 0) and (typeof(#[1]) == "int"))
  {
    d = #[1];
  }

  if ((size(#) > 1) and (typeof(#[2]) == "int"))
  {
    ncores = #[2];
  }

  list AF;
  intvec gam0;
  int r = nvars(basering);

  // check if 0 is an a-face:
  gam0 = 0;
  if (isAface(a,gam0))
  {
      AF[size(AF) + 1] = gam0;
  }

  // check for other a-faces:
  // make ncores processes:
  int step = 2^r div ncores;
  int i;

  list args;
  for(int k = 0; k < ncores; k++)
  {
    args[size(args) + 1] = list(a, d, k * step + 1, (k+1) * step, r);
  }

  string command = "afacesPart";
  list out = parallelWaitAll(command, args);

  // do remaining ones:
  for(i = ncores * step +1; i < 2^r; i++)
  {
    "another one needed";
    gam0 = int2face(i,r);

    // take gam0 only if it has
    // at least d rays:
    if(size(gam0) >= d)
    {
      if (isAface(a,gam0))
      {
        AF[size(AF) + 1] = gam0;
      }
    }
  }

  // read out afaces of out into AF:
  for(i = 1; i <= size(out); i++)
  {
    AF = AF + out[i];
  }

  return(AF);
}
example
{

  echo = 2;
  ring R = 0,T(1..3),dp;
  ideal a = T(1)+T(2)+T(3);

  list F = afaces(a,3,4);
  print(F);
  print(size(F));

  // 2nd ex //
  ring R2 = 0,T(1..3),dp;
  ideal a2 = T(2)^2*T(3)^2+T(1)*T(3);

  list F2 = afaces(a2,3,4);
  print(F2);
  print(size(F2));

  // 3rd ex //
  ring R3 = 0,T(1..3),dp;
  ideal a3 = 0;

  list F3 = afaces(a3,3,4);
  print(F3);
  print(size(F3));

  // bigger example //
  ring R = 0,T(1..15),dp;
  ideal a =
    T(1)*T(10)-T(2)*T(7)+T(3)*T(6),
    T(1)*T(11)-T(2)*T(8)+T(4)*T(6),
    T(1)*T(12)-T(2)*T(9)+T(5)*T(6),
    T(1)*T(13)-T(3)*T(8)+T(4)*T(7),
    T(1)*T(14)-T(3)*T(9)+T(5)*T(7),
    T(1)*T(15)-T(4)*T(9)+T(5)*T(8),
    T(2)*T(13)-T(3)*T(11)+T(4)*T(10),
    T(2)*T(14)-T(3)*T(12)+T(5)*T(10),
    T(2)*T(15)-T(4)*T(12)+T(5)*T(11),
    T(3)*T(15)-T(4)*T(14)+T(5)*T(13),
    T(6)*T(13)-T(7)*T(11)+T(8)*T(10),
    T(6)*T(14)-T(7)*T(12)+T(9)*T(10),
    T(6)*T(15)-T(8)*T(12)+T(9)*T(11),
    T(7)*T(15)-T(8)*T(14)+T(9)*T(13),
    T(10)*T(15)-T(11)*T(14)+T(12)*T(13);

  int t = timer;
  list F4 = afaces(a,0,2);
  print(size(F4));
  timer - t;

  int t = timer;
  list F4 = afaces(a,0);
  print(size(F4));
  timer - t;

}

///////////////////////////////////////

proc orbitCones(ideal a, bigintmat Q, list #)
"USAGE:  orbitCones(a, Q, b, c); a: ideal, Q: bigintmat, b: int, c: int
PURPOSE: Returns a list consisting of all cones Q(gam0) where gam0 is an a-face.
         Moreover, it is possible to specify a dimensional bound b,
         upon which only cones of that dimension and above are returned.
         Lastly, as the computation is parallizable, one can specify c,
         the number of cores to be used by the computation.
RETURN:  a list of cones
EXAMPLE: example orbitCones; shows an example
"
{
  list AF;

  if((size(#) > 1) and (typeof(#[2]) == "int"))
  {
    AF = afaces(a, nrows(Q), #[2]);
  }
  else
  {
    AF = afaces(a, nrows(Q));
  }

  int dimensionBound = 0;
  if((size(#) > 0) and (typeof(#[1]) == "int"))
  {
    dimensionBound = #[1];
  }

  list OC;
  intvec gam0;
  int j;

  for(int i = 1; i <= size(AF); i++)
  {
    gam0 = AF[i];

    if(gam0 == 0)
    {
      bigintmat M[1][nrows(Q)];
    }
    else
    {
      bigintmat M[size(gam0)][nrows(Q)];
      for (j = 1; j <= size(gam0); j++)
      {
        M[j,1..ncols(M)] = Q[1..nrows(Q),gam0[j]];
      }
    }
    cone c = coneViaPoints(M);

    if((dimension(c) >= dimensionBound) and (!(listContainsCone(OC, c))))
    {
      OC[size(OC)+1] = c;
    }

    kill M, c;
  }

  return(OC);
}
example
{
  echo=2;
  intmat Q[3][4] =
    1,0,1,0,
    0,1,0,1,
    0,0,1,1;

  ring R = 0,T(1..4),dp;
  ideal a = 0;

  orbitCones(a, Q);
}

///////////////////////////////////////

proc gitCone(ideal a, bigintmat Q, bigintmat w)
"USAGE: gitCone(a, Q, w); a: ideal, Q:bigintmat, w:bigintmat
PURPOSE: Returns the GIT-cone lambda(w), i.e. the intersection of all
orbit cones containing the vector w.
NOTE: call this only if you are interested in a single GIT-cone.
RETURN: a cone.
EXAMPLE: example gitCone; shows an example
"
{
  list OC =  orbitCones(a, Q);
  cone lambda = nrows(Q);

  for(int i = 1; i <= size(OC); i++)
  {
    cone c = OC[i];

    if(containsInSupport(c, w))
    {
      lambda = convexIntersection(lambda, c);
    }

    kill c;
  }

  return(lambda);
}
example
{
  echo=2;
  intmat Q[3][4] =
    1,0,1,0,
    0,1,0,1,
    0,0,1,1;

  ring R = 0,T(1..4),dp;
  ideal a = 0;

  bigintmat w[1][3] = 3,3,1;
  cone lambda = gitCone(a, Q, w);
  rays(lambda);

  bigintmat w2[1][3] = 1,1,1;
  cone lambda2 = gitCone(a, Q, w2);
  rays(lambda2);
}

/////////////////////////////////////

proc gitFan(ideal a, bigintmat Q, list #)
"USAGE: gitFan(a, Q); a: ideal, Q:bigintmat
PURPOSE: Returns the GIT-fan of the H-action defined by Q on V(a).
An optional third parameter of type 'int' is interpreted as the
number of CPU-cores you would like to use.
Note that 'system("--cpus");' returns the number of cpu available
in your system.
RETURN: a fan.
EXAMPLE: example gitFan; shows an example
"
{
  list OC = orbitCones(a, Q, #);

  fan f = refineCones(OC, Q);
  return(f);
}
example
{
  echo=2;
  intmat Q[3][4] =
    1,0,1,0,
    0,1,0,1,
    0,0,1,1;

  ring R = 0,T(1..4),dp;
  ideal a = 0;

  gitFan(a, Q);

  // 2nd example //
  kill Q;
  intmat Q[3][6] =
    1,1,0,0,-1,-1,
    0,1,1,-1,-1,0,
    1,1,1,1,1,1;

  ring R = 0,T(1..6),dp;
  ideal a = T(1)*T(6) + T(2)*T(5) + T(3)*T(4);

  int t = rtimer;
  fan F = gitFan(a, Q);
  t = rtimer - t;

  int tt = rtimer;
  fan F = gitFan(a, Q, 4);
  tt = rtimer - tt;

  t;
  tt;
  "--------";
  kill R, Q, t, tt;
  // next example //
  ring R = 0,T(1..10),dp;
  ideal a = T(5)*T(10)-T(6)*T(9)+T(7)*T(8),
    T(1)*T(9)-T(2)*T(7)+T(4)*T(5),
    T(1)*T(8)-T(2)*T(6)+T(3)*T(5),
    T(1)*T(10)-T(3)*T(7)+T(4)*T(6),
    T(2)*T(10)-T(3)*T(9)+T(4)*T(8);

  bigintmat Q[4][10] =
    1,0,0,0,1,1,1,0,0,0,
    0,1,0,0,1,0,0,1,1,0,
    0,0,1,0,0,1,0,1,0,1,
    0,0,0,1,0,0,1,0,1,1;

  int t = rtimer;
  fan F = gitFan(a, Q);
  t = rtimer - t;

  int tt = rtimer;
  fan F = gitFan(a, Q, 4);
  tt = rtimer - tt;

  t;
  tt;

  "--------";
  kill R, Q, t, tt;
  // next example //
  ring R = 0,T(1..15),dp;
  ideal a =
    T(1)*T(10)-T(2)*T(7)+T(3)*T(6),
    T(1)*T(11)-T(2)*T(8)+T(4)*T(6),
    T(1)*T(12)-T(2)*T(9)+T(5)*T(6),
    T(1)*T(13)-T(3)*T(8)+T(4)*T(7),
    T(1)*T(14)-T(3)*T(9)+T(5)*T(7),
    T(1)*T(15)-T(4)*T(9)+T(5)*T(8),
    T(2)*T(13)-T(3)*T(11)+T(4)*T(10),
    T(2)*T(14)-T(3)*T(12)+T(5)*T(10);

  bigintmat Q[5][15] =
    1,0,0,0,0,1,1,1,1,0,0,0,0,0,0,
    0,1,0,0,0,1,0,0,0,1,1,1,0,0,0,
    0,0,1,0,0,0,1,0,0,1,0,0,1,1,0,
    0,0,0,1,0,0,0,1,0,0,1,0,1,0,1,
    0,0,0,0,1,0,0,0,1,0,0,1,0,1,1;

  int t = rtimer;
  fan F = gitFan(a, Q);
  t = rtimer - t;

  int tt = rtimer;
  fan F = gitFan(a, Q, 4);
  tt = rtimer - tt;

  t;
  tt;

}

/////////////////////////////////////
// Computes all simplicial orbit cones
// w.r.t. the 0-ideal:

static proc simplicialToricOrbitCones(bigintmat Q)
{
  intvec gam0;
  list OC;
  cone c;
  int r = ncols(Q);
  int j;

  for(int i = 1; i < 2^r; i++ )
  {
    gam0 = int2face(i,r);

    // each simplicial cone is generated by
    // exactly nrows(Q) many columns of Q:
    if(size(gam0) == nrows(Q))
    {
      bigintmat M[size(gam0)][nrows(Q)];

      for(j = 1; j <= size(gam0); j++)
      {
        M[j,1..ncols(M)] = Q[1..nrows(Q),gam0[j]];
      }

      c = coneViaPoints(M);

      if((dimension(c) == nrows(Q)) and (!(listContainsCone(OC, c))))
      {
        OC[size(OC)+1] = c;
      }

      kill M;
    }
  }

  return(OC);
}

/////////////////////////////////////

proc gkzFan(bigintmat Q)
"USAGE: gkzFan(Q); a: ideal, Q:bigintmat
PURPOSE: Returns the GKZ-fan of the matrix Q.
RETURN: a fan.
EXAMPLE: example gkzFan; shows an example
"
{
  // only difference to gitFan:
  // it suffices to consider all faces
  // that are simplicial:
  list OC = simplicialToricOrbitCones(Q);

  fan f = refineCones(OC, Q);
  return(f);
}
example
{
  echo=2;
  intmat Q[3][4] =
    1,0,1,0,
    0,1,0,1,
    0,0,1,1;

  gkzFan(Q);
}