This file is indexed.

/usr/share/singular/LIB/findifs.lib is in singular-data 1:4.1.0-p3+ds-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
//////////////////////////////////////////////////////////////////////////////
version="version findifs.lib 4.0.0.0 Jun_2013 "; // $Id: d56248604e0535012373faef7e0ad53393269302 $
category="System and Control Theory";
info="
LIBRARY: findifs.lib  Tools for the finite difference schemes
AUTHORS: Viktor Levandovskyy,     levandov@math.rwth-aachen.de

OVERVIEW:
        We provide the presentation of difference operators in a polynomial,
        semi-factorized and a nodal form. Running @code{findifs_example();}
        will demonstrate, how we generate finite difference schemes of linear PDEs
        from given approximations.

Theory: The method we use have been developed by V. Levandovskyy and Bernd Martin. The
computation of a finite difference scheme of a given single linear partial
differential equation with constant coefficients with a given approximation
rules boils down to the computation of a Groebner basis of a submodule of
a free module with respect to the ordering, eliminating module components.


Support: SpezialForschungsBereich F1301 of the Austrian FWF

PROCEDURES:
findifs_example();  containes a guided explanation of our approach
decoef(P,n);  decompose polynomial P into summands with respect to the number n
difpoly2tex(S,P[,Q]); present the difference scheme in the nodal form


exp2pt(P[,L]); convert a polynomial M into the TeX format, in nodal form
texcoef(n);  converts the number n into TeX
npar(n); search for 'n' among the parameters and returns its number
magnitude(P); compute the square of the magnitude of a complex expression
replace(s,what,with);  replace in s all the substrings with a given string
xchange(w,a,b); exchange two substrings in a given string

SEE ALSO: latex_lib, finitediff_lib
";


LIB "latex.lib";
LIB "poly.lib";

proc tst_findif()
{
  example decoef;
  example difpoly2tex;
  example exp2pt;
  example texcoef;
  example npar;
  example magnitude;
  example replace;
  example xchange;
}

// static procs:
// par2tex(s);     convert special characters to TeX in s
// mon2pt(P[,L]); convert a monomial M into the TeX format, in nodal form


// 1. GLOBAL ASSUME: in the ring we have first Tx, then Tt: [FIXED, not needed anymore]!
// 2. map vars other than Tx,Tt to parameters instead or just ignore them [?]
// 3. clear the things with brackets
// 4. todo: content resp lcmZ, gcdZ

proc xchange(string where, string a, string b)
"USAGE:  xchange(w,a,b);  w,a,b strings
RETURN:  string
PURPOSE:  exchanges substring 'a' with a substring 'b' in the string w
NOTE:
EXAMPLE: example xchange; shows examples
"{
  // replaces a<->b in where
  // assume they are of the same size [? seems to work]
  string s = "H";
  string t;
  t = replace(where,a,s);
  t = replace(t,b,a);
  t = replace(t,s,b);
  return(t);
}
example
{
 " EXAMPLE:"; echo=2;
 ring r = (0,dt,dh,A),Tt,dp;
 poly p = (Tt*dt+dh+1)^2+2*A;
 string s = texpoly("",p);
 s;
 string t = xchange(s,"dh","dt");
 t;
}

static proc par2tex(string s)
"USAGE:  par2tex(s);  s a string
RETURN:  string
PURPOSE: converts special characters to TeX in s
NOTE: the convention is the following:
      'Tx' goes to 'T_x',
      'dx' to '\\tri x' (the same for dt, dy, dz),
      'theta', 'ro', 'A', 'V' are converted to greek letters.
EXAMPLE: example par2tex; shows examples
"{
  // can be done with the help of latex_lib

// s is a tex string with a poly
// replace theta with \theta
// A with \lambda
// dt with \tri t
// dh with \tri h
// Tx with T_x, Ty with T_y
// Tt with T_t
// V with \nu
// ro with \rho
// dx with \tri x
// dy with \tri y
  string t = s;
  t = replace(t,"Tt","T_t");
  t = replace(t,"Tx","T_x");
  t = replace(t,"Ty","T_y");
  t = replace(t,"dt","\\tri t");
  t = replace(t,"dh","\\tri h");
  t = replace(t,"dx","\\tri x");
  t = replace(t,"dy","\\tri y");
  t = replace(t,"theta","\\theta");
  t = replace(t,"A","\\lambda");
  t = replace(t,"V","\\nu");
  t = replace(t,"ro","\\rho");
  return(t);
}
example
{
 " EXAMPLE:"; echo=2;
 ring r = (0,dt,theta,A),Tt,dp;
 poly p = (Tt*dt+theta+1)^2+2*A;
 string s = texfactorize("",p);
 s;
 par2tex(s);
 string T = texfactorize("",p*(-theta*A));
 par2tex(T);
}

proc replace(string s, string what, string with)
"USAGE:  replace(s,what,with);  s,what,with strings
RETURN:  string
PURPOSE: replaces in 's' all the substrings 'what' with substring 'with'
NOTE:
EXAMPLE: example replace; shows examples
"{
  // clear: replace in s, "what" with "with"
  int ss = size(s);
  int cn = find(s,what);
  if ( (cn==0) || (cn>ss))
  {
    return(s);
  }
  int gn = 0; // global counter
  int sw = size(what);
  int swith = size(with);
  string out="";
  string tmp;
  gn  = 0;
  while(cn!=0)
  {
//    "cn:";    cn;
//    "gn";    gn;
    tmp = "";
    if (cn>gn)
    {
      tmp = s[gn..cn-1];
    }
//    "tmp:";tmp;
//    out = out+tmp+" "+with;
    out = out+tmp+with;
//    "out:";out;
    gn  = cn + sw;
    if (gn>ss)
    {
      // ( (gn>ss) || ((sw>1) && (gn >= ss)) )
      // no need to append smth
      return(out);
    }
//     if (gn == ss)
//     {

//     }
    cn  = find(s,what,gn);
  }
  // and now, append the rest of s
  //  out = out + " "+ s[gn..ss];
  out = out + s[gn..ss];
  return(out);
}
example
{
 " EXAMPLE:"; echo=2;
 ring r = (0,dt,theta),Tt,dp;
 poly p = (Tt*dt+theta+1)^2+2;
 string s = texfactorize("",p);
 s;
 s = replace(s,"Tt","T_t"); s;
 s = replace(s,"dt","\\tri t"); s;
 s = replace(s,"theta","\\theta"); s;
}

proc exp2pt(poly P, list #)
"USAGE:  exp2pt(P[,L]);  P poly, L an optional list of strings
RETURN:  string
PURPOSE: convert a polynomial M into the TeX format, in nodal form
ASSUME: coefficients must not be fractional
NOTE: an optional list L contains a string, which will replace the default
value 'u' for the discretized function
EXAMPLE: example exp2pt; shows examples
"{
// given poly in vars [now Tx,Tt are fixed],
// create Tex expression for points of lattice
// coeffs must not be fractional
  string varnm = "u";
  if (size(#) > 0)
  {
    if (typeof(#[1])=="string")
    {
      varnm = string(#[1]);
    }
  }
  //  varnm;
  string rz,mz;
  while (P!=0)
  {
    mz = mon2pt(P,varnm);
    if (mz[1]=="-")
    {
      rz = rz+mz;
    }
    else
    {
      rz = rz + "+" + mz;
    }
    P = P-lead(P);
  }
  rz  = rz[2..size(rz)];
  return(rz);
}
example
{
  " EXAMPLE:"; echo=2;
  ring r = (0,dh,dt),(Tx,Tt),dp;
  poly M = (4*dh*Tx^2+1)*(Tt-1)^2;
  print(exp2pt(M));
  print(exp2pt(M,"F"));
}

static proc mon2pt(poly M, string V)
"USAGE:  mon2pt(M,V);  M poly, V a string
RETURN:  string
PURPOSE: convert a monomial M into the TeX format, nodal form
EXAMPLE: example mon2pt; shows examples
"{
  // searches for Tx, then Tt
  // monomial to the lattice point conversion
  // c*X^a*Y^b --> c*U^{n+a}_{j+b}
  number cM = leadcoef(M);
  intvec e = leadexp(M);
  //  int a = e[2]; // convention: first Tx, then Tt
  //  int b = e[1];
  int i;
  int a , b, c = 0,0,0;
  int ia,ib,ic = 0,0,0;
  int nv = nvars(basering);
  string s;
  for (i=1; i<=nv ; i++)
  {
    s = string(var(i));
    if (s=="Tt") { a = e[i]; ia = i;}
    if (s=="Tx") { b = e[i]; ib = i;}
    if (s=="Ty") { c = e[i]; ic = i;}
  }
  //  if (ia==0) {"Error:Tt not found!"; return("");}
  //  if (ib==0) {"Error:Tx not found!"; return("");}
  //  if (ic==0)   {"Error:Ty not found!"; return("");}
  //  string tc = texobj("",c); // why not texpoly?
  string tc = texcoef(cM);
  string rs;
  if (cM==-1)
  {
    rs = "-";
  }
  if (cM^2 != 1)
  {
// we don't need 1 or -1 as coeffs
//    rs = clTex(tc)+" ";
//    rs = par2tex(rmDol(tc))+" ";
    rs = par2tex(tc)+" ";
  }
// a = 0 or b = 0
  rs = rs + V +"^{n";
  if (a!=0)
  {
    rs = rs +"+"+string(a);
  }
  rs = rs +"}_{j";
  if (b!=0)
  {
    rs = rs +"+"+string(b);
  }
  if (c!=0)
  {
    rs = rs + ",k+";
    rs = rs + string(c);
  }
  rs = rs +"}";
  return(rs);
}
example
{
 "EXAMPLE:"; echo=2;
  ring r = (0,dh,dt),(Tx,Tt),dp;
  poly M = (4*dh^2-dt)*Tx^3*Tt;
  print(mon2pt(M,"u"));
  poly N = ((dh-dt)/(dh+dt))*Tx^2*Tt^2;
  print(mon2pt(N,"f"));
  ring r2 = (0,dh,dt),(Tx,Ty,Tt),dp;
  poly M  = (4*dh^2-dt)*Tx^3*Ty^2*Tt;
  print(mon2pt(M,"u"));
}

proc npar(number n)
"USAGE:  npar(n);  n a number
RETURN:  int
PURPOSE: searches for 'n' among the parameters and returns its number
EXAMPLE: example npar; shows examples
"{
  // searches for n amongst parameters
  // and returns its number
  int i,j=0,0;
  list L = ringlist(basering);
  list M = L[1][2]; // pars
  string sn = string(n);
  sn = sn[2..size(sn)-1];
  for (i=1; i<=size(M);i++)
  {
    if (M[i] == sn)
    {
      j = i;
    }
  }
  if (j==0)
  {
    "Incorrect parameter";
  }
  return(j);
}
example
{
 "EXAMPLE:"; echo=2;
  ring r = (0,dh,dt,theta,A),t,dp;
  npar(dh);
  number T = theta;
  npar(T);
  npar(dh^2);
}

proc decoef(poly P, number n)
"USAGE:  decoef(P,n);  P a poly, n a number
RETURN:  ideal
PURPOSE:  decompose polynomial P into summands with respect
to the  presence of the number n in the coefficients
NOTE:    n is usually a parameter with no power
EXAMPLE: example decoef; shows examples
"{
  // decomposes polynomial into summands
  // w.r.t. the presence of a number n in coeffs
  // returns ideal
  def br = basering;
  int i,j=0,0;
  int pos = npar(n);
  if ((pos==0) || (P==0))
  {
    return(0);
  }
  pos = pos + nvars(basering);
// map all pars except to vars, provided no things are in denominator
  number con = content(P);
  con = numerator(con);
  P = cleardenom(P); //destroys content!
  P = con*P; // restore the numerator part of the content
  list M = ringlist(basering);
  list L = M[1..4];
  list Pars = L[1][2];
  list Vars = L[2] + Pars;
  L[1] = L[1][1]; // characteristic
  L[2] = Vars;
  // for non-comm things: don't need nc but graded algebra
  //  list templ;
  //  L[5] = templ;
  //  L[6] = templ;
  def @R = ring(L);
  setring @R;
  poly P = imap(br,P);
  poly P0 = subst(P,var(pos),0);
  poly P1 = P - P0;
  ideal I = P0,P1;
  setring br;
  ideal I = imap(@R,I);
  kill @R;
  // check: P0+P1==P
  poly Q = I[1]+I[2];
  if (P!=Q)
  {
    "Warning: problem in decoef";
  }
  return(I);
// substract the pure part from orig and check if n is remained there
}
example
{
 " EXAMPLE:"; echo=2;
  ring r = (0,dh,dt),(Tx,Tt),dp;
  poly P = (4*dh^2-dt)*Tx^3*Tt + dt*dh*Tt^2 + dh*Tt;
  decoef(P,dt);
  decoef(P,dh);
}

proc texcoef(number n)
"USAGE:  texcoef(n);  n a number
RETURN:  string
PURPOSE:  converts the number n into TeX format
NOTE: if n is a polynomial, texcoef adds extra brackets and performs some space substitutions
EXAMPLE: example texcoef; shows examples
"{
  // makes tex from n
  // and uses substitutions
  // if n is a polynomial, adds brackets
  number D  = denominator(n);
  int DenIsOne = 0;
  if ( D==number(1) )
  {
    DenIsOne = 1;
  }
  string sd = texpoly("",D);
  sd = rmDol(sd);
  sd = par2tex(sd);
  number N  = numerator(n);
  string sn = texpoly("",N);
  sn = rmDol(sn);
  sn = par2tex(sn);
  string sout="";
  int i;
  int NisPoly = 0;
  if (DenIsOne)
  {
    sout = sn;
    for(i=1; i<=size(sout); i++)
    {
      if ( (sout[i]=="+") || (sout[i]=="-") )
      {
        NisPoly = 1;
      }
    }
    if (NisPoly)
    {
      sout = "("+sout+")";
    }
  }
  else
  {
    sout = "\\frac{"+sn+"}{"+sd+"}";
  }
  return(sout);
}
example
{
 " EXAMPLE:"; echo=2;
  ring r = (0,dh,dt),(Tx,Tt),dp;
  number n1,n2,n3 = dt/(4*dh^2-dt),(dt+dh)^2, 1/dh;
  n1; texcoef(n1);
  n2; texcoef(n2);
  n3; texcoef(n3);
}

static proc rmDol(string s)
{
  // removes $s and _no_ (s on appearance
  int i = size(s);
  if (s[1] == "$") { s = s[2..i]; i--;}
  if (s[1] == "(") { s = s[2..i]; i--;}
  if (s[i] == "$") { s = s[1..i-1]; i--;}
  if (s[i] == ")") { s = s[1..i-1];}
  return(s);
}

proc difpoly2tex(ideal S, list P, list #)
"USAGE:  difpoly2tex(S,P[,Q]);  S an ideal, P and optional Q are lists
RETURN:  string
PURPOSE: present the difference scheme in the nodal form
ASSUME: ideal S is the result of @code{decoef} procedure
NOTE: a list P may be empty or may contain parameters, which will not
appear in denominators
@* an optional list Q represents the part of the scheme, depending
on other function, than the major part
EXAMPLE: example difpoly2tex; shows examples
"
{
  // S = sum s_i = orig diff poly or
  // the result of decoef
  // P = list of pars (numbers) not to be divided with, may be empty
  // # is an optional list of polys, repr. the part dep. on "f", not on "u"
  //  S = simplify(S,2); // destroys the leadcoef
  // rescan S and remove 0s from it
  int i;
  ideal T;
  int ss = ncols(S);
  int j=1;
  for(i=1; i<=ss; i++)
  {
    if (S[i]!=0)
    {
      T[j]=S[i];
      j++;
    }
  }
  S  = T;
  ss = j-1;
  int GotF = 1;
  list F;
  if (size(#)>0)
  {
    F = #;
    if ( (size(F)==1) && (F[1]==0) )
    {
      GotF = 0;
    }
  }
  else
  {
    GotF = 0;
  }
  int sf = size(F);

  ideal SC;
  int  sp = size(P);
  intvec np;
  int GotP = 1;
  if (sp==0)
  {
    GotP = 0;
  }
  if (sp==1)
  {
    if (P[1]==0)
    {
      GotP = 0;
    }
  }
  if (GotP)
  {
    for (i=1; i<=sp; i++)
    {
      np[i] = npar(P[i])+ nvars(basering);
    }
  }
  for (i=1; i<=ss; i++)
  {
    SC[i] = leadcoef(S[i]);
  }
  if (GotF)
  {
    for (i=1; i<=sf; i++)
    {
      SC[ss+i] = leadcoef(F[i]);
    }
  }
  def br = basering;
// map all pars except to vars, provided no things are in denominator
  list M = ringlist(basering);
  list L = M[1..4]; // erase nc part
  list Pars = L[1][2];
  list Vars = L[2] + Pars;
  L[1] = L[1][1]; // characteristic
  L[2] = Vars;

  def @R = ring(L);
  setring @R;
  ideal SC = imap(br,SC);
  if (GotP)
  {
    for (i=1; i<=sp; i++)
    {
      SC = subst(SC,var(np[i]),1);
    }
  }
  poly q=1;
  q = lcm(q,SC);
  setring br;
  poly  q = imap(@R,q);
  number lq = leadcoef(q);
  //  lq;
  number tmp;
  string sout="";
  string vname = "u";
  for (i=1; i<=ss; i++)
  {
    tmp  = leadcoef(S[i]);
    S[i] = S[i]/tmp;
    tmp = tmp/lq;
    sout = sout +"+ "+texcoef(tmp)+"\\cdot ("+exp2pt(S[i])+")";
  }
  if (GotF)
  {
    vname = "p"; //"f";
    for (i=1; i<=sf; i++)
    {
      tmp  = leadcoef(F[i]);
      F[i] = F[i]/tmp;
      tmp = tmp/lq;
      sout = sout +"+ "+texcoef(tmp)+"\\cdot ("+exp2pt(F[i],vname)+")";
    }
  }
  sout = sout[3..size(sout)]; //rm first +
  return(sout);
}
example
{
  "EXAMPLE:"; echo=2;
  ring r = (0,dh,dt,V),(Tx,Tt),dp;
  poly M = (4*dh*Tx+dt)^2*(Tt-1) + V*Tt*Tx;
  ideal I = decoef(M,dt);
  list L; L[1] = V;
  difpoly2tex(I,L);
  poly G = V*dh^2*(Tt-Tx)^2;
  difpoly2tex(I,L,G);
}


proc magnitude(poly P)
"USAGE:  magnitude(P);  P a poly
RETURN:  poly
PURPOSE: compute the square of the magnitude of a complex expression
ASSUME: i is the variable of a basering
EXAMPLE: example magnitude; shows examples
"
{
  // check whether i is present among the vars
  list L = ringlist(basering)[2]; // vars
  int j; int cnt = 0;
  for(j=size(L);j>0;j--)
  {
    if (L[j] == "i")
    {
      cnt = 1; break;
    }
  }
  if (!cnt)
  {
    ERROR("a variable called i is expected in basering");
  }
  // i is present, check that i^2+1=0;
//   if (NF(i^2+1,std(0)) != 0)
//   {
//     "Warning: i^2+1=0 does not hold. Reduce the output manually";
//   }
  poly re = subst(P,i,0);
  poly im = (P - re)/i;
  return(re^2+im^2);
}
example
{
  "EXAMPLE:"; echo=2;
  ring r = (0,d),(g,i,sin,cos),dp;
  poly P = d*i*sin - g*cos +d^2*i;
  NF( magnitude(P), std(i^2+1) );
}


static proc clTex(string s)
// removes beginning and ending $'s
{
  string t;
  if (size(s)>2)
  {
    // why -3?
     t = s[2..(size(s)-3)];
  }
  return(t);
}

static proc simfrac(poly up, poly down)
{
  // simplifies a fraction up/down
  // into the form up/down = RT[1] + RT[2]/down
  list LL = division(up,down);
  list RT;
  RT[1] =  LL[1][1,1]; // integer part
  RT[2] = L[2][1]; // new numerator
  return(RT);
}

proc findifs_example()
"USAGE:  findifs_example();
RETURN:  nothing (demo)
PURPOSE:  demonstration of our approach and this library
EXAMPLE: example findifs_example; shows examples
"
{

  "* Equation: u_tt - A^2 u_xx -B^2 u_yy = 0; A,B are constants";
  "* we employ three central differences";
  "* the vector we act on is (u_xx, u_yy, u_tt, u)^T";
  "* Set up the ring: ";
  "ring r = (0,A,B,dt,dx,dy),(Tx,Ty,Tt),(c,dp);";
  ring r = (0,A,B,dt,dx,dy),(Tx,Ty,Tt),(c,dp);
  "* Set up the matrix with equation and approximations: ";
  "matrix M[4][4] =";
    "    // direct equation:";
  "    -A^2, -B^2, 1, 0,";
  "    // central difference u_tt";
  "    0, 0,  -dt^2*Tt, (Tt-1)^2,";
  "    // central difference u_xx";
  "    -dx^2*Tx, 0, 0, (Tx-1)^2,";
  "    // central difference u_yy";
  "    0, -dy^2*Ty, 0, (Ty-1)^2;";
  matrix M[4][4] =
    // direct equation:
    -A^2, -B^2, 1, 0,
    // central difference u_tt
    0, 0,  -dt^2*Tt, (Tt-1)^2,
    // central difference u_xx
    -dx^2*Tx, 0, 0, (Tx-1)^2,
    // central difference u_yy
    0, -dy^2*Ty, 0, (Ty-1)^2;
//=========================================
// CHECK THE CORRECTNESS OF EQUATIONS AS INPUT:
ring rX = (0,A,B,dt,dx,dy,Tx,Ty,Tt),(Uxx, Uyy,Utt, U),(c,Dp);
matrix M = imap(r,M);
vector X = [Uxx, Uyy, Utt, U];
 "* Print the differential form of equations: ";
print(M*X);
// END CHECK
//=========================================
 setring r;
 "* Perform the elimination of module components:";
 " module R = transpose(M);";
 " module S = std(R);";
 module R = transpose(M);
 module S = std(R);
 " * See the result of Groebner bases: generators are columns";
 " print(S);";
 print(S);
 " * So, only the first column has its nonzero element in the last component";
 " * Hence, this polynomial is the scheme";
 " poly   p = S[4,1];" ;
 poly   p = S[4,1]; // by elimination of module components
 " print(p); ";
 print(p);
 list L; L[1]=A;L[2] = B;
 ideal I = decoef(p,dt); // make splitting w.r.t. the appearance of dt
 "* Create the nodal of the scheme in TeX format: ";
 " ideal I = decoef(p,dt);";
 " difpoly2tex(I,L);";
 difpoly2tex(I,L); // the nodal form of the scheme in TeX
 "* Preparations for the semi-factorized form: ";
 poly pi1 = subst(I[2],B,0);
 poly pi2 = I[2] - pi1;
 " poly pi1 = subst(I[2],B,0);";
 " poly pi2 = I[2] - pi1;";
 "* Show the semi-factorized form of the scheme: 1st summand";
 " factorize(I[1]); ";
 factorize(I[1]); // semi-factorized form of the scheme: 1st summand
 "* Show the semi-factorized form of the scheme: 2nd summand";
 " factorize(pi1);";
 factorize(pi1); // semi-factorized form of the scheme: 2nd summand
 "* Show the semi-factorized form of the scheme: 3rd summand";
 " factorize(pi1);";
 factorize(pi2); // semi-factorized form of the scheme: 3rd summand
}
example
{
  "EXAMPLE:"; echo=1;
 findifs_example();
}