/usr/share/singular/LIB/ellipticcovers.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 | ///////////////////////////////////////////////////////////////////////////////
version="version ellipticcovers.lib 4.0.0.0 Dec_2013 ";
category="Commutative algebra";
info="
LIBRARY: ellipticCovers.lib Gromov-Witten numbers of elliptic curves
AUTHORS: J. Boehm, boehm @ mathematik.uni-kl.de
A. Buchholz, buchholz @ math.uni-sb.de
H. Markwig hannah @ math.uni-sb.de
OVERVIEW:
We implement a formula for computing the number of covers of elliptic curves.
It has beed obtained by proving mirror symmetry
for arbitrary genus by tropical methods in [BBM]. A Feynman graph of genus
g is a trivalent, connected graph of genus g (with 2g-2 vertices
and 3g-3 edges). The branch type b=(b_1,...,b_(3g-3)) of a stable map is the
multiplicity of the the edge i over a fixed base point.
Given a Feynman graph G and a branch type b, we obtain the number
N_(G,b) of stable maps of branch type b from a genus g curve of topological type G
to the elliptic curve by computing a path integral
over a rational function. The path integral is computed as a residue.
The sum of N_(G,b) over all branch types b of sum d gives N_(G,d)*|Aut(G)|, with the
Gromov-Witten invariant N_(G,d) of degree d stable maps from a genus g curve
of topological type G to the elliptic curve.
The sum of N_(G,d) over all such graphs gives the usual Gromov-Witten invariant N_(g,d)
of degree d stable maps from a genus g curve to the elliptic curve.
The key function computing the numbers N_(G,b) and N_(G,d) is gromovWitten.
REFERENCES:
[BBM] J. Boehm, A. Buchholz, H. Markwig: Tropical mirror symmetry for elliptic curves, arXiv:1309.5893 (2013).
KEYWORDS:
tropical geometry; mirror symmetry; tropical mirror symmetry; Gromov-Witten invariants; elliptic curves; propagator; Feynman graph; path integral
TYPES:
graph
PROCEDURES:
makeGraph(list, list) generate a graph from a list of vertices and a lsit of edges
printGraph(graph) print procedure for graphs
propagator(list,int) propagator factor of degree d in the quotient of two variables, or
propagator for fixed graph and branch type
computeConstant(number, number) constant coefficient in the Laurent series expansion of a rational function in a given variable
evalutateIntegral(number, list) path integral for a given propagator and ordered sequence of variables
gromovWitten(number) sum of path integrals for a given propagator over all orderings of the variables, or
Gromov Witten invariant for a given graph and a fixed branch type, or
list of Gromov Witten invariants for a given graph and all branch types
computeGromovWitten(graph, int, int) compute the Gromov Witten invariants for a given graph and some branch types
generatingFunction (graph, int) multivariate generating function for the Gromov Witten invariants of a graph up to fixed degree
partitions(int, int) partitions of an integer into a fixed number of summands
permute(list) all permutations of a list
lsum(list) sum of the elements of a list
";
LIB "parallel.lib";
proc mod_init()
{
newstruct("graph","list vertices, list edges");
newstruct("Net","list rows");
system("install","graph","print",printGraph,1);
system("install","Net","print",printNet,1);
system("install","Net","+",catNet,2);
}
static proc catNet(Net N, Net M)
{
list L;
list LN=N.rows;
list LM=M.rows;
int widthN=size(LN[1]);
int widthM=size(LM[1]);
int nm=max(size(LN),size(LM));
for (int j=1; j<=nm; j++)
{
if (j>size(LN)){LN[j]=emptyString(widthN);}
if (j>size(LM)){LM[j]=emptyString(widthM);}
L[j]=LN[j]+LM[j];
}
Net NM;
NM.rows=L;
return(NM);}
static proc netList(list L1)
{
Net N=net("[");
for (int j=1; j<=size(L1)-1; j++)
{
N=N+net(L1[j])+net(", ");
}
N=N+net(L1[size(L1)])+net("]");
return(N);
}
static proc printNet(Net N)
{
list L = N.rows;
for (int j=1; j<=size(L); j++)
{
print(L[j]);
}
}
static proc net(def M){
if (typeof(M)=="list"){
return(netList(M));
}
Net N;
list L;
L[1]=string(M);
N.rows=L;
return(N);}
proc printGraph(graph G)
"USAGE: printGraph(G); G graph@*
ASSUME: G is a graph.
THEORY: This is the print function used by Singular to print a graph.
KEYWORDS: graph
EXAMPLE: example printGraph; shows an example
"
{
print(netList(G.edges));
print("Graph with "+string(size(G.vertices))+" vertices and "+string(size(G.edges))+" edges")
}
example
{ "EXAMPLE:"; echo=2;
ring R=(0,x1,x2,x3,x4),(q1,q2,q3,q4,q5,q6),dp;
graph G = makeGraph(list(1,2,3,4),list(list(1,3),list(1,2),list(1,2),list(2,4),list(3,4),list(3,4)));
G;
}
proc makeGraph(list v, list e)
"USAGE: makeGraph(v,e); v list, e list@*
ASSUME: v is a list of integers, e is a list of two element lists of v.
RETURN: graph with vertices v and edges e
THEORY: Creates a graph from a list of vertices and edges. The vertices can be any type.
KEYWORDS: graph
EXAMPLE: example printGraph; shows an example
"
{
graph G;
G.vertices = v;
G.edges = e;
return(G);
}
example
{ "EXAMPLE:"; echo=2;
ring R=(0,x1,x2,x3,x4),(q1,q2,q3,q4,q5,q6),dp;
graph G = makeGraph(list(1,2,3,4),list(list(1,3),list(1,2),list(1,2),list(2,4),list(3,4),list(3,4)));
G;
}
proc propagator(def xy, def d)
"USAGE: propagator(xy,d); xy list, d int@*
propagator(G,b); G graph, b list@*
ASSUME: xy is a list of two numbers x and y in a rational function field, d non-negative integer.@*
G is a Feynman graph, a is a list of integers of length equal to the number of edges of G.@*
We assume that the coefficient ring has one rational variable for each vertex of G.
RETURN: number, the propagator associated to the input data.
THEORY: If xy and d are specified, then the function returns x^2*y^2/(x^2-y^2)^2) for d=0, which
is a associated to an edge with vertices x and y not passing above the base point.
For d>0 it returns the sum of (j*x^(4*j)+j*y^(4*j))/(x*y)^(2*j) over all divisors j of d,
which is associated to an edge with vertices x and y passing with multiplicity d above the base point.
Essentially the variables x and y stand for the position of the base points.
In the second way of using this function, G is a Feynman graph and b is a branch type
over a fixed base point of a cover with source G and target an elliptic curve. It returns the
product of propagator(list(v[i],w[i]),b[i]) over all edges i with multiplicity b[i] over the base point
and vertices v[i] and w[i].
KEYWORDS: elliptic curve
EXAMPLE: example propagator; shows an example
"
{
if ((typeof(xy)=="list")||(typeof(d)=="int")) {
number x = xy[1];
number y = xy[2];
if (d<0) {ERROR("expected non-negative degree");}
if (d==0) {return(x^2*y^2/(x^2-y^2)^2);}
number p=0;
for (int j=1; j<=d; j++){
if (d%j==0){p=p+(j*x^(4*j)+j*y^(4*j))/(x*y)^(2*j);}
}
return(p);
}
if ((typeof(xy)=="graph")||(typeof(d)=="list")) {
list xl = ringlist(basering)[1][2];
list ed = xy.edges;
number f=1;
for (int j=1; j<=size(ed); j++){
execute("number xx1 = "+xl[ed[j][1]]);
execute("number xx2 = "+xl[ed[j][2]]);
f=f*propagator(list(xx1,xx2),d[j]);
kill xx1;
kill xx2;
}
return(f);
}
if ((typeof(xy)=="graph")||(typeof(d)=="int")) {
}
ERROR("wrong input type");}
example
{ "EXAMPLE:"; echo=2;
ring R=(0,x1,x2,x3,x4),(q1,q2,q3,q4,q5,q6),dp;
graph G = makeGraph(list(1,2,3,4),list(list(1,3),list(1,2),list(1,2),list(2,4),list(3,4),list(3,4)));
propagator(list(x1,x2),0);
propagator(list(x1,x2),2);
propagator(G,list(1,1,1,0,0,0));
}
proc computeConstant(number f,number xx)
"USAGE: computeConstant(f,x); f number, x number@*
ASSUME: f is a number in a rational function field, x is a variable of the field.@*
RETURN: number, the constant coefficient of the Laurent series of f in the variable x.
THEORY: Computes the constant coefficient of the Laurent series by iterative differentiation.
KEYWORDS: Laurent series
EXAMPLE: example computeConstant; shows an example
"
{
int tst=0;
number ff=f;
int k;
int j;
poly de;
while (tst==0){
ff=f*xx^k;
for (j=1; j<=k; j++){
ff=diff(ff,xx)/j;
}
de = subst(denominator(ff),xx,0);
if (de!=0){
poly nu = subst(numerator(ff),xx,0);
return(number(nu/de));
}
k=k+1;
}
ERROR("error in computeConstant");}
example
{ "EXAMPLE:"; echo=2;
ring R=(0,x1,x2,x3,x4),(q1,q2,q3,q4,q5,q6),dp;
graph G = makeGraph(list(1,2,3,4),list(list(1,3),list(1,2),list(1,2),list(2,4),list(3,4),list(3,4)));
number P = propagator(G,list(1,1,1,0,0,0));
computeConstant(P,x2);
}
proc evaluateIntegral(number P, list xL)
"USAGE: evaluateIntegral(P,xx); P number, xx list@*
ASSUME: P is a number in a rational function field, xx is a list of variables of the field@*
RETURN: number, the constant coefficient of the Laurent series of f in the variables in the list xx.
THEORY: Computes the constant coefficient of the Laurent series iteratively for the elements of xx.
In the setting of covers of elliptic curves this is the path integral over the
propagator divided by the product of all variables (corresponding to the vertices)
computed as a residue.
KEYWORDS: residue; Laurent series
EXAMPLE: example evaluateIntegral; shows an example
"
{
number p = P;
for(int j=1; j<=size(xL); j++){
p=computeConstant(p,xL[j]);
}
return(p);}
example
{ "EXAMPLE:"; echo=2;
ring R=(0,x1,x2,x3,x4),(q1,q2,q3,q4,q5,q6),dp;
graph G = makeGraph(list(1,2,3,4),list(list(1,3),list(1,2),list(1,2),list(2,4),list(3,4),list(3,4)));
number p = propagator(G,list(0,2,1,0,0,1));
evaluateIntegral(p,list(x1,x3,x4,x2));
}
proc permute (list N)
"USAGE: permute(N); N list@*
ASSUME: N is a list@*
RETURN: list with all permutations of N.
THEORY: Computes all permutations of N.
This will eventually be deleted and become a more efficient kernel function.
KEYWORDS: permutations
EXAMPLE: example permute; shows an example
"
{
int i,j,k;
list L,L1;
if (size(N)==1){
return(list(N));
} else {
k=1;
for (i=1; i<=size(N); i++){
L=permute(delete(N,i));
for (j=1; j<=size(L); j++){
L1[k]=L[j]+list(N[i]);
k=k+1;
}
}
}
return(L1);}
example
{ "EXAMPLE:"; echo=2;
ring R=(0,x1,x2,x3,x4),(q),dp;
permute(list(x1,x2,x3,x4));
}
proc partitions(int n, int a)
"USAGE: partitions(n,a); n int, a int@*
ASSUME: n and a are positive integers@*
RETURN: list of all partitions of a into n summands.
THEORY: Computes all partitions of a into n summands.
This may eventually be deleted and become a more efficient kernel function.
KEYWORDS: partitions
EXAMPLE: example partitions; shows an example
"
{
ring R = 2,(x(1..n)),dp;
ideal I = maxideal(a);
list L;
for (int j=1;j<=size(I);j++){
L[j]=leadexp(I[j]);
}
return(L);}
example
{ "EXAMPLE:"; echo=2;
partitions(3,7);
}
proc gromovWitten(def P,list #)
"USAGE: gromovWitten(P); P number@*
gromovWitten(G,d); G graph, d int@*
gromovWitten(G,b); G graph, b list@*
ASSUME: P is a propagator, or @*
G is a Feynman graph and d a non-negative integer, or@*
G is a Feynman graph and b is a list of integers of length equal to the number of edges of G@*
We assume that the coefficient ring has one rational variable for each vertex of G.@*
RETURN: Gromov-Witten invariant.
THEORY: Computes @*
- the Gromov-Witten invariant of a given propagator P, or @*
- the invariant N_(G,d)*|Aut(G)| where d is the degree of the covering, or @*
- the number N_(G,b) of coverings with source G and target an elliptic curves with branch type a over a
fixed base point (that is, the i-th edge passes over the base point with multiplicity b[i]).@*
KEYWORDS: Gromov-Witten invariants; elliptic curves; coverings; Hurwitz numbers
EXAMPLE: example gromovWitten; shows an example
"
{
if (typeof(P)=="number") {
list xl = ringlist(basering)[1][2];
int j;
for(j=1; j<=size(xl); j++){
execute("number n= "+xl[j]);
xl[j]=n;
kill n;
}
list pxl = permute(xl);
number p = 0;
for(j=1; j<=size(pxl); j++){
p=p+evaluateIntegral(P,pxl[j]);
}
return(p);
}
if (typeof(P)=="graph"){
if (size(#)>1){
return(gromovWitten(propagator(P,#)));
} else {
int d =#[1];
list pa = partitions(size(P.edges),d);
list re;
int ti;
for (int j=1; j<=size(pa); j++) {
ti=timer;
re[j]=gromovWitten(propagator(P,pa[j]));
ti=timer-ti;
//print(string(j)+" / "+string(size(pa))+" "+string(pa[j])+" "+string(re[j])+" "+string(sum(re))+" "+string(ti));
}
return(lsum(re));
}
}
}
example
{ "EXAMPLE:"; echo=2;
ring R=(0,x1,x2,x3,x4),(q1,q2,q3,q4,q5,q6),dp;
graph G = makeGraph(list(1,2,3,4),list(list(1,3),list(1,2),list(1,2),list(2,4),list(3,4),list(3,4)));
number P = propagator(G,list(0,2,1,0,0,1));
gromovWitten(P);
gromovWitten(G,list(0,2,1,0,0,1));
gromovWitten(G,2);
}
proc computeGromovWitten(graph P,int d, int st, int en, list #)
"USAGE: computeGromovWitten(G, d, st, en [, vb] ); G graph, d int, st int, en int, optional: vb int@*
ASSUME: G is a Feynman graph, d a non-negative integer, st specified the start- and en the end partition
in the list pa = partition(d). Specifying a positive optional integer vb leads to intermediate printout.@*
We assume that the coefficient ring has one rational variable for each vertex of G.@*
RETURN: list L, where L[i] is gromovWitten(G,pa[i]) and all others are zero.
THEORY: This function does essentially the same as the function gromovWitten, but is designed for handling complicated examples.
Eventually it will also run in parallel.@*
KEYWORDS: Gromov-Witten invariants; elliptic curves; coverings; Hurwitz numbers
EXAMPLE: example computeGromovWitten; shows an example
"
{
number s =0;
list pararg;
list re;
list pa = partitions(size(P.edges),d);
int vb=0;
if (size(#)>0){vb=#[1];}
int ti;
if (vb>0){print(size(pa));}
for (int j=1; j<=size(pa); j++) {
if ((j>=st)&(j<=en)){
ti=timer;
//pararg[j]=list(propagator(G,pa[j]));
re[j]=gromovWitten(propagator(P,pa[j]));
ti=timer-ti;
if (vb>0){print(string(j)+" / "+string(size(pa))+" "+string(pa[j])+" "+string(re[j])+" "+string(lsum(re))+" "+string(ti));}
} else {re[j]=s;}
}
//list re = parallelWaitAll("gromovWitten", pararg, list(list(list(2))));
return(re);
}
example
{ "EXAMPLE:"; echo=2;
ring R=(0,x1,x2,x3,x4),(q1,q2,q3,q4,q5,q6),dp;
graph G = makeGraph(list(1,2,3,4),list(list(1,3),list(1,2),list(1,2),list(2,4),list(3,4),list(3,4)));
partitions(6,2);
computeGromovWitten(G,2,3,7);
computeGromovWitten(G,2,3,7,1);
}
proc lsum(list L)
"USAGE: lsum(L); L list@*
ASSUME: L is a list of things with the binary operator + defined.@*
RETURN: The sum of the elements of L.
THEORY: Sums the elements of a list.
Eventually this will be deleted and become a more efficient kernel function.@*
EXAMPLE: example lsum; shows an example
"
{
execute(typeof(L[1])+" s");
for(int j=1; j<=size(L); j++){
s=s+L[j];
}
return(s);}
example
{ "EXAMPLE:"; echo=2;
list L = 1,2,3,4,5;
lsum(L);
}
proc generatingFunction(graph G, int d)
"USAGE: generatingFunction(G, d); G graph, d int@*
ASSUME: G is a Feynman graph, d a non-negative integer. The basering has one polynomial variable for each
edge, and the coefficient ring has one rational variable for each vertex.@*
RETURN: poly.
THEORY: This function compute the multivariate generating function of all Gromov-Witten invariants up to
degree d, that is, the sum of all gromovWitten(G,b)*q^b.@*
KEYWORDS: generating function; Gromov-Witten invariants; elliptic curves; coverings; Hurwitz numbers
EXAMPLE: example generatingFunction; shows an example
"
{
poly s =0;
int j,jj;
list pa,L;
for (j=1; j<=d; j++){
pa = partitions(size(G.edges),j);
L = computeGromovWitten(G,j,1,size(pa));
for (jj=1; jj<=size(pa); jj++) {
s=s+L[jj]*monomial(pa[jj]);
}
}
return(s);}
example
{ "EXAMPLE:"; echo=2;
ring R=(0,x1,x2),(q1,q2,q3),dp;
graph G = makeGraph(list(1,2),list(list(1,2),list(1,2),list(1,2)));
generatingFunction(G,3);
}
|