/usr/share/singular/LIB/dmodvar.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 | ///////////////////////////////////////////////////////////////////////
version="version dmodvar.lib 4.0.0.0 Jun_2013 "; // $Id: 5f4182bc9a1f305c14810c5e6997252b8713607b $
category="Noncommutative";
info="
LIBRARY: dmodvar.lib Algebraic D-modules for varieties
AUTHORS: Daniel Andres, daniel.andres@math.rwth-aachen.de
@* Viktor Levandovskyy, levandov@math.rwth-aachen.de
@* Jorge Martin-Morales, jorge@unizar.es
Support: DFG Graduiertenkolleg 1632 'Experimentelle und konstruktive Algebra'
OVERVIEW: Let K be a field of characteristic 0. Given a polynomial ring R = K[x_1,...,x_n]
and polynomials f_1,...,f_r in R, define F = f_1*...*f_r and F^s = f_1^s_1*...*f_r^s_r
for symbolic discrete (that is shiftable) variables s_1,..., s_r.
The module R[1/F]*F^s has the structure of a D<S>-module, where D<S> = D(R)
tensored with S over K, where
@* - D(R) is the n-th Weyl algebra K<x_1,...,x_n,d_1,...,d_n | d_j x_j = x_j d_j + 1>
@* - S is the universal enveloping algebra of gl_r, generated by s_i = s_{ii}.
@* One is interested in the following data:
@* - the left ideal Ann F^s in D<S>, usually denoted by LD in the output
@* - global Bernstein polynomial in one variable s = s_1+...+s_r, denoted by bs,
@* - its minimal integer root s0, the list of all roots of bs, which are known to be
negative rational numbers, with their multiplicities, which is denoted by BS
@* - an r-tuple of operators in D<S>, denoted by PS, such that the functional equality
sum(k=1 to k=r) P_k*f_k*F^s = bs*F^s holds in R[1/F]*F^s.
REFERENCES:
(BMS06) Budur, Mustata, Saito: Bernstein-Sato polynomials of arbitrary varieties (2006).
@* (ALM09) Andres, Levandovskyy, Martin-Morales: Principal Intersection and Bernstein-Sato
Polynomial of an Affine Variety (2009).
PROCEDURES:
bfctVarIn(F[,L]); computes the roots of the Bernstein-Sato polynomial b(s) of the variety V(F) using initial ideal approach
bfctVarAnn(F[,L]); computes the roots of the Bernstein-Sato polynomial b(s) of the variety V(F) using Sannfs approach
SannfsVar(F[,O,e]); computes the annihilator of F^s in the ring D<S>
makeMalgrange(F[,ORD]); creates the Malgrange ideal, associated with F = F[1],..,F[P]
SEE ALSO: bfun_lib, dmod_lib, dmodapp_lib, gmssing_lib
KEYWORDS: D-module; D-module structure; Bernstein-Sato polynomial for variety; global Bernstein-Sato polynomial for variety;
Weyl algebra; parametric annihilator for variety; Budur-Mustata-Saito approach; initial ideal approach
";
/*
// Static procs:
// coDim(I); compute the codimension of the leading ideal of I
// dmodvarAssumeViolation()
// ORDstr2list (ORD, NN)
// smallGenCoDim(I,k)
*/
/*
CHANGELOG
11.10.10 by DA:
- reformated help strings
- simplified code
- add and use of safeVarName
- renamed makeIF to makeMalgrange
*/
LIB "bfun.lib"; // for pIntersect
LIB "dmodapp.lib"; // for isCommutative etc.
///////////////////////////////////////////////////////////////////////////////
// testing for consistency of the library:
proc testdmodvarlib ()
{
example makeMalgrange;
example bfctVarIn;
example bfctVarAnn;
example SannfsVar;
}
// example coDim;
///////////////////////////////////////////////////////////////////////////////
static proc dmodvarAssumeViolation()
{
// char K = 0, no qring
if ( (size(ideal(basering)) >0) || (char(basering) >0) )
{
ERROR("Basering is inappropriate: characteristic>0 or qring present");
}
return();
}
static proc safeVarName (string s, string cv)
// assumes 's' to be a valid variable name
// returns valid var name string @@..@s
{
string S;
if (cv == "v") { S = "," + "," + varstr(basering) + ","; }
if (cv == "c") { S = "," + "," + charstr(basering) + ","; }
if (cv == "cv") { S = "," + charstr(basering) + "," + varstr(basering) + ","; }
s = "," + s + ",";
while (find(S,s) <> 0)
{
s[1] = "@";
s = "," + s;
}
s = s[2..size(s)-1];
return(s)
}
// da: in smallGenCoDim(), rewritten using mstd business
static proc coDim (ideal I)
"USAGE: coDim (I); I an ideal
RETURN: int
PURPOSE: computes the codimension of the ideal generated by the leading monomials
of the given generators of the ideal. This is also the codimension of
the ideal if it is represented by a standard basis.
NOTE: The codimension of an ideal I means the number of variables minus the
Krull dimension of the basering modulo I.
EXAMPLE: example coDim; shows examples
"
{
int n = nvars(basering);
int d = dim(I); // to insert: check whether I is in GB
return(n-d);
}
example
{
"EXAMPLE:"; echo = 2;
ring R = 0,(x,y,z),Dp;
ideal I = x^2+y^3, z;
coDim(std(I));
}
static proc ORDstr2list (string ORD, int NN)
{
/* convert an ordering defined in NN variables in the */
/* string form into the same ordering in the list form */
string st;
st = "ring @Z = 0,z(1.." + string(NN) + "),";
st = st + ORD + ";";
execute(st); kill st;
list L = ringlist(@Z)[3];
kill @Z;
return(L);
}
proc SannfsVar (ideal F, list #)
"USAGE: SannfsVar(F [,ORD,eng]); F an ideal, ORD an optional string, eng an optional int
RETURN: ring (Weyl algebra tensored with U(gl_P)), containing an ideal LD
PURPOSE: compute the D<S>-module structure of D<S>*f^s where f = F[1]*...*F[P]
and D<S> is the Weyl algebra D tensored with K<S>=U(gl_P), according to the
generalized algorithm by Briancon and Maisonobe for affine varieties
ASSUME: The basering is commutative and over a field of characteristic 0.
NOTE: Activate the output ring D<S> with the @code{setring} command.
In the ring D<S>, the ideal LD is the needed D<S>-module structure.
@* The value of ORD must be an elimination ordering in D<Dt,S> for Dt
written in the string form, otherwise the result may have no meaning.
By default ORD = '(a(1..(P)..1),a(1..(P+P^2)..1),dp)'.
@* If eng<>0, @code{std} is used for Groebner basis computations,
otherwise, and by default @code{slimgb} is used.
DISPLAY: If printlevel=1, progress debug messages will be printed,
@* if printlevel>=2, all the debug messages will be printed.
EXAMPLE: example SannfsVar; shows examples
"
{
dmodvarAssumeViolation();
if (!isCommutative())
{
ERROR("Basering must be commutative");
}
def save = basering;
int N = nvars(basering);
int P = ncols(F); //ncols better than size, since F[i] could be zero
// P is needed for default ORD
int i,j,k,l;
// st = "(a(1..(P)..1),a(1..(P+P^2)..1),dp)";
string st = "(a(" + string(1:P);
st = st + "),a(" + string(1:(P+P^2));
st = st + "),dp)";
// default values
string ORD = st;
int eng = 0;
if ( size(#)>0 )
{
if ( typeof(#[1]) == "string" )
{
ORD = string(#[1]);
// second arg
if (size(#)>1)
{
// exists 2nd arg
if ( typeof(#[2]) == "int" )
{
// the case: given ORD, given engine
eng = int(#[2]);
}
}
}
else
{
if ( typeof(#[1]) == "int" )
{
// the case: default ORD, engine given
eng = int(#[1]);
// ORD = "(a(1..(P)..1),a(1..(P+P^2)..1),dp)"; //is already set
}
else
{
// incorr. 1st arg
ORD = string(st);
}
}
}
// size(#)=0, i.e. there is no elimination ordering and no engine given
// eng = 0; ORD = "(a(1..(P)..1),a(1..(P^2)..1),dp)"; //are already set
int ppl = printlevel-voice+2;
// returns a list with a ring and an ideal LD in it
// save, N, P and the indices are already defined
int Nnew = 2*N+P+P^2;
list RL = ringlist(basering);
list L;
L[1] = RL[1]; //char
L[4] = RL[4]; //char, minpoly
// check whether vars have admissible names
list Name = RL[2];
list RName;
// (i,j) <--> (i-1)*p+j
for (i=1; i<=P; i++)
{
RName[i] = safeVarName("Dt("+string(i)+")","cv");
for (j=1; j<=P; j++)
{
RName[P+(i-1)*P+j] = safeVarName("s("+string(i)+")("+string(j)+")","cv");
}
}
// now, create the names for new vars
list DName;
for(i=1; i<=N; i++)
{
DName[i] = safeVarName("D"+Name[i],"cv"); //concat
}
list NName = RName + Name + DName;
L[2] = NName;
// Name, Dname will be used further
kill NName;
//block ord (a(1..(P)..1),a(1..(P+P^2)..1),dp);
//export Nnew;
L[3] = ORDstr2list(ORD,Nnew);
// we are done with the list
def @R@ = ring(L);
setring @R@;
matrix @D[Nnew][Nnew];
// kronecker(i,j) equals (i==j)
// (i,j) <--> (i-1)*p+j
for (i=1; i<=P; i++)
{
for (j=1; j<=P; j++)
{
for (k=1; k<=P; k++)
{
//[sij,Dtk] = djk*Dti
// @D[k,P+(i-1)*P+j] = (j==k)*Dt(i);
@D[k,P+(i-1)*P+j] = (j==k)*var(i);
for (l=1; l<=P; l++)
{
if ( (i-k)*P < l-j )
{
//[sij,skl] = djk*sil - dil*skj
// @D[P+(i-1)*P+j,P+(k-1)*P+l] = -(j==k)*s(i)(l) + (i==l)*s(k)(j);
@D[P+(i-1)*P+j,P+(k-1)*P+l] = -(j==k)*var(i*P+l) + (i==l)*var(k*P+j);
}
}
}
}
}
for (i=1; i<=N; i++)
{
//[Dx,x]=1
@D[P+P^2+i,P+P^2+N+i] = 1;
}
def @R = nc_algebra(1,@D);
setring @R;
//@R@ will be used further
dbprint(ppl,"// -1-1- the ring @R(_Dt,_s,_x,_Dx) is ready");
dbprint(ppl-1, @R);
// create the ideal I
// (i,j) <--> (i-1)*p+j
ideal F = imap(save,F);
ideal I;
for (i=1; i<=P; i++)
{
for (j=1; j<=P; j++)
{
// I[(i-1)*P+j] = Dt(i)*F[j] + s(i)(j);
I[(i-1)*P+j] = var(i)*F[j] + var(i*P+j);
}
}
poly p,q;
for (i=1; i<=N; i++)
{
p=0;
for (j=1; j<=P; j++)
{
// q = Dt(j);
q = var(j);
q = q*diff(F[j],var(P+P^2+i));
p = p + q;
}
I = I, p + var(P+P^2+N+i);
}
// -------- the ideal I is ready ----------
dbprint(ppl,"// -1-2- starting the elimination of Dt(i) in @R");
dbprint(ppl-1, I);
ideal J = engine(I,eng);
ideal K = nselect(J,1..P);
kill I,J;
dbprint(ppl,"// -1-3- all Dt(i) are eliminated");
dbprint(ppl-1, K); //K is without Dt(i)
// ----------- the ring @R2(_s,_x,_Dx) ------------
//come back to the ring save, recover L and remove all Dt(i)
//L[1],L[4] do not change
setring save;
list Lord, tmp;
// variables
tmp = L[2];
Lord = tmp[P+1..Nnew];
L[2] = Lord;
// ordering
// st = "(a(1..(P^2)..1),dp)";
st = "(a(" + string(1:P^2);
st = st + "),dp)";
tmp = ORDstr2list(st,Nnew-P);
L[3] = tmp;
def @R2@ = ring(L);
kill L;
// we are done with the list
setring @R2@;
matrix tmpM,LordM;
// non-commutative relations
intvec iv = P+1..Nnew;
tmpM = imap(@R@,@D);
kill @R@;
LordM = submat(tmpM,iv,iv);
matrix @D2 = LordM;
def @R2 = nc_algebra(1,@D2);
setring @R2;
kill @R2@;
dbprint(ppl,"// -2-1- the ring @R(_s,_x,_Dx) is ready");
dbprint(ppl-1, @R2);
ideal K = imap(@R,K);
kill @R;
dbprint(ppl,"// -2-2- starting cosmetic Groebner basis computation");
dbprint(ppl-1, K);
K = engine(K,eng);
dbprint(ppl,"// -2-3- the cosmetic Groebner basis has been computed");
dbprint(ppl-1,K);
ideal LD = K;
attrib(LD,"isSB",1);
export LD;
return(@R2);
}
example
{
"EXAMPLE:"; echo = 2;
ring R = 0,(x,y),Dp;
ideal F = x^3, y^5;
//ORD = "(a(1,1),a(1,1,1,1,1,1),dp)";
//eng = 0;
def A = SannfsVar(F);
setring A;
A;
LD;
}
proc bfctVarAnn (ideal F, list #)
"USAGE: bfctVarAnn(F[,gid,eng]); F an ideal, gid,eng optional ints
RETURN: list of an ideal and an intvec
PURPOSE: computes the roots of the Bernstein-Sato polynomial and their multiplicities
for an affine algebraic variety defined by F = F[1],..,F[r].
ASSUME: The basering is commutative and over a field in char 0.
NOTE: In the output list, the ideal contains all the roots and
the intvec their multiplicities.
@* If gid<>0, the ideal is used as given. Otherwise, and by default, a
heuristically better suited generating set is used.
@* If eng<>0, @code{std} is used for GB computations,
otherwise, and by default, @code{slimgb} is used.
@* Computational remark: The time of computation can be very different depending
on the chosen generators of F, although the result is always the same.
@* Further note that in this proc, the annihilator of f^s in D[s] is computed and
then a system of linear equations is solved by linear reductions in order to
find the minimal polynomial of S = s(1)(1) + ... + s(P)(P).
The resulted is shifted by 1-codim(Var(F)) following (BMS06).
DISPLAY: If printlevel=1, progress debug messages will be printed,
@* if printlevel=2, all the debug messages will be printed.
EXAMPLE: example bfctVarAnn; shows examples
"
{
dmodvarAssumeViolation();
if (!isCommutative())
{
ERROR("Basering must be commutative");
}
int gid = 0; // default
int eng = 0; // default
if (size(#)>0)
{
if (typeof(#[1])=="int" || typeof(#[1])=="number")
{
gid = int(#[1]);
}
if (size(#)>1)
{
if (typeof(#[2])=="int" || typeof(#[2])=="number")
{
eng = int(#[2]);
}
}
}
def save = basering;
int ppl = printlevel - voice + 2;
printlevel = printlevel+1;
list L = smallGenCoDim(F,gid);
F = L[1];
int cd = L[2];
kill L;
def @R2 = SannfsVar(F,eng);
printlevel = printlevel-1;
int sF = size(F); // no 0 in F
setring @R2;
// we are in D[s] and LD is a std of SannfsVar(F)
ideal F = imap(save,F);
ideal GF = std(F);
ideal J = NF(LD,GF);
J = J, F;
dbprint(ppl,"// -3-1- starting Groebner basis of ann F^s + F ");
dbprint(ppl-1,J);
ideal K = engine(J,eng);
dbprint(ppl,"// -3-2- finished Groebner basis of ann F^s + F ");
dbprint(ppl-1,K);
poly S;
int i;
for (i=1; i<=sF; i++)
{
// S = S + s(i)(i);
S = S + var((i-1)*sF+i);
}
dbprint(ppl,"// -4-1- computing the minimal polynomial of S");
dbprint(ppl-1,"S = "+string(S));
vector M = pIntersect(S,K);
dbprint(ppl,"// -4-2- the minimal polynomial has been computed");
ring @R3 = 0,s,dp;
vector M = imap(@R2,M);
poly p = vec2poly(M);
dbprint(ppl-1,p);
dbprint(ppl,"// -5-1- codimension of the variety");
dbprint(ppl-1,cd);
dbprint(ppl,"// -5-2- shifting BS(s)=minpoly(s-codim+1)");
p = subst(p,var(1),var(1)-cd+1);
dbprint(ppl-1,p);
dbprint(ppl,"// -5-3- factorization of the minimal polynomial");
list BS = bFactor(p);
setring save;
list BS = imap(@R3,BS);
kill @R2,@R3;
return(BS);
}
example
{
"EXAMPLE:"; echo = 2;
ring R = 0,(x,y,z),Dp;
ideal F = x^2+y^3, z;
bfctVarAnn(F);
}
proc makeMalgrange (ideal F, list #)
"USAGE: makeMalgrange(F [,ORD]); F an ideal, ORD an optional string
RETURN: ring (Weyl algebra) containing an ideal IF
PURPOSE: create the ideal by Malgrange associated with F = F[1],...,F[P].
NOTE: Activate the output ring with the @code{setring} command. In this ring,
the ideal IF is the ideal by Malgrange corresponding to F.
@* The value of ORD must be an arbitrary ordering in K<_t,_x,_Dt,_Dx>
written in the string form. By default ORD = 'dp'.
DISPLAY: If printlevel=1, progress debug messages will be printed,
@* if printlevel>=2, all the debug messages will be printed.
EXAMPLE: example makeMalgrange; shows examples
"
{
string ORD = "dp";
if ( size(#)>0 )
{
if ( typeof(#[1]) == "string" )
{
ORD = string(#[1]);
}
}
int ppl = printlevel-voice+2;
def save = basering;
int N = nvars(save);
int P = ncols(F);
int Nnew = 2*P+2*N;
int i,j;
string st;
list RL = ringlist(save);
list L,Lord;
list tmp;
intvec iv;
L[1] = RL[1];
L[4] = RL[4];
//check whether vars have admissible names
list Name = RL[2];
list TName, DTName;
for (i=1; i<=P; i++)
{
TName[i] = safeVarName("t("+string(i)+")","cv");
DTName[i] = safeVarName("Dt("+string(i)+")","cv");
}
//now, create the names for new vars
list DName;
for (i=1; i<=N; i++)
{
DName[i] = safeVarName("D"+Name[i],"cv"); //concat
}
list NName = TName + Name + DTName + DName;
L[2] = NName;
// Name, Dname will be used further
kill NName, TName, Name, DTName, DName;
// ORD already set, default ord dp;
L[3] = ORDstr2list(ORD,Nnew);
// we are done with the list
def @R@ = ring(L);
setring @R@;
def @R = Weyl();
setring @R;
kill @R@;
//dbprint(ppl,"// -1-1- the ring @R(_t,_x,_Dt,_Dx) is ready");
//dbprint(ppl-1, @R);
// create the ideal I
ideal F = imap(save,F);
ideal I;
for (j=1; j<=P; j++)
{
// I[j] = t(j) - F[j];
I[j] = var(j) - F[j];
}
poly p,q;
for (i=1; i<=N; i++)
{
p=0;
for (j=1; j<=P; j++)
{
// q = Dt(j);
q = var(P+N+j);
q = diff(F[j],var(P+i))*q;
p = p + q;
}
I = I, p + var(2*P+N+i);
}
// -------- the ideal I is ready ----------
ideal IF = I;
export IF;
return(@R);
}
example
{
"EXAMPLE:"; echo = 2;
ring R = 0,(x,y,z),Dp;
ideal I = x^2+y^3, z;
def W = makeMalgrange(I);
setring W;
W;
IF;
}
proc bfctVarIn (ideal I, list #)
"USAGE: bfctVarIn(I [,a,b,c]); I an ideal, a,b,c optional ints
RETURN: list of ideal and intvec
PURPOSE: computes the roots of the Bernstein-Sato polynomial and their
multiplicities for an affine algebraic variety defined by I.
ASSUME: The basering is commutative and over a field of characteristic 0.
@* Varnames of the basering do not include t(1),...,t(r) and
Dt(1),...,Dt(r), where r is the number of entries of the input ideal.
NOTE: In the output list, say L,
@* - L[1] of type ideal contains all the rational roots of a b-function,
@* - L[2] of type intvec contains the multiplicities of above roots,
@* - optional L[3] of type string is the part of b-function without rational roots.
@* Note, that a b-function of degree 0 is encoded via L[1][1]=0, L[2]=0 and
L[3] is 1 (for nonzero constant) or 0 (for zero b-function).
@* If a<>0, the ideal is used as given. Otherwise, and by default, a
heuristically better suited generating set is used to reduce computation time.
@* If b<>0, @code{std} is used for GB computations in characteristic 0,
otherwise, and by default, @code{slimgb} is used.
@* If c<>0, a matrix ordering is used for GB computations, otherwise,
and by default, a block ordering is used.
@* Further note, that in this proc, the initial ideal of the multivariate Malgrange
ideal defined by I is computed and then a system of linear equations is solved
by linear reductions following the ideas by Noro.
The result is shifted by 1-codim(Var(F)) following (BMS06).
DISPLAY: If printlevel=1, progress debug messages will be printed,
@* if printlevel>=2, all the debug messages will be printed.
EXAMPLE: example bfctVarIn; shows examples
"
{
dmodvarAssumeViolation();
if (!isCommutative())
{
ERROR("Basering must be commutative");
}
int ppl = printlevel - voice + 2;
int idealasgiven = 0; // default
int whicheng = 0; // default
int whichord = 0; // default
if (size(#)>0)
{
if (typeof(#[1])=="int" || typeof(#[1])=="number")
{
idealasgiven = int(#[1]);
}
if (size(#)>1)
{
if (typeof(#[2])=="int" || typeof(#[2])=="number")
{
whicheng = int(#[2]);
}
if (size(#)>2)
{
if (typeof(#[3])=="int" || typeof(#[3])=="number")
{
whichord = int(#[3]);
}
}
}
}
def save = basering;
int i;
int n = nvars(basering);
// step 0: get small generating set
I = simplify(I,2);
list L = smallGenCoDim(I,idealasgiven);
I = L[1];
int c = L[2];
kill L;
// step 1: setting up the multivariate Malgrange ideal
int r = size(I);
def D = makeMalgrange(I);
setring D;
dbprint(ppl-1,"// Computing in " + string(n+r) + "-th Weyl algebra:", D);
dbprint(ppl-1,"// The Malgrange ideal: ", IF);
// step 2: compute the b-function of the Malgrange ideal w.r.t. approriate weights
intvec w = 1:r;
w[r+n] = 0;
dbprint(ppl,"// Computing the b-function of the Malgrange ideal...");
list L = bfctIdeal(IF,w,whicheng,whichord);
dbprint(ppl,"// ... done.");
dbprint(ppl-1,"// The b-function: ",L);
// step 3: shift the result
ring S = 0,s,dp;
list L = imap(D,L);
kill D;
if (size(L)==2)
{
ideal B = L[1];
ideal BB;
int nB = ncols(B);
for (i=nB; i>0; i--)
{
BB[i] = -B[nB-i+1]+c-r-1;
}
L[1] = BB;
}
else // should never get here: BS poly has non-rational roots
{
string str = L[3];
L = delete(L,3);
str = "poly @b = (" + str + ")*(" + string(fl2poly(L,"s")) + ");";
execute(str);
poly b = subst(@b,s,-s+c-r-1);
L = bFactor(b);
}
setring save;
list L = imap(S,L);
return(L);
}
example
{
"EXAMPLE:"; echo = 2;
ring R = 0,(x,y,z),dp;
ideal F = x^2+y^3, z;
list L = bfctVarIn(F);
L;
}
static proc smallGenCoDim (ideal I, int Iasgiven)
{
// call from K[x], returns list L
// L[1]=I or L[1]=smaller generating set of I
// L[2]=codimension(I)
int ppl = printlevel - voice + 2;
int n = nvars(basering);
int c;
if (attrib(I,"isSB"))
{
c = n - dim(I);
if (!Iasgiven)
{
list L = mstd(I);
}
}
else
{
def save = basering;
list RL = ringlist(save);
list @ord;
@ord[1] = list("dp", intvec(1:n));
@ord[2] = list("C", intvec(0));
RL[3] = @ord;
kill @ord;
if (size(RL)>4) // commutative G-algebra present
{
RL = RL[1..4];
}
def R = ring(RL);
kill RL;
setring R;
ideal I = imap(save,I);
if (!Iasgiven)
{
list L = mstd(I);
c = n - dim(L[1]);
setring save;
list L = imap(R,L);
}
else
{
I = std(I);
c = n - dim(I);
setring save;
}
kill R;
}
if (!Iasgiven)
{
if (size(L[2]) < size(I))
{
I = L[2];
dbprint(ppl,"// Found smaller generating set of the given variety: ", I);
}
else
{
dbprint(ppl,"// Have not found smaller generating set of the given variety.");
}
}
dbprint(ppl-1,"// The codim of the given variety is " + string(c) + ".");
if (!defined(L))
{
list L;
}
L[1] = I;
L[2] = c;
return(L);
}
/*
// Some more examples
static proc TXcups()
{
"EXAMPLE:"; echo = 2;
//TX tangent space of X=V(x^2+y^3)
ring R = 0,(x0,x1,y0,y1),Dp;
ideal F = x0^2+y0^3, 2*x0*x1+3*y0^2*y1;
printlevel = 0;
//ORD = "(a(1,1),a(1,1,1,1,1,1),dp)";
//eng = 0;
def A = SannfsVar(F);
setring A;
LD;
}
static proc ex47()
{
ring r7 = 0,(x0,x1,y0,y1),dp;
ideal I = x0^2+y0^3, 2*x0*x1+3*y0^2*y1;
bfctVarIn(I);
// second ex - too big
ideal J = x0^4+y0^5, 4*x0^3*x1+5*y0^4*y1;
bfctVarIn(J);
}
static proc ex48()
{
ring r8 = 0,(x1,x2,x3),dp;
ideal I = x1^3-x2*x3, x2^2-x1*x3, x3^2-x1^2*x2;
bfctVarIn(I);
}
static proc ex49 ()
{
ring r9 = 0,(z1,z2,z3,z4),dp;
ideal I = z3^2-z2*z4, z2^2*z3-z1*z4, z2^3-z1*z3;
bfctVarIn(I);
}
static proc ex410()
{
LIB "toric.lib";
ring r = 0,(z(1..7)),dp;
intmat A[3][7];
A = 6,4,2,0,3,1,0,0,1,2,3,0,1,0,0,0,0,0,1,1,2;
ideal I = toric_ideal(A,"pt");
I = std(I);
//ideal I = z(6)^2-z(3)*z(7), z(5)*z(6)-z(2)*z(7), z(5)^2-z(1)*z(7),
// z(4)*z(5)-z(3)*z(6), z(3)*z(5)-z(2)*z(6), z(2)*z(5)-z(1)*z(6),
// z(3)^2-z(2)*z(4), z(2)*z(3)-z(1)*z(4), z(2)^2-z(1)*z(3);
bfctVarIn(I,1); // no result yet
}
*/
|