/usr/share/singular/LIB/dmodloc.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 | /////////////////////////////////////////////////////////////////////
version="version dmodloc.lib 4.0.0.0 Jun_2013 "; // $Id: e233149e51dff5b4406ed3429c90bfb8fb48a558 $
category="Noncommutative";
info="
LIBRARY: dmodloc.lib Localization of algebraic D-modules and applications
AUTHOR: Daniel Andres, daniel.andres@math.rwth-aachen.de
Support: DFG Graduiertenkolleg 1632 `Experimentelle und konstruktive Algebra'
OVERVIEW:
Let I be a left ideal in the n-th polynomial Weyl algebra D=K[x]<d> and
let f be a polynomial in K[x].
If D/I is a holonomic module over D, it is known that the localization of D/I
at f is also holonomic. The procedure @code{Dlocalization} computes an ideal
J in D such that this localization is isomorphic to D/J as D-modules.
If one regards I as an ideal in the rational Weyl algebra as above, K(x)<d>*I,
and intersects with K[x]<d>, the result is called the Weyl closure of I.
The procedures @code{WeylClosure} (if I has finite holonomic rank) and
@code{WeylClosure1} (if I is in the first Weyl algebra) can be used for
computations.
As an application of the Weyl closure, the procedure @code{annRatSyz} computes
a holonomic part of the annihilator of a rational function by computing certain
syzygies. The full annihilator can be obtained by taking the Weyl closure of
the result.
If one regards the left ideal I as system of linear PDEs, one can find its
polynomial solutions with @code{polSol} (if I is holonomic) or
@code{polSolFiniteRank} (if I is of finite holonomic rank). Rational solutions
can be obtained with @code{ratSol}.
The procedure @code{bfctBound} computes a possible multiple of the b-function
for f^s*u at a generic root of f. Here, u stands for [1] in D/I.
This library also offers the procedures @code{holonomicRank} and
@code{DsingularLocus} to compute the holonomic rank and the singular locus
of the D-module D/I.
REFERENCES:
(OT) T. Oaku, N. Takayama: `Algorithms for D-modules',
Journal of Pure and Applied Algebra, 1998.
@* (OTT) T. Oaku, N. Takayama, H. Tsai: `Polynomial and rational solutions
of holonomic systems', Journal of Pure and Applied Algebra, 2001.
@* (OTW) T. Oaku, N. Takayama, U. Walther: `A Localization Algorithm for
D-modules', Journal of Symbolic Computation, 2000.
@* (Tsa) H. Tsai: `Algorithms for algebraic analysis', PhD thesis, 2000.
PROCEDURES:
Dlocalization(I,f[,k,e]); computes the localization of a D-module
WeylClosure(I); computes the Weyl closure of an ideal in the Weyl algebra
WeylClosure1(L); computes the Weyl closure of operator in first Weyl algebra
holonomicRank(I); computes the holonomic rank of I
DsingularLocus(I); computes the singular locus of a D-module
polSol(I[,w,m]); computes basis of polynomial solutions to the given system
polSolFiniteRank(I[,w]); computes basis of polynomial solutions to given system
ratSol(I); computes basis of rational solutions to the given system
bfctBound(I,f[,primdec]); computes multiple of b-function for f^s*u
annRatSyz(f,g[,db,eng]); computes part of annihilator of rational function g/f
dmodGeneralAssumptionCheck(); check general assumptions
extendWeyl(S); extends basering (Weyl algebra) by given vars
polyVars(f,v); checks whether f contains only variables indexed by v
monomialInIdeal(I); computes all monomials appearing in generators of ideal
vars2pars(v); converts variables specified by v into parameters
minIntRoot2(L); finds minimal integer root in a list of roots
maxIntRoot(L); finds maximal integer root in a list of roots
dmodAction(id,f[,v]); computes the natural action of a D-module on K[x]
dmodActionRat(id,w); computes the natural action of a D-module on K(x)
simplifyRat(v); simplifies rational function
addRat(v,w); adds rational functions
multRat(v,w); multiplies rational functions
diffRat(v,j); derives rational function
commRing(); deletes non-commutative relations from ring
rightNFWeyl(id,k); computes right NF wrt right ideal (var(k)) in Weyl algebra
KEYWORDS: D-module; holonomic rank; singular locus of D-module;
D-localization; localization of D-module; characteristic variety;
Weyl closure; polynomial solutions; rational solutions;
annihilator of rational function
SEE ALSO: bfun_lib, dmod_lib, dmodapp_lib, dmodvar_lib, gmssing_lib
";
/*
CHANGELOG:
12.11.12: bugfixes, updated docu
17.12.12: updated docu, removed redundant procedure killTerms
*/
LIB "bfun.lib"; // for pIntersect etc
LIB "dmodapp.lib"; // for GBWeight, charVariety etc
LIB "nctools.lib"; // for Weyl, isWeyl etc
// TODO uncomment this once chern.lib is ready
// LIB "chern.lib"; // for orderedPartition
// testing for consistency of the library /////////////////////////////////////
static proc testdmodloc()
{
example dmodGeneralAssumptionCheck;
example safeVarName;
example extendWeyl;
example polyVars;
example monomialInIdeal;
example vars2pars;
example minIntRoot2;
example maxIntRoot;
example dmodAction;
example dmodActionRat;
example simplifyRat;
example addRat;
example multRat;
example diffRat;
example commRing;
example holonomicRank;
example DsingularLocus;
example rightNFWeyl;
example Dlocalization;
example WeylClosure1;
example WeylClosure;
example polSol;
example polSolFiniteRank;
example ratSol;
example bfctBound;
example annRatSyz;
}
// tools //////////////////////////////////////////////////////////////////////
proc dmodGeneralAssumptionCheck ()
"
USAGE: dmodGeneralAssumptionCheck();
RETURN: nothing, but checks general assumptions on the basering
NOTE: This procedure checks the following conditions on the basering R
and prints an error message if any of them is violated:
@* - R is the n-th Weyl algebra over a field of characteristic 0,
@* - R is not a qring,
@* - for all 1<=i<=n the identity var(i+n)*var(i)=var(i)*var(i+1)+1
holds, i.e. the sequence of variables is given by
x(1),...,x(n),D(1),...,D(n), where D(i) is the differential
operator belonging to x(i).
EXAMPLE: example dmodGeneralAssumptionCheck; shows examples
"
{
// char K <> 0, qring
if ( (size(ideal(basering)) >0) || (char(basering) >0) )
{
ERROR("Basering is inappropriate: characteristic>0 or qring present");
}
// no Weyl algebra
if (isWeyl() == 0)
{
ERROR("Basering is not a Weyl algebra");
}
// wrong sequence of vars
int i,n;
n = nvars(basering) div 2;
for (i=1; i<=n; i++)
{
if (bracket(var(i+n),var(i))<>1)
{
ERROR(string(var(i+n))+" is not a differential operator for " +string(var(i)));
}
}
return();
}
example
{
"EXAMPLE"; echo=2;
ring r = 0,(x,D),dp;
dmodGeneralAssumptionCheck(); // prints error message
def W = Weyl();
setring W;
dmodGeneralAssumptionCheck(); // returns nothing
}
static proc safeVarName (string s)
"
USAGE: safeVarName(s); s string
RETURN: string, returns s if s is not the name of a par/var of basering
and `@' + s otherwise
EXAMPLE: example safeVarName; shows examples
"
{
string S = "," + charstr(basering) + "," + varstr(basering) + ",";
s = "," + s + ",";
while (find(S,s) <> 0)
{
s[1] = "@";
s = "," + s;
}
s = s[2..size(s)-1];
return(s);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = (0,a),(w,@w,x,y),dp;
safeVarName("a");
safeVarName("x");
safeVarName("z");
safeVarName("w");
}
proc extendWeyl (def newVars)
"
USAGE: extendWeyl(S); S string or list of strings
ASSUME: The basering is the n-th Weyl algebra over a field of
characteristic 0 and for all 1<=i<=n the identity
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i)
is the differential operator belonging to x(i).
RETURN: ring, Weyl algebra extended by vars given by S
EXAMPLE: example extendWeyl; shows examples
"
{
dmodGeneralAssumptionCheck();
int i,s;
string inpt = typeof(newVars);
list L;
if (inpt=="string")
{
s = 1;
L = newVars;
}
else
{
if (inpt=="list")
{
s = size(newVars);
if (s<1)
{
ERROR("No new variables specified.");
}
for (i=1; i<=s; i++)
{
if (typeof(newVars[i]) <> "string")
{
ERROR("Entries of input list must be of type string.");
}
}
L = newVars;
}
else
{
ERROR("Expected string or list of strings as input.");
}
}
def save = basering;
int n = nvars(save) div 2;
list RL = ringlist(save);
RL = RL[1..4];
list Ltemp = L;
for (i=s; i>0; i--)
{
Ltemp[n+s+i] = "D" + newVars[i];
}
for (i=n; i>0; i--)
{
Ltemp[s+i] = RL[2][i];
Ltemp[n+2*s+i] = RL[2][n+i];
}
RL[2] = Ltemp;
Ltemp = list();
Ltemp[1] = list("dp",intvec(1:(2*n+2*s)));
Ltemp[2] = list("C",intvec(0));
RL[3] = Ltemp;
kill Ltemp;
def @Dv = ring(RL);
setring @Dv;
def Dv = Weyl();
setring save;
return(Dv);
}
example
{
"EXAMPLE:"; echo = 2;
ring @D2 = 0,(x,y,Dx,Dy),dp;
def D2 = Weyl();
setring D2;
def D3 = extendWeyl("t");
setring D3; D3;
list L = "u","v";
def D5 = extendWeyl(L);
setring D5;
D5;
}
proc polyVars (poly f, intvec v)
"
USAGE: polyVars(f,v); f poly, v intvec
RETURN: int, 1 if f contains only variables indexed by v, 0 otherwise
EXAMPLE: example polyVars; shows examples
"
{
ideal varsf = variables(f); // vars contained in f
ideal V;
int i;
int n = nvars(basering);
for (i=1; i<=nrows(v); i++)
{
if ( (v[i]<0) || (v[i]>n) )
{
ERROR("var(" + string(v[i]) + ") out of range");
}
V[i] = var(v[i]);
}
attrib(V,"isSB",1);
ideal N = NF(varsf,V);
N = simplify(N,2);
if (N[1]==0)
{
return(1);
}
else
{
return(0);
}
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,y,z),dp;
poly f = y^2+zy;
intvec v = 1,2;
polyVars(f,v); // does f depend only on x,y?
v = 2,3;
polyVars(f,v); // does f depend only on y,z?
}
proc monomialInIdeal (ideal I)
"
USAGE: monomialInIdeal(I); I ideal
RETURN: ideal consisting of all monomials appearing in generators of ideal
EXAMLPE: example monomialInIdeal; shows examples
"
{
// returns ideal consisting of all monomials appearing in generators of ideal
I = simplify(I,2+8);
int i;
poly p;
ideal M;
for (i=1; i<=size(I); i++)
{
p = I[i];
while (p<>0)
{
M[size(M)+1] = leadmonom(p);
p = p - lead(p);
}
}
M = simplify(M,4+2);
return(M);
}
example
{
"EXAMPLE"; echo=2;
ring r = 0,(x,y),dp;
ideal I = x2+5x3y7, x-x2-6xy;
monomialInIdeal(I);
}
proc vars2pars (intvec v)
"
USAGE: vars2pars(v); v intvec
ASSUME: The basering is commutative.
RETURN: ring with variables specified by v converted into parameters
EXAMPLE: example vars2pars; shows examples
"
{
if (isCommutative() == 0)
{
ERROR("The basering must be commutative.");
}
v = sortIntvec(v)[1];
int sv = size(v);
if ( (v[1]<1) || (v[sv]<1) )
{
ERROR("Expected entries of intvec in the range 1.."+string(n));
}
def save = basering;
int i,j,n;
n = nvars(save);
list RL = ringlist(save);
list Lp,Lv,L1;
if (typeof(RL[1]) == "list")
{
L1 = RL[1];
Lp = L1[2];
}
else
{
L1[1] = RL[1];
L1[4] = ideal(0);
}
j = sv;
for (i=1; i<=n; i++)
{
if (j>0)
{
if (v[j]==i)
{
Lp[size(Lp)+1] = string(var(i));
j--;
}
else
{
Lv[size(Lv)+1] = string(var(i));
}
}
else
{
Lv[size(Lv)+1] = string(var(i));
}
}
RL[2] = Lv;
L1[2] = Lp;
L1[3] = list(list("lp",intvec(1:size(Lp))));
RL[1] = L1;
L1 = list();
L1[1] = list("dp",intvec(1:sv));
L1[2] = list("C",intvec(0));
RL[3] = L1;
// RL;
def R = ring(RL);
return(R);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,y,z,a,b,c),dp;
intvec v = 4,5,6;
def R = vars2pars(v);
setring R;
R;
v = 1,2;
def RR = vars2pars(v);
setring RR;
RR;
}
static proc minMaxIntRoot (list L, string minmax)
{
int win;
if (size(L)>1)
{
if ( (typeof(L[1])<>"ideal") || (typeof(L[2])<>"intvec") )
{
win = 1;
}
}
else
{
win = 1;
}
if (win)
{
ERROR("Expected list in the format of bFactor");
}
if (size(L)>2)
{
if ( (L[3]=="1") || (L[3]=="0") )
{
print("// Warning: Constant poly. Returning 0.");
return(int(0));
}
}
ideal I = L[1];
int i,k,b;
if (minmax=="min")
{
i = ncols(I);
k = -1;
b = 0;
}
else // minmax=="max"
{
i = 1;
k = 1;
b = ncols(I);
}
for (; k*i<k*b; i=i+k)
{
if (isInt(leadcoef(I[i])))
{
return(int(leadcoef(I[i])));
}
}
print("// Warning: No integer root found. Returning 0.");
return(int(0));
}
//TODO rename? minIntRoot is name of proc in dmod.lib
proc minIntRoot2 (list L)
"
USAGE: minIntRoot2(L); L list
ASSUME: L is the output of bFactor.
RETURN: int, the minimal integer root in a list of roots
SEE ALSO: minIntRoot, maxIntRoot, bFactor
EXAMPLE: example minIntRoot2; shows examples
"
{
return(minMaxIntRoot(L,"min"));
}
example
{
"EXAMPLE"; echo=2;
ring r = 0,x,dp;
poly f = x*(x+1)*(x-2)*(x-5/2)*(x+5/2);
list L = bFactor(f);
minIntRoot2(L);
}
proc maxIntRoot (list L)
"
USAGE: maxIntRoot(L); L list
ASSUME: L is the output of bFactor.
RETURN: int, the maximal integer root in a list of roots
SEE ALSO: minIntRoot2, bFactor
EXAMPLE: example maxIntRoot; shows examples
"
{
return(minMaxIntRoot(L,"max"));
}
example
{
"EXAMPLE"; echo=2;
ring r = 0,x,dp;
poly f = x*(x+1)*(x-2)*(x-5/2)*(x+5/2);
list L = bFactor(f);
maxIntRoot(L);
}
proc dmodAction (def id, poly f, list #)
"
USAGE: dmodAction(id,f[,v]); id ideal or poly, f poly, v optional intvec
ASSUME: If v is not given, the basering is the n-th Weyl algebra W over a
field of characteristic 0 and for all 1<=i<=n the identity
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i) is the
differential operator belonging to x(i).
Otherwise, v is assumed to specify positions of variables, which form
a Weyl algebra as a subalgebra of the basering:
If size(v) equals 2*n, then bracket(var(v[i]),var(v[j])) must equal
1 if and only if j equals i+n, and 0 otherwise, for all 1<=i,j<=n.
@* Further, assume that f does not contain any D(i).
RETURN: same type as id, the result of the natural D-module action of id on f
NOTE: The assumptions made are not checked.
EXAMPLE: example dmodAction; shows examples
"
{
string inp1 = typeof(id);
if ((inp1<>"poly") && (inp1<>"ideal"))
{
ERROR("Expected first argument to be poly or ideal but received "+inp1);
}
intvec posXD = 1..nvars(basering);
if (size(#)>0)
{
if (typeof(#[1])=="intvec")
{
posXD = #[1];
}
}
if ((size(posXD) mod 2)<>0)
{
ERROR("Even number of variables expected.")
}
int n = (size(posXD)) div 2;
int i,j,k,l;
ideal resI = id;
int sid = ncols(resI);
intvec v;
poly P,h;
for (l=1; l<=sid; l++)
{
P = resI[l];
resI[l] = 0;
for (i=1; i<=size(P); i++)
{
v = leadexp(P[i]);
h = f;
for (j=1; j<=n; j++)
{
for (k=1; k<=v[posXD[j+n]]; k++) // action of Dx
{
h = diff(h,var(posXD[j]));
}
h = h*var(posXD[j])^v[posXD[j]]; // action of x
}
h = leadcoef(P[i])*h;
resI[l] = resI[l] + h;
}
}
if (inp1 == "ideal")
{
return(resI);
}
else
{
return(resI[1]);
}
}
example
{
ring r = 0,(x,y,z),dp;
poly f = x^2*z - y^3;
def A = annPoly(f);
setring A;
poly f = imap(r,f);
dmodAction(LD,f);
poly P = y*Dy+3*z*Dz-3;
dmodAction(P,f);
dmodAction(P[1],f);
}
static proc checkRatInput (vector I)
{
// check for valid input
int wrginpt;
if (nrows(I)<>2)
{
wrginpt = 1;
}
else
{
if (I[2] == 0)
{
wrginpt = 1;
}
}
if (wrginpt)
{
ERROR("Vector must consist of exactly two components, second one not 0");
}
return();
}
proc dmodActionRat(def id, vector w)
"
USAGE: dmodActionRat(id,w); id ideal or poly, f vector
ASSUME: The basering is the n-th Weyl algebra W over a field of
characteristic 0 and for all 1<=i<=n the identity
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i) is the
differential operator belonging to x(i).
@* Further, assume that w has exactly two components, second one not 0,
and that w does not contain any D(i).
RETURN: same type as id, the result of the natural D-module action of id on
the rational function w[1]/w[2]
EXAMPLE: example dmodActionRat; shows examples
"
{
string inp1 = typeof(id);
if ( (inp1<>"poly") && (inp1<>"ideal") )
{
ERROR("Expected first argument to be poly or ideal but received " + inp1);
}
checkRatInput(w);
poly f = w[1];
finKx(f);
f = w[2];
finKx(f);
def save = basering;
def r = commRing();
setring r;
ideal I = imap(save,id);
vector w = imap(save,w);
int i,j,k,l;
int n = nvars(basering) div 2;
int sid = ncols(I);
intvec v;
poly P;
vector h,resT;
module resL;
for (l=1; l<=sid; l++)
{
P = I[l];
resT = [0,1];
for (i=1; i<=size(P); i++)
{
v = leadexp(P[i]);
h = w;
for (j=1; j<=n; j++)
{
for (k=1; k<=v[j+n]; k++) // action of Dx
{
h = diffRat(h,j);
}
h = h + h[1]*(var(j)^v[j]-1)*gen(1); // action of x
}
h = h + (leadcoef(P[i])-1)*h[1]*gen(1);
resT = addRat(resT,h);
}
resL[l] = resT;
}
setring save;
module resL = imap(r,resL);
return(resL);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
poly f = 2*x; poly g = y;
def A = annRat(f,g); setring A;
poly f = imap(r,f); poly g = imap(r,g);
vector v = [f,g]; // represents f/g
// x and y act by multiplication
dmodActionRat(x,v);
dmodActionRat(y,v);
// Dx and Dy act by partial derivation
dmodActionRat(Dx,v);
dmodActionRat(Dy,v);
dmodActionRat(x*Dx+y*Dy,v);
setring r;
f = 2*x*y; g = x^2 - y^3;
def B = annRat(f,g); setring B;
poly f = imap(r,f); poly g = imap(r,g);
vector v = [f,g];
dmodActionRat(LD,v); // hence LD is indeed the annihilator of f/g
}
static proc arithmeticRat (vector I, vector J, string op, list #)
{
// op = "+": return I+J
// op = "*": return I*J
// op = "s": return simplified I
// op = "d": return diff(I,var(#[1]))
int isComm = isCommutative();
if (!isComm)
{
def save = basering;
def r = commRing();
setring r;
ideal m = maxideal(1);
map f = save,m;
vector I = f(I);
vector J = f(J);
}
vector K;
poly p;
if (op == "s")
{
p = gcd(I[1],I[2]);
K = (I[1]/p)*gen(1) + (I[2]/p)*gen(2);
}
else
{
if (op == "+")
{
I = arithmeticRat(I,vector(0),"s");
J = arithmeticRat(J,vector(0),"s");
p = lcm(I[2],J[2]);
K = (I[1]*p/I[2] + J[1]*p/J[2])*gen(1) + p*gen(2);
}
else
{
if (op == "*")
{
K = (I[1]*J[1])*gen(1) + (I[2]*J[2])*gen(2);
}
else
{
if (op == "d")
{
int j = #[1];
K = (diff(I[1],var(j))*I[2] - I[1]*diff(I[2],var(j)))*gen(1)+ (I[2]^2)*gen(2);
}
}
}
K = arithmeticRat(K,vector(0),"s");
}
if (!isComm)
{
setring save;
vector K = imap(r,K);
}
return(K);
}
proc simplifyRat (vector J)
"
USAGE: simplifyRat(v); v vector
ASSUME: Assume that v has exactly two components, second one not 0.
RETURN: vector, representing simplified rational function v[1]/v[2]
NOTE: Possibly present non-commutative relations of the basering are
ignored.
EXAMPLE: example simplifyRat; shows examples
"
{
checkRatInput(J);
return(arithmeticRat(J,vector(0),"s"));
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
vector v = [x2-1,x+1];
simplifyRat(v);
simplifyRat(v) - [x-1,1];
}
proc addRat (vector I, vector J)
"
USAGE: addRat(v,w); v,w vectors
ASSUME: Assume that v,w have exactly two components, second ones not 0.
RETURN: vector, representing rational function (v[1]/v[2])+(w[1]/w[2])
NOTE: Possibly present non-commutative relations of the basering are
ignored.
EXAMPLE: example addRat; shows examples
"
{
checkRatInput(I);
checkRatInput(J);
return(arithmeticRat(I,J,"+"));
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
vector v = [x,y];
vector w = [y,x];
addRat(v,w);
addRat(v,w) - [x2+y2,xy];
}
proc multRat (vector I, vector J)
"
USAGE: multRat(v,w); v,w vectors
ASSUME: Assume that v,w have exactly two components, second ones not 0.
RETURN: vector, representing rational function (v[1]/v[2])*(w[1]/w[2])
NOTE: Possibly present non-commutative relations of the basering are
ignored.
EXAMPLE: example multRat; shows examples
"
{
checkRatInput(I);
checkRatInput(J);
return(arithmeticRat(I,J,"*"));
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
vector v = [x,y];
vector w = [y,x];
multRat(v,w);
multRat(v,w) - [1,1];
}
proc diffRat (vector I, int j)
"
USAGE: diffRat(v,j); v vector, j int
ASSUME: Assume that v has exactly two components, second one not 0.
RETURN: vector, representing rational function derivative of rational
function (v[1]/v[2]) w.r.t. var(j)
NOTE: Possibly present non-commutative relations of the basering are
ignored.
EXAMPLE: example diffRat; shows examples
"
{
checkRatInput(I);
if ( (j<1) || (j>nvars(basering)) )
{
ERROR("Second argument must be in the range 1.."+string(nvars(basering)));
}
return(arithmeticRat(I,vector(0),"d",j));
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,y),dp;
vector v = [x,y];
diffRat(v,1);
diffRat(v,1) - [1,y];
diffRat(v,2);
diffRat(v,2) - [-x,y2];
}
proc commRing ()
"
USAGE: commRing();
RETURN: ring, basering without non-commutative relations
EXAMPLE: example commRing; shows examples
"
{
list RL = ringlist(basering);
if (size(RL)<=4)
{
return(basering);
}
RL = RL[1..4];
def r = ring(RL);
return(r);
}
example
{
"EXAMPLE:"; echo = 2;
def W = makeWeyl(3);
setring W; W;
def W2 = commRing();
setring W2; W2;
ring r = 0,(x,y),dp;
def r2 = commRing(); // same as r
setring r2; r2;
}
// TODO remove this proc once chern.lib is ready
static proc orderedPartition(int n, list #)
"
USUAGE: orderedPartition(n,a); n,a positive ints
orderedPartition(n,w); n positive int, w positive intvec
RETURN: list of intvecs
PURPOSE: Computes all partitions of n of length a, if the second
argument is an int, or computes all weighted partitions
w.r.t. w of n of length size(w) if the second argument
is an intvec.
In both cases, zero parts are included.
EXAMPLE: example orderedPartition; shows an example
"
{
int a,wrongInpt,intInpt;
intvec w = 1;
if (size(#)>0)
{
if (typeof(#[1]) == "int")
{
a = #[1];
intInpt = 1;
}
else
{
if (typeof(#[1]) == "intvec")
{
w = #[1];
a = size(w);
}
else
{
wrongInpt = 1;
}
}
}
else
{
wrongInpt = 1;
}
if (wrongInpt)
{
ERROR("Expected second argument of type int or intvec.");
}
kill wrongInpt;
if (n==0 && a>0)
{
return(list(0:a));
}
if (n<=0 || a<=0 || allPositive(w)==0)
{
ERROR("Positive arguments expected.");
}
int baseringdef;
if (defined(basering)) // if a basering is defined, it should be saved for later use
{
def save = basering;
baseringdef = 1;
}
ring r = 0,(x(1..a)),dp; // all variables for partition of length a
ideal M;
if (intInpt)
{
M = maxideal(n); // all monomials of total degree n
}
else
{
M = weightKB(ideal(0),n,w); // all monomials of total weighted degree n
}
list L;
int i;
for (i = 1; i <= ncols(M); i++) {L = insert(L,leadexp(M[i]));}
// the leadexp corresponds to a partition
if (baseringdef) // sets the old ring as basering again
{
setring save;
}
return(L); //returns the list of partitions
}
example
{
"EXAMPLE"; echo = 2;
orderedPartition(4,2);
orderedPartition(5,3);
orderedPartition(2,4);
orderedPartition(8,intvec(2,3));
orderedPartition(7,intvec(2,2)); // no such partition
}
// applications of characteristic variety /////////////////////////////////////
proc holonomicRank (ideal I, list #)
"
USAGE: holonomicRank(I[,e]); I ideal, e optional int
ASSUME: The basering is the n-th Weyl algebra over a field of
characteristic 0 and for all 1<=i<=n the identity
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i)
is the differential operator belonging to x(i).
RETURN: int, the holonomic rank of I
REMARKS: The holonomic rank of I is defined to be the K(x(1..n))-dimension of
the module W/WI, where W is the rational Weyl algebra
K(x(1..n))<D(1..n)>.
If this dimension is infinite, -1 is returned.
NOTE: If e<>0, @code{std} is used for Groebner basis computations,
otherwise (and by default) @code{slimgb} is used.
@* If printlevel=1, progress debug messages will be printed,
if printlevel>=2, all the debug messages will be printed.
EXAMPLE: example holonomicRank; shows examples
"
{
// assumption check is done by charVariety
int ppl = printlevel - voice + 2;
int eng;
if (size(#)>0)
{
if(typeof(#[1])=="int")
{
eng = #[1];
}
}
def save = basering;
dbprint(ppl ,"// Computing characteristic variety...");
def grD = charVariety(I);
setring grD; // commutative ring
dbprint(ppl ,"// ...done.");
dbprint(ppl-1,"// " + string(charVar));
int n = nvars(save) div 2;
intvec v = 1..n;
def R = vars2pars(v);
setring R;
ideal J = imap(grD,charVar);
dbprint(ppl ,"// Starting GB computation...");
J = engine(J,0); // use slimgb
dbprint(ppl ,"// ...done.");
dbprint(ppl-1,"// " + string(J));
int d = vdim(J);
setring save;
return(d);
}
example
{
"EXAMPLE:"; echo = 2;
// (OTW), Example 8
ring r3 = 0,(x,y,z,Dx,Dy,Dz),dp;
def D3 = Weyl();
setring D3;
poly f = x^3-y^2*z^2;
ideal I = f^2*Dx+3*x^2, f^2*Dy-2*y*z^2, f^2*Dz-2*y^2*z;
// I annihilates exp(1/f)
holonomicRank(I);
}
proc DsingularLocus (ideal I)
"
USAGE: DsingularLocus(I); I ideal
ASSUME: The basering is the n-th Weyl algebra over a field of
characteristic 0 and for all 1<=i<=n the identity
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i)
is the differential operator belonging to x(i).
RETURN: ideal, describing the singular locus of the D-module D/I
NOTE: If printlevel>=1, progress debug messages will be printed,
if printlevel>=2, all the debug messages will be printed
EXAMPLE: example DsingularLocus; shows examples
"
{
// assumption check is done by charVariety
int ppl = printlevel - voice + 2;
def save = basering;
dbprint(ppl ,"// Computing characteristic variety...");
def grD = charVariety(I);
setring grD;
dbprint(ppl ,"// ...done");
dbprint(ppl-1,"// " + string(charVar));
poly pDD = 1;
ideal IDD;
int i;
int n = nvars(basering) div 2;
for (i=1; i<=n; i++)
{
pDD = pDD*var(i+n);
IDD[i] = var(i+n);
}
dbprint(ppl ,"// Computing saturation...");
ideal S = sat(charVar,IDD)[1];
dbprint(ppl ,"// ...done");
dbprint(ppl-1,"// " + string(S));
dbprint(ppl ,"// Computing elimination...");
S = eliminate(S,pDD);
dbprint(ppl ,"// ...done");
dbprint(ppl-1,"// " + string(S));
dbprint(ppl ,"// Computing radical...");
S = radical(S);
dbprint(ppl ,"// ...done");
dbprint(ppl-1,"// " + string(S));
setring save;
ideal S = imap(grD,S);
return(S);
}
example
{
"EXAMPLE:"; echo = 2;
// (OTW), Example 8
ring @D3 = 0,(x,y,z,Dx,Dy,Dz),dp;
def D3 = Weyl();
setring D3;
poly f = x^3-y^2*z^2;
ideal I = f^2*Dx + 3*x^2, f^2*Dy-2*y*z^2, f^2*Dz-2*y^2*z;
// I annihilates exp(1/f)
DsingularLocus(I);
}
// localization ///////////////////////////////////////////////////////////////
static proc finKx(poly f)
{
int n = nvars(basering) div 2;
intvec iv = 1..n;
if (polyVars(f,iv) == 0)
{
ERROR("Given poly may not contain differential operators.");
}
return();
}
proc rightNFWeyl (def id, int k)
"
USAGE: rightNFWeyl(id,k); id ideal or poly, k int
ASSUME: The basering is the n-th Weyl algebra over a field of
characteristic 0 and for all 1<=i<=n the identity
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i)
is the differential operator belonging to x(i).
RETURN: same type as id, the right normal form of id with respect to the
principal right ideal generated by the k-th variable
NOTE: No Groebner basis computation is used.
EXAMPLE: example rightNFWeyl; shows examples.
"
{
dmodGeneralAssumptionCheck();
string inpt = typeof(id);
if (inpt=="ideal" || inpt=="poly")
{
ideal I = id;
}
else
{
ERROR("Expected first input to be of type ideal or poly.");
}
def save = basering;
int n = nvars(save) div 2;
if (0>k || k>2*n)
{
ERROR("Expected second input to be in the range 1.."+string(2*n)+".");
}
int i,j;
if (k>n) // var(k) = Dx(k-n)
{
// switch var(k),var(k-n)
list RL = ringlist(save);
matrix rel = RL[6];
rel[k-n,k] = -1;
RL = RL[1..4];
list L = RL[2];
string str = L[k-n];
L[k-n] = L[k];
L[k] = str;
RL[2] = L;
def @W = ring(RL);
kill L,RL,str;
ideal @mm = maxideal(1);
setring @W;
matrix rel = imap(save,rel);
def W = nc_algebra(1,rel);
setring W;
ideal @mm = imap(save,@mm);
map mm = save,@mm;
ideal I = mm(I);
i = k-n;
}
else // var(k) = x(k)
{
def W = save;
i = k;
}
for (j=1; j<=ncols(I); j++)
{
I[j] = subst(I[j],var(i),0);
}
setring save;
I = imap(W,I);
if (inpt=="poly")
{
return(I[1]);
}
else
{
return(I);
}
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,y,Dx,Dy),dp;
def W = Weyl();
setring W;
ideal I = x^3*Dx^3, y^2*Dy^2, x*Dy, y*Dx;
rightNFWeyl(I,1); // right NF wrt principal right ideal x*W
rightNFWeyl(I,3); // right NF wrt principal right ideal Dx*W
rightNFWeyl(I,2); // right NF wrt principal right ideal y*W
rightNFWeyl(I,4); // right NF wrt principal right ideal Dy*W
poly p = x*Dx+1;
rightNFWeyl(p,1); // right NF wrt principal right ideal x*W
}
// TODO check OTW for assumptions on holonomicity
proc Dlocalization (ideal J, poly f, list #)
"
USAGE: Dlocalization(I,f[,k,e]); I ideal, f poly, k,e optional ints
ASSUME: The basering is the n-th Weyl algebra over a field of
characteristic 0 and for all 1<=i<=n the identity
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i)
is the differential operator belonging to x(i).
@* Further, assume that f does not contain any D(i) and that I is
holonomic on K^n\V(f).
RETURN: ideal or list, computes an ideal J such that D/J is isomorphic
to D/I localized at f as D-modules.
If k<>0, a list consisting of J and an integer m is returned,
such that f^m represents the natural map from D/I to D/J.
Otherwise (and by default), only the ideal J is returned.
REMARKS: It is known that a localization at f of a holonomic D-module is
again a holonomic D-module.
@* Reference: (OTW)
NOTE: If e<>0, @code{std} is used for Groebner basis computations,
otherwise (and by default) @code{slimgb} is used.
@* If printlevel=1, progress debug messages will be printed,
if printlevel>=2, all the debug messages will be printed.
SEE ALSO: DLoc, SDLoc, DLoc0
EXAMPLE: example Dlocalization; shows examples
"
{
dmodGeneralAssumptionCheck();
finKx(f);
int ppl = printlevel - voice + 2;
int outList,eng;
if (size(#)>0)
{
if (typeof(#[1])=="int" || typeof(#[1])=="number")
{
outList = int(#[1]);
}
if (size(#)>1)
{
if (typeof(#[2])=="int" || typeof(#[2])=="number")
{
eng = int(#[2]);
}
}
}
int i,j;
def save = basering;
int n = nvars(save) div 2;
def Dv = extendWeyl(safeVarName("v"));
setring Dv;
poly f = imap(save,f);
ideal phiI;
for (i=n; i>0; i--)
{
phiI[i+n] = var(i+n+2)-var(1)^2*bracket(var(i+n+2),f)*var(n+2);
phiI[i] = var(i+1);
}
map phi = save,phiI;
ideal J = phi(J);
J = J, 1-f*var(1);
// TODO original J has to be holonomic only on K^n\V(f), not on all of K^n
// does is suffice to show that new J is holonomic on Dv??
if (isHolonomic(J) == 0)
{
ERROR("Module is not holonomic.");
}
intvec w = 1; w[n+1]=0;
ideal G = GBWeight(J,w,-w,eng);
dbprint(ppl ,"// found GB wrt weight " +string(-w));
dbprint(ppl-1,"// " + string(G));
intvec ww = w,-w;
ideal inG = inForm(G,ww);
inG = engine(inG,eng);
poly s = var(1)*var(n+2); // s=v*Dv
vector intersecvec = pIntersect(s,inG);
s = vec2poly(intersecvec);
s = subst(s,var(1),-var(1)-1);
list L = bFactor(s);
dbprint(ppl ,"// found b-function");
dbprint(ppl-1,"// roots: "+string(L[1]));
dbprint(ppl-1,"// multiplicities: "+string(L[2]));
kill inG,intersecvec,s;
// TODO: use maxIntRoot
L = intRoots(L); // integral roots of b-function
if (L[2]==0:size(L[2])) // no integral roots
{
setring save;
return(ideal(1));
}
intvec iv;
for (i=1; i<=ncols(L[1]); i++)
{
iv[i] = int(L[1][i]);
}
int l0 = Max(iv);
dbprint(ppl,"// maximal integral root is " +string(l0));
kill L,iv;
intvec degG;
ideal Gk;
for (j=1; j<=ncols(G); j++)
{
degG[j] = deg(G[j],ww);
for (i=0; i<=l0-degG[j]; i++)
{
Gk[ncols(Gk)+1] = var(1)^i*G[j];
}
}
Gk = rightNFWeyl(Gk,n+2);
dbprint(ppl,"// found right normalforms");
module M = coeffs(Gk,var(1));
setring save;
def mer = makeModElimRing(save);
setring mer;
module M = imap(Dv,M);
kill Dv;
M = engine(M,eng);
dbprint(ppl ,"// found GB of free module of rank " + string(l0+1));
dbprint(ppl-1,"// " + string(M));
M = prune(M);
setring save;
matrix M = imap(mer,M);
kill mer;
int ro = nrows(M);
int co = ncols(M);
ideal I;
if (ro == 1) // nothing to do
{
I = M;
}
else
{
matrix zm[ro-1][1]; // zero matrix
matrix v[ro-1][1];
for (i=1; i<=co; i++)
{
v = M[1..ro-1,i];
if (v == zm)
{
I[size(I)+1] = M[ro,i];
}
}
}
if (outList<>0)
{
return(list(I,l0+2));
}
else
{
return(I);
}
}
example
{
"EXAMPLE:"; echo = 2;
// (OTW), Example 8
ring r = 0,(x,y,z,Dx,Dy,Dz),dp;
def W = Weyl();
setring W;
poly f = x^3-y^2*z^2;
ideal I = f^2*Dx+3*x^2, f^2*Dy-2*y*z^2, f^2*Dz-2*y^2*z;
// I annihilates exp(1/f)
ideal J = Dlocalization(I,f);
J;
Dlocalization(I,f,1); // The natural map D/I -> D/J is given by 1/f^2
}
// Weyl closure ///////////////////////////////////////////////////////////////
static proc orderFiltrationD1 (poly f)
{
// returns list of ideal and intvec
// ideal contains x-parts, intvec corresponding degree in Dx
poly g,h;
g = f;
ideal I;
intvec v,w,u;
w = 0,1;
int i,j;
i = 1;
while (g<>0)
{
h = inForm(g,w);
I[i] = 0;
for (j=1; j<=size(h); j++)
{
v = leadexp(h[j]);
u[i] = v[2];
v[2] = 0;
I[i] = I[i] + leadcoef(h[j])*monomial(v);
}
g = g-h;
i++;
}
return(list(I,u));
}
static proc kerLinMapD1 (ideal W, poly L, poly p)
{
// computes kernel of right multiplication with L viewed
// as homomorphism of K-vector spaces span(W) -> D1/p*D1
// assume p in K[x], basering is K<x,Dx>
ideal G,K;
G = std(p);
list l;
int i,j;
// first, compute the image of span(W)
if (simplify(W,2)[1] == 0)
{
return(K); // = 0
}
for (i=1; i<=size(W); i++)
{
l = orderFiltrationD1(W[i]*L);
K[i] = 0;
for (j=1; j<=size(l[1]); j++)
{
K[i] = K[i] + NF(l[1][j],G)*var(2)^(l[2][j]);
}
}
// now, we get the kernel by linear algebra
l = linReduceIdeal(K,1);
i = ncols(l[1]) - size(l[1]);
if (i<>0)
{
K = module(W)*l[2];
K = K[1..i];
}
else
{
K = 0;
}
return(K);
}
static proc leftDivisionKxD1 (poly p, poly L)
{
// basering is D1 = K<x,Dx>
// p in K[x]
// compute p^(-1)*L if p is a left divisor of L
// if (rightNF(L,ideal(p))<>0)
// {
// ERROR("First poly is not a right factor of second poly");
// }
def save = basering;
list l = orderFiltrationD1(L);
ideal l1 = l[1];
ring r = 0,x,dp;
ideal l1 = fetch(save,l1);
poly p = fetch(save,p);
int i;
for (i=1; i<=ncols(l1); i++)
{
l1[i] = division(l1[i],p)[1][1,1];
}
setring save;
ideal I = fetch(r,l1);
poly f;
for (i=1; i<=ncols(I); i++)
{
f = f + I[i]*var(2)^(l[2][i]);
}
return(f);
}
proc WeylClosure1 (poly L)
"
USAGE: WeylClosure1(L); L a poly
ASSUME: The basering is the first Weyl algebra D=K<x,d|dx=xd+1> over a field
K of characteristic 0.
RETURN: ideal, the Weyl closure of the principal left ideal generated by L
REMARKS: The Weyl closure of a left ideal I in the Weyl algebra D is defined
to be the intersection of I regarded as left ideal in the rational
Weyl algebra K(x)<d> with the polynomial Weyl algebra D.
@* Reference: (Tsa), Algorithm 1.2.4
NOTE: If printlevel=1, progress debug messages will be printed,
if printlevel>=2, all the debug messages will be printed.
SEE ALSO: WeylClosure
EXAMPLE: example WeylClosure1; shows examples
"
{
dmodGeneralAssumptionCheck(); // assumption check
int ppl = printlevel - voice + 2;
def save = basering;
intvec w = 0,1; // for order filtration
poly p = inForm(L,w);
ring @R = 0,var(1),dp;
ideal mm = var(1),1;
map m = save,mm;
ideal @p = m(p);
poly p = @p[1];
poly g = gcd(p,diff(p,var(1)));
if (g == 1)
{
g = p;
}
ideal facp = factorize(g,1); // g is squarefree, constants aren't interesting
dbprint(ppl-1,
"// squarefree part of highest coefficient w.r.t. order filtration:");
dbprint(ppl-1, "// " + string(facp));
setring save;
p = imap(@R,p);
// 1-1 extend basering by parameter and introduce new var t=x*d
list RL = ringlist(save);
RL = RL[1..4];
list l;
l[1] = int(0);
l[2] = list(safeVarName("a"));
l[3] = list(list("lp",intvec(1)));
l[4] = ideal(0);
RL[1] = l;
l = RL[2] + list(safeVarName("t"));
RL[2] = l;
l = list();
l[1] = list("dp",intvec(1,1));
l[2] = list("dp",intvec(1));
l[3] = list("C",intvec(0));
RL[3] = l;
def @Wat = ring(RL);
kill RL,l;
setring @Wat;
matrix relD[3][3];
relD[1,2] = 1;
relD[1,3] = var(1);
relD[2,3] = -var(2);
def Wat = nc_algebra(1,relD);
setring Wat;
kill @Wat;
// 1-2 rewrite L using Euler operators
ideal mm = var(1)+par(1),var(2);
map m = save,mm;
poly L = m(L);
w = -1,1,0; // for Bernstein filtration
int i = 1;
ideal Q;
poly p = L;
intvec d;
while (p<>0)
{
Q[i] = inForm(p,w);
p = p - Q[i];
d[i] = -deg(Q[i],w);
i++;
}
ideal S = std(var(1)*var(2)-var(3));
Q = NF(Q,S);
dbprint(ppl, "// found Euler representation of operator");
dbprint(ppl-1,"// " + string(Q));
Q = subst(Q,var(1),1);
Q = subst(Q,var(2),1);
// 1-3 prepare for algebraic extensions with minpoly = facp[i]
list RL = ringlist(Wat);
RL = RL[1..4];
list l;
l = string(var(3));
RL[2] = l;
l = list();
l[1] = list("dp",intvec(1));
l[2] = list("C",intvec(0));
RL[3] = l;
mm = par(1);
m = @R,par(1);
ideal facp = m(facp);
kill @R,m,mm,l,S;
intvec maxroots,testroots;
int sq = size(Q);
string strQ = "ideal Q = " + string(Q) + ";";
// TODO do it without string workaround when issue with maps from
// transcendental to algebraic extension fields is fixed
int j,maxr;
// 2-1 get max int root of lowest nonzero entry of Q in algebraic extension
for (i=1; i<=size(facp); i++)
{
testroots = 0;
def Ra = ring(RL);
setring Ra;
ideal mm = 1,1,var(1);
map m = Wat,mm;
ideal facp = m(facp);
minpoly = leadcoef(facp[i]);
execute(strQ);
if (simplify(Q,2)[1] == poly(0))
{
break;
}
j = 1;
while (j<sq)
{
if (Q[j]==0)
{
j++;
}
else
{
break;
}
}
maxroots[i] = d[j]; // d[j] = r_k
list LR = bFactor(Q[j]);
LR = intRoots(LR);
if (LR[2]<>0:size(LR[2])) // there are integral roots
{
for (j=1; j<=ncols(LR[1]); j++)
{
testroots[j] = int(LR[1][j]);
}
maxr = Max(testroots);
if(maxr<0)
{
maxr = 0;
}
maxroots[i] = maxroots[i] + maxr;
}
kill LR;
setring Wat;
kill Ra;
}
maxr = Max(maxroots);
// 3-1 build basis of vectorspace
setring save;
ideal KB;
for (i=0; i<deg(p); i++) // it's really <, not <=
{
for (j=0; j<=maxr; j++) // it's really <=, not <
{
KB[size(KB)+1] = monomial(intvec(i,j));
}
}
dbprint(ppl,"// got vector space basis");
dbprint(ppl-1, "// " + string(KB));
// 3-2 get kernel of *L: span(KB)->D/pD
KB = kerLinMapD1(KB,L,p);
dbprint(ppl,"// got kernel");
dbprint(ppl-1, "// " + string(KB));
// 4-1 get (1/p)*f*L where f in KB
for (i=1; i<=ncols(KB); i++)
{
KB[i] = leftDivisionKxD1(p,KB[i]*L);
}
KB = L,KB;
// 4-2 done
return(KB);
}
example
{
"EXAMPLE:"; echo = 2;
ring r = 0,(x,Dx),dp;
def W = Weyl();
setring W;
poly L = (x^3+2)*Dx-3*x^2;
WeylClosure1(L);
L = (x^4-4*x^3+3*x^2)*Dx^2+(-6*x^3+20*x^2-12*x)*Dx+(12*x^2-32*x+12);
WeylClosure1(L);
}
proc WeylClosure (ideal I)
"
USAGE: WeylClosure(I); I an ideal
ASSUME: The basering is the n-th Weyl algebra W over a field of
characteristic 0 and for all 1<=i<=n the identity
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i) is the
differential operator belonging to x(i).
@* Moreover, assume that the holonomic rank of W/I is finite.
RETURN: ideal, the Weyl closure of I
REMARKS: The Weyl closure of a left ideal I in the Weyl algebra W is defined to
be the intersection of I regarded as left ideal in the rational Weyl
algebra K(x(1..n))<D(1..n)> with the polynomial Weyl algebra W.
@* Reference: (Tsa), Algorithm 2.2.4
NOTE: If printlevel=1, progress debug messages will be printed,
if printlevel>=2, all the debug messages will be printed.
SEE ALSO: WeylClosure1
EXAMPLE: example WeylClosure; shows examples
"
{
// assumption check
dmodGeneralAssumptionCheck();
if (holonomicRank(I)==-1)
{
ERROR("Input is not of finite holonomic rank.");
}
int ppl = printlevel - voice + 2;
int eng = 0; // engine
def save = basering;
dbprint(ppl ,"// Starting to compute singular locus...");
ideal sl = DsingularLocus(I);
sl = simplify(sl,2);
dbprint(ppl ,"// ...done.");
dbprint(ppl-1,"// " + string(sl));
if (sl[1] == 0) // can never get here
{
ERROR("Can't find polynomial in K[x] vanishing on singular locus.");
}
poly f = sl[1];
dbprint(ppl ,"// Found poly vanishing on singular locus: " + string(f));
dbprint(ppl ,"// Starting to compute localization...");
list L = Dlocalization(I,f,1);
ideal G = L[1];
dbprint(ppl ,"// ...done.");
dbprint(ppl-1,"// " + string(G));
dbprint(ppl ,"// Starting to compute kernel of localization map...");
if (eng == 0)
{
G = moduloSlim(f^L[2],G);
}
else
{
G = modulo(f^L[2],G);
}
dbprint(ppl ,"// ...done.");
return(G);
}
example
{
"EXAMPLE:"; echo = 2;
// (OTW), Example 8
ring r = 0,(x,y,z,Dx,Dy,Dz),dp;
def D3 = Weyl();
setring D3;
poly f = x^3-y^2*z^2;
ideal I = f^2*Dx + 3*x^2, f^2*Dy-2*y*z^2, f^2*Dz-2*y^2*z;
// I annihilates exp(1/f)
WeylClosure(I);
}
// solutions to systems of PDEs ///////////////////////////////////////////////
proc polSol (ideal I, list #)
"
USAGE: polSol(I[,w,m]); I ideal, w optional intvec, m optional int
ASSUME: The basering is the n-th Weyl algebra W over a field of
characteristic 0 and for all 1<=i<=n the identity
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i) is the
differential operator belonging to x(i).
@* Moreover, assume that I is holonomic.
RETURN: ideal, a basis of the polynomial solutions to the given system of
linear PDEs with polynomial coefficients, encoded via I
REMARKS: If w is given, w should consist of n strictly negative entries.
Otherwise and by default, w is set to -1:n.
In this case, w is used as weight vector for the computation of a
b-function.
@* If m is given, m is assumed to be the minimal integer root of the
b-function of I w.r.t. w. Note that this assumption is not checked.
@* Reference: (OTT), Algorithm 2.4
NOTE: If printlevel=1, progress debug messages will be printed,
if printlevel>=2, all the debug messages will be printed.
SEE ALSO: polSolFiniteRank, ratSol
EXAMPLE: example polSol; shows examples
"
{
dmodGeneralAssumptionCheck();
int ppl = printlevel - voice + 2;
int mr,mrgiven;
def save = basering;
int n = nvars(save);
intvec w = -1:(n div 2);
if (size(#)>0)
{
if (typeof(#[1])=="intvec")
{
if (allPositive(-#[1]))
{
w = #[1];
}
}
if (size(#)>1)
{
if (typeof(#[2])=="int")
{
mr = #[2];
mrgiven = 1;
}
}
}
// Step 1: the b-function
list L;
if (!mrgiven)
{
if (!isHolonomic(I))
{
ERROR("Ideal is not holonomic. Try polSolFiniteRank.");
}
dbprint(ppl,"// Computing b-function...");
L = bfctIdeal(I,w);
dbprint(ppl,"// ...done.");
dbprint(ppl-1,"// Roots: " + string(L[1]));
dbprint(ppl-1,"// Multiplicities: " + string(L[2]));
mr = minIntRoot2(L);
dbprint(ppl,"// Minimal integer root is " + string(mr) + ".");
}
if (mr>0)
{
return(ideal(0));
}
// Step 2: get the form of a solution f
int i;
L = list();
for (i=0; i<=-mr; i++)
{
L = L + orderedPartition(i,-w);
}
ideal mons;
for (i=1; i<=size(L); i++)
{
mons[i] = monomial(L[i]);
}
kill L;
mons = simplify(mons,2+4); // L might contain lots of 0s by construction
ring @C = (0,@c(1..size(mons))),dummyvar,dp;
def WC = save + @C;
setring WC;
ideal mons = imap(save,mons);
poly f;
for (i=1; i<=size(mons); i++)
{
f = f + par(i)*mons[i];
}
// Step 3: determine values of @c(i) by equating coefficients
ideal I = imap(save,I);
I = dmodAction(I,f,1..n);
ideal M = monomialInIdeal(I);
matrix CC = coeffs(I,M);
int j;
ideal C;
for (i=1; i<=nrows(CC); i++)
{
f = 0;
for (j=1; j<=ncols(CC); j++)
{
f = f + CC[i,j];
}
C[size(C)+1] = f;
}
// Step 3.1: solve a linear system
ring rC = 0,(@c(1..size(mons))),dp;
ideal C = imap(WC,C);
matrix M = coeffs(C,maxideal(1));
module MM = leftKernel(M);
setring WC;
module MM = imap(rC,MM);
// Step 3.2: return the solution
ideal F = ideal(MM*transpose(mons));
setring save;
ideal F = imap(WC,F);
return(F);
}
example
{
"EXAMPLE:"; echo=2;
ring r = 0,(x,y,Dx,Dy),dp;
def W = Weyl();
setring W;
poly tx,ty = x*Dx, y*Dy;
ideal I = // Appel F1 with parameters (2,-3,-2,5)
tx*(tx+ty+4)-x*(tx+ty+2)*(tx-3),
ty*(tx+ty+4)-y*(tx+ty+2)*(ty-2),
(x-y)*Dx*Dy+2*Dx-3*Dy;
intvec w = -1,-1;
polSol(I,w);
}
static proc ex_polSol()
{ ring r = 0,(x,y,Dx,Dy),dp;
def W = Weyl();
setring W;
poly tx,ty = x*Dx, y*Dy;
ideal I = // Appel F1 with parameters (2,-3,-2,5)
tx*(tx+ty+4)-x*(tx+ty+2)*(tx-3),
ty*(tx+ty+4)-y*(tx+ty+2)*(ty-2),
(x-y)*Dx*Dy+2*Dx-3*Dy;
intvec w = -5,-7;
// the following gives a bug
polSol(I,w);
// this is due to a bug in weightKB, see ticket #339
// http://www.singular.uni-kl.de:8002/trac/ticket/339
}
proc polSolFiniteRank (ideal I, list #)
"
USAGE: polSolFiniteRank(I[,w]); I ideal, w optional intvec
ASSUME: The basering is the n-th Weyl algebra W over a field of
characteristic 0 and for all 1<=i<=n the identity
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i) is the
differential operator belonging to x(i).
@* Moreover, assume that I is of finite holonomic rank.
RETURN: ideal, a basis of the polynomial solutions to the given system of
linear PDEs with polynomial coefficients, encoded via I
REMARKS: If w is given, w should consist of n strictly negative entries.
Otherwise and by default, w is set to -1:n.
In this case, w is used as weight vector for the computation of a
b-function.
@* Reference: (OTT), Algorithm 2.6
NOTE: If printlevel=1, progress debug messages will be printed,
if printlevel>=2, all the debug messages will be printed.
SEE ALSO: polSol, ratSol
EXAMPLE: example polSolFiniteRank; shows examples
"
{
dmodGeneralAssumptionCheck();
if (holonomicRank(I)==-1)
{
ERROR("Ideal is not of finite holonomic rank.");
}
int ppl = printlevel - voice + 2;
int n = nvars(basering) div 2;
int eng;
intvec w = -1:(n div 2);
if (size(#)>0)
{
if (typeof(#[1])=="intvec")
{
if (allPositive(-#[1]))
{
w = #[1];
}
}
}
dbprint(ppl,"// Computing initial ideal...");
ideal J = initialIdealW(I,-w,w);
dbprint(ppl,"// ...done.");
dbprint(ppl,"// Computing Weyl closure...");
J = WeylClosure(J);
J = engine(J,eng);
dbprint(ppl,"// ...done.");
poly s;
int i;
for (i=1; i<=n; i++)
{
s = s + w[i]*var(i)*var(i+n);
}
dbprint(ppl,"// Computing intersection...");
vector v = pIntersect(s,J);
list L = bFactor(vec2poly(v));
dbprint(ppl-1,"// roots: " + string(L[1]));
dbprint(ppl-1,"// multiplicities: " + string(L[2]));
dbprint(ppl,"// ...done.");
int mr = minIntRoot2(L);
int pl = printlevel;
printlevel = printlevel + 1;
ideal K = polSol(I,w,mr);
printlevel = printlevel - 1;
return(K);
}
example
{
"EXAMPLE:"; echo=2;
ring r = 0,(x,y,Dx,Dy),dp;
def W = Weyl();
setring W;
poly tx,ty = x*Dx, y*Dy;
ideal I = // Appel F1 with parameters (2,-3,-2,5)
tx*(tx+ty+4)-x*(tx+ty+2)*(tx-3),
ty*(tx+ty+4)-y*(tx+ty+2)*(ty-2),
(x-y)*Dx*Dy+2*Dx-3*Dy;
intvec w = -1,-1;
polSolFiniteRank(I,w);
}
static proc twistedIdeal(ideal I, poly f, intvec k, ideal F)
{
// I subset D_n, f in K[x], F = factorize(f,1), size(k) = size(F), k[i]>0
def save = basering;
int n = nvars(save) div 2;
int i,j;
intvec a,v,w;
w = (0:n),(1:n);
for (i=1; i<=size(I); i++)
{
a[i] = deg(I[i],w);
}
ring FD = 0,(fd(1..n)),dp;
def @@WFD = save + FD;
setring @@WFD;
poly f = imap(save,f);
list RL = ringlist(basering);
RL = RL[1..4];
list L = RL[3];
v = (1:(2*n)),((deg(f)+1):n);
L = insert(L,list("a",v));
RL[3] = L;
def @WFD = ring(RL);
setring @WFD;
poly f = imap(save,f);
matrix Drel[3*n][3*n];
for (i=1; i<=n; i++)
{
Drel[i,i+n] = 1; // [D,x]
Drel[i,i+2*n] = f; // [fD,x]
for (j=1; j<=n; j++)
{
Drel[i+n,j+2*n] = -diff(f,var(i))*var(j+n); // [fD,D]
Drel[j+2*n,i+2*n] = diff(f,var(i))*var(j+2*n) - diff(f,var(j))*var(i+2*n);
// [fD,fD]
}
}
def WFD = nc_algebra(1,Drel);
setring WFD;
kill @WFD,@@WFD;
ideal I = imap(save,I);
poly f = imap(save,f);
for (i=1; i<=size(I); i++)
{
I[i] = f^(a[i])*I[i];
}
ideal S;
for (i=1; i<=n; i++)
{
S[size(S)+1] = var(i+2*n) - f*var(i+n);
}
S = slimgb(S);
I = NF(I,S);
if (select1(I,intvec((n+1)..2*n))[1] <> 0)
{
// should never get here
ERROR("Something's wrong. Please inform the author.");
}
setring save;
ideal mm = maxideal(1);
poly s;
for (i=1; i<=n; i++)
{
s = f*var(i+n);
for (j=1; j<=size(F); j++)
{
s = s + k[j]*(f/F[j])*bracket(var(i+n),F[j]);
}
mm[i+2*n] = s;
}
map m = WFD,mm;
ideal J = m(I);
return(J);
}
example
{
"EXAMPLE"; echo=2;
ring r = 0,(x,y,Dx,Dy),dp;
def W = Weyl();
setring W;
poly tx,ty = x*Dx, y*Dy;
ideal I = // Appel F1 with parameters (3,-1,1,1) is a solution
tx*(tx+ty)-x*(tx+ty+3)*(tx-1),
ty*(tx+ty)-y*(tx+ty+3)*(ty+1);
kill tx,ty;
poly f = x^3*y^2-x^2*y^3-x^3*y+x*y^3+x^2*y-x*y^2;
ideal F = x-1,x,-x+y,y-1,y;
intvec k = -1,-1,-1,-3,-1;
ideal T = twistedIdeal(I,f,k,F);
// TODO change the ordering of WFD
// introduce new var f??
//paper:
poly fx = diff(f,x);
poly fy = diff(f,y);
poly fDx = f*Dx;
poly fDy = f*Dy;
poly fd(1) = fDx;
poly fd(2) = fDy;
ideal K=
(x^2-x^3)*(fDx)^2+x*((1-3*x)*f-(1-x)*y*fy-(1-x)*x*fx)*(fDx)
+x*(1-x)*y*(fDy)*(fDx)+x*y*f*(fDy)+3*x*f^2,
(y^2-y^3)*(fDy)^2+y*((1-5*y)*f-(1-y)*x*fx-(1-y)*y*fy)*(fDy)
+y*(1-y)*x*(fDx)*(fDy)-y*x*f*(fDx)-3*y*f^2;
}
proc ratSol (ideal I)
"
USAGE: ratSol(I); I ideal
ASSUME: The basering is the n-th Weyl algebra W over a field of
characteristic 0 and for all 1<=i<=n the identity
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i) is the
differential operator belonging to x(i).
@* Moreover, assume that I is holonomic.
RETURN: module, a basis of the rational solutions to the given system of
linear PDEs with polynomial coefficients, encoded via I
Note that each entry has two components, the first one standing for
the enumerator, the second one for the denominator.
REMARKS: Reference: (OTT), Algorithm 3.10
NOTE: If printlevel=1, progress debug messages will be printed,
if printlevel>=2, all the debug messages will be printed.
SEE ALSO: polSol, polSolFiniteRank
EXAMPLE: example ratSol; shows examples
"
{
dmodGeneralAssumptionCheck();
if (!isHolonomic(I))
{
ERROR("Ideal is not holonomic.");
}
int ppl = printlevel - voice + 2;
def save = basering;
dbprint(ppl,"// computing singular locus...");
ideal S = DsingularLocus(I);
dbprint(ppl,"// ...done.");
poly f = S[1];
dbprint(ppl,"// considering poly " + string(f));
int n = nvars(save) div 2;
list RL = ringlist(save);
RL = RL[1..4];
list L = RL[2];
L = list(L[1..n]);
RL[2] = L;
L = list();
L[1] = list("dp",intvec(1:n));
L[2] = list("C",intvec(0));
RL[3] = L;
def rr = ring(RL);
setring rr;
poly f = imap(save,f);
ideal F = factorize(f,1); // not interested in multiplicities
dbprint(ppl,"// with irreducible factors " + string(F));
setring save;
ideal F = imap(rr,F);
kill rr,RL;
int i;
intvec k;
ideal FF = 1,1;
dbprint(ppl,"// computing b-functions of irreducible factors...");
for (i=1; i<=size(F); i++)
{
dbprint(ppl,"// considering " + string(F[i]) + "...");
L = bfctBound(I,F[i]);
if (size(L) == 3) // bfct is constant
{
dbprint(ppl,"// ...got " + string(L[3]));
if (L[3] == "1")
{
return(0); // TODO type // no rational solutions
}
else // should never get here
{
ERROR("Oops, something went wrong. Please inform the author.");
}
}
else
{
dbprint(ppl,"// ...got roots " + string(L[1]));
dbprint(ppl,"// with multiplicities " + string(L[2]));
k[i] = -maxIntRoot(L)-1;
if (k[i] < 0)
{
FF[2] = FF[2]*F[i]^(-k[i]);
}
else
{
FF[1] = FF[1]*F[i]^(k[i]);
}
}
}
vector v = FF[1]*gen(1) + FF[2]*gen(2);
kill FF;
dbprint(ppl,"// ...done");
ideal twI = twistedIdeal(I,f,k,F);
intvec w = -1:n;
dbprint(ppl,"// computing polynomial solutions of twisted system...");
if (isHolonomic(twI))
{
ideal P = polSol(twI,w);
}
else
{
ideal P = polSolFiniteRank(twI,w);
}
module M;
vector vv;
for (i=1; i<=ncols(P); i++)
{
vv = P[i]*gen(1) + 1*gen(2);
M[i] = multRat(v,vv);
}
dbprint(ppl,"// ...done");
return (M);
}
example
{
"EXAMPLE"; echo=2;
ring r = 0,(x,y,Dx,Dy),dp;
def W = Weyl();
setring W;
poly tx,ty = x*Dx, y*Dy;
ideal I = // Appel F1 with parameters (3,-1,1,1) is a solution
tx*(tx+ty)-x*(tx+ty+3)*(tx-1),
ty*(tx+ty)-y*(tx+ty+3)*(ty+1);
module M = ratSol(I);
// We obtain a basis of the rational solutions to I represented by a
// module / matrix with two rows.
// Each column of the matrix represents a rational function, where
// the first row correspond to the enumerator and the second row to
// the denominator.
print(M);
}
proc bfctBound (ideal I, poly f, list #)
"
USAGE: bfctBound (I,f[,primdec]); I ideal, f poly, primdec optional string
ASSUME: The basering is the n-th Weyl algebra W over a field of
characteristic 0 and for all 1<=i<=n the identity
var(i+n)*var(i)=var(i)*var(i+1)+1 holds, i.e. the sequence of
variables is given by x(1),...,x(n),D(1),...,D(n), where D(i) is the
differential operator belonging to x(i).
@* Moreover, assume that I is holonomic.
RETURN: list of roots (of type ideal) and multiplicities (of type intvec) of
a multiple of the b-function for f^s*u at a generic root of f.
Here, u stands for [1] in D/I.
REMARKS: Reference: (OTT), Algorithm 3.4
NOTE: This procedure requires to compute a primary decomposition in a
commutative ring. The optional string primdec can be used to specify
the algorithm to do so. It may either be `GTZ' (Gianni, Trager,
Zacharias) or `SY' (Shimoyama, Yokoyama). By default, `GTZ' is used.
@* If printlevel=1, progress debug messages will be printed,
if printlevel>=2, all the debug messages will be printed.
SEE ALSO: bernstein, bfct, bfctAnn
EXAMPLE: example bfctBound; shows examples
"
{
dmodGeneralAssumptionCheck();
finKx(f);
if (!isHolonomic(I))
{
ERROR("Ideal is not holonomic.");
}
int ppl = printlevel - voice + 2;
string primdec = "GTZ";
if (size(#)>1)
{
if (typeof(#[1])=="string")
{
if ( (#[1]=="SY") || (#[1]=="sy") || (#[1]=="Sy") )
{
primdec = "SY";
}
else
{
if ( (#[1]<>"GTZ") && (#[1]<>"gtz") && (#[1]<>"Gtz") )
{
print("// Warning: optional string may either be `GTZ' or `SY',");
print("// proceeding with `GTZ'.");
primdec = "GTZ";
}
}
}
}
def save = basering;
int n = nvars(save) div 2;
// step 1
ideal mm = maxideal(1);
def Wt = extendWeyl(safeVarName("t"));
setring Wt;
poly f = imap(save,f);
ideal mm = imap(save,mm);
int i;
for (i=1; i<=n; i++)
{
mm[i+n] = var(i+n+2) + bracket(var(i+n+2),f)*var(n+2);
}
map m = save,mm;
ideal I = m(I);
I = I, var(1)-f;
// step 2
intvec w = 1,(0:n);
dbprint(ppl ,"// Computing initial ideal...");
I = initialIdealW(I,-w,w);
dbprint(ppl ,"// ...done.");
dbprint(ppl-1,"// " + string(I));
// step 3: rewrite I using Euler operator t*Dt
list RL = ringlist(Wt);
RL = RL[1..4];
list L = RL[2] + list(safeVarName("s")); // s=t*Dt
RL[2] = L;
L = list();
L[1] = list("dp",intvec(1:(2*n+2)));
L[2] = list("dp",intvec(1));
L[3] = list("C",intvec(0));
RL[3] = L;
def @Wts = ring(RL);
kill L,RL;
setring @Wts;
matrix relD[2*n+3][2*n+3];
relD[1,2*n+3] = var(1);
relD[n+2,2*n+3] = -var(n+2);
for (i=1; i<=n+1; i++)
{
relD[i,n+i+1] = 1;
}
def Wts = nc_algebra(1,relD);
setring Wts;
ideal I = imap(Wt,I);
kill Wt,@Wts;
ideal S = var(1)*var(n+2)-var(2*n+3);
attrib(S,"isSB",1);
dbprint(ppl ,"// Computing Euler representation...");
// I = NF(I,S);
int d;
intvec ww = 0:(2*2+2); ww[1] = -1; ww[n+2] = 1;
for (i=1; i<=size(I); i++)
{
d = deg(I[i],ww);
if (d>0)
{
I[i] = var(1)^d*I[i];
}
if (d<0)
{
d = -d;
I[i] = var(n+2)^d*I[i];
}
}
I = NF(I,S); // now there are no t,Dt in I, only s
dbprint(ppl ,"// ...done.");
I = subst(I,var(2*n+3),-var(2*n+3)-1);
ring Ks = 0,s,dp;
def Ws = save + Ks;
setring Ws;
ideal I = imap(Wts,I);
kill Wts;
poly DD = 1;
for (i=1; i<=n; i++)
{
DD = DD * var(n+i);
}
dbprint(ppl ,"// Eliminating differential operators...");
ideal J = eliminate(I,DD); // J subset K[x,s]
dbprint(ppl ,"// ...done.");
dbprint(ppl-1,"// " + string(J));
list RL = ringlist(Ws);
RL = RL[1..4];
list L = RL[2];
L = list(L[1..n]) + list(L[2*n+1]);
RL[2] = L;
L = list();
L[1] = list("dp",intvec(1:(n+1)));
L[2] = list("C",intvec(0));
RL[3] = L;
def Kxs = ring(RL);
setring Kxs;
ideal J = imap(Ws,J);
dbprint(ppl ,"// Computing primary decomposition with engine "
+ primdec + "...");
if (primdec == "GTZ")
{
list P = primdecGTZ(J);
}
else
{
list P = primdecSY(J);
}
dbprint(ppl ,"// ...done.");
dbprint(ppl-1,"// " + string(P));
ideal GP,Qix,rad,B;
poly f = imap(save,f);
vector v;
for (i=1; i<=size(P); i++)
{
dbprint(ppl ,"// Considering primary component " + string(i)
+ " of " + string(size(P)) + "...");
dbprint(ppl ,"// Intersecting with K[x] and computing radical...");
GP = std(P[i][1]);
Qix = eliminate(GP,var(n+1)); // subset K[x]
rad = radical(Qix);
rad = std(rad);
dbprint(ppl ,"// ...done.");
dbprint(ppl-1,"// " + string(rad));
if (rad[1]==0 || NF(f,rad)==0)
{
dbprint(ppl ,"// Intersecting with K[s]...");
v = pIntersect(var(n+1),GP);
B[size(B)+1] = vec2poly(v,n+1);
dbprint(ppl ,"// ...done.");
dbprint(ppl-1,"// " + string(B[size(B)]));
}
dbprint(ppl ,"// ...done.");
}
f = lcm(B); // =lcm(B[1],...,B[size(B)])
list bb = bFactor(f);
setring save;
list bb = imap(Kxs,bb);
return(bb);
}
example
{
"EXAMPLE"; echo=2;
ring r = 0,(x,y,Dx,Dy),dp;
def W = Weyl();
setring W;
poly tx,ty = x*Dx, y*Dy;
ideal I = // Appel F1 with parameters (2,-3,-2,5)
tx*(tx+ty+4)-x*(tx+ty+2)*(tx-3),
ty*(tx+ty+4)-y*(tx+ty+2)*(ty-2),
(x-y)*Dx*Dy+2*Dx-3*Dy;
kill tx,ty;
poly f = x-1;
bfctBound(I,f);
}
//TODO check f/g or g/f, check Weyl closure of result
proc annRatSyz (poly f, poly g, list #)
"
USAGE: annRatSyz(f,g[,db,eng]); f, g polynomials, db,eng optional integers
ASSUME: The basering is commutative and over a field of characteristic 0.
RETURN: ring (a Weyl algebra) containing an ideal `LD', which is (part of)
the annihilator of the rational function g/f in the corresponding
Weyl algebra
REMARKS: This procedure uses the computation of certain syzygies.
One can obtain the full annihilator by computing the Weyl closure of
the ideal LD.
NOTE: Activate the output ring with the @code{setring} command.
In the output ring, the ideal `LD' (in Groebner basis) is (part of)
the annihilator of g/f.
@* If db>0 is given, operators of order up to db are considered,
otherwise, and by default, a minimal holonomic solution is computed.
@* If eng<>0, @code{std} is used for Groebner basis computations,
otherwise, and by default, @code{slimgb} is used.
@* If printlevel =1, progress debug messages will be printed,
if printlevel>=2, all the debug messages will be printed.
SEE ALSO: annRat, annPoly
EXAMPLE: example annRatSyz; shows examples
"
{
// check assumptions
if (!isCommutative())
{
ERROR("Basering must be commutative.");
}
if ( (size(ideal(basering)) >0) || (char(basering) >0) )
{
ERROR("Basering is inappropriate: characteristic>0 or qring present.");
}
if (g == 0)
{
ERROR("Second polynomial must not be zero.");
}
int db,eng;
if (size(#)>0)
{
if (typeof(#[1]) == "int")
{
db = int(#[1]);
}
if (size(#)>1)
{
if (typeof(#[2]) == "int")
{
eng = int(#[1]);
}
}
}
int ppl = printlevel - voice + 2;
vector I = f*gen(1)+g*gen(2);
checkRatInput(I);
int i,j;
def R = basering;
int n = nvars(R);
list RL = ringlist(R);
RL = RL[1..4];
list Ltmp = RL[2];
for (i=1; i<=n; i++)
{
Ltmp[i+n] = safeVarName("D" + Ltmp[i]);
}
RL[2] = Ltmp;
Ltmp = list();
Ltmp[1] = list("dp",intvec(1:2*n));
Ltmp[2] = list("C",intvec(0));
RL[3] = Ltmp;
kill Ltmp;
def @D = ring(RL);
setring @D;
def D = Weyl();
setring D;
ideal DD = 1;
ideal Dcd,Dnd,LD,tmp;
Dnd = 1;
module DS;
poly DJ;
kill @D;
setring R;
module Rnd,Rcd;
Rnd[1] = I;
vector RJ;
ideal L = I[1];
module RS;
poly p,pnew;
pnew = I[2];
int k,c;
while(1)
{
k++;
setring R;
dbprint(ppl,"// Testing order: " + string(k));
Rcd = Rnd;
Rnd = 0;
setring D;
Dcd = Dnd;
Dnd = 0;
dbprint(ppl-1,"// Current members of the annihilator: " + string(LD));
setring R;
c = size(Rcd);
p = pnew;
for (i=1; i<=c; i++)
{
for (j=1; j<=n; j++)
{
RJ = diffRat(Rcd[i],j);
setring D;
DJ = Dcd[i]*var(n+j);
tmp = Dnd,DJ;
if (size(Dnd) <> size(simplify(tmp,4))) // new element
{
Dnd[size(Dnd)+1] = DJ;
setring R;
Rnd[size(Rnd)+1] = RJ;
pnew = lcm(pnew,RJ[2]);
}
else // already have DJ in Dnd
{
setring R;
}
}
}
p = pnew/p;
for (i=1; i<=size(L); i++)
{
L[i] = p*L[i];
}
for (i=1; i<=size(Rnd); i++)
{
L[size(L)+1] = pnew/Rnd[i][2]*Rnd[i][1];
}
RS = syz(L);
setring D;
DD = DD,Dnd;
setring R;
if (RS <> 0)
{
setring D;
DS = imap(R,RS);
LD = ideal(transpose(DS)*transpose(DD));
}
else
{
setring D;
}
LD = engine(LD,eng);
// test if we're done
if (db<=0)
{
if (isHolonomic(LD)) { break; }
}
else
{
if (k==db) { break; }
}
}
export(LD);
setring R;
return(D);
}
example
{
"EXAMPLE:"; echo = 2;
// printlevel = 3;
ring r = 0,(x,y),dp;
poly f = 2*x*y; poly g = x^2 - y^3;
def A = annRatSyz(f,g); // compute a holonomic solution
setring A; A;
LD;
setring r;
def B = annRatSyz(f,g,5); // compute a solution up to degree 5
setring B;
LD; // this is the full annihilator as we will check below
setring r;
def C = annRat(f,g); setring C;
LD; // the full annihilator
ideal BLD = imap(B,LD);
NF(LD,std(BLD));
}
|