This file is indexed.

/usr/share/singular/LIB/decodegb.lib is in singular-data 1:4.1.0-p3+ds-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
//////////////////////////////////////////////////////////////////////////////
version="version decodegb.lib 4.0.0.0 Jun_2013 "; // $Id: 74e5fe7fa79a767d479358a47091212c172b5af0 $
category="Coding theory";
info="
LIBRARY: decodegb.lib         Decoding and min distance of linear codes with GB
AUTHOR:  Stanislav Bulygin,   bulygin@mathematik.uni-kl.de

OVERVIEW:
 In this library we generate several systems used for decoding cyclic codes and
 finding their minimum distance. Namely, we work with the Cooper's philosophy
 and generalized Newton identities. The origindeal method of quadratic equations
 is worked out here as well. We also (for comparison) enable to work with the
 system of Fitzgerald-Lax. We provide some auxiliary functions for further
 manipulations and decoding. For an overview of the methods mentioned above @ref{Decoding codes with Groebner bases}.
 For the vanishing ideal computation the algorithm of Farr and Gao is
 implemented.

PROCEDURES:
 sysCRHT(..);        generates the CRHT-ideal as in Cooper's philosophy
 sysCRHTMindist(..); CRHT-ideal to find the minimum distance in the binary case
 sysNewton(..);      generates the ideal with the generalized Newton identities
 sysBin(..);         generates Bin system using Waring function
 encode(x,g);        encodes given message x with the given generator matrix g
 syndrome(h,c);      computes a syndrome w.r.t. the given check matrix
 sysQE(..);          generates the system of quadratic equations for decoding
 errorInsert(..);    inserts errors in a word
 errorRand(y,num,e); inserts random errors in a word
 randomCheck(m,n,e); generates a random check matrix
 genMDSMat(n,a);     generates an MDS (actually an RS) matrix
 mindist(check);     computes the minimum distance of a code
 decode(rec);        decoding of a word using the system of quadratic equations
 decodeRandom(..); a procedure for manipulation with random codes
 decodeCode(..);   a procedure for manipulation with the given code
 vanishId(points);   computes the vanishing ideal for the given set of points
 sysFL(..);          generates the Fitzgerald-Lax system
 decodeRandomFL(..); manipulation with random codes via Fitzgerald-Lax


KEYWORDS:  Cyclic code; Linear code; Decoding;
           Minimum distance; Groebner bases, decodeGB
";

LIB "linalg.lib";
LIB "brnoeth.lib";

///////////////////////////////////////////////////////////////////////////////
// creates a list result, where result[i]=i, 1<=i<=n
static proc lis (int n)
{
 list result;
 if (n<=0) {print("ERRORlis");}
 for (int i=1; i<=n; i++)
 {
  result=result+list(i);
 }
 return(result);
}

///////////////////////////////////////////////////////////////////////////////
// creates a list of all combinations without repititions of m objects out of n
static proc combinations (int m, int n)
{
 list result;
 if (m>n) {print("ERRORcombinations");}
 if (m==n) {result[size(result)+1]=lis(m);return(result);}
 if (m==0) {result[size(result)+1]=list();return(result);}
 list temp=combinations(m-1,n-1);
 for (int i=1; i<=size(temp); i++)
 {
  temp[i]=temp[i]+list(n);
 }
 result=combinations(m,n-1)+temp;
 return(result);
}


///////////////////////////////////////////////////////////////////////////////
// the polynomial for Sala's restrictions
static proc p_poly(int n, int a, int b)
{
  poly f;
  for (int i=0; i<=n-1; i++)
  {
    f=f+Z(a)^i*Z(b)^(n-1-i);
  }
  return(f);
}

///////////////////////////////////////////////////////////////////////////////

proc sysCRHT (int n, list defset, int e, int q, int m, list #)
"USAGE:   sysCRHT(n,defset,e,q,m,[k]); n,e,q,m,k are int, defset list of int's
@format
         - n length of the cyclic code,
         - defset is a list representing the defining set,
         - e the error-correcting capacity,
         - q field size
         - m degree extension of the splitting field,
         - if k>0 additional equations representing the fact that every two
         error positions are either different or at least one of them is zero
@end format
RETURN: the ring to work with the CRHT-ideal (with Sala's additions),
        containig an ideal with name 'crht'
THEORY:  Based on 'defset' of the given cyclic code, the procedure constructs
         the corresponding Cooper-Reed-Heleseth-Truong ideal 'crht'. With its
         help one can solve the decoding problem. For basics of the method @ref{Cooper philosophy}.
SEE ALSO: sysNewton, sysBin
EXAMPLE: example sysCRHT; shows an example
"
{
  int r=size(defset);
  ring @crht=(q,a),(Y(e..1),Z(1..e),X(r..1)),lp;
  ideal crht;
  int i,j;
  poly sum;
  int k;
  if ( size(#) > 0)
  {
    k = #[1];
  }

  //---------------------- add check equations --------------------------
  for (i=1; i<=r; i++)
  {
    sum=0;
    for (j=1; j<=e; j++)
    {
      sum=sum+Y(j)*Z(j)^defset[i];
    }
    crht[i]=sum-X(i);
  }

  //--------------------- field equations on syndromes ------------------
  for (i=1; i<=r; i++)
  {
    crht=crht,X(i)^(q^m)-X(i);
  }

  //------ restrictions on error-locations: n-th roots of unity ----------
  for (i=1; i<=e; i++)
  {
    crht=crht,Z(i)^(n+1)-Z(i);
  }

  for (i=1; i<=e; i++)
  {
    crht=crht,Y(i)^(q-1)-1;
  }

  //--------- add Sala's additional conditions if necessary --------------
  if ( k > 0 )

  {
    for (i=1; i<=e; i++)
    {
      for (j=i+1; j<=e; j++)
      {
        crht=crht,Z(i)*Z(j)*p_poly(n,i,j);
      }
    }
  }
  export crht;
  return(@crht);
}
example
{ "EXAMPLE:"; echo=2;
  // binary cyclic [15,7,5] code with defining set (1,3)
  intvec v = option(get);

  list defset=1,3;           // defining set
  int n=15;                  // length
  int e=2;                   // error-correcting capacity
  int q=2;                   // basefield size
  int m=4;                   // degree extension of the splitting field
  int sala=1;                // indicator to add additional equations

  def A=sysCRHT(n,defset,e,q,m);
  setring A;
  A;                         // shows the ring we are working in
  print(crht);               // the CRHT-ideal
  option(redSB);
  ideal red_crht=std(crht);  // reduced Groebner basis
  print(red_crht);

  //============================
  A=sysCRHT(n,defset,e,q,m,sala);
  setring A;
  print(crht);                // CRHT-ideal with additional equations from Sala
  option(redSB);
  ideal red_crht=std(crht);   // reduced Groebner basis
  print(red_crht);
  red_crht[5];                // general error-locator polynomial for this code
  option(set,v);
}

///////////////////////////////////////////////////////////////////////////////


proc sysCRHTMindist (int n, list defset, int w)
"USAGE:  sysCRHTMindist(n,defset,w);  n,w are int, defset is list of int's
@format
        - n length of the cyclic code,
        - defset is a list representing the defining set,
        - w is a candidate for the minimum distance
@end format
RETURN:  the ring to work with the Sala's ideal for the minimum distance
         containing the ideal with name 'crht_md'
THEORY:  Based on 'defset' of the given cyclic code, the procedure constructs
         the corresponding Cooper-Reed-Heleseth-Truong ideal 'crht_md'. With
         its help one can find minimum distance of the code in the binary
         case. For basics of the method @ref{Cooper philosophy}.
EXAMPLE: example sysCRHTMindist; shows an example
"
{
  int r=size(defset);
  ring @crht_md=2,Z(1..w),lp;
  ideal crht_md;
  int i,j;
  poly sum;

  //------------ add check equations --------------
  for (i=1; i<=r; i++)
  {
    sum=0;
    for (j=1; j<=w; j++)
    {
      sum=sum+Z(j)^defset[i];
    }
    crht_md[i]=sum;
  }


  //----------- locations are n-th roots of unity ------------
  for (i=1; i<=w; i++)
  {
    crht_md=crht_md,Z(i)^n-1;
  }

  //------------ adding conditions on locations being different ------------
  for (i=1; i<=w; i++)
  {
    for (j=i+1; j<=w; j++)
    {
      crht_md=crht_md,Z(i)*Z(j)*p_poly(n,i,j);
    }
  }

  export crht_md;
  return(@crht_md);
}
example
{
  "EXAMPLE:"; echo=2;
  intvec v = option(get);
  // binary cyclic [15,7,5] code with defining set (1,3)

  list defset=1,3;             // defining set
  int n=15;                    // length
  int d=5;                     // candidate for the minimum distance

  def A=sysCRHTMindist(n,defset,d);
  setring A;
  A;                           // shows the ring we are working in
  print(crht_md);              // the Sala's ideal for mindist
  option(redSB);
  ideal red_crht_md=std(crht_md);
  print(red_crht_md);          // reduced Groebner basis

  option(set,v);
}

///////////////////////////////////////////////////////////////////////////////
// slightly modified mod function
static proc mod_ (int n, int m)
{
  n=n mod m;
  if (n<=0){ return(n+m);}
  return(n);
}

///////////////////////////////////////////////////////////////////////////////

proc sysNewton (int n, list defset, int t, int q, int m, list #)
"USAGE:   sysNewton (n,defset,t,q,m,[tr]); n,t,q,m,tr int, defset is list int's
@format
         - n is length,
         - defset is the defining set,
         - t is the number of errors,
         - q is basefield size,
         - m is degree extension of the splitting field,
         - if tr>0 it indicates that Newton identities in triangular
           form should be constructed
@end format
RETURN:  the ring to work with the generalized Newton identities (in
         triangular form if applicable) containing the ideal with name 'newton'
THEORY:  Based on 'defset' of the given cyclic code, the procedure constructs
         the corresponding ideal 'newton' with the generalized Newton
         identities. With its help one can solve the decoding problem. For
         basics of the method @ref{Generalized Newton identities}.
SEE ALSO: sysCRHT, sysBin
EXAMPLE:  example sysNewton; shows an example
"
{
 string s="ring @newton=("+string(q)+",a),(";
 int i,j;
 int flag;
 int tr;

 if (size(#)>0)
 {
  tr=#[1];
 }

 for (i=n; i>=1; i--)
 {
  for (j=1; j<=size(defset); j++)
  {
    flag=1;
    if (i==defset[j])
    {
      flag=0;
      break;
    }
  }
  if (flag)
  {
    s=s+"S("+string(i)+"),";
  }
 }
 s=s+"sigma(1.."+string(t)+"),";
 for (i=size(defset); i>=2; i--)
 {
  s=s+"S("+string(defset[i])+"),";
 }
 s=s+"S("+string(defset[1])+")),lp;";

 execute(s);

 ideal newton;
 poly sum;


 //------------ generate generalized Newton identities ----------
 if (tr)
 {
  for (i=1; i<=t; i++)
  {
    sum=0;
    for (j=1; j<=i-1; j++)
    {
      sum=sum+sigma(j)*S(i-j);
    }
    newton=newton,S(i)+sum+number(i)*sigma(i);
  }
 } else
 {
  for (i=1; i<=t; i++)
  {
    sum=0;
    for (j=1; j<=t; j++)
    {
      sum=sum+sigma(j)*S(mod_(i-j,n));
    }
    newton=newton,S(i)+sum;
  }
 }
 for (i=1; i<=n-t; i++)
 {
  sum=0;
  for (j=1; j<=t; j++)
  {
    sum=sum+sigma(j)*S(t+i-j);
  }
  newton=newton,S(t+i)+sum;
 }

 //----------- add field equations on sigma's --------------
 for (i=1; i<=t; i++)
 {
  newton=newton,sigma(i)^(q^m)-sigma(i);
 }

 //----------- add conjugacy relations ------------------
 for (i=1; i<=n; i++)
 {
  newton=newton,S(i)^q-S(mod_(q*i,n));
 }
 newton=simplify(newton,2);
 export newton;
 return(@newton);
}
example
{
     "EXAMPLE:";  echo = 2;
     // Newton identities for a binary 3-error-correcting cyclic code of
     //length 31 with defining set (1,5,7)

     int n=31;          // length
     list defset=1,5,7; //defining set
     int t=3;           // number of errors
     int q=2;           // basefield size
     int m=5;           // degree extension of the splitting field
     int tr=1;          // indicator of triangular form of Newton identities


     def A=sysNewton(n,defset,t,q,m);
     setring A;
     A;                 // shows the ring we are working in
     print(newton);     // generalized Newton identities

     //===============================
     A=sysNewton(n,defset,t,q,m,tr);
     setring A;
     print(newton);     // generalized Newton identities in triangular form
}

///////////////////////////////////////////////////////////////////////////////
// forms a list of special combinations needed for computation of Waring's
//function
static proc combinations_sum (int m, int n)
{
 list result;
 list comb=combinations(m-1,n+m-1);
 int i,j,flag,count;
 list interm=comb;
 for (i=1; i<=size(comb); i++)
 {
  interm[i][1]=comb[i][1]-1;
  for (j=2; j<=m-1; j++)
  {
   interm[i][j]=comb[i][j]-comb[i][j-1]-1;
  }
  interm[i][m]=n+m-comb[i][m-1]-1;
  flag=1;
  count=2;
  while ((flag)&&(count<=m))
  {
   if (interm[i][count] mod count != 0) {flag=0;}
   count++;
  }
  if (flag)
  {
   for (j=2; j<=m; j++)
   {
    interm[i][j]=interm[i][j] div j;
   }
   result[size(result)+1]=interm[i];
  }
 }
 return(result);
}

///////////////////////////////////////////////////////////////////////////////
//if n=q^e*m, m and n are coprime, then return e
static proc exp_count (int n, int q)
{
 int flag=1;
 int result=0;
 while(flag)
 {
  if (n mod q != 0) {flag=0;}
   else {n=n div q; result++;}
 }
 return(result);
}

///////////////////////////////////////////////////////////////////////////////


proc sysBin (int v, list Q, int n, list #)
"USAGE:    sysBin (v,Q,n,[odd]);  v,n,odd are int, Q is list of int's
@format
          - v a number if errors,
          - Q is a defining set of the code,
          - n the length,
          - odd is an additional parameter: if
           set to 1, then the defining set is enlarged by odd elements,
           which are 2^(some power)*(some elment in the def.set) mod n
@end format
RETURN:    the ring with the resulting system called 'bin'
THEORY:  Based on Q of the given cyclic code, the procedure constructs
         the corresponding ideal 'bin' with the use of the Waring function.
         With its help one can solve the decoding problem.
         For basics of the method @ref{Generalized Newton identities}.
SEE ALSO: sysNewton, sysCRHT
EXAMPLE:   example sysBin; shows an example
"
{
 int odd;
 if (size(#)>0)
 {
  odd=#[1];
 }

 //ring r=2,(sigma(1..v),S(1..n)),(lp(v),dp(n));
 ring r=2,(S(1..n),sigma(1..v)),lp;
 list cyclot;
 ideal result;
 int i,j,k,s;
 list comb;
 poly sum_, mon;
 int count1, count2, upper, coef_, flag, gener;
 list Q_update;
 if (odd==1)
 {
  for (i=1; i<=n; i++)
  {
   cyclot[i]=0;
  }
  for (i=1; i<=size(Q); i++)
  {
   flag=1;
   gener=Q[i];
   while(flag)
   {
    cyclot[gener]=1;
    gener=2*gener mod n;
    if (gener == Q[i]) {flag=0;}
   }
  }
  for (i=1; i<=n; i++)
  {
   if ((cyclot[i] == 1)&&(i mod 2 == 1)) {Q_update[size(Q_update)+1]=i;}
  }
 }
 else
 {
  Q_update=Q;
 }

 //---- form polynomials for the Bin system via Waring's function ---------
 for (i=1; i<=size(Q_update); i++)
 {
  comb=combinations_sum(v,Q_update[i]);
  sum_=0;
  for (k=1; k<=size(comb); k++)
  {
   upper=0;
   for (j=1; j<=v; j++)
   {
    upper=upper+comb[k][j];
   }
   count1=0;
   for (j=2; j<=upper-1; j++)
   {
    count1=count1+exp_count(j,2);
   }
   count1=count1+exp_count(Q_update[i],2);
   count2=0;
   for (j=1; j<=v; j++)
   {
    for (s=2; s<=comb[k][j]; s++)
    {
     count2=count2+exp_count(s,2);
    }
   }
   if (count1<count2) {print("ERRORsysBin");}
   if (count1>count2) {coef_=0;}
   if (count1 == count2) {coef_=1;}
   mon=1;
   for (j=1; j<=v; j++)
   {
    mon=mon*sigma(j)^(comb[k][j]);
   }
   sum_=sum_+coef_*mon;
  }
  result=result,S(Q_update[i])-sum_;
 }
 ideal bin=simplify(result,2);
 export bin;
 return(r);
}
example
{
     "EXAMPLE:";  echo = 2;
     // [31,16,7] quadratic residue code
     list l=1,5,7,9,19,25;
     // we do not need even synromes here
     def A=sysBin(3,l,31);
     setring A;
     print(bin);
}

///////////////////////////////////////////////////////////////////////////////

proc encode (matrix x, matrix g)
"USAGE:  encode (x, g);  x a row vector (message), and g a generator matrix
RETURN:  corresponding codeword
EXAMPLE: example encode; shows an example
"
{
 if (nrows(x)>1) {print("ERRORencode1!");}
 if (ncols(x)!=nrows(g)) {print("ERRORencode2!");}
 return(x*g);
}
example
{
     "EXAMPLE:";  echo = 2;
     ring r=2,x,dp;
     matrix x[1][4]=1,0,1,0;
     matrix g[4][7]=1,0,0,0,0,1,1,
                    0,1,0,0,1,0,1,
                    0,0,1,0,1,1,1,
                    0,0,0,1,1,1,0;
     //encode x with the generator matrix g
     print(encode(x,g));
}

///////////////////////////////////////////////////////////////////////////////

proc syndrome (matrix h, matrix c)
"USAGE:  syndrome (h, c);  h a check matrix, c a row vector (codeword)
RETURN:  corresponding syndrome
EXAMPLE: example syndrome; shows an example
"
{
 if (nrows(c)>1) {print("ERRORsyndrome1!");}
 if (ncols(c)!=ncols(h)) {print("ERRORsyndrome2!");}
 return(h*transpose(c));
}
example
{
     "EXAMPLE:";  echo = 2;
     ring r=2,x,dp;
     matrix x[1][4]=1,0,1,0;
     matrix g[4][7]=1,0,0,0,0,1,1,
                    0,1,0,0,1,0,1,
                    0,0,1,0,1,1,1,
                    0,0,0,1,1,1,0;
     //encode x with the generator matrix g
     matrix c=encode(x,g);
     // disturb
     c[1,3]=0;
     //compute syndrome
     //corresponding check matrix
     matrix check[3][7]=1,0,0,1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,1,1;
     print(syndrome(check,c));
     c[1,3]=1;
     //now c is a codeword
     print(syndrome(check,c));
}

///////////////////////////////////////////////////////////////////////////////
// (coordinatewise) star product of two vectors
static proc star(matrix m, int i, int j)
{
 matrix result[ncols(m)][1];
 for (int k=1; k<=ncols(m); k++)
 {
  result[k,1]=m[i,k]*m[j,k];
 }
 return(result);
}

///////////////////////////////////////////////////////////////////////////////

proc sysQE(matrix check, matrix y, int t, list #)
"USAGE:   sysQE(check,y,t,[fieldeq,formal]);check,y matrix;t,fieldeq,formal int
@format
        - check is a parity check matrix of the code
        - y is a received word,
        - t the number of errors to be corrected,
        - if fieldeq=1, then field equations are added,
        - if formal=0, field equations on (known) syndrome variables
          are not added, in order to add them (note that the exponent should
          be equal to the number of elements in the INITIAL alphabet) one
          needs to set formal>0 for the exponent
@end format
RETURN:   the ring to work with together with the resulting system called 'qe'
THEORY:  Based on 'check' of the given linear code, the procedure constructs
         the corresponding ideal that gives an opportunity to compute
         unknown syndrome of the received word y. After computing the unknown
         syndromes one is able to solve the decoding problem.
         For basics of the method @ref{Decoding method based on quadratic equations}.
SEE ALSO: sysFL
EXAMPLE:  example sysQE; shows an example
"
{
 int fieldeq;
 int formal;
 if (size(#)>0)
 {
  fieldeq=#[1];
 }
 if (size(#)>1)
 {
  formal=#[2];
 }

 def br=basering;
 list rl=ringlist(br);

 int red=nrows(check);
 int n=ncols(check);
 int q=rl[1][1];

 if (formal==0)
 {
  ring work=(q,a),(V(1..t),U(1..n)),dp;
 } else
 {
  ring work=(q,a),(V(1..t),U(1..n),s(1..red)),(dp(t),lp(n),dp(red));
 }

 matrix check=imap(br,check);
 matrix y=imap(br,y);

 matrix h_full=genMDSMat(n,a);
 matrix h=submat(h_full,1..red,1..n);
 if (nrows(y)!=1) {print("ERROR1Pell");}
 if (ncols(y)!=n) {print("ERROR2Pell");}

 ideal result;

 list c;
 list a;
 list tmp,tmp2;
 int i,j,l,k;
 number sum,prod,sig;
        poly sum1,sum2,sum3;
 for (i=1; i<=n; i++)
 {
  c[i]=tmp;
 }

 matrix transf=inverse(transpose(h_full));

 //------ expression matrix of check vectors w.r.t. the MDS basis -----------
 for (i=1; i<=red ; i++)
 {
  a[i]=transpose(submat(check,i..i,1..n));
  a[i]=transf*a[i];
 }

 //----------- compute the structure constants ------------------------
 matrix te[n][1];
 for (i=1; i<=n; i++)
 {
  for (j=1; j<=t+1; j++)
  {
   if ((j<i)&&(i<=t+1)) {c[i][j]=c[j][i];}
   else
   {
    if (i+j<=n+1)
    {
     c[i][j]=te;
     c[i][j][i+j-1,1]=1;
    }
    else
    {
     c[i][j]=star(h_full,i,j);
     c[i][j]=transf*c[i][j];
    }
   }
  }
 }


 if (formal==0)
 {
  matrix s[red][1]=syndrome(check,y);
  for (j=1; j<=red; j++)
  {
   sum1=0;
   for (l=1; l<=n; l++)
   {
    sum1=sum1+a[j][l,1]*U(l);
   }
   result=result,sum1-s[j,1];
  }
 } else
 {
  for (j=1; j<=red; j++)
  {
   sum1=0;
   for (l=1; l<=n; l++)
   {
    sum1=sum1+a[j][l,1]*U(l);
   }
   result=result,sum1-s(j);
  }
  for (j=1; j<=red; j++)
  {
     result=result,s(j)^(formal)-s(j);
  }
 }
 if (fieldeq)
 {
  for (i=1; i<=n; i++)
  {
   result=result,U(i)^q-U(i);
  }
  for (j=1; j<=t; j++)
  {
     result=result,V(j)^q-V(j);
  }
 }

 //----- form the quadratic equations according to the theory -----------
 for (i=1; i<=n; i++)
 {
  sum1=0;
  for (j=1; j<=t; j++)
  {
   sum2=0;
   for (l=1; l<=n; l++)
   {
    sum2=sum2+c[i][j][l,1]*U(l);
   }
   sum1=sum1+sum2*V(j);
  }
  sum3=0;
  for (l=1; l<=n; l++)
  {
   sum3=sum3+c[i][t+1][l,1]*U(l);
  }
  result=result,sum1-sum3;
 }

 result=simplify(result,2);

 ideal qe=result;
 export qe;
 return(work);
}
example
{
     "EXAMPLE:";  echo = 2;
     intvec v = option(get);

     //correct 2 errors in [7,3] 8-ary code RS code
     int t=2; int q=8; int n=7; int redun=4;
     ring r=(q,a),x,dp;
     matrix h_full=genMDSMat(n,a);
     matrix h=submat(h_full,1..redun,1..n);
     matrix g=dual_code(h);
     matrix x[1][3]=0,0,1,0;
     matrix y[1][7]=encode(x,g);

     //disturb with 2 errors
     matrix rec[1][7]=errorInsert(y,list(2,4),list(1,a));

     //generate the system
     def A=sysQE(h,rec,t);
     setring A;
     print(qe);

     //let us decode
     option(redSB);
     ideal sys_qe=std(qe);
     print(sys_qe);

     option(set,v);
}

///////////////////////////////////////////////////////////////////////////////

proc errorInsert(matrix y, list pos, list val)
"USAGE:  errorInsert(y,pos,val); y is matrix, pos,val are list of int's
@format
        - y is a (code) word,
        - pos = positions where errors occurred,
        - val = their corresponding values
@end format
RETURN:  corresponding received word
EXAMPLE: example errorInsert; shows an example
"
{
 matrix result[1][ncols(y)]=y;
 if (size(pos)!=size(val)) {print("ERRORerror");}
 for (int i=1; i<=size(pos); i++)
 {
  result[1,pos[i]]=y[1,pos[i]]+val[i];
 }
 return(result);
}
example
{
     "EXAMPLE:";  echo = 2;
     //correct 2 errors in [7,3] 8-ary code RS code
     int t=2; int q=8; int n=7; int redun=4;
     ring r=(q,a),x,dp;
     matrix h_full=genMDSMat(n,a);
     matrix h=submat(h_full,1..redun,1..n);
     matrix g=dual_code(h);
     matrix x[1][3]=0,0,1,0;
     matrix y[1][7]=encode(x,g);
     print(y);

     //disturb with 2 errors
     matrix rec[1][7]=errorInsert(y,list(2,4),list(1,a));
     print(rec);
     print(rec-y);
}

///////////////////////////////////////////////////////////////////////////////

proc errorRand(matrix y, int num, int e)
"USAGE:    errorRand(y, num, e); y is matrix, num,e are int
@format
          - y is a (code) word,
          - num is the number of errors,
          - e is an extension degree (if one wants values to be from GF(p^e))
@end format
RETURN:    corresponding received word
EXAMPLE:   example errorRand; shows an example
"
{
 matrix result[1][ncols(y)]=y;
 int i,j, flag, temp;
 list pos, val;
 matrix tempnum;

 for (i=1; i<=num; i++)
 {
  while(1)
  {
   temp=random(1,ncols(y));
   flag=1;
   for (j=1; j<=size(pos); j++)
   {
    if (temp==pos[j]) {flag=0;}
   }
   if (flag) {pos[i]=temp;break;}
  }
 }

 for (i=1; i<=num; i++)
 {
  flag=1;
  while(flag)
  {
   tempnum=randomvector(1,e);
   if (tempnum!=0) {flag=0;}
  }
  val[i]=tempnum;
 }

 for (i=1; i<=size(pos); i++)
 {
  result[1,pos[i]]=y[1,pos[i]]+val[i];
 }
 return(result);
}
example
{
  "EXAMPLE:";  echo = 2;
     //correct 2 errors in [7,3] 8-ary code RS code
     int t=2; int q=8; int n=7; int redun=4;
     ring r=(q,a),x,dp;
     matrix h_full=genMDSMat(n,a);
     matrix h=submat(h_full,1..redun,1..n);
     matrix g=dual_code(h);
     matrix x[1][3]=0,0,1,0;
     matrix y[1][7]=encode(x,g);

     //disturb with 2 random errors
     matrix rec[1][7]=errorRand(y,2,3);
     print(rec);
     print(rec-y);
}

///////////////////////////////////////////////////////////////////////////////

proc randomCheck(int m, int n, int e)
"USAGE:    randomCheck(m, n, e); m,n,e are int
@format
          - m x n are dimensions of the matrix,
          - e is an extension degree (if one wants values to be from GF(p^e))
@end format
RETURN:    random check matrix
EXAMPLE:   example randomCheck; shows an example
"
{
 matrix result[m][n];
 matrix rand[m][n-m];
 int i,j;
 matrix temp;
 for (i=1; i<=m; i++)
 {
  temp=randomvector(n-m,e);
  for (j=1; j<=n-m; j++)
  {
   rand[i,j]=temp[j,1];
  }
 }
 result=concat(rand,unitmat(m));
 return(result);
}
example
{
  "EXAMPLE:";  echo = 2;
     int redun=5; int n=15;
     ring r=2,x,dp;

     //generate random check matrix for a [15,5] binary code
     matrix h=randomCheck(redun,n,1);
     print(h);

     //corresponding generator matrix
     matrix g=dual_code(h);
     print(g);
}

///////////////////////////////////////////////////////////////////////////////

proc genMDSMat(int n, number a)
"USAGE:   genMDSMat(n, a); n is int, a is number
@format
        - n x n are dimensions of the MDS matrix,
        - a is a primitive element of the field.
@end format
NOTE:   An MDS matrix is constructed in the following way. We take 'a' to be a
        generator of the multiplicative group of the field. Then we construct
        the Vandermonde matrix with this 'a'.
ASSUME:   extension field should already be defined
RETURN:   a matrix with the MDS property.
SEE ALSO: Decoding method based on quadratic equations
EXAMPLE:  example genMDSMat; shows an example
"
{
 int i,j;
 matrix result[n][n];
 for (i=0; i<=n-1; i++)
 {
  for (j=0; j<=n-1; j++)
  {
   result[j+1,i+1]=(a^i)^j;
  }
 }
 return(result);
}
example
{
     "EXAMPLE:";  echo = 2;
     int q=16; int n=15;
     ring r=(q,a),x,dp;

     //generate an MDS (Vandermonde) matrix
     matrix h_full=genMDSMat(n,a);
     print(h_full);
}

///////////////////////////////////////////////////////////////////////////////


proc mindist (matrix check)
"USAGE:  mindist (check, q); check matrix, q int
@format
        - check is a check matrix,
        - q is the field size
@end format
RETURN:  minimum distance of the code
EXAMPLE: example mindist; shows an example
"
{
 intvec vopt = option(get);

 int n=ncols(check); int redun=nrows(check); int t=redun+1;

 def br=basering;
 list rl=ringlist(br);
 int q=rl[1][1];

 ring work=(q,a),(V(1..t),U(1..n)),dp;
 matrix check=imap(br,check);

 ideal temp;
 int count=1;
 int flag=1;
 int flag2;
 int i;
 matrix z[1][n];
 option(redSB);
 def A=sysQE(check,z,count);

 //proceed with solving the system w.r.t zero vector until some solutions
 //are found
 while (flag)
 {
    A=sysQE(check,z,count);
    setring A;
    ideal temp=qe;
    temp=std(temp);
    flag2=1;
    setring work;
    temp=imap(A,temp);
    for (i=1; i<=n; i++)
    {
      if
        (temp[i]!=U(n-i+1))
        {
          flag2=0;
        }
    }
    if (!flag2)
    {
      flag=0;
    }
    else
    {
      count++;
    }
 }
 int result=count;

 option(set,vopt);
 return(result);
}
example
{
     "EXAMPLE:";  echo = 2;
     //determine a minimum distance for a [7,3] binary code
     int q=8; int n=7; int redun=4; int t=redun+1;
     ring r=(q,a),x,dp;

     //generate random check matrix
     matrix h=randomCheck(redun,n,1);
     print(h);
     int l=mindist(h);
     l;
}

///////////////////////////////////////////////////////////////////////////////

proc decode(matrix check, matrix rec)
"USAGE:    decode(check, rec, t); check, rec matrix, t int
@format
          - check is the check matrix of the code,
          - rec is a received word,
          - t is an upper bound for the number of errors one wants to correct
@end format
NOTE:     The method described in @ref{Decoding method based on quadratic equations}
          is used for decoding.
ASSUME:   Errors in rec should be correctable, otherwise the output is
          unpredictable
RETURN:   a codeword that is closest to rec
EXAMPLE:  example decode; shows an example
"
{
 intvec vopt = option(get);

 def br=basering;
 int n=ncols(check);

 int count=1;
 def A=sysQE(check,rec,count);
 while(1)
 {
  A=sysQE(check,rec,count);
  setring A;
  matrix h_full=genMDSMat(n,a);
  matrix rec=imap(br,rec);
  option(redSB);
  ideal qe_red=std(qe);
  if (qe_red[1]!=1)
  {
    break;
  }
  else
  {
    count++;
  }
  setring br;
 }

 setring A;

 //obtain a codeword
 //this works only if our code is indeed can correct these errors
 matrix syn[n][1];
 for (int i=1; i<=n; i++)
 {
  syn[i,1]=-qe_red[n-i+1]+lead(qe_red[n-i+1]);
 }

 matrix real_syn=inverse(h_full)*syn;
 setring br;
 matrix real_syn=imap(A,real_syn);

 option(set,vopt);
 return(rec-transpose(real_syn));
}
example
{
     "EXAMPLE:";  echo = 2;
     //correct 1 error in [15,7] binary code
     int t=1; int q=16; int n=15; int redun=10;
     ring r=(q,a),x,dp;

     //generate random check matrix
     matrix h=randomCheck(redun,n,1);
     matrix g=dual_code(h);
     matrix x[1][n-redun]=0,0,1,0,1,0,1;
     matrix y[1][n]=encode(x,g);
     print(y);

     // find out the minimum distance of the code
     list l=mindist(h);

     //disturb with errors
     "Correct ",(l[1]-1) div 2," errors";
     matrix rec[1][n]=errorRand(y,(l[1]-1) div 2,1);
     print(rec);

     //let us decode
     matrix dec_word=decode(h,rec);
     print(dec_word);
}

///////////////////////////////////////////////////////////////////////////////


proc decodeRandom(int n, int redun, int ncodes, int ntrials, list #)
"USAGE:    decodeRandom(redun,q,ncodes,ntrials,[e]); all parameters int
@format
          - redun is a redundabcy of a (random) code,
          - q is the field size,
          - ncodes is the number of random codes to be processed,
          - ntrials is the number of received vectors per code to be corrected
          - If e is given it sets the correction capacity explicitly. It
          should be used in case one expects some lower bound,
          otherwise the procedure tries to compute the real minimum distance
          to find out the error-correction capacity
@end format
RETURN:    nothing;
EXAMPLE:   example decodeRandom; shows an example
"
{
 intvec vopt = option(get);

 int i,j;
 matrix h;
 int dist, t;
 ideal sys;
 int tmp;
 int e;
 if (size(#)>0)
 {
  e=#[1];
 }

 option(redSB);
 def br=basering;
 matrix h_full=genMDSMat(n,a);
 matrix z[1][ncols(h_full)];

 //------------------ determine error-correction capacity -------------------
 for (i=1; i<=ncodes; i++)
 {
  setring br;
  h=randomCheck(redun,n,1);
  "check matrix:";
  print(h);
  if (e>0)
  {
     t=e;
  } else {
     tmp=mindist(h);
     dist=tmp;
     printf("d= %p",dist);
     t=(dist-1) div 2;
  }

  //------------- generate the template system ----------------------
  def A=sysQE(h,z,t);
  setring A;
  matrix word,y,rec;
  ideal sys2,sys3;
  matrix h=imap(br,h);
  matrix g=dual_code(h);
  ideal sys=qe;
  print("The system is generated");

  //------ modify the template according to every received word --------------
  for (j=1; j<=ntrials; j++)
  {
   word=randomvector(n-redun,1);
   y=encode(transpose(word),g);
   print("Codeword:");
   print(y);
   rec=errorRand(y,t,1);
   print("Received word:");
   print(rec);
   sys2=add_synd(rec,h,redun,sys);
   option(redSB);
   sys3=std(sys2);
   print("The Groebenr basis of the QE system:");
   print(sys3);
  }
  kill A;
  option(set,vopt);
 }
}
example
{
     "EXAMPLE:";  echo = 2;
     int q=32; int n=25; int redun=n-11; int t=redun+1;
     ring r=(q,a),x,dp;

     // correct 2 errors in 2 random binary codes, 3 trials each
     decodeRandom(n,redun,2,3,2);
}

///////////////////////////////////////////////////////////////////////////////


proc decodeCode(matrix check, int ntrials, list #)
"USAGE:     decodeCode(check, ntrials, [e]); check matrix, ntrials,e int
@format
           - check is a parity check matrix for the code,
           - ntrials is the number of received vectors per code to be
           corrected.
           - If e is given it sets the correction capacity explicitly. It
           should be used in case one expects some lower bound,
           otherwise the procedure tries to compute the real minimum distance
           to find out the error-correction capacity
@end format
RETURN:     nothing;
EXAMPLE:    example decodeCode; shows an example
"
{
 intvec vopt = option(get);

 int n=ncols(check);
 int redun=nrows(check);
 int i,j;
 matrix h;
 int dist, t;
 ideal sys;
 int tmp;
 int e;
 if (size(#)>0)
 {
  e=#[1];
 }

 option(redSB);
 def br=basering;
 matrix h_full=genMDSMat(n,a);
 matrix z[1][ncols(h_full)];
 setring br;
 h=check;
 "check matrix:";
 print(h);

 //------------------ determine error-correction capacity -------------------
 if (e>0)
 {
    t=e;
 } else {
   tmp=mindist(h);
   dist=tmp;
   printf("d= %p",dist);
   t=(dist-1) div 2;
 }

 //------------- generate the template system ----------------------
 def A=sysQE(h,z,t);
 setring A;
 matrix word,y,rec;
 ideal sys2,sys3;
 matrix h=imap(br,h);
 matrix g=dual_code(h);
 ideal sys=qe;
 print("The system is generated");

 //--- modify the template according to every received word ---------------
 for (j=1; j<=ntrials; j++)
 {
   word=randomvector(n-redun,1);
   y=encode(transpose(word),g);
   print("Codeword:");
   print(y);
   rec=errorRand(y,t,1);
   print("Received word:");
   print(rec);
   sys2=add_synd(rec,h,redun,sys);
   option(redSB);
   sys3=std(sys2);
   print("Groebner basis of the QE system:");
   print(sys3);
 }

 option(set,vopt);
}
example
{
     "EXAMPLE:";  echo = 2;
     int q=32; int n=25; int redun=n-11; int t=redun+1;
     ring r=(q,a),x,dp;
     matrix check=randomCheck(redun,n,1);

     // correct 2 errors in using the code above, 3 trials
     decodeCode(check,3,2);
}


///////////////////////////////////////////////////////////////////////////////
// adding syndrome values to the template system
static proc add_synd (matrix rec, matrix check, int redun, ideal sys)
{
     ideal result=sys;
     matrix s[redun][1]=syndrome(check,rec);
     for (int i=1; i<=redun; i++)

     {
          result[i]=result[i]-s[i,1];
     }
     return(result);
}

///////////////////////////////////////////////////////////////////////////////
// evaluate a polynomial at a given point
static proc ev (poly f, matrix p)
{
     if (ncols(p)>1) {ERROR("not a column vector");};
     int m=size(p);
     poly temp=f;
     for (int i=1; i<=m; i++)
     {
          temp=subst(temp,var(i),p[i,1]);
     }
     return(number(temp));
}

///////////////////////////////////////////////////////////////////////////////
// return index of an element in the ideal where it does not vanish at the
//given point
static proc find_index (ideal G, matrix p)
{
     if (ncols(p)>1) {ERROR("not a column vector");};
     int i=1;
     int n=size(G);
     while(i<=n)
     {
          if (ev(G[i],p)!=0) {return(i);}
          i++;
     }
     return(-1);
}

///////////////////////////////////////////////////////////////////////////////
// convert ideal to list
static proc ideal2list (ideal id)
{
     list l;
     for (int i=1; i<=size(id); i++)
     {
          l[i]=id[i];
     }
     return(l);
}

///////////////////////////////////////////////////////////////////////////////
// convert list to ideal
static proc list2ideal (list l)
{
     ideal id;
     for (int i=1; i<=size(l); i++)
     {
          id[i]=l[i];
     }
     return(id);
}

///////////////////////////////////////////////////////////////////////////////
// check whether given polynomial is divisible by some leading monomial of the
//ideal
static proc divisible (poly m, ideal G)
{
     for (int i=1; i<=size(G); i++)
     {
          if (m/leadmonom(G[i])!=0) {return(1);}
     }
     return(0);
}

///////////////////////////////////////////////////////////////////////////////

proc vanishId (list points)
"USAGE:  vanishId (points); point is a list of matrices
        'points' is a list of points for which the vanishing ideal is to be
        constructed
RETURN:  Vanishing ideal corresponding to the given set of points
EXAMPLE: example vanishId; shows an example
"
{
     int m=size(points[1]);
     int n=size(points);

     ideal G=1;
     int i,k,j;
     list temp;
     poly h,cur;

     //------------- proceed according to Farr-Gao algorithm ----------------
     for (k=1; k<=n; k++)
     {
          i=find_index(G,points[k]);
          cur=G[i];
          for(j=i+1; j<=size(G); j++)
          {
               G[j]=G[j]-ev(G[j],points[k])/ev(G[i],points[k])*G[i];
          }
          G=simplify(G,2);
          temp=ideal2list(G);
          temp=delete(temp,i);
          G=list2ideal(temp);
          for (j=1; j<=m; j++)
          {
               if (!divisible(var(j)*leadmonom(cur),G))
               {
                    attrib(G,"isSB",1);
                    h=NF((var(j)-points[k][j,1])*cur,G);
                    temp=ideal2list(G);
                    temp=insert(temp,h);
                    G=list2ideal(temp);
                    G=sort(G)[1];
               }
          }
     }
     attrib(G,"isSB",1);
     return(G);
}
example
{
     "EXAMPLE:";  echo = 2;
      ring r=3,(x(1..3)),dp;

     //generate all 3-vectors over GF(3)
     list points=pointsGen(3,1);

     list points2=convPoints(points);

     //grasps the first 11 points
     list p=graspList(points2,1,11);
     print(p);

     //construct the vanishing ideal
     ideal id=vanishId(p);
     print(id);
}

///////////////////////////////////////////////////////////////////////////////
// construct the list of all vectors of length m with elements in p^e, where p
// is theharacteristic
proc pointsGen (int m, int e)
{
     if (e>1)
     {
     list result;
     int count=1;
     int i,j;
     list l=ringlist(basering);
     int charac=l[1][1];
     number a=par(1);
     list tmp;
     for (i=1; i<=charac^(e*m); i++)
     {
          result[i]=tmp;
     }
     if (m==1)
     {
          result[count][m]=0;
          count++;
          for (j=1; j<=charac^(e)-1; j++)
          {
               result[count][m]=a^j;
               count++;
          }
          return(result);
     }
     list prev=pointsGen(m-1,e);
     for (i=1; i<=size(prev); i++)
     {
          result[count]=prev[i];
          result[count][m]=0;
          count++;
          for (j=1; j<=charac^(e)-1; j++)
          {
               result[count]=prev[i];
               result[count][m]=a^j;
               count++;
          }
     }
     return(result);
     }

     if (e==1)
     {
     list result;
     int count=1;
     int i,j;
     list l=ringlist(basering);
     int charac=l[1][1];
     list tmp;
     for (i=1; i<=charac^m; i++)
     {
          result[i]=tmp;
     }
     if (m==1)
     {
          for (j=0; j<=charac-1; j++)
          {
               result[count][m]=number(j);
               count++;
          }
          return(result);
     }
     list prev=pointsGen(m-1,e);
     for (i=1; i<=size(prev); i++)
     {
          for (j=0; j<=charac-1; j++)
          {
               result[count]=prev[i];
               result[count][m]=number(j);
               count++;
          }
     }
     return(result);
     }

}

///////////////////////////////////////////////////////////////////////////////
// convert list to a column vector
static proc list2vec (list l)
{
     matrix m[size(l)][1];
     for (int i=1; i<=size(l); i++)
     {
          m[i,1]=l[i];
     }
     return(m);
}

///////////////////////////////////////////////////////////////////////////////
// convert all the point in the list with list2vec
proc convPoints (list points)
{
     for (int i=1; i<=size(points); i++)
     {
          points[i]=list2vec(points[i]);
     }
     return(points);
}

///////////////////////////////////////////////////////////////////////////////
// extracts elements from l in the range m..n
proc graspList (list l, int m, int n)
{
     list result;
     int count=1;
     for (int i=m; i<=n; i++)
     {
          result[count]=l[i];
          count++;
     }
     return(result);
}

///////////////////////////////////////////////////////////////////////////////
// "characteristic" polynomial
static proc xi_gen (matrix p, int e, int s)
{
     poly prod=1;
     list rl=ringlist(basering);
     int charac=rl[1][1];
     int l;
     for (l=1; l<=s; l++)
     {
          prod=prod*(1-(var(l)-p[l,1])^(charac^e-1));
     }
     return(prod);
}

///////////////////////////////////////////////////////////////////////////////
// generating polynomials in Fitzgerald-Lax construction
static proc gener_funcs (matrix check, list points, int e, ideal id, int s)
{
     int n=ncols(check);
     if (n!=size(points)) {ERROR("Incompatible sizes of check and points");}
     ideal xi;
     int i,j;
     for (i=1; i<=n; i++)
     {
          xi[i]=xi_gen(points[i],e,s);
     }
     ideal result;
     int m=nrows(check);
     poly sum;
     for (i=1; i<=m; i++)
     {
          sum=0;
          for (j=1; j<=n; j++)
          {
               sum=sum+check[i,j]*xi[j];
          }
          result[i]=NF(sum,id);
     }
     return(result);
}

///////////////////////////////////////////////////////////////////////////////

proc sysFL (matrix check, matrix y, int t, int e, int s)
"USAGE:    sysFL (check,y,t,e,s); check,y matrix, t,e,s int
@format
          - check is a parity check matrix of the code,
          - y is a received word,
          - t the number of errors to correct,
          - e is the extension degree,
          - s is the dimension of the point for the vanishing ideal
@end format
RETURN:  the system of Fitzgerald-Lax for the given decoding problem
THEORY:  Based on 'check' of the given linear code, the procedure constructs
         the corresponding ideal constructed with a generalization of
         Cooper's philosophy. For basics of the method @ref{Fitzgerald-Lax method}.
SEE ALSO: sysQE
EXAMPLE:   example sysFL; shows an example
"
{
     list rl=ringlist(basering);
     int charac=rl[1][1];
     int n=ncols(check);
     int m=nrows(check);
     list points=pointsGen(s,e);
     list points2=convPoints(points);
     list p=graspList(points2,1,n);
     ideal id=vanishId(p,e);
     ideal funcs=gener_funcs(check,p,e,id,s);

     ideal result;
     poly temp;
     int i,j,k;

     //--------------- add vanishing realtions ---------------------
     for (i=1; i<=t; i++)
     {
          for (j=1; j<=size(id); j++)
          {
               temp=id[j];
               for (k=1; k<=s; k++)
               {
                    temp=subst(temp,var(k),x_var(i,k,s));
               }
               result=result,temp;
          }
     }

     //--------------- add field equations --------------------
     for (i=1; i<=t; i++)
     {
          for (k=1; k<=s; k++)
          {
               result=result,x_var(i,k,s)^(charac^e)-x_var(i,k,s);
          }
     }
     for (i=1; i<=t; i++)
     {
          result=result,e(i)^(charac^e-1)-1;
     }

     result=simplify(result,8);

     //--------------- add check realtions --------------------
     poly sum;
     matrix syn[m][1]=syndrome(check,y);
     for (i=1; i<=size(funcs); i++)
     {
          sum=0;
          for (j=1; j<=t; j++)
          {
               temp=funcs[i];
               for (k=1; k<=s; k++)
               {
                    temp=subst(temp,var(k),x_var(j,k,s));
               }
               sum=sum+temp*e(j);
          }
          result=result,sum-syn[i,1];
     }

     result=simplify(result,2);

     points=points2;
     export points;
     return(result);
}
example
{
     "EXAMPLE:";  echo = 2;
     intvec vopt = option(get);

     list l=FLpreprocess(3,1,11,2,"");
     def r=l[1];
     setring r;
     int s_work=l[2];

     //the check matrix of [11,6,5] ternary code
     matrix h[5][11]=1,0,0,0,0,1,1,1,-1,-1,0,
          0,1,0,0,0,1,1,-1,1,0,-1,
          0,0,1,0,0,1,-1,1,0,1,-1,
          0,0,0,1,0,1,-1,0,1,-1,1,
          0,0,0,0,1,1,0,-1,-1,1,1;
     matrix g=dual_code(h);
     matrix x[1][6];
     matrix y[1][11]=encode(x,g);
     //disturb with 2 errors
     matrix rec[1][11]=errorInsert(y,list(2,4),list(1,-1));

     //the Fitzgerald-Lax system
     ideal sys=sysFL(h,rec,2,1,s_work);
     print(sys);
     option(redSB);
     ideal red_sys=std(sys);
     red_sys;
     // read the solutions from this redGB
     // the points are (0,0,1) and (0,1,0) with error values 1 and -1 resp.
     // use list points to find error positions;
     points;

     option(set,vopt);
}

///////////////////////////////////////////////////////////////////////////////
// preprocessing steps for the Fitzgerald-Lax scheme
proc FLpreprocess (int p, int e, int n, int t, string minp)
{
     ring r1=p,x,dp;
     int s=1;
     while(p^(s*e)<n)
     {
          s++;
     }
     list var_ord;
     int i,j;
     int count=1;
     for (i=s; i>=1; i--)
     {
          var_ord[count]=string("x("+string(i)+")");
          count++;
     }
     for (i=t; i>=1; i--)
     {
          var_ord[count]=string("e("+string(i)+")");
          count++;
          for (j=s; j>=1; j--)
          {
               var_ord[count]=string("x1("+string(s*(i-1)+j)+")");
               count++;
          }
     }

     list rl;
     list tmp;

     if (e>1)
     {
          rl[1]=tmp;
          rl[1][1]=p;
          rl[1][2]=tmp;
          rl[1][2][1]=string("a");
          rl[1][3]=tmp;
          rl[1][3][1]=tmp;
          rl[1][3][1][1]=string("lp");
          rl[1][3][1][2]=1;
          rl[1][4]=ideal(0);
     } else {
          rl[1]=p;
     }

     rl[2]=var_ord;

     rl[3]=tmp;
     rl[3][1]=tmp;
     rl[3][1][1]=string("lp");
     intvec v=1;
     for (i=1; i<=size(var_ord)-1; i++)
     {
          v=v,1;
     }
     rl[3][1][2]=v;
     rl[3][2]=tmp;
     rl[3][2][1]=string("C");
     rl[3][2][2]=intvec(0);

     rl[4]=ideal(0);

     def r2=ring(rl);
     setring r2;
     list l=ringlist(r2);
     if (e>1)
     {
          execute(string("poly f="+minp));
          ideal id=f;
          l[1][4]=id;
     }

     def r=ring(l);
     setring r;

     return(list(r,s));
}

///////////////////////////////////////////////////////////////////////////////
// imitating two indeces
static proc x_var (int i, int j, int s)
{
     return(x1(s*(i-1)+j));
}

///////////////////////////////////////////////////////////////////////////////
// random vector of length n with entries from p^e, p the characteristic
static proc randomvector(int n, int e)
{
    int i;
    matrix result[n][1];
    for (i=1; i<=n; i++)
    {
        result[i,1]=asElement(random_prime_vector(e));
    }
    return(result);
}

///////////////////////////////////////////////////////////////////////////////
// "convert" representation of an element from the field extension from vector
//to an elelemnt
static proc asElement(list l)
{
  number s;
  int i;
  number w=1;
  if (size(l)>1) {w=par(1);}
  for (i=0; i<=size(l)-1; i++)
  {
    s=s+w^i*l[i+1];
  }
  return(s);
}

///////////////////////////////////////////////////////////////////////////////
// random vector of length n with entries from p, p the characteristic
static proc random_prime_vector (int n)
{
  list rl=ringlist(basering);
  int i, charac;
  for (i=2; i<=rl[1][1]; i++)
  {
    if (rl[1][1] mod i ==0)
    {
      break;
    }
  }
  charac=i;

  list l;

  for (i=1; i<=n; i++)
  {
    l=l+list(random(0,charac-1));
  }
  return(l);
}

///////////////////////////////////////////////////////////////////////////////

proc decodeRandomFL(int n, int redun, int p, int e, int t, int ncodes, int ntrials, string minpol)
"USAGE:    decodeRandomFL(redun,p,e,n,t,ncodes,ntrials,minpol);
@format
          - n is length of codes generated,
          - redun = redundancy of codes generated,
          - p is the characteristic,
          - e is the extension degree,
          - t is the number of errors to correct,
          - ncodes is the number of random codes to be processed,
          - ntrials is the number of received vectors per code to be corrected,
          - minpol: due to some pecularities of SINGULAR one needs to provide
          minimal polynomial for the extension explicitly
@end format
RETURN:    nothing
EXAMPLE:   example decodeRandomFL; shows an example
"
{
 intvec vopt = option(get);

 list l=FLpreprocess(p,e,n,t,minpol);

 def r=l[1];
 int s_work=l[2];
 export(s_work);
 setring r;

 int i,j;
 matrix h, g, word, y, rec;
 ideal sys, sys2, sys3;


 option(redSB);
 matrix z[1][n];

 for (i=1; i<=ncodes; i++)
 {
     h=randomCheck(redun,n,e);
     g=dual_code(h);

     //---------------- generate the template system -----------------------
     sys=sysFL(h,z,t,e,s_work);

     //------ modifying the template according to the received word ---------
     for (j=1; j<=ntrials; j++)
     {
          word=randomvector(n-redun,1);
          y=encode(transpose(word),g);
          print("Codeword:");
          print(y);
          rec=errorRand(y,t,e);
          print("Received word");
          print(rec);
          sys2=LF_add_synd(rec,h,sys);
          sys3=std(sys2);
          print("Groebner basis of the FL system:");
          print(sys3);
     }
 }

 option(set,vopt);
}
example
{
     "EXAMPLE:";  echo = 2;

     // correcting one error for one random binary code of length 25,
     // redundancy 14; 10 words are processed
     decodeRandomFL(25,14,2,1,1,1,10,"");
}

///////////////////////////////////////////////////////////////////////////////
// add syndrome values to the template system in FL
static proc LF_add_synd (matrix rec, matrix check, ideal sys)
{
     int redun=nrows(check);
     ideal result=sys;
     matrix s[redun][1]=syndrome(check,rec);
     for (int i=size(sys)-redun+1; i<=size(sys); i++)
     {
          result[i]=result[i]-s[i-size(sys)+redun,1];
     }
     return(result);
}


/*
//////////////     SOME RELATIVELY EASY EXAMPLES    //////////////
///////////////////  THAT RUN AROUND ONE MINUTE  ////////////////

"EXAMPLE:";  echo = 2;
int q=128; int n=120; int redun=n-30;
ring r=(q,a),x,dp;
decodeRandom(n,redun,1,1,6);

int q=128; int n=120; int redun=n-20;
ring r=(q,a),x,dp;
decodeRandom(n,redun,1,1,9);

int q=128; int n=120; int redun=n-10;
ring r=(q,a),x,dp;
decodeRandom(n,redun,1,1,19);

int q=256; int n=150; int redun=n-10;
ring r=(q,a),x,dp;
decodeRandom(n,redun,1,1,22);

//////////////     SOME HARD EXAMPLES    //////////////////////
//////      THAT MAYBE WILL BE DOABLE LATER     ///////////////

1.) These random instances are not doable in <=1000 sec.

"EXAMPLE:";  echo = 2;
int q=128; int n=120; int redun=n-40;
ring r=(q,a),x,dp;
decodeRandom(n,redun,1,1,6);

redun=n-30;
decodeRandom(n,redun,1,1,8);

redun=n-20;
decodeRandom(n,redun,1,1,12);

redun=n-10;
decodeRandom(n,redun,1,1,24);

int q=256; int n=150; int redun=n-10;
ring r=(q,a),x,dp;
decodeRandom(n,redun,1,1,26);


2.) Generic decoding is hard!

int q=32; int n=31; int redun=n-16; int t=3;
ring r=(q,a),(V(1..n),U(n..1),s(redun..1)),(dp(n),lp(n),dp(redun));
matrix check[redun][n]= 1,1,0,1,1,0,0,0,1,0,1,0,0,1,0,0,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,1,
0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,1,1,0,1,1,0,0,0,1,0,1,0,0,1,0,0,1,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,
0,1,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,1,1,0,1,1,0,0,0,1,0,1,0,0,1,0,0,1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,
0,0,0,1,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,1,0,1,1,0,0,0,1,0,1,0,0,1,0,
0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,
1,1,0,0,0,1,0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,1,0,1,0,0,
1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
1,0,1,1,0,0,0,1,0,1,0,0,1,0,0,1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,1,0,1,
0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,1,0,1,1,0,0,0,1,0,1,0,0,1,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,0,1,
0,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,1,1,0,1,1,0,0,0,1,0,1,0,0,1,0,0,1,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0,
0,1,0,1,0,0,1,0,0,1;
matrix rec[1][n];

def A=sysQE(check,rec,t,1,2);
setring A;
print(qe);
ideal red_qe=stdfglm(qe);

*/