/usr/share/singular/LIB/curveInv.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 | ////////////////////////////////////////////////////////////////////////////////
version="version curveInv.lib 1.0.0.5 Aug_2015 "; // $Id: 7fd1131374a70586a07bcc5622d849fa49109fb8 $
category="Algebraic geometry";
info="
LIBRARY: curveInv.lib A library for computing invariants of curves
AUTHOR: Peter Chini, chini@rhrk.uni-kl.de
OVERVIEW:
This library provides a collection of procedures for computing invariants
of curve singularities. Invariants that can be computed are:
- the delta invariant
- the multiplicity of the conductor: the length of Normalization(R)/C,
where C denotes the conductor
- the Deligne number
- the colength of derivations along the normalization - the length of
Der(Normalization(R/I)) / R/I
In addition, it is possible to compute the conductor of a ring S = R/I,
where R is a (localized) polynomial ring.
THEORY: Computing the Deligne number of curve singularities and an algorithmic framework for
differential algebras in SINGULAR;
Chapter 5 - Master's Thesis of Peter Chini - August 2015
PROCEDURES:
curveDeltaInv(ideal); computes the delta invariant of R/I for a given ideal I
curveConductorMult(ideal); returns the multiplicity of the conductor of R/I
curveDeligneNumber(ideal); computes the Deligne number of R/I
curveColengthDerivations(ideal); returns the colength of derivations,
the length of Der(Normalization(R/I))/Der(R/I)
KEYWORDS: curve singularity;invariants;deligne number
";
LIB "homolog.lib";
LIB "normal.lib";
////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////
// Computation of invariants //
////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////
//-------------------------------------- Delta invariant -------------------------------------//
////////////////////////////////////////////////////////////////////////////////////////////////
proc curveDeltaInv(ideal I, list #)
"USAGE: curveDeltaInv(I); I ideal
ASSUME: I is a radical ideal, dim(R/I) = 1
RETURN: the delta invariant of R/I
NOTE: - output -1 means: delta invariant is infinite
- the optional parameter can be used if the normalization has already
been computed. If a list L contains the output of the procedure
normal (with options prim, wd and usering if the ring has a mixed ordering),
apply curveDeltaInv(I,L)
KEYWORDS: delta invariant; normalization
SEE ALSO: curveConductorMult; curveDeligneNumber
EXAMPLE: example curveDeltaInv; shows an example"
{
if(size(#) > 0){
list norma = #;
}else{
// Compute the normalization with delta invariants
list norma = normal(I,"useRing","prim","wd");
}
// Pick the total delta invariant
int delt = norma[3][2];
return(delt);
}
example
{
"EXAMPLE:"; echo = 2;
ring R = 0,(x,y,z),ds;
////////////////////////////
// Finite delta invariant //
////////////////////////////
ideal I = x2y-y2z,x2-y2+z2;
curveDeltaInv(radical(I));
//////////////////////////////
// Infinite delta invariant //
//////////////////////////////
ideal J = xyz;
curveDeltaInv(radical(J));
}
////////////////////////////////////////////////////////////////////////////////////////////////
//-------------------------------- Conductor and multiplicity --------------------------------//
////////////////////////////////////////////////////////////////////////////////////////////////
static proc conductorMinPrime(def S)
"USAGE: conductorMinPrime(S); S ring
ASSUME: S is a polynomial ring with ideal norid and S/norid is the normalization of R/P,
where P is a minimal prime of I
RETURN: the ideal P
REMARKS: The algorithm computes norid intersect R - it eliminates the new
variables that were added by the command normal.
NOTE: the algorithm is for interior use only. We apply it to avoid a second computation
of the minimal primes
KEYWORDS: minimal primes; normalization
"
{
//SEE ALSO: conductorIdealIntersect
// Variables of basering as product
int n = nvars(basering);
int i;
poly var_base = 1;
for(i = 1; i <= n; i++){
var_base = var_base*var(i);
}
// Switch to normalization
def savering = basering;
setring S;
poly var_base = imap(savering,var_base);
// Variables of S as product
poly var_ext = 1;
n = nvars(basering);
for(i = 1; i <= n ; i++){
var_ext = var_ext*var(i);
}
// Variables to eliminate
poly var_elim = var_ext/var_base;
// Compute norid intersect basering = minimal prime
ideal min_prime = eliminate(norid,var_elim);
// Switch to R and return
setring savering;
ideal min_prime = imap(S,min_prime);
return(min_prime);
}
////////////////////////////////////////////////////////////////////////////////////////////////
static proc conductorIdealIntersect(list id, int miss)
"USAGE: conductorIdealIntersect(id,miss); id list, miss int
ASSUME: id is a list of ideals
RETURN: the intersection of all ideals in id except the one chosen via miss
NOTE: - the index can be chosen outside the list
- the empty intersection is the whole ring
KEYWORDS: intersection"
{
int n = size(id);
ideal in_sect = 1;
int i;
// Intersect ideals
for(i = 1; i <= n; i++){
if(i != miss){
in_sect = intersect(in_sect,id[i]);
}
}
return(in_sect);
}
////////////////////////////////////////////////////////////////////////////////////////////////
proc curveConductorMult(ideal I, list #)
"USAGE: curveConductorMult(I); I ideal
ASSUME: I is a radical ideal, dim(R/I) = 1
RETURN: the multiplicity of the conductor
NOTE: the optional parameter can be used if the normalization has already
been computed. If a list L contains the output of the procedure
normal (with options prim, wd and usering if the ring has a mixed ordering),
apply curveConductorMult(I,L)
KEYWORDS: conductor; multiplicity
SEE ALSO: normalConductor
EXAMPLE: example curveConductorMult; shows an example"
{
if(size(#) > 0){
list norma = #;
}else{
// Compute the normalization with delta invariants
list norma = normal(I,"useRing","prim","wd");
}
// delta invariant
int delta = curveDeltaInv(I,norma);
// If the delta invariant is infinite, the conductor multiplicity is as well
if(delta == -1){
return(-1);
}
// Conductor
ideal C = normalConductor(I,norma);
int c_dim = vdim(std(C));
if(c_dim == -1){
return(-1);
}
// Return conductor multiplicity
return(vdim(std(C)) + delta);
}
example
{
"EXAMPLE:"; echo = 2;
//////////////////////////////////////////////
// Mutltiplicity of the conductor of curves //
//////////////////////////////////////////////
ring R = 0,(x,y,z),ds;
// Example 1:
ideal I = x2-y4z,z3y2+xy2;
I = std(radical(I));
curveConductorMult(I);
// Example 2:
ideal I = x*(y+z)^3 - y3, x2y2 + z5;
I = std(radical(I));
curveConductorMult(I);
kill R;
////////////////////////////////////////////////////////
// Mutltiplicity of the conductor of Gorenstein curve //
////////////////////////////////////////////////////////
ring R = 0,(x,y),ds;
ideal I = xy;
// In such a case, the conductor multiplicity c satisfies: c = 2*delta
// Delta invariant:
curveDeltaInv(I);
// Conductor Multiplicity:
curveConductorMult(I);
}
////////////////////////////////////////////////////////////////////////////////////////////////
//-------------------------------------- Deligne number --------------------------------------//
////////////////////////////////////////////////////////////////////////////////////////////////
proc curveDeligneNumber(ideal I, list #)
"USAGE: curveDeligneNumber(I); I ideal
ASSUME: I is a radical ideal, dim(R/I) = 1
RETURN: the Deligne number of R/I
REMARKS: The Deligne number e satisfies by definition: e = 3delta - m.
So the algorithm splits the computation into two parts: one part computes the delta
invariant, the other part the colength of derivations m.
NOTE: the optional parameter can be used if the normalization has already
been computed. If a list L contains the output of the procedure
normal (with options prim, wd and usering if the ring has a mixed ordering),
apply curveDeligneNumber(I,L)
KEYWORDS: deligne number; invariant
SEE ALSO: curveColengthDerivations, curveDeltaInv
EXAMPLE: example curveDeligneNumber; shows an example"
{
if(size(#) > 0){
list norma = #;
}else{
// Compute the normalization with delta invariants
list norma = normal(I,"useRing","prim","wd");
}
int delt = curveDeltaInv(I,norma);
int m = curveColengthDerivations(I,norma);
return(3*delt - m);
}
example
{
"EXAMPLE:"; echo = 2;
//////////////////////////////
// Deligne number of curves //
//////////////////////////////
// Example 1:
ring R = 0,(x,y,z),ds;
ideal I = x2-y4z,z3y2+xy2;
I = std(radical(I));
curveDeligneNumber(I);
// Example 2:
ring S = 0,(x,y),ds;
ideal I = (x+y)*(x2-y3);
curveDeligneNumber(I);
// Example 3:
ideal J = (x2-y3)*(x2+y2)*(x-y);
curveDeligneNumber(J);
// Let us also compute the milnor number of this complete intersection:
milnor(J);
// We see that the Milnor number is bigger than the Deligne number. Hence, this
// curve cannot be quasi homogeneous. This can also be verified by Saitos criterion:
reduce(J[1],std(jacob(J[1])));
}
////////////////////////////////////////////////////////////////////////////////////////////////
proc curveColengthDerivations(ideal I, list #)
"USAGE: curveColengthDerivations(I); I ideal
ASSUME: I is a radical ideal
RETURN: the colength of derivations of R/I
REMARKS: The procedure goes through all branches and computes the colength of
derivations there. Then the d-dimension of the minimal primes is computed.
After that, everything is summed up.
NOTE: the optional parameter can be used if the normalization has already
been computed. If a list L contains the output of the procedure
normal (with options prim, wd and usering if the ring has a mixed ordering),
apply curveColengthDerivations(I,L)
KEYWORDS: deligne number; invariants; colength of derivations
EXAMPLE: example curveColengthDerivations; shows an example"
{
//SEE ALSO: curveColengthDerivationsComp
if(size(#) > 0){
list norma = #;
}else{
// Compute the normalization with delta invariants
list norma = normal(I,"useRing","prim","wd");
}
int r = size(norma[1]);
int i,j;
ideal U,A,B;
module Der_P;
def S;
def savering = basering;
// List of minimal primes and their derivation modules
list min_prime;
list der_mod;
// Colength of derivations of any branch, m_delta and total colength of derivations
int m_i;
int m_delta;
int ext_number;
// Go through the irreducible components and compute thecolength of derivations m_i
for(i = 1; i <= r; i++){
// Derivations preserving the minimal primes
S = norma[1][i];
U = norma[2][i];
min_prime[i] = conductorMinPrime(S);
der_mod[i] = find_der(min_prime[i]);
Der_P = der_mod[i];
// Switch to normalization of R/P and compute colength of derivations
setring S;
ideal U = imap(savering,U);
module Der_P = imap(savering,Der_P);
m_i = curveColengthDerivationsComp(Der_P,U,norid);
// Add colength of derivations of this branch to total colength of derivations
ext_number = ext_number + m_i;
setring savering;
}
// Now compute m_delta via curveDdim
A = min_prime[1];
B = std(1);
for(i = 2; i <= r; i++){
A = intersect(A,B);
B = min_prime[i];
m_delta = m_delta + curveDdim(A,find_der(A),B,find_der(B));
}
// Add this to the colength of derivations
ext_number = ext_number + m_delta;
return(ext_number);
}
example
{
"EXAMPLE:"; echo = 2;
///////////////////////////////////////
// colength of derivations of curves //
///////////////////////////////////////
// Example 1:
ring R = 0,(x,y,z),ds;
ideal I = x2-y4z,z3y2+xy2;
I = std(radical(I));
curveColengthDerivations(I);
// Example 2:
ring S = 0,(x,y),ds;
ideal I = (x+y)*(x2-y3);
curveColengthDerivations(I);
// Example 3:
ideal J = (x2-y3)*(x2+y2)*(x-y);
curveColengthDerivations(J);
}
////////////////////////////////////////////////////////////////////////////////////////////////
static proc curveColengthDerivationsComp(module Der_P, ideal U, ideal relid)
"USAGE: curveColengthDerivationsComp(Der_P,U,relid); Der_P module, U ideal, relid ideal
ASSUME: - the basering is the normalization of R/P, where P is a prime
- Der_P is the module of P-preserving derivations
- U containts the generators of the normalization of R/P
- relid is the ideal of relations that hold in the normalization of R/P
RETURN: the colength of derivations of R/P
NOTE: the procedure is for interior use only - it is part of the computation of
the total colength of derivations
KEYWORDS: colength of derivations
SEE ALSO: curveAdjustModule, curveExtDerModule"
{
int k;
// Adjust the generators of Der_P to the new variables T(1),...,T(k),x(1),...,x(n)
// if there are new variables - check number of blocks
if(size(ringlist(basering)[3]) >= 3){
k = size(ringlist(basering)[3][1][2]);
Der_P = curveAdjustModule(Der_P,k);
}
// Extend the derivation module to the normalization
Der_P = curveExtDerModule(Der_P,U,relid);
// Derivations preserving the relation ideal
module Der_relid = find_der(relid);
// Quotient module with relations given by relid
Der_P = Der_P + relid*freemodule(nvars(basering));
module quotient_mod = modulo(Der_relid,Der_P);
k = vdim(std(quotient_mod));
if(k == -1){
ERROR("Colength of derivations not finite !");
}
return(k);
}
////////////////////////////////////////////////////////////////////////////////////////////////
static proc curveExtDerModule(module Der_P, ideal U, ideal relid)
"USAGE: curveExtDerModule(Der_P,U,relid); Der_P module, U ideal, relid ideal
ASSUME: - the basering is the normalization of R/P, where P is prime
- Der_P is the module of P-preserving derivations (with adjusted generators)
- U containts the generators of the normalization of R/P
- relid is the ideal of relations that hold in the normalization of R/P
RETURN: The derivation module lifted to the normalization
REMARKS: the generators of Der_P are extended via the quotient rule
NOTE: the procedure is for interior use only - it is part of the computation of
the total colength of derivations
KEYWORDS: derivations; extend derivations
"
{
//SEE ALSO: curveColengthDerivationsComp
int k = size(Der_P);
int n = size(U) - 1;
int i,j;
module M_ext;
vector delt;
vector delt_ext;
poly g = (U[n+1])^2;
poly f;
poly Un = 1;
matrix D[k][n];
matrix G[k][n];
list temp_div;
for(i = 1; i <= k; i++){
delt = Der_P[i];
// Extend to new variables by quotient rule
for(j = 1; j <= n; j++){
f = vecDerivationEval(delt,U[j])*U[n+1] - vecDerivationEval(delt,U[n+1])*U[j];
// Division
temp_div = division(f,ideal(g) + relid);
// Units
D[i,j] = temp_div[3][1,1];
// Unit Un is product of all D[i][j]
Un = Un*D[i,j];
// Factor of dividing by g
G[i,j] = temp_div[1][1,1];
}
}
// Extension of the generating derivations
for(i = 1; i <= k; i++){
delt_ext = Un*Der_P[i];
// Now add the images of the new variables multiplied by the units
for(j = 1; j <= n; j++){
delt_ext = delt_ext + (Un / D[i,j])*G[i,j]*gen(j);
}
M_ext[i] = delt_ext;
}
return(M_ext);
}
////////////////////////////////////////////////////////////////////////////////////////////////
static proc curveAdjustModule(module M, int k)
"USAGE: curveAdjustModule(M,k); M module, k int
RETURN: the module M with shifted (by k) generators
NOTE: the procedure is for interior use only - it is part of the computation of
the total colength of derivations
KEYWORDS: adjust module
"
{
//SEE ALSO: curveColengthDerivationsComp"
module M_copy = M;
int n = size(M);
int vs,i,j;
vector v,w;
// Adjust dimension of generators
for(i = 1; i <= n; i++){
v = M_copy[i];
vs = nrows(v);
for(j = 1; j <= vs; j++){
w = w + v[j]*gen(j+k);
}
M[i] = w;
w = 0;
}
return(M);
}
////////////////////////////////////////////////////////////////////////////////////////////////
static proc curveDdim(ideal I, module DI, ideal J, module DJ)
"USAGE: curveDdim(I,DI,J,DJ); I,J ideal, DI,DJ module
ASSUME: DI are the I-preserving derivations and DJ are the J-preserving derivations
RETURN: d(I,J) = dim_k (DI + DJ / (I+J)*Der(R))
NOTE: the procedure is part of the computations of the colength of derivations.
It computes the d-dimension
KEYWORDS: derivation module; logarithmic derivations
SEE ALSO: curveColengthDerivations"
{
module M = DI+DJ;
module N = (I+J)*freemodule(nvars(basering));
module H = modulo(M,N);
int k = vdim(std(H));
if(k == -1){
ERROR("d-dimension not finite !");
}
return(k);
}
////////////////////////////////////////////////////////////////////////////////////////////////
static proc vecDerivationEval(vector delt, poly f)
"USAGE: vecDerivationEval(delt,f); delt vector, f poly
ASSUME: delt does not have more rows than the number of variables in the basering
RETURN: the image of f under delt, if we consider delt as derivation
REMARKS: We identify derivations as vectors
NOTE: - the procedure is for interior use only - it is part of the computation of
the total colength of derivations
- it is used to apply the quotient rule
KEYWORDS: derivation
SEE ALSO: curveExtDerModule"
{
int n = nrows(delt);
int i;
poly eval_;
for(i = 1; i <= n; i++){
eval_ = eval_ + delt[i]*diff(f,var(i));
}
return(eval_);
}
////////////////////////////////////////////////////////////////////////////////////////////////
static proc find_der(ideal I)
"USAGE: find_der(I); I ideal
RETURN: generators of the module of logarithmic derivations
REMARK: Algorithm by R. Epure - Homogeneity and Derivations on Analytic Algebras"
{
// Dummy variables and Initialization:
int k,i,n,m;
//generating matrix for syzygie computation:
n = nvars(basering);
m = size(I);
ideal j = jacob(I);
matrix M=matrix(j,m,n);
for (i = 1; i <= m; i++){
M = concat(M,diag(I[i],m));
}
module C = syz(M);
module D;
for(i = 1; i <= size(C); i++){
D = D + C[i][1..n];
}
//Clearing memory
kill j;
kill C;
kill M;
return(D);
}
////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////
|