This file is indexed.

/usr/share/singular/LIB/control.lib is in singular-data 1:4.1.0-p3+ds-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
/////////////////////////////////////////////////////////////////////////
version="version control.lib 4.0.0.0 Jun_2013 "; // $Id: 018a6cff8b41a26f7eb46724ad9d483956bfb9aa $
category="System and Control Theory";
info="
LIBRARY:  control.lib     Algebraic analysis tools for System and Control Theory

AUTHORS:  Oleksandr Iena,       yena@mathematik.uni-kl.de
@*        Markus Becker,        mbecker@mathematik.uni-kl.de
@*        Viktor Levandovskyy,  levandov@mathematik.uni-kl.de

SUPPORT: Forschungsschwerpunkt 'Mathematik und Praxis' (Project of Dr. E. Zerz
and V. Levandovskyy), University of Kaiserslautern

PROCEDURES:
  control(R);     analysis of controllability-related properties of R (using Ext modules)
  controlDim(R);  analysis of controllability-related properties of R (using dimension)
  autonom(R);     analysis of autonomy-related properties of R (using Ext modules)
  autonomDim(R);  analysis of autonomy-related properties of R (using dimension)

  leftKernel(R);       a left kernel of R
  rightKernel(R);      a right kernel of R
  leftInverse(R);      a left inverse of R
  rightInverse(R);     a right inverse of R
  colrank(M);          a column rank of M as of matrix
  genericity(M);       analysis of the genericity of parameters
  canonize(L);         Groebnerification for modules in the output of control or autonomy procs
  iostruct(R);         computes an IO-structure of behavior given by a module R
  findTorsion(R, I);   generators of the submodule of a module R, annihilated by the ideal I

  controlExample(s);   set up an example from the mini database inside of the library
  view();              well-formatted output of lists, modules and matrices
";

LIB "homolog.lib";
LIB "poly.lib";
LIB "primdec.lib";
LIB "matrix.lib";

//---------------------------------------------------------------
static proc Opt_Our()
"USAGE: Opt_Our();
RETURN: intvec, where previous options are stored
PURPOSE: save previous options and set customized options
"
{
  intvec v;
  v=option(get);
  option(redSB);
  option(redTail);
  return (v);
}

//-------------------------------------------------------------------------

static proc space(int n)
"USAGE:spase(n); n is an integer (number of needed spaces)
RETURN:  string consisting of n spaces
NOTE:  the procedure is used in the procedure 'view' to have a better formatted output
"{
  int i;
  string s="";
  for(i=1;i<=n;i++)
  {
    s=s+" ";
  }
  return(s);
}
//-----------------------------------------------------------------------------
proc view(def M)
"USAGE:  view(M);   M is of any type
RETURN:  no return value
PURPOSE:  procedure for (well-) formatted output of modules, matrices, lists of modules, matrices; shows everything even if entries are long
NOTE:  in case of other types( not 'module', 'matrix', 'list') works just as standard 'print' procedure
EXAMPLE:  example view; shows an example
"
{
  // to be replaced with something more feasible
  if ( (typeof(M)=="module")||(typeof(M)=="matrix") )
  {
    int @R=nrows(M);
    int @C=ncols(M);
    int i;
    int j;
    list MaxLength=list();
    int Size=0;
    int max;
    string s;

    for(i=1;i<=@C;i++)
    {
      max=0;
      for(j=1;j<=@R;j++)
      {
        Size=size( string( M[j,i] ) );
        if( Size>max )
        {
          max=Size;
        }
      }
      MaxLength[i] = max;
    }
    for(i=1;i<=@R;i++)
    {
      s="";
      for(j=1;j<@C;j++)
      {
        s=s+string(M[i,j])+space( MaxLength[j]-size( string( M[i,j] ) ) ) +",";
      }
      s=s+string(M[i,j])+space( MaxLength[j]-size( string( M[i,j] ) ) );
      if (i!=@R)
      {
        s=s+",";
      }
      print(s);
    }
    return();
  }
  if(typeof(M)=="list")
  {
    int sz=size(M);
    int i;
    for(i=1;i<=sz;i++)
    {
      view(M[i]);
      print("");
    }
    return();
  }
  print(M);
  return();
}
example
{"EXAMPLE:";echo = 2;
  ring r;
  list L;
  matrix M[1][3] = x2+x,y3-y,z5-4z+7;
  L[1] = "a matrix:";
  L[2] = M;
  L[3] = "an ideal:";
  L[4] = ideal(M);
  view(L);
}
//--------------------------------------------------------------------------
proc rightKernel(matrix M)
"USAGE:  rightKernel(M);   M a matrix
RETURN:  module
PURPOSE: computes the right kernel of matrix M (a module of all elements v such that Mv=0)
EXAMPLE: example rightKernel; shows an example
"{
  return(modulo(M,std(0)));
}
example
{"EXAMPLE:";echo = 2;
  ring r = 0,(x,y,z),dp;
  matrix M[1][3] = x,y,z;
  print(M);
  matrix R = rightKernel(M);
  print(R);
  // check:
  print(M*R);
}
//-------------------------------------------------------------------------
proc leftKernel(matrix M)
"USAGE:  leftKernel(M);   M a matrix
RETURN:  module
PURPOSE: computes left kernel of matrix M (a module of all elements v such that vM=0)
EXAMPLE:  example leftKernel; shows an example
"
{
  return( transpose( modulo( transpose(M),std(0) ) ) );
}
example
{"EXAMPLE:";echo = 2;
  ring r= 0,(x,y,z),dp;
  matrix M[3][1] = x,y,z;
  print(M);
  matrix L = leftKernel(M);
  print(L);
  // check:
  print(L*M);
}
//------------------------------------------------------------------------
proc leftInverse(module M)
"USAGE:  leftInverse(M);  M a module
RETURN:  module
PURPOSE: computes such a matrix L, that LM = Id;
EXAMPLE: example leftInverse; shows an example
NOTE: exists only in the case when M is free submodule
"
{
  // it works also for the NC case;
  int NCols = ncols(M);
  module Id = freemodule(NCols);
  module N  = transpose(M);
  intvec old_opt=Opt_Our();
  Id = std(Id);
  matrix T;
  // check the correctness (Id \subseteq M)
  // via dimension: dim (M) = -1!
  int d = dim_Our(N);
  if (d != -1)
  {
    // No left inverse exists
    return(matrix(0));
  }
  matrix T2 = lift(N, Id);
  T2 =  transpose(T2);
  option(set,old_opt);  // set the options back
  return(T2);
}
example
{
  "EXAMPLE:";echo =2;
  // a trivial example:
  ring r = 0,(x,z),dp;
  matrix M[2][1] = 1,x2z;
  print(M);
  print( leftInverse(M) );
  kill r;
  // derived from the example TwoPendula:
  ring r=(0,m1,m2,M,g,L1,L2),Dt,dp;
  matrix U[3][1];
  U[1,1]=(-L2)*Dt^4+(g)*Dt^2;
  U[2,1]=(-L1)*Dt^4+(g)*Dt^2;
  U[3,1]=(L1*L2)*Dt^4+(-g*L1-g*L2)*Dt^2+(g^2);
  module M = module(U);
  module L = leftInverse(M);
  print(L);
  // check
  print(L*M);
}
//-----------------------------------------------------------------------
proc rightInverse(module R)
"USAGE:  rightInverse(M);  M a module
RETURN:  module
PURPOSE: computes such a matrix L, that ML = Id
EXAMPLE: example rightInverse; shows an example
NOTE: exists only in the case when M is free submodule
"
{
  // for comm case it suffices
  if (isCommutative())
  {
    return(transpose(leftInverse(transpose(R))));
  }
  // for noncomm
  def save = basering; def sop = opposite(save);
  setring sop; module Mop = oppose(save,R);
  Mop = transpose(Mop);
  module L = leftInverse(Mop);
  setring save; module L = oppose(sop,L);
  L = transpose(L);
  return(matrix(L));
}
example
{ "EXAMPLE:";echo =2;
  // a trivial example:
  ring r = 0,(x,z),dp;
  matrix M[1][2] = 1,x2+z;
  print(M);
  print( rightInverse(M) );
  kill r;
  // derived from the TwoPendula example:
  ring r=(0,m1,m2,M,g,L1,L2),Dt,dp;
  matrix U[1][3];
  U[1,1]=(-L2)*Dt^4+(g)*Dt^2;
  U[1,2]=(-L1)*Dt^4+(g)*Dt^2;
  U[1,3]=(L1*L2)*Dt^4+(-g*L1-g*L2)*Dt^2+(g^2);
  module M = module(U);
  module L = rightInverse(M);
  print(L);
  // check
  print(M*L);
}
//-----------------------------------------------------------------------
static proc dim_Our(module R)
{
  int d;
  if (attrib(R,"isSB")<>1)
  {
    R = std(R);
  }
  d = dim(R);
  return(d);
}
//-----------------------------------------------------------------------
static proc Ann_Our(module R)
{
  return(Ann(R));
}
//-----------------------------------------------------------------------
static proc Ext_Our(int i, module R, list #)
{
  // mimicking 'Ext_R' from homolog.lib
  int ExtraArg = ( size(#)>0 );
  if (ExtraArg)
  {
    return( Ext_R(i,R,#[1]) );
  }
  else
  {
    return( Ext_R(i,R) );
  }
}
//------------------------------------------------------------------------
static proc is_zero_Our
{
  //just a copy of 'is_zero' from "poly.lib" patched with GKdim
  int d = dim_Our(std(#[1]));
  int a = ( d==-1 );
  if( size(#) >1 ) { list L=a,d; return(L); }
  return(a);
  //  return( is_zero(R) ) ;
}
//------------------------------------------------------------------------
static proc control_output(int i, int NVars, module R, module Ext_1, list Gen)
"USAGE:  control_output(i, NVars, R, Ext_1),
PURPOSE: where
@*         i is integer (number of first nonzero Ext or a number of variables in a basering + 1 in case that all the Exts are zero),
@*           NVars:  integer, number of variables in a base ring,
@*           R:  module R (cokernel representation),
@*           Ext_1:  module, the first Ext(its cokernel representation)
RETURN:  list with all the contollability properties of the system which is to be returned in 'control' procedure
NOTE:  this procedure is used in 'control' procedure
"{
  // TODO: NVars to be replaced with the global hom. dimension of basering!!!
  // Is not clear what to do with gl.dim of qrings
  string DofS = "dimension of the system:";
  string Fn   = "number of first nonzero Ext:";
  string Gen_mes = "Parameter constellations which might lead to a non-controllable system:";

  module RK = rightKernel(R);
  int d=dim_Our(std(transpose(R)));

  if (i==1)
  {
    return(
            list ( Fn,
                   i,
                  "not controllable , image representation for controllable part:",
                    RK,
                  "kernel representation for controllable part:",
                   leftKernel( RK ),
                  "obstruction to controllability",
                   Ext_1,
                  "annihilator of torsion module (of obstruction to controllability)",
                   Ann_Our(Ext_1),
                   DofS,
                   d
                 )
          );
  }

  if(i>NVars)
  {
    return( list(  Fn,
                   -1,
                  "strongly controllable(flat), image representation:",
                   RK,
                  "left inverse to image representation:",
                   leftInverse(RK),
                   DofS,
                   d,
                   Gen_mes,
                   Gen)
          );
  }

  //
  //now i<=NVars
  //

  if( (i==2) )
  {
    return( list( Fn,
                  i,
                 "controllable, not reflexive, image representation:",
                  RK,
                  DofS,
                  d,
                  Gen_mes,
                  Gen)
          );
  }

  if( (i>=3) )
  {
    return( list ( Fn,
                   i,
                  "reflexive, not strongly controllable, image representation:",
                   RK,
                   DofS,
                   d,
                      Gen_mes,
                   Gen)
          );
  }
}
//-------------------------------------------------------------------------

proc control(module R)
"USAGE:  control(R);  R a module (R is the matrix of the system of equations to be investigated)
RETURN:  list
PURPOSE: compute the list of all the properties concerning controllability of the system (behavior), represented by the matrix R
NOTE: the properties and corresponding data like controllability, flatness, dimension of the system, degree of controllability, kernel and image representations, genericity of parameters, obstructions to controllability, annihilator of torsion submodule and left inverse are investigated
EXAMPLE:  example control; shows an example
"
{
  int i;
  int NVars=nvars(basering);
  // TODO: NVars to be replaced with the global hom. dimension of basering!!!
  int ExtIsZero;
  intvec v=Opt_Our();
  module R_std=std(R);
  module Ext_1 = std(Ext_Our(1,R_std));

  ExtIsZero=is_zero_Our(Ext_1);
  i=1;
  while( (ExtIsZero) && (i<=NVars) )
  {
    i++;
    ExtIsZero = is_zero_Our( Ext_Our(i,R_std) );
  }
  matrix T=lift(R,R_std);
  list l=genericity(T);
  option(set,v);

  return( control_output( i, NVars, R, Ext_1, l ) );
}
example
{"EXAMPLE:";echo = 2;
  // a WindTunnel example
  ring A = (0,a, omega, zeta, k),(D1, delta),dp;
  module R;
  R = [D1+a, -k*a*delta, 0, 0],
      [0, D1, -1, 0],
      [0, omega^2, D1+2*zeta*omega, -omega^2];
  R=transpose(R);
  view(R);
  view(control(R));
}
//--------------------------------------------------------------------------
proc controlDim(module R)
"USAGE:  controlDim(R); R a module (R is the matrix of the system of equations to be investigated)
RETURN: list
PURPOSE: computes list of all the properties concerning controllability of the system (behavior), represented by the  matrix R
EXAMPLE:  example controlDim; shows an example
NOTE: the properties and corresponding data like controllability, flatness, dimension of the system, degree of controllability, kernel and image representations, genericity of parameters, obstructions to controllability, annihilator of torsion submodule and left inverse are investigated.
@* This procedure is analogous to 'control' but uses dimension calculations.
@* The implemented approach works for full row rank matrices only (the check is done automatically).
"
{
  if( nrows(R) != colrank(transpose(R)) )
  {
    return ("controlDim cannot be applied, since R does not have full row rank");
  }
  intvec     v = Opt_Our();
  module R_std = std(R);
  int        d = dim_Our(R_std);
  int    NVars = nvars(basering);
  int        i = NVars-d;
  module Ext_1 = std(Ext_Our(1,R_std));
  matrix     T = lift(R,R_std);
  list       l = genericity(T);
  option(set, v);
  return( control_output( i, NVars, R, Ext_1, l));
}
example
{"EXAMPLE:";echo = 2;
  //a WindTunnel example
  ring A = (0,a, omega, zeta, k),(D1, delta),dp;
  module R;
  R = [D1+a, -k*a*delta, 0, 0],
      [0, D1, -1, 0],
      [0, omega^2, D1+2*zeta*omega, -omega^2];
  R=transpose(R);
  view(R);
  view(controlDim(R));
}
//------------------------------------------------------------------------
proc colrank(module M)
"USAGE: colrank(M); M a matrix/module
RETURN: int
PURPOSE: compute the column rank of M as of matrix
NOTE: this procedure uses Bareiss algorithm
"{
  // NOte continued:
  // which might not terminate in some cases
  module M_red  = bareiss(M)[1];
  int NCols_red = ncols(M_red);
  return (NCols_red);
}
example
{"EXAMPLE: ";echo = 2;
  // de Rham complex
  ring r=0,(D(1..3)),dp;
  module R;
  R=[0,-D(3),D(2)],
    [D(3),0,-D(1)],
    [-D(2),D(1),0];
  R=transpose(R);
  colrank(R);
}

//------------------------------------------------------------------------
static proc autonom_output( int i, int NVars, module RC, int R_rank )
"USAGE:  proc autonom_output(i, NVars, RC, R_rank)
           i:  integer, number of first nonzero Ext or
               just number of variables in a base ring + 1 in case that all the Exts are zero
           NVars:  integer, number of variables in a base ring
           RC: module, kernel-representation of controllable part of the system
           R_rank: integer, column rank of the representation matrix
PURPOSE: compute all the autonomy properties of the system which is to be returned in 'autonom' procedure
RETURN:  list
NOTE:  this procedure is used in 'autonom' procedure
"
{
  int d=NVars-i;//that is the dimension of the system
  string DofS="dimension of the system:";
  string Fn = "number of first nonzero Ext:";
  if(i==0)
  {
    return( list(  Fn,
                   i,
                  "not autonomous",
                   "kernel representation for controllable part",
                   RC,
                   "column rank of the matrix",
                   R_rank,
                   DofS,
                   d )
          );
  }

  if( i>NVars )
  {
    return( list( Fn,
                  -1,
                  "trivial",
                  DofS,
                  d )
          );
  }

  //
  //now i<=NVars
  //


  if( i==1 )
  // in case that NVars==1 there is no sense to consider the notion
  // of strongly autonomous behavior, because it does not imply
  // that system is overdetermined in this case
  {
    return( list ( Fn,
                   i,
                  "autonomous, not overdetermined",
                   DofS,
                   d )
          );
  }

  if( i==NVars )
  {
    return( list(  Fn,
                   i,
                  "strongly autonomous(fin. dimensional),in particular overdetermined",
                   DofS,
                   d)
          );
  }

  if( i<NVars )
  {
    return( list ( Fn,
                   i,
                  "overdetermined, not strongly autonomous",
                   DofS,
                   d)
          );
  }
}
//--------------------------------------------------------------------------
proc autonomDim(module R)
"USAGE:  autonomDim(R);   R a module (R is a matrix of the system of equations which is to be investigated)
RETURN: list
PURPOSE: computes the list of all the properties concerning autonomy of the system (behavior), represented by the matrix R
NOTE: the properties and corresponding data like autonomy resp. strong autonomy, dimension of the system, autonomy degree, kernel representation and (over)determinacy are investigated.
@* This procedure is analogous to 'autonom' but uses dimension calculations
EXAMPLE:  example autonomDim; shows an example
"
{
  int d;
  int NVars  = nvars(basering);
  module RT  = transpose(R);
  module RC;  //for computation of controllable part if if exists
  int R_rank = ncols(R);
  d          = dim_Our( std(RT) );  //this is the dimension of the system
  int      i = NVars-d;  //First non-zero Ext
  if( d==0 )
    {
      RC = leftKernel(rightKernel(R));
      R_rank=colrank(R);
    }
  return( autonom_output(i,NVars,RC,R_rank) );
}
example
{"EXAMPLE:"; echo = 2;
  // Cauchy1 example
  ring r=0,(s1,s2,s3,s4),dp;
  module R= [s1,-s2],
            [s2, s1],
            [s3,-s4],
            [s4, s3];
  R=transpose(R);
  view( R );
  view( autonomDim(R) );
}
//----------------------------------------------------------
proc autonom(module R)
"USAGE:  autonom(R);   R a module (R is a matrix of the system of equations which is to be investigated)
RETURN:  list
PURPOSE: find all the properties concerning autonomy of the system (behavior) represented by the  matrix R
NOTE: the properties and corresponding data like autonomy resp. strong autonomy, dimension of the system, autonomy degree, kernel representation and (over)determinacy are investigated
EXAMPLE: example autonom; shows an example
"
{
  int NVars=nvars(basering);
  int ExtIsZero;
  module RT=transpose(R);
  module RC;
  int R_rank=ncols(R);
  ExtIsZero=is_zero_Our(Ext_Our(0,RT));
  int i=0;
  while( (ExtIsZero)&&(i<=NVars) )
  {
    i++;
    ExtIsZero = is_zero_Our(Ext_Our(i,RT));
  }
  if (i==0)
  {
    RC = leftKernel(rightKernel(R));
    R_rank=colrank(R);
  }
  return(autonom_output(i,NVars,RC,R_rank));
}
example
{"EXAMPLE:"; echo = 2;
  // Cauchy
  ring r=0,(s1,s2,s3,s4),dp;
  module R= [s1,-s2],
            [s2, s1],
            [s3,-s4],
            [s4, s3];
  R=transpose(R);
  view( R );
  view( autonom(R) );
}


//----------------------------------------------------------
proc genericity(matrix M)
"USAGE:  genericity(M); M is a matrix/module
RETURN:  list (of strings)
PURPOSE: determine parametric expressions which have been assumed to be non-zero in the process of computing the Groebner basis
NOTE: the output list consists of strings. The first string contains the variables only, whereas each further string contains
      a single polynomial in parameters.
@* We strongly recommend to switch on the redSB and redTail options.
@* The procedure is effective with the lift procedure for modules with parameters
EXAMPLE:  example genericity; shows an example
"
{
  // returns "-", if there are no parameters!
  if (npars(basering)==0)
  {
    return("-");
  }
  list RT = evas_genericity(M); // list of strings
  if ((size(RT)==1) && (RT[1] == ""))
  {
    return("-");
  }
  return(RT);
}
example
{  // TwoPendula
  "EXAMPLE:"; echo = 2;
  ring r=(0,m1,m2,M,g,L1,L2),Dt,dp;
  module RR =
    [m1*L1*Dt^2, m2*L2*Dt^2, -1, (M+m1+m2)*Dt^2],
    [m1*L1^2*Dt^2-m1*L1*g, 0, 0, m1*L1*Dt^2],
    [0, m2*L2^2*Dt^2-m2*L2*g, 0, m2*L2*Dt^2];
  module R = transpose(RR);
  module SR = std(R);
  matrix T = lift(R,SR);
  genericity(T);
  //-- The result might be different when computing reduced bases:
  matrix T2;
  option(redSB);
  option(redTail);
  module SR2 = std(R);
  T2 =  lift(R,SR2);
  genericity(T2);
}
//---------------------------------------------------------------
static proc victors_genericity(matrix M)
{
  // returns "-", if there are no parameters!
  if (npars(basering)==0)
  {
    return("-");
  }
  int plevel = printlevel-voice+2;
  // M is a matrix over a ring with params and vars;
  ideal I = ideal(M); // a list of entries
  I = simplify(I,2); // delete 0's
  // decompose every coeff in every poly
  int i;
  int s = size(I);
  ideal NM;
  poly p;
  number num;
  int  cl=1;
  intvec ZeroVec; ZeroVec[nvars(basering)] = 0;
  intvec W;
  ideal Numero, Denomiro;
  int cNu=0; int cDe=0;
  for (i=1; i<=s; i++)
  {
    // remove contents and add them as polys
    p   = I[i];
    W   = leadexp(p);
    if (W == ZeroVec) // i.e. just a coef
    {
      num    = denominator(leadcoef(p)); // from poly.lib
      NM[cl] = numerator(leadcoef(p));
      dbprint(p,"numerator:");
      dbprint(p, string(NM[cl]));
      cNu++; Numero[cNu]= NM[cl];
      cl++;
      NM[cl] = num; // denominator
      dbprint(p,"denominator:");
      dbprint(p, string(NM[cl]));
      cDe++; Denomiro[cDe]= NM[cl];
      cl++;
      p = p - lead(p); // for the next cycle
    }
    if ( p!= 0)
    {
      num = content(p);
      p   = p/num;
      NM[cl] = denominator(num);
      dbprint(p,"content denominator:");
      dbprint(p, string(NM[cl]));
      cNu++; Numero[cNu]= NM[cl];
      cl++;
      NM[cl] = numerator(num);
      dbprint(p,"content numerator:");
      dbprint(p, string(NM[cl]));
      cDe++; Denomiro[cDe]= NM[cl];
      cl++;
    }
    // it seems that the next elements will not have real influence
    while( p != 0)
    {
      NM[cl] = leadcoef(p); // should be all integer, i.e. non-rational
      dbprint(p,"coef:");
      dbprint(p, string(NM[cl]));
      cl++;
      p = p - lead(p);
    }
  }
  NM = simplify(NM,4); // delete identical
  string newvars = parstr(basering);
  def save = basering;
  string NewRing = "ring @NR =" +string(char(basering))+",("+newvars+"),Dp;";
  execute(NewRing);
  // get params as variables
  // create a list of non-monomials
  ideal @L;
  ideal F;
  ideal NM = imap(save,NM);
  NM = simplify(NM,8); //delete multiples
  poly p,q;
  cl = 1;
  int j, cf;
  for(i=1; i<=size(NM);i++)
  {
    p = NM[i] - lead(NM[i]);
    if (p!=0)
    {
      //      L[cl] = p;
      F  = factorize(NM[i],1); //non-constant factors only
      cf = 1;
      // factorize every polynomial
      // throw away every monomial from factorization (also constants from above ring)
      for (j=1; j<=size(F);j++)
      {
        q = F[j]-lead(F[j]);
        if (q!=0)
        {
          @L[cl] = F[j];
          cl++;
        }
      }
    }
  }
  // return the result [in string-format]
  @L = simplify(@L,2+4+8); // skip zeroes, doubled and entries, diff. by a constant
  list SL;
  for (j=1; j<=size(@L);j++)
  {
    SL[j] = string(@L[j]);
  }
  setring save;
  return(SL);
}
//---------------------------------------------------------------
static proc evas_genericity(matrix M)
{
  // called from the main genericity proc
  ideal I = ideal(M);
  I = simplify(I,2+4);
  int s = ncols(I);
  ideal Den;
  poly p;
  int i;
  for (i=1; i<=s; i++)
  {
    p = I[i];
    while (p !=0)
    {
      Den = Den, denominator(leadcoef(p));
      p   = p-lead(p);
    }
  }
  Den = simplify(Den,2+4);
  string newvars = parstr(basering);
  def save = basering;
  string NewRing = "ring @NR =(" +string(char(basering))+"),("+newvars+"),Dp;";
  execute(NewRing);
  ideal F;
  ideal Den = imap(save,Den);
  Den = simplify(Den,2);
  int s1 = ncols(Den);
  for (i=1; i<=s1; i++)
  {
    Den[i] = normalize(Den[i]);
    if ( Den[i] !=1)
    {
      F= F, factorize(Den[i],1);
    }
  }
  F = simplify(F, 2+4+8);
  ideal @L = F;
  @L = simplify(@L,2);
  list SL;
  int c,j;
  string Mono;
  c = 1;
  for (j=1; j<= ncols(@L);j++)
  {
    if (leadcoef(@L[j]) <0)
    {
      @L[j] = -1*@L[j];
    }
    if (((@L[j] - lead(@L[j]))==0 ) && (@L[j]!=0) ) //@L[j] is a monomial
    {
      Mono = Mono + string(@L[j])+ ","; // concatenation
    }
    else
    {
      c++;
      SL[c] = string(@L[j]);
    }
  }
  if (Mono!="")
  {
    Mono = Mono[1..size(Mono)-1]; // delete the last colon
  }
  SL[1] = Mono;
  setring save;
  return(SL);
}

//---------------------------------------------------------------
proc canonize(list L)
"USAGE:  canonize(L); L a list
RETURN:  list
PURPOSE: modules in the list are canonized by computing their reduced minimal (= unique up to constant factor w.r.t. the given ordering) Groebner bases
ASSUME:  L is the output of control/autonomy procedures
EXAMPLE:  example canonize; shows an example
"
{
  list M = L;
  intvec v=Opt_Our();
  int s = size(L);
  int i;
  for (i=2; i<=s; i=i+2)
  {
    if (typeof(M[i])=="module")
    {
      M[i] = std(M[i]);
      //      M[i] = prune(M[i]); // mimimal embedding: no need yet
      //      M[i] = std(M[i]);
    }
  }
  option(set, v); //set old values back
  return(M);
}
example
{  // TwoPendula with L1=L2=L
  "EXAMPLE:"; echo = 2;
  ring r=(0,m1,m2,M,g,L),Dt,dp;
  module RR =
    [m1*L*Dt^2, m2*L*Dt^2, -1, (M+m1+m2)*Dt^2],
    [m1*L^2*Dt^2-m1*L*g, 0, 0, m1*L*Dt^2],
    [0, m2*L^2*Dt^2-m2*L*g, 0, m2*L*Dt^2];
  module R = transpose(RR);
  list C = control(R);
  list CC = canonize(C);
  view(CC);
}

//----------------------------------------------------------------

static proc elementof (int i, intvec v)
{
  int b=0;
  for(int j=1;j<=nrows(v);j++)
    {
      if(v[j]==i)
        {
          b=1;
          return (b);
        }
    }
  return (b);
}
//-----------------------------------------------------------------
proc iostruct(module R)
"USAGE: iostruct( R ); R a module
RETURN:  list L with entries: string s, intvec v, module P and module Q
PURPOSE:  if R is the kernel-representation-matrix of some system, then we output a input-ouput representation Py=Qu of the system, the components that have been chosen as outputs(intvec v) and a comment s
NOTE:  the procedure uses Bareiss algorithm
EXAMPLE:  example iostruct; shows an example
"
{
  // NOTE cont'd
  //which might not terminate in some cases
  list L = bareiss(R);
  int R_rank = ncols(L[1]);
  int NCols=ncols(R);
  intvec v=L[2];
  int temp;
  int NRows=nrows(v);
  int i,j;
  int b=1;
  module P;
  module Q;
  int n=0;

  while(b==1)               //sort v through bubblesort
    {
      b=0;
      for(i=1;i<NRows;i++)
        {
          if(v[i]>v[i+1])
          {
            temp=v[i];
            v[i]=v[i+1];
            v[i+1]=temp;
            b=1;
          }
        }
    }
  P=R[v];                     //generate P
  for(i=1;i<=NCols;i++)       //generate Q
    {
      if(elementof(i,v)==1)
        {
          i++;
          continue;
        }
      Q=Q,R[i];
    }
  Q=simplify(Q,2);
  string s="The following components have been chosen as outputs: ";
  return (list(s,v,P,Q));
}
example
{"EXAMPLE:";echo = 2;
 //Example Antenna
 ring r = (0, K1, K2, Te, Kp, Kc),(Dt, delta), (c,dp);
 module RR;
 RR =
   [Dt, -K1, 0, 0, 0, 0, 0, 0, 0],
   [0, Dt+K2/Te, 0, 0, 0, 0, -Kp/Te*delta, -Kc/Te*delta, -Kc/Te*delta],
   [0, 0, Dt, -K1, 0, 0, 0, 0, 0],
   [0, 0, 0, Dt+K2/Te, 0, 0, -Kc/Te*delta, -Kp/Te*delta, -Kc/Te*delta],
   [0, 0, 0, 0, Dt, -K1, 0, 0, 0],
   [0, 0, 0, 0, 0, Dt+K2/Te, -Kc/Te*delta, -Kc/Te*delta, -Kp/Te*delta];
 module R = transpose(RR);
 view(iostruct(R));
}

//---------------------------------------------------------------
static proc smdeg(matrix N)
"USAGE: smdeg( N ); N a matrix
RETURN:  intvec
PURPOSE: returns an intvec of length 2 with the index of an element of N with smallest degree
"
{
  int n = nrows(N);
  int m = ncols(N);
  int d,d_temp;
  intvec v;
  int i,j;            // counter

  if (N==0)
  {
    v = 1,1;
    return(v);
  }

  for (i=1; i<=n; i++)
// hier wird ein Element ausgewaehlt(!=0) und mit dessen Grad gestartet
  {
    for (j=1; j<=m; j++)
    {
      if( deg(N[i,j])!=-1 )
      {
        d=deg(N[i,j]);
        break;
      }
    }
    if (d != -1)
    {
      break;
    }
  }
  for(i=1; i<=n; i++)
  {
    for(j=1; j<=m; j++)
    {
      d_temp = deg(N[i,j]);
      if ( (d_temp < d) && (N[i,j]!=0) )
      {
        d=d_temp;
      }
    }
  }
  for (i=1; i<=n; i++)
  {
    for (j=1; j<=m;j++)
    {
      if ( (deg(N[i,j]) == d) && (N[i,j]!=0) )
      {
        v = i,j;
        return(v);
      }
    }
  }
}
//---------------------------------------------------------------
static proc NoNon0Pol(vector v)
"USAGE: NoNon0Pol(v), v a vector
RETURN:  int
PURPOSE: returns 1, if there is only one non-zero element in v and 0 else
"{
  int i,j;
  int n = nrows(v);
  for( j=1; j<=n; j++)
  {
    if (v[j] != 0)
    {
      i++;
    }
  }
  if ( i!=1 )
  {
    i=0;
  }
  return(i);
}
//---------------------------------------------------------------
static proc extgcd_Our(poly p, poly q)
{
  ideal J;   //for extgcd-computations
  matrix T; //----------"------------
  list L;
  // the extgcd-command has a bug in versions before 2-0-7
  if ( system("version")<=2006 )
  {
    J = p,q; // J = N[k-1,k-1],N[k,k]; //J is of type ideal
    L[1] = liftstd(J,T);  //T is of type matrix
    if(J[1]==p) //this is just for the case the SINGULAR swaps the
    //      two elements due to ordering
    {
      L[2] = T[1,1];
      L[3] = T[2,1];
    }
    else
    {
      L[2] = T[2,1];
      L[3] = T[1,1];
    }
  }
  else
  {
    L=extgcd(p,q);
    //    L=extgcd(N[k-1,k-1],N[k,k]);
    //one can use this line if extgcd-bug is fixed
  }
  return(L);
}
static proc normalize_Our(matrix N, matrix Q)
"USAGE: normalize_Our(N,Q), N, Q are two matrices
PURPOSE: normalizes N and divides the columns of Q through the leading coefficients of the columns of N
RETURN: normalized matrix N and altered Q(according to the scheme mentioned in purpose). If number of columns of N and Q do not coincide, N and Q are returned unchanged
NOTE: number of columns of N and Q must coincide.
"
{
  if(ncols(N) != ncols(Q))
    {
      return (N,Q);
    }
  module M = module(N);
  module S = module(Q);
  int NCols = ncols(N);
  number n;
  for(int i=1;i<=NCols;i++)
    {
      n = leadcoef(M[i]);
      if( n != 0 )
        {
          M[i]=M[i]/n;
          S[i]=S[i]/n;
        }
     }
   N = matrix(M);
   Q = matrix(S);
   return (N,Q);
}

//---------------------------------------------------------------
proc oldsmith( module M )
"USAGE: oldsmith(M); M a module/matrix
PURPOSE: computes the Smith normal form of a matrix
RETURN: a list of length 4 with the following entries:
@*      [1]: the Smith normal form S of M,
@*      [2]: the rank of M,
@*      [3]: a unimodular matrix U,
@*      [4]: a unimodular matrix V,
such that U*M*V=S. An warning is returned when no Smith form exists.
NOTE: Older experimental implementation. The Smith form only exists over PIDs (principal ideal domains). Use global ordering for computations!
"
{
  if (nvars(basering)>1) //if more than one variable, return empty list
  {
    string s="The Smith-Form only exists for principal ideal domains";
    return (s);
  }
  matrix N = matrix(M);         //Typecasting
  int n = nrows(N);
  int m = ncols(N);
  matrix P = unitmat(n);       //left transformation matrix
  matrix Q = unitmat(m);       //right transformation matrix
  int k, i, j, deg_temp;
  poly tmp;
  vector v;
  list L;                      //for extgcd-computation
  intmat f[1][n];              //to save degrees
  matrix lambda[1][n];         //to save leadcoefficients
  intmat g[1][m];              //to save degrees
  matrix mu[1][m];             //to save leadcoefficients
  int ii;                       //counter

  while ((k!=n) && (k!=m) )
  {
    k++;
    while ((k<=n) && (k<=m))  //outer while-loop for column-operations
    {
      while(k<=m )        //inner while-loop for row-operations
      {
        if( (n>m) && (k < n) && (k<m))
        {
          if( simplify((ideal(submat(N,k+1..n,k+1..m))),2)== 0)
          {
            return(N,k-1,P,Q);
          }
        }
        i,j = smdeg(submat(N,k..n,k..m)); //choose smallest degree in the remaining submatrix
        i=i+(k-1);                        //indices adjusted to the whole matrix
        j=j+(k-1);
        if(i!=k)                    //take the element with smallest degree in the first position
        {
          N=permrow(N,i,k);
          P=permrow(P,i,k);
        }
        if(j!=k)
        {
          N=permcol(N,j,k);
          Q=permcol(Q,j,k);
        }
        if(NoNon0Pol(N[k])==1)
        {
          break;
        }
        tmp=leadcoef(N[k,k]);
        deg_temp=ord(N[k,k]);             //ord outputs the leading degree of N[k,k]
        for(ii=k+1;ii<=n;ii++)
        {
          lambda[1,ii]=leadcoef(N[ii,k])/tmp;
          f[1,ii]=deg(N[ii,k])-deg_temp;
        }
        for(ii=k+1;ii<=n;ii++)
        {
          N = addrow(N,k,-lambda[1,ii]*var(1)^f[1,ii],ii);
          P = addrow(P,k,-lambda[1,ii]*var(1)^f[1,ii],ii);
          N,Q=normalize_Our(N,Q);
        }
      }
      if (k>n)
      {
        break;
      }
      if(NoNon0Pol(transpose(N)[k])==1)
      {
        break;
      }
      tmp=leadcoef(N[k,k]);
      deg_temp=ord(N[k,k]); //ord outputs the leading degree of N[k][k]

      for(ii=k+1;ii<=m;ii++)
      {
        mu[1,ii]=leadcoef(N[k,ii])/tmp;
        g[1,ii]=deg(N[k,ii])-deg_temp;
      }
      for(ii=k+1;ii<=m;ii++)
      {
        N=addcol(N,k,-mu[1,ii]*var(1)^g[1,ii],ii);
        Q=addcol(Q,k,-mu[1,ii]*var(1)^g[1,ii],ii);
        N,Q=normalize_Our(N,Q);
      }
    }
    if( (k!=1) && (k<n) && (k<m) )
    {
      L = extgcd_Our(N[k-1,k-1],N[k,k]);
      if ( N[k-1,k-1]!=L[1] )  //means that N[k-1,k-1] is not a divisor of N[k,k]
      {
        N=addrow(N,k-1,L[2],k);
        P=addrow(P,k-1,L[2],k);
        N,Q=normalize_Our(N,Q);

        N=addcol(N,k,-L[3],k-1);
        Q=addcol(Q,k,-L[3],k-1);
        N,Q=normalize_Our(N,Q);
        k=k-2;
      }
    }
  }
  if( (k<=n) && (k<=m) )
  {
    if( N[k,k]==0)
    {
      return(N,k-1,P,Q);
    }
  }
  return(N,k,P,Q);
}
example
{
  "EXAMPLE:";echo = 2;
  option(redSB);
  option(redTail);
  ring r   = 0,x,dp;
  module M = [x2,x,3x3-4], [2x2-1,4x,5x2], [2x5,3x,4x];
  print(M);
  list P = oldsmith(M);
  print(P[1]);
  matrix N = matrix(M);
  matrix B = P[3]*N*P[4];
  print(B);
}
// see what happens when the matrix is already in Smith-Form
//  module M = [x,0,0],[0,x2,0],[0,0,x3];
//  list L = oldsmith(M);
// print(L[1]);
//matrix N=matrix(M);
//matrix B=L[3]*N*L[4];
//print(B);
//---------------------------------------------------------------
static proc list_tex(L, string name,link l,int nr_loop)
"USAGE: list_tex(L,name,l), where L is a list, name a string, l a link
         writes the content of list L in a tex-file 'name'
RETURN: nothing
"
{
  if(typeof(L)!="list")  //in case L is not a list
  {
    texobj(name,L);
  }
  if(size(L)==0)
  {
  }
  else
  {
    string t;
    for (int i=1;i<=size(L);i++)
    {
      while(1)
      {
        if(typeof(L[i])=="string")  //Fehler hier fuer normalen output->nur wenn string in liste dann verbatim
        {
          t=L[i];
          if(nr_loop==1)
          {
            write(l,"\\begin\{center\}");
            write(l,"\\begin\{verbatim\}");
          }
          write(l,t);
          if(nr_loop==0)
          {
            write(l,"\\par");
          }
          if(nr_loop==1)
          {
            write(l,"\\end\{verbatim\}");
            write(l,"\\end\{center\}");
          }
          break;
        }
        if(typeof(L[i])=="module")
        {
          texobj(name,matrix(L[i]));
          break;
        }
        if(typeof(L[i])=="list")
        {
          list_tex(L[i],name,l,1);
          break;
        }
        write(l,"\\begin\{center\}");
        texobj(name,L[i]);
        write(l,"\\end\{center\}");
        write(l,"\\par");
        break;
      }
    }
  }
}
example
{
  "EXAMPLE:";echo = 2;
}
//---------------------------------------------------------------
proc verbatim_tex(string s, link l)
"USAGE: verbatim_tex(s,l), where s is a string and l a link
PURPOSE: writes the content of s in verbatim-environment in the file
         specified by link
RETURN: nothing
"
{
  write(l,"\\begin{verbatim}");
  write(l,s);
  write(l,"\\end{verbatim}");
  write(l,"\\par");
}
example
{
  "EXAMPLE:";echo = 2;
}
//---------------------------------------------------------------
proc findTorsion(module R, ideal TAnn)
"USAGE:  findTorsion(R, I);   R an ideal/matrix/module, I an ideal
RETURN:  module
PURPOSE: computes the Groebner basis of the submodule of R, annihilated by I
NOTE: especially helpful, when I is the annihilator of the t(R) - the torsion submodule of R. In this case, the result is the explicit presentation of t(R) as
the submodule of R
EXAMPLE: example findTorsion; shows an example
"
{
  // motivation: let R be a module,
  // TAnn is the annihilator of t(R)\subset R
  // compute the generators of t(R) explicitly
  ideal AS = TAnn;
  module S = R;
  if (attrib(S,"isSB")<>1)
  {
    S = std(S);
  }
  if (attrib(AS,"isSB")<>1)
  {
    AS = std(AS);
  }
  int nc  = ncols(S);
  module To = quotient(S,AS);
  To = std(NF(To,S));
  return(To);
}
example
{
  "EXAMPLE:";echo = 2;
  // Flexible Rod
  ring A = 0,(D1, D2), (c,dp);
  module R= [D1, -D1*D2, -1], [2*D1*D2, -D1-D1*D2^2, 0];
  module RR = transpose(R);
  list L = control(RR);
  // here, we have the annihilator:
  ideal LAnn = D1; // = L[10]
  module Tr  = findTorsion(RR,LAnn);
  print(RR);  // the module itself
  print(Tr); // generators of the torsion submodule
}


proc controlExample(string s)
"USAGE:  controlExample(s);   s a string
RETURN:  ring
PURPOSE: set up an example from the mini database by initalizing a ring and a module in a ring
NOTE: in order to see the list of available examples, execute @code{controlExample(\"show\");}
@* To use an example, one has to do the following. Suppose one calls the ring, where the example will be activated, A. Then, by executing
@*  @code{def A = controlExample(\"Antenna\");} and @code{setring A;},
@* A will become a basering from the example \"Antenna\" with
the predefined system module R (transposed).
After that one can just execute @code{control(R);} respectively
@code{autonom(R);} to perform the control resp. autonomy analysis of R.
EXAMPLE: example controlExample; shows an example
"{
  list E, S, D; // E=official name, S=synonym, D=description
  E[1] = "Cauchy1";  S[1] = "cauchy1";  D[1] = "1-dimensional Cauchy equation";
  E[2] = "Cauchy2";  S[2] = "cauchy2";  D[2] = "2-dimensional Cauchy equation";
  E[3] = "Control1"; S[3] = "control1"; D[3] = "example of a simple noncontrollable system";
  E[4] = "Control2"; S[4] = "control2"; D[4] = "example of a simple controllable system";
  E[5] = "Antenna";  S[5] = "antenna";  D[5] = "antenna";
  E[6] = "Einstein"; S[6] = "einstein"; D[6] = "Einstein equations in vacuum";
  E[7] = "FlexibleRod"; S[7] = "flexible rod"; D[7] = "flexible rod";
  E[8] = "TwoPendula";  S[8] = "two pendula";  D[8] = "two pendula mounted on a cart";
  E[9] = "WindTunnel";  S[9] = "wind tunnel";D[9] = "wind tunnel";
  E[10] = "Zerz1";      S[10] = "zerz1"; D[10] = "example from the lecture of Eva Zerz";
  // all the examples so far
  int i;
  if ( (s=="show") || (s=="Show") )
  {
    print("The list of examples:");
    for (i=1; i<=size(E); i++)
    {
      printf("name: %s,  desc: %s", E[i],D[i]);
    }
    return();
  }
  string t;
  for (i=1; i<=size(E); i++)
  {
    if ( (s==E[i]) || (s==S[i]) )
    {
      t = "def @A = ex"+E[i]+"();";
      execute(t);
      return(@A);
    }
  }
  "No example found";
  return();
}
example
{
  "EXAMPLE:";echo = 2;
  controlExample("show");   // let us see all available examples:
  def B = controlExample("TwoPendula"); // let us set up a particular example
  setring B;
  print(R);
}

//----------------------------------------------------------
//
//Some example rings with defined systems
//----------------------------------------------------------
//autonomy:
//
//----------------------------------------------------------
static proc exCauchy1()
{
  ring @r=0,(s1,s2),dp;
  module R= [s1,-s2],
            [s2, s1];
  R=transpose(R);
  export R;
  return(@r);
}
//----------------------------------------------------------
static proc exCauchy2()
{
  ring @r=0,(s1,s2,s3,s4),dp;
  module R= [s1,-s2],
            [s2, s1],
            [s3,-s4],
            [s4, s3];
  R=transpose(R);
  export R;
  return(@r);
}
//----------------------------------------------------------
static proc exZerz1()
{
  ring @r=0,(d1,d2),dp;
  module R=[d1^2-d2],
           [d2^2-1];
  R=transpose(R);
  export R;
  return(@r);
}
//----------------------------------------------------------
//control
//----------------------------------------------------------
static proc exControl1()
{
  ring @r=0,(s1,s2,s3),dp;
  module R=[0,-s3,s2],
           [s3,0,-s1];
  R=transpose(R);
  export R;
  return(@r);
}
//----------------------------------------------------------
static proc exControl2()
{
  ring @r=0,(s1,s2,s3),dp;
  module R=[0,-s3,s2],
           [s3,0,-s1],
           [-s2,s1,0];
  R=transpose(R);
  export R;
  return(@r);
}
//----------------------------------------------------------
static proc exAntenna()
{
  ring @r = (0, K1, K2, Te, Kp, Kc),(Dt, delta), dp;
  module R;
  R = [Dt, -K1, 0, 0, 0, 0, 0, 0, 0],
      [0, Dt+K2/Te, 0, 0, 0, 0, -Kp/Te*delta, -Kc/Te*delta, -Kc/Te*delta],
      [0, 0, Dt, -K1, 0, 0, 0, 0, 0],
      [0, 0, 0, Dt+K2/Te, 0, 0, -Kc/Te*delta, -Kp/Te*delta, -Kc/Te*delta],
      [0, 0, 0, 0, Dt, -K1, 0, 0, 0],
      [0, 0, 0, 0, 0, Dt+K2/Te, -Kc/Te*delta, -Kc/Te*delta, -Kp/Te*delta];

  R=transpose(R);
  export R;
  return(@r);
}

//----------------------------------------------------------

static proc exEinstein()
{
  ring @r = 0,(D(1..4)),dp;
  module R =
  [D(2)^2+D(3)^2-D(4)^2, D(1)^2, D(1)^2, -D(1)^2, -2*D(1)*D(2), 0, 0, -2*D(1)*D(3), 0, 2*D(1)*D(4)],
  [D(2)^2, D(1)^2+D(3)^2-D(4)^2, D(2)^2, -D(2)^2, -2*D(1)*D(2), -2*D(2)*D(3), 0, 0, 2*D(2)*D(4), 0],
  [D(3)^2, D(3)^2, D(1)^2+D(2)^2-D(4)^2, -D(3)^2, 0, -2*D(2)*D(3), 2*D(3)*D(4), -2*D(1)*D(3), 0, 0],
  [D(4)^2, D(4)^2, D(4)^2, D(1)^2+D(2)^2+D(3)^2, 0, 0, -2*D(3)*D(4), 0, -2*D(2)*D(4), -2*D(1)*D(4)],
  [0, 0, D(1)*D(2), -D(1)*D(2), D(3)^2-D(4)^2, -D(1)*D(3), 0, -D(2)*D(3), D(1)*D(4), D(2)*D(4)],
  [D(2)*D(3), 0, 0, -D(2)*D(3),-D(1)*D(3), D(1)^2-D(4)^2, D(2)*D(4), -D(1)*D(2), D(3)*D(4), 0],
  [D(3)*D(4), D(3)*D(4), 0, 0, 0, -D(2)*D(4), D(1)^2+D(2)^2, -D(1)*D(4), -D(2)*D(3), -D(1)*D(3)],
  [0, D(1)*D(3), 0, -D(1)*D(3), -D(2)*D(3), -D(1)*D(2), D(1)*D(4), D(2)^2-D(4)^2, 0, D(3)*D(4)],
  [D(2)*D(4), 0, D(2)*D(4), 0, -D(1)*D(4), -D(3)*D(4), -D(2)*D(3), 0, D(1)^2+D(3)^2, -D(1)*D(2)],
  [0, D(1)*D(4), D(1)*D(4), 0, -D(2)*D(4), 0, -D(1)*D(3), -D(3)*D(4), -D(1)*D(2), D(2)^2+D(3)^2];

  R=transpose(R);
  export R;
  return(@r);
}

//----------------------------------------------------------
static proc exFlexibleRod()
{
  ring @r = 0,(D1, delta), dp;
  module R;
  R = [D1, -D1*delta, -1], [2*D1*delta, -D1-D1*delta^2, 0];

  R=transpose(R);
  export R;
  return(@r);
}

//----------------------------------------------------------
static proc exTwoPendula()
{
  ring @r=(0,m1,m2,M,g,L1,L2),Dt,dp;
  module R = [m1*L1*Dt^2, m2*L2*Dt^2, -1, (M+m1+m2)*Dt^2],
             [m1*L1^2*Dt^2-m1*L1*g, 0, 0, m1*L1*Dt^2],
             [0, m2*L2^2*Dt^2-m2*L2*g, 0, m2*L2*Dt^2];

  R=transpose(R);
  export R;
  return(@r);
}
//----------------------------------------------------------
static proc exWindTunnel()
{
  ring @r = (0,a, omega, zeta, k),(D1, delta),dp;
  module R = [D1+a, -k*a*delta, 0, 0],
             [0, D1, -1, 0],
             [0, omega^2, D1+2*zeta*omega, -omega^2];

  R=transpose(R);
  export R;
  return(@r);
}

/* noncomm examples for leftInverse/rightInverse:

LIB "jacobson.lib";
    ring w = 0,(x,d),Dp;
    def W=nc_algebra(1,1);
    setring W;
    matrix m[3][3]=[d2,d+1,0],[d+1,0,d3-x2*d],[2d+1, d3+d2, d2];
    list J=jacobson(m,0);

leftInverse(J[3]); // exist
rightInverse(J[3]);

leftInverse(J[1]); // zero
rightInverse(J[1]);

list JJ = jacobson(J[1],0);

leftInverse(JJ[3]); // exist
rightInverse(JJ[3]);

leftInverse(JJ[1]); // exist
rightInverse(JJ[1]);

leftInverse(JJ[2]); // zero
rightInverse(JJ[2]);

*/