/usr/share/singular/LIB/chern.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 | ////////////////////////////////////////////////////////////////
version = "version chern.lib 0.7 Nov_2016 "; //$Id: 6d812bcfc7456848f2e80361592351c1b5803b69 $
category = "Chern classes";
info="
LIBRARY: chern.lib Symbolic Computations with Chern classes,
Computation of Chern classes
AUTHOR: Oleksandr Iena, o.g.yena@gmail.com, yena@mathematik.uni-kl.de
OVERVIEW:
A toolbox for symbolic computations with Chern classes.
The Aluffi's algorithms for computation of characteristic classes of algebraic varieties
(Segre, Fulton, Chern-Schwartz-MacPherson classes) are implemented as well.
REFERENCES:
[1] Aluffi, Paolo Computing characteristic classes of projective schemes.
Journal of Symbolic Computation, 35 (2003), 3-19.
[2] Iena, Oleksandr, On symbolic computations with Chern classes:
remarks on the library chern.lib for Singular,
http://hdl.handle.net/10993/22395, 2015.
[3] Lascoux, Alain, Classes de Chern d'un produit tensoriel.
C. R. Acad. Sci., Paris, Ser. A 286, 385-387 (1978).
[4] Manivel, Laurent Chern classes of tensor products, arXiv 1012.0014, 2010.
PROCEDURES:
symm(l [,N]); symmetric functions in the entries of l
symNsym(f, c); symmetric and non-symmetric parts of a polynomial f
CompleteHomog(N, l); complete homogeneous symmetric functions
segre(N, c); Segre classes in terms of Chern classes
chern(N, s); Chern classes in terms of Segre classes
chNum(N, c); the non-zero Chern numbers in degree N in the entries of c
chNumbers(N, c); the Chern numbers in degree N in the entries of c
sum_of_powers(k, l); the sum of k-th powers of the entries of l
powSumSym(c [,N]); the sums of powers [up to degree N] in terms
of the elementary symmetric polynomials (entries of l)
chAll(c [,N]); Chern character in terms of the Chern classes
chAllInv(c); Chern classes in terms of the Chern character
chHE(c); the highest term of the Chern character
ChernRootsSum(a, b); the Chern roots of a direct sum
chSum(c, C); the Chern classes of a direct sum
ChernRootsDual(l); the Chern roots of the dual vector bundle
chDual(c); the Chern classes of the dual vector bundle
ChernRootsProd(l, L); the Chern roots of a tensor product of vector bundles
chProd(r, c, R, C [,N]); Chern classes of a tensor product of vector bundles
chProdE(c, C); Chern classes of a tensor product of vector bundles
chProdL(r, c, R, C); Chern classes of a tensor product of vector bundles
chProdLP(r, c, R, C); total Chern class of a tensor product of vector bundles
chProdM(r, c, R, C); Chern classes of a tensor product of vector bundles
chProdMP(r, c, R, C); total Chern class of a tensor product of vector bundles
ChernRootsHom(l, L); the Chern roots of a Hom vector bundle
chHom(r, c, R, C [,N]); Chern classes of the Hom-vector bundle
ChernRootsSymm(n, l); the Chern roots of the n-th symmetric power
of a vector bundle with Chern roots from l
ChernRootsWedge(n, l); the Chern roots of the n-th exterior power
of a vector bundle with Chern roots from l
chSymm(k, r, c [,p]); the rank and the Chern classes of the k-th symmetric power
of a vector bundle of rank r with Chern classes c
chSymm2L(r, c); the rank and the Chern classes of the second symmetric power
of a vector bundle of rank r with Chern classes c
chSymm2LP(r, c); the total Chern class of the second symmetric power
of a vector bundle of rank r with Chern classes c
chWedge(k, r, c [,p]); the rank and the Chern classes of the k-th exterior power
of a vector bundle of rank r with Chern classes c
chWedge2L(r, c); the rank and the Chern classes of the second exterior power
of a vector bundle of rank r with Chern classes c
chWedge2LP(r, c); the total Chern class of the second exterior power
of a vector bundle of rank r with Chern classes c
todd(c [,n]); the Todd class
toddE(c); the highest term of the Todd class
Bern(n); the second Bernoulli numbers
tdCf(n); the coefficients of the Todd class of a line bundle
tdTerms(n, f); the terms of the Todd class of a line bundle
coresponding to the Chern root t
tdFactor(n, t); the Todd class of a line bundle coresponding
to the Chern root t
cProj(n); the total Chern class of (the tangent bundle on)
the projective space P_n
chProj(n); the Chern character of (the tangent bundle on)
the projective space P_n
tdProj(n); the Todd class of (the tangent bundle on)
the projective space P_n
eulerChProj(n, r, c); Euler characteristic of a vector bundle on
the projective space P_n
via Hirzebruch-Riemann-Roch theorem
chNumbersProj(n); the Chern numbers of the projective space P_n
classpoly(l, t); polynomial in t with coefficients from l
(without constant term)
chernPoly(l, t); Chern polynomial (constant term 1)
chernCharPoly(r, l, t); polynomial in t corresponding to the Chern character
(constant term r)
toddPoly(td, t); polynomial in t corresponding to the Todd class
(constant term 1)
rHRR(N, ch, td); the main ingredient of the right-hand side
of the Hirzebruch-Riemann-Roch formula
SchurS(I, S); the Schur polynomial corresponding to partition I
in terms of the Segre classes S
SchurCh(I, C); the Schur polynomial corresponding to partition I
in terms of the Chern classes C
part(m, n); partitions of integers not exceeding n
into m non-negative summands
dualPart(I [,N]); partition dual to I
PartC(I, m); the complement of a partition with respect to m
partOver(n, J); partitions over a given partition J with summands not exceeding n
partUnder(J); partitions under a given partition J
SegreA(I); Segre class of the projective subscheme defined by I
FultonA(I); Fulton class of the projective subscheme defined by I
CSMA(I); Chern-Schwartz-MacPherson class of the
projective subscheme defined by I
EulerAff(I); Euler characteristic of the affine subvariety defined by I
EulerProj(I); Euler characteristic of the projective subvariety defined by I
";
LIB "general.lib";
LIB "lrcalc.lib"; // needed for chProdM(..) and chProdMP(..)
//----------------------------------------------------------
proc symm(list l, list #)
"USAGE: symm(l [,n]); l a list of polynomials, n integer
RETURN: list of polynomials
PURPOSE: computes the list of elementary symmetric functions in the entries of l
EXAMPLE: example symm; shows an example
NOTE: makes sense only for a list of polynomials
"
{
int N=size(l);
int n=size(l);
if(size(#)!=0)
{
if( is_integer(#[1]) )
{
N = #[1];
}
}
if(n==0) // if the list is empty, return the empty list
{
return(list());
}
else
{
int i, j;
list rez=list(1, l[1]);
for(i=2; i<=n; i++)
{
if( i<=N )
{
rez=rez+list(0);
}
for(j = min(i, N); j>=1; j--)
{
rez[j+1] = rez[j+1] + rez[j]*l[i];
}
}
return(delete(rez, 1));
}
}
example
{
"EXAMPLE:";echo =2;
// elementary symmetric functions in x, y, z:
ring r = 0, (x, y, z), dp;
list l=(x, y, z);
print(symm(l));
//now let us compute only the first two symmetric polynomials in a(1), ... , a(10)
ring q= 0,(a(1..10)), dp;
list l=a(1..10);
print(symm(l, 2));
}
//-----------------------------------------------------------------------
proc symNsym(poly f, list c)
"USAGE: symNsym(f, c); f polynomial; c list of polynomials
RETURN: list with 2 poly entries
PURPOSE: computes a symmetric and a non-symmetric part of f
in terms of the elementary symmetric functions from c
as well a non-symmetric remainder
EXAMPLE: example symNsym; shows an example
NOTE: constants are not considered symmetric
"
{
ideal V=variables(f); // variables f depends on
int nV=size(V); // their number
if(nV==0)
{
return(list(f, 0));
}
// now f is non-constant and does depend on some variables
c=append_by_zeroes(nV, c); // append c by zeroes if it is too short
def br@=basering; // remember the base ring
// add additional variables to the base ring
execute("ring r@= ("+ charstr(basering) +"),("+varstr(basering)+",c@(1..nV),A@(1..nV)), dp;" );
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
ideal V=F(V);
poly f=F(f);
int i;
for(i=1; i<=nV; i++)
{
f=subst(f, V[i], A@(i) ); // rename the variables of f into A@(1..nV)
}
int N1=nvars(basering)-nV+1; // the number of variable A@(1)
poly rez1=0; // to be the expression in c@(i) of the symmetric part of f
poly rez2=0; // to be the remainder
poly mon; // monomial in c@(i)
poly monc; // the corresponding expression in A@(i)
list l=symm(list(A@(1..nV) )); // symmetric functions in A@(i)
intvec v=leadexp(f), 0; // the exponent of the leading monomial
while(v[N1]!=0)
{
mon=leadcoef(f); // leading coefficient of f
monc=mon;
for(i=1; v[N1+i-1]!=0 ;i++ )
{
mon = mon*c@(i)^( v[N1+i-1]-v[N1+i] );
monc = monc*l[i]^( v[N1+i-1]-v[N1+i] ); // has the same leading coefficient as f
}
rez1=rez1+mon; // add a monomial
f=f-monc; // subtract the monomial
v=leadexp(f), 0;
}
while( leadexp(f)!=0 )
{
rez2=rez2+lead(f);
f=f-lead(f);
}
rez1=rez1+f;
setring br@; // come back to the initial base ring
// define the specialization homomorphism
execute("map FF = r@,"+varstr(br@)+",c[1..nV], V[1..nV];");
return( list( FF(rez1), FF(rez2) ) );
}
example
{
"EXAMPLE:";echo=2;
ring r=0, (x,y,z, c(1..3)), dp;
list l=c(1..3);
// The symmetric part of f = 3x2 + 3y2 + 3z2 + 7xyz + y
// in terms of the elemenatary symmetric functions c(1), c(2), c(3)
// and the remainder
poly f = 3x2 + 3y2 + 3z2 + 7xyz + y;
print( symNsym(f, l) );
// Take a symmetrix polynomial in variables x and z
f=x2+xz+z2;
// Express it in terms of the elementary the symmetric functions
print( symNsym(f, l)[1]);
}
//-------------------------------------------------------------------------------------------
proc CompleteHomog(int N, list c)
"USAGE: CompleteHomog(N, c); N integer, c list of polynomials
RETURN: list of polynomials
PURPOSE: computes the list of the complete homogeneous symmetric polynomials
in terms of the elementary symmetric polynomials (entries of c)
EXAMPLE: example CompleteHomog; shows an example
NOTE:
"
{
c=append_by_zeroes(N, c);
if(N<0) // if N is negative, return the empty list
{
return(list());
}
list rez=list(1); // the result will be computed here
int i, j;
int sign;
poly f;
for(i=1; i<=N; i++) // use the resursive formula
{
f=0;
sign=1;
for(j=1;j<=i; j++) // compute the next complete homogeneous symmetric polynomial
{
f=f+sign*c[j]*rez[i-j+1];
sign=-sign;
}
rez=rez+( list(f) );
}
return(rez);
}
example
{
"EXAMPLE:";echo =2;
ring r = 0, (x(1..3)), dp;
list l=x(1..3);
//Complete homogeneous symmetric polynomials up to degree 3 in variables x(1), x(2), x(3)
print( CompleteHomog(3, l) );
}
//-----------------------------------------------------------------------
proc segre(list c, list #)
"USAGE: segre(c[, N]); c list of polynomials, N integer
RETURN: list of polynomials
PURPOSE: computes the list of the Segre classes up to degree N
in terms of the Chern classes from c
EXAMPLE: example segre; shows an example
NOTE:
"
{
int N;
if(size(#)>0)
{
if( is_integer(#[1]) )
{
N=#[1];
}
}
else
{
N=size(c);
}
c=append_by_zeroes(N, c);
if(N<0) // if N is negative, return the empty list
{
return(list());
}
list rez=list(1); // the result will be computed here
int i, j;
poly f;
for(i=1; i<=N; i++) // use the resursive formula
{
f=0;
for(j=1;j<=i; j++) // compute the next Segre class
{
f=f-c[j]*rez[i-j+1];
}
rez=rez+( list(f) );
}
return(delete(rez,1));
}
example
{
"EXAMPLE:";echo =2;
ring r = 0, (c(1..3)), dp;
list l=c(1..3);
//Segre classes up to degree 5 in Chern classes c(1), c(2), c(3)
print( segre(l, 5) );
}
//-----------------------------------------------------------------------
proc chern(list s, list #)
"USAGE: chern(s); s list of polynomials
RETURN: list of polynomials
PURPOSE: computes the list of the Chern classes up to degree N
in terms of the Segre classes from s
EXAMPLE: example chern; shows an example
NOTE:
"
{
return( segre(s, #) );
}
example
{
"EXAMPLE:"; echo =2;
ring r = 0, (s(1..3)), dp;
list l=s(1..3);
// Chern classes in Segre classes s(1), s(2), s(3)
print( chern(l) );
// This procedure is inverse to segre(...). Indeed:
print( segre(chern(l), 3) );
}
//-----------------------------------------------------------------------
proc chNum(int N, list c)
"USAGE: chNum(N, c); N integer, c list
RETURN: list
PURPOSE: computes the Chern numbers of a vector bundle with Chern classes c
on a complex manifold (variety) of dimension N,
the zeroes corresponding to the higher zero Chern classes are ignored
EXAMPLE: example chNumbers; shows an example
NOTE: computes basically the partitions of N
in summands not greater than the length of c
"
{
int n=size(c);
if(N<0)
{
print("");
return( list() );
}
if( (n==0) || (N==0) )
{
return(list(1));
}
if(n==1) // if there is only one entry in the list
{
return(list(c[1]^N));
}
int i;
int j;
poly f; // the powers of the last variable will be stored here
list l=delete(c, n); // delete the last variable
list L;
list rez=chNum(N, l); // monomials not involving the last variable
for(i=1;i<=(N div n); i++) // add the monomials involving the last variable
{
f=c[n]^i; // the power of the last variable
// monomials without the last variable that,
// multiplied by the i-th power of the last variable,
// give a monomial of the required type
L=chNum(N-n*i, l);
for(j=1; j<=size(L) ;j++) // multiply every such monomial
{
L[j]=L[j]*f; // by the i-th power of the last variable
}
rez=rez+L; // add the monomials involving the i-th power of the last variable
}
return(rez);
}
example
{
"EXAMPLE:";echo=2;
ring r = 0, (c(1..2)), dp;
list l=c(1..2);
// Let c(1) be a variable of degree 1, let c(2) be a variable of degree 2.
// The monomials in c(1) and c(2) of weighted degree 5 are:
print( chNum( 5, l ) );
// Compare the result to the output of chNumbers(...):
print( chNumbers(5, l) );
}
//----------------------------------------------------------------------------------------
proc chNumbers(int r, list c)
"USAGE: chNumbers(r, c); r integer, c list
RETURN: list
PURPOSE: computes the Chern numbers of a vector bundle with Chern classes c
on a complex manifold (variety) of dimension r
EXAMPLE: example chNumbers; shows an example
NOTE: computes basically the partitions of r
"
{
if(r<0)
{
print("The dimension of a manifold must be a non-negative integer!");
return(list()); // return the empty list in this case
}
if(r==0)
{
return(list(1));
}
//-----------------
// from now on r>0
//----------------
int n=size(c);
c=append_by_zeroes(r, c);
c=c[1..r]; // throw away redundant data
return(chNum(r, c));
}
example
{
"EXAMPLE:";echo=2;
ring r = 0, (c(1..3)), dp;
list l=c(1..3);
// The Chern numbers of a vector bundle with Chern classes c(1), c(2), c(3)
// on a 3-fold:
print( chNumbers( 3, l ) );
// If the highest Chern class is zero, the Chern numbers are:
l=c(1..2);
print( chNumbers( 3, l ) );
// Compare this to the output of chNum(...):
print( chNum( 3, l ) );
}
//---------------------------------------------------------------------------------------
proc sum_of_powers(int k, list l)
"USAGE: sum_of_powers(k, l); k non-negative integer, l list of polynomials
RETURN: polynomial
PURPOSE: computes the sum of k-th powers of the entries of l
EXAMPLE: example sum_of_powers; shows an example
NOTE: returns 0 if k is negative
"
{
if(k<0) // return 0 if k is negative
{
print("The exponent must be non-negative; 0 has been returned");
return(0);
}
int i;
int n=size(l);
poly rez; // the result will be computed here
for(i=1;i<=n;i++) // compute the sum of powers
{
rez=rez+l[i]^k;
}
return(rez);
}
example
{
"EXAMPLE:";echo =2;
ring r = 0, (x, y, z), dp;
list l=x, y, z;
//sum of 7-th powers of x, y, z
print( sum_of_powers(7, l) );
}
//-----------------------------------------------------------------------
proc powSumSym(list c, list #)
"USAGE: powSumSym(l [,N]); l a list of polynomials, N integer
RETURN: list of polynomials
PURPOSE: computes the expressions for the sums of powers [up to degree N]
in terms of the elementary symmetric polynomials (entries of l),
EXAMPLE: example powSumSym; shows an example
NOTE: returns the terms of the Chern character
multiplied by the correspoding factorials
"
{
int n;
if( size(#) == 0 ) // if there are no optional parameters
{
n = size(c); // set n to be the length of c
}
else // if there are optional parameters
{
if( is_integer(#[1])) // if the first optional parameter is an integer
{
n = max( #[1], 0 ); // if the parameter is negative, reset it to be zero
c = append_by_zeroes(n, c); // if n is greater than the length of c, append c by zeroes
if( n != 0 ) // if n is non-zero
{
c = c[1..n]; // take into account only the first n entries of c
}
}
else // if the optional parameter is not an integer, then
{
n=size(c); // ingore it and set n to be the length of c
}
}
list rez; // the result will be computed here
if(n==0) // return the empty list
{
return(rez)
}
else // otherwise proceed as follows:
{
// first compute the sums of powers of the Chern roots
// in terms of the Chern classes using the Newton's identities
int i, j, sign;
poly f;
// the first term of the Chern character coincides with the first Chern class,
// or equivalently with the sum of Chern roots
rez = rez + list(c[1]);
// compute the sums of powers of Chern roots recursively using the Newton's identities
for(j=2; j<=n; j++)
{
sign=1;
f=0;
for(i=1; i<j; i++)
{
f=f + c[i]*sign*rez[j-i];
sign = -sign;
}
f=f+sign*j*c[j];
rez=rez+list(f); // add the newly computed sum of powers of Chern roots to the list
}
return(rez); // return the result
}
}
example
{
"EXAMPLE:";echo =2;
// the expressions of the first 3 sums of powers of 3 variables a(1), a(2), a(3)
// in terms of the elementary symmetric polynomials c(1), c(2), c(3):
ring r = 0, (c(1..3)), dp;
list l=(c(1..3));
print(powSumSym(l));
// The first 5 sums in the same situation
print(powSumSym(l, 5));
}
//---------------------------------------------------------------------------------
proc chAll(list c, list #)
"USAGE: chAll(l [,N]); l a list of polynomials, N integer
RETURN: list of polynomials
PURPOSE: computes the list of terms of positive degree [up to degree N] of
the Chern character, where the entries of l are considered as the Chern classes
EXAMPLE: example chAll; shows an example
NOTE: makes sense only for a list of polynomials
"
{
list rez; // to be the result
rez = powSumSym(c, #); // get the sums of powers of the Chern roots
int n = size(rez);
bigint fct=1;
int i;
for(i=1;i<=n;i++) // get the terms of the Chern character
{
fct=fct*i;
rez[i]=rez[i]/fct;
}
return(rez); // return the result
}
example
{
"EXAMPLE:";echo =2;
// Chern character (terms of degree 1, 2, 3)
// corresponding to the Chern classes c(1), c(2), c(3):
ring r = 0, (c(1..3)), dp;
list l=(c(1..3));
print(chAll(l));
// terms up to degree 5 in the same situation
print(chAll(l, 5));
}
//---------------------------------------------------------------------------------
proc chAllInv(list c)
"USAGE: chAllInv(l); l a list of polynomials
RETURN: list of polynomials
PURPOSE: procedure inverse to chAll(), computes the list of Chern classes
from the list of terms of positive degree of the Chern character
EXAMPLE: example chAllInv; shows an example
NOTE: makes sense only for a list of polynomials
"
{
int n = size(c);
list rez;
if(n==0) // if the list of terms of Chern character is empty, return the empty list
{
return(rez);
}
else // otherwise compute the result using the Newton's identities
{
int j, i, sign;
poly f;
// transform the list of terms of the Chern character
// to the list of sums of powers of Chern roots
//bigint fct=1;
for(i=1; i<=n; i++)
{
//fct=fct*i;
//c[i]=fct*c[i];
c[i]=factorial(i)*c[i];
}
// the first Chern class coincides with the first degree term of the Chern character
rez=rez+list(c[1]);
// compute the higher Chern classes recursively using the Newton's identities
for(j=2;j<=n;j++)
{
sign=1;f=0;
for(i=1;i<j;i++)
{
f=f+ c[i]*sign*rez[j-i];
sign=-sign;
}
f=f+sign*c[j];
rez=rez+list(f/j);
}
return(rez); // return the result
}
}
example
{
"EXAMPLE:";echo=2;
// first 3 Chern classes in terms of the first 3 terms
// of the Chern character Chern ch(1), ch(2), ch(3):
ring r = 0, (ch(1..3)), dp;
list l=(ch(1..3));
print(chAllInv(l));
// let's see that chAllInv() is inverse to chAll()
print( chAll( chAllInv(l) ) );
}
//---------------------------------------------------------------------------------
proc chHE(list c)
"USAGE: chHE(c); c list of polynomials
RETURN: polynomial
PURPOSE: computes the highest relevant term of the Chern character
EXAMPLE: example chHE; shows an example
NOTE: uses the elimination and is extremely inefficient,
is included just for comparison with chAll(c)
"
{
int i;
// insure that the entries of c are polynomials
// in order to be able to apply maps
for(i=1;i<=size(c);i++)
{
c[i]=poly(c[i]);
}
int n=size(c);
if(n==0) // in this case return the empty list
{
return(list());
}
else // otherwise proceed as follows
{
def br@=basering; // remember the base ring
// add additional variables c@, a@(1..n) to the base ring
execute("ring r@= (" + charstr(basering) + "),(c@,"+varstr(basering)+", a@(1..n)), dp;" );
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
list c=F(c); // embedd c in the bigger ring
poly rez;
list A=a@(1..n);
list sym=symm(A);
ideal I;
poly E=1; // to be the product of variables which should be eliminated
for(i=1;i<=n;i++)
{
E=E*a@(i); // compute the product of the variables that must be eliminated
I=I, c[i]-sym[i];
}
I=I, c@-sum_of_powers(n, A);
I=elim(I, E);
rez = -subst(I[1], c@, 0);
setring br@; // come back to the initial base ring
execute( "map FF= r@,0,"+varstr(br@)+";" ); // define the specialization homomorphism
poly rez=FF(rez); // bring the result to the base ring
return( (1/factorial(n))*rez);
}
}
example
{
"EXAMPLE:";echo =2;
ring r = 0, (c(1..3)), dp;
list l=c(1..3);
//the third degree term of the Chern character
print( chHE(l) );
}
//----------------------------------------------------------------------
proc ChernRootsSum(list a, list b)
"USAGE: ChernRootsSum(a, b); a, b lists of polynomials
RETURN: list of polynomials
PURPOSE: computes the Chern roots of the direct (Whitney) sum
of a vector bundle with Chern roots a and a vector bundle with Chern roots b
EXAMPLE: example ChernRootsSum; shows an example
NOTE:
"
{
return(a+b);
}
example
{
"EXAMPLE:";echo =2;
ring r = 0, (a(1..3), b(1..2)), dp;
// assume a(1), a(2), a(3) are the Chern roots of a vector bundle E
// assume b(1), b(2) are the Chern roots of a vector bundle F
list l=a(1..3);
list L=b(1..2);
// the Chern roots of their direct sum is
print( ChernRootsSum(l, L) );
}
//----------------------------------------------------------------------
proc chSum(list c, list C)
"USAGE: chSum(c, C); c, C lists of polynomials
RETURN: list of polynomials
PURPOSE: computes the Chern classes of a direct sum of two vector bundles
EXAMPLE: example chSum; shows an example
NOTE:
"
{
int N=size(c)+size(C);
c=append_by_zeroes(N, c); // append by zeroes if necessary
C=append_by_zeroes(N, C); // append by zeroes if necessary
list rez; // to be the result
int i;
int j;
poly f;
for(i=1;i<=N;i++)
{
f=c[i]+C[i];
for(j=1;j<i;j++)
{
f=f+c[j]*C[i-j];
}
rez=rez+list(f);
}
return(rez);
}
example
{
"EXAMPLE:";echo =2;
ring r = 0, (c(1..3), C(1..2)), dp;
// Let E be a vector bundle with Chern classes c(1), c(2), c(3).
// Let F be a vector bundle with Chern classes C(1), C(2).
list l=c(1..3);
list L=C(1..2);
// Then the Chern classes of their direct sum are
print( chSum(l, L) );
}
//----------------------------------------------------------------------
proc ChernRootsDual(list l)
"USAGE: ChernRootsDual(l); l a list of polynomials
RETURN: list of polynomials
PURPOSE: computes the Chern roots of the dual vector bundle
of a vector bundle with Chern roots from l
EXAMPLE: example ChernRootsDual; shows an example
NOTE:
"
{
int n=size(l);
int i;
for(i=1;i<=n;i++) // change the sign of the entries of a
{
l[i]=-l[i];
}
return(l);
}
example
{
"EXAMPLE:";echo =2;
ring r = 0, (a(1..3)), dp;
// assume a(1), a(2), a(3) are the Chern roots of a vector bundle
list l=a(1..3);
// the Chern roots of the dual vector bundle
print( ChernRootsDual(l) );
}
//----------------------------------------------------------------------
proc chDual(list c)
"USAGE: chDual(c); c list of polynomials
RETURN: list of polynomials
PURPOSE: computes the list of Chern classes of the dual vector bundle
EXAMPLE: example chDual; shows an example
NOTE:
"
{
int n=size(c);
int i;
for(i=1;i<=n;i=i+2)
{
c[i]=-c[i];
}
return(c);
}
example
{
"EXAMPLE:"; echo=2;
// Chern classes of a vector bundle that is dual to a vector bundle
// with Chern classes c(1), c(2), c(3)
ring r=0, (c(1..3)), dp;
list l=c(1..3);
print(chDual(l));
}
//-----------------------------------------------------------------------------------------
proc ChernRootsProd(list a, list b)
"USAGE: ChernRootsProd(a, b); a, b lists of polynomials
RETURN: list of polynomials
PURPOSE: computes the Chern roots of the tensor product of a vector bundle with Chern roots a
and a vector bundles with Chern roots b
EXAMPLE: example ChernRootsProd; shows an example
NOTE:
"
{
int na=size(a);
int nb=size(b);
int i;
int j;
list rez; // the result will be computed here
for(i=1;i<=na;i++) // compute the result
{
for(j=1;j<=nb;j++)
{
rez=rez+list(a[i]+b[j]);
}
}
return(rez);
}
example
{
"EXAMPLE:"; echo=2;
ring r=0, (a(1..2), b(1..3)), dp;
list l=a(1..2);
list L=b(1..3);
// Chern roots of the tensor product of a vector bundle with Chern roots a(1), a(2)
// and a vector bundle with Chern roots b(1), b(2), b(3)
print(ChernRootsProd(l, L));
}
//-----------------------------------------------------------------------------------------
proc chProd(def r, list c, def R, list C, list #)
"USAGE: chProd(r, c, R, C [, N]); r, R polynomials (integers);
c, C lists of polynomials, N integer
RETURN: list of polynomials
PURPOSE: computes the list of Chern classes of the product of two vector bundles
in terms of their ranks and Chern clases [up to degree N]
EXAMPLE: example chProd; shows an example
NOTE:
"
{
// check the input data
if( is_integer(r) ) // if r is an integer
{
if(r<=0) // if r is negative or zero return the empty list
{
return( list() );
}
//----------------------------
//now r is a positive integer
//----------------------------
c=append_by_zeroes(r, c); // append c by zeroes if r is greater than the length of c
c=c[1..r]; // make c shorter (of length r) if r is smaller than the length of c
}
if( is_integer(R) ) // if R is an integer
{
if(R<=0) // if R is negative or zero return the empty list
{
return( list() );
}
//----------------------------
//now R is a positive integer
//----------------------------
C=append_by_zeroes(R, C); // append C by zeroes if R is greater than the length of C
C=C[1..R]; // make C shorter (of length R) if R is smaller than the length of C
}
//----------------------------------------------------------
//now r > 0 if it is an integer; R > 0 if it is an integer
//----------------------------------------------------------
int n;
if( is_integer(r) && is_integer(R) ) // if both r and R are integers
{
n=r*R; // set n to be the rank of the product bundle
}
else // otherwise define the rank of the product vector bundle by
{
n=size(c)*size(C); // looking at the lenghts of c and C
}
if( size(#) != 0 ) // if there is an optional parameter
{
if( is_integer( #[1] ) ) // if this parameter is an integer
{
if( #[1]<=0 ) // if it is negative or zero, return the empty list
{
return( list() );
}
// now #[1] is positive
// the product bundle can only have non-zero Chern classes up to degree n
// so ignore the optional parameter if it is greater than n
n = min(#[1], n);
}
}
if(n==0) // if n is zero, return the empty list
{
return( list() );
}
//-----------------------------------------------------------
//now n is positive, we can perform the relevant computations
//-----------------------------------------------------------
int i, j;
c=append_by_zeroes(n, c); // append c by zeroes up to degree n
C=append_by_zeroes(n, C); // append C by zeroes up to degree n
c=c[1..n]; // throw away the redundant data if needed
C=C[1..n]; // throw away the redundant data if needed
// build the list of all terms of the Chern characters: for rank r, and Chern classes c
list ch = list(r) + chAll(c);
list CH = list(R) + chAll(C); // do the same for rank R and Chern classes C
poly f;
list chP;
// compute the list of the non-zero degree terms of the Chern character
// of the tensor product of two vector bundles
for(i=1;i<=n;i++) // using the multiplicativity of the Chern character
{
f=0;
for(j=0;j<=i;j++)
{
f=f+ch[j+1]*CH[i-j+1];
}
chP=chP+list(f);
}
return( chAllInv(chP) ); // return the corresponding Chern classes
}
example
{
"EXAMPLE:"; echo =2;
ring H = 0, ( r, R, c(1..3), C(1..2) ), dp;
list l=c(1..3);
list L=C(1..2);
// the Chern classes of the tensor product of a vector bundle E of rank 3
// with Chern classes c(1), c(2), c(3)
// and a vector bundle F of rank 2 with Chern classes C(1) and C(2):
print( chProd(3, l, 2, L) );
// the first two Chern classes of the tensor product
// of a vector bundle E of rank r with Chern classes c(1) and c(2)
// and a vector bundle G of rank R with Chern classes C(1) and C(2)
// this gives the Chern classes of a tensor product on a complex surface
l=c(1..2);
L=C(1..2);
print( chProd(r, l, R, L, 2 ) );
}
//---------------------------------------------------------------------------------
proc chProdE(list c, list C)
"USAGE: chProdE(c, C); c, C lists of polynomials
RETURN: list of polynomials
PURPOSE: computes the list of Chern classes of the product
of two vector bundles in terms of their Chern clases
EXAMPLE: example chProdE; shows an example
NOTE: makes sense only for (lists of) polynomials;
uses elimination, hence very inefficient;
included only for comparison with chProd(...)
"
{
int r=size(c);
int R=size(C);
// insure that the entries of c and C are polynomials
// in order to be able to apply maps
int i,j;
for(i=1;i<=r;i++)
{
c[i]=poly(c[i]);
}
for(i=1;i<=R;i++)
{
C[i]=poly(C[i]);
}
if( (r==0) && (R==0) ) // if one of the ranks is 0,
{
return( list() ); // return the empty list (zero bundles have no Chern classes)
}
//------------------------------------
//now both r and R are greater than 0
//------------------------------------
int n=r*R; // the rank of the product of two vector bundles
def br@=basering; // remember the base ring
// add additional variables a@(1..r), b@(1..R), x@ to the base ring
execute("ring r@=("+ charstr(basering) +"),(x@,"+varstr(basering)+",a@(1..r),b@(1..R)), dp;");
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
list c=F(c); // embedd c in the bigger ring
list C=F(C); // embedd C in the bigger ring
list A=a@(1..r); // list of Chern roots of the first vector bundle
list syma = symm(A); // symmetric functions in the Chern roots of the first vector bundles
list B=b@(1..R); // list of Chern roots of the second vector bundle
list symb=symm(B); // symmetric functions in the Chern roots of the second vector bundles
ideal I;
// the product of variables (all Chern roots) which should be eliminated
poly E=product(A)*product(B);
for(i=1; i<=r; i++)
{
for(j=1; j<=R; j++)
{
I=I, c[i]-syma[i], C[j]-symb[j]; // add the relations
}
}
// the Chern roots of the tensor product in terms of the Chern roots of the factors
list crt=ChernRootsProd(A, B);
list Cf=symm(crt); // Chern classes of the product in terms of the Chern roots of the factors
list rez; // the result will be computed here
ideal J;
for(i=1;i<=n;i++)
{
J = I, x@-Cf[i]; // add the equation for the i-th Chern class to the ideal of relations
J = elim(J, E); // eliminate the Chern roots
// get the expression for the i-th Chern class of the product
// in terms of the Chern classes of the factors
rez = rez + list( -subst(J[1], x@, 0) );
}
setring br@; // come back to the initial base ring
execute( "map FF= r@, 0,"+varstr(br@)+";" ); // define the specialization homomorphism t@=0
list rez=FF(rez); // bring the result to the base ring
return(rez); // return the corresponding Chern classes
}
example
{
"EXAMPLE:"; echo =2;
ring H = 0, ( c(1..3), C(1..2) ), dp;
list l=c(1..3);
list L=C(1..2);
// the Chern classes of the tensor product of a vector bundle E of rank 3
// with Chern classes c(1), c(2), c(3)
// and a vector bundle F of rank 2 with Chern classes C(1) and C(2):
print( chProdE(l, L) );
}
//------------------------------------------------------------------------------------
proc chProdL(int r, list c, int R, list C)
"USAGE: chProdL(r, c, R, C); r, R integers; c, C lists of polynomials
RETURN: list
PURPOSE: computes the list of Chern classes of the product of two vector bundles
in terms of their Chern clases
EXAMPLE: example chProdL; shows an example
NOTE: Implementation of the formula of Lascoux, the Schur polynomials are computed
using the second Jacobi-Trudi formula (in terms of the Chern classes)
"
{
// check the input data
if(r<=0) // if r is negative or zero return the empty list
{
return( list() );
}
//----------------------------
//now r is a positive integer
//----------------------------
c=append_by_zeroes(r, c); // append c by zeroes if r is greater than the length of c
c=c[1..r]; // make c shorter (of length r) if r is smaller than the length of c
if(R<=0) // if R is negative or zero return the empty list
{
return( list() );
}
//----------------------------
//now R is a positive integer
//----------------------------
C=append_by_zeroes(R, C); // append C by zeroes if R is greater than the length of C
C=C[1..R]; // make C shorter (of length R) if R is smaller than the length of C
//----------------------------------------------------------
// now r > 0 and R > 0
//----------------------------------------------------------
def br@=basering; // remember the base ring
// add additional variables to the base ring
execute("ring r@=("+charstr(basering)+"), ("+varstr(basering)+", t@, c@(1..r), C@(1..R)), dp;");
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
list c, C;
int i;
for(i=1;i<=r;i++)
{
c[i]=c@(i)*t@^i;
}
for(i=1;i<=R;i++)
{
C[i]=C@(i)*t@^i;
}
poly f = chProdLP(r,c,R,C); // get the total Chern class using the Lascoux formula
matrix CF = coeffs(f, t@); // get its coefficients in front of the powers of t@
int N=r*R;
list rez; // write them in a list
for(i=1;i<=N;i++)
{
rez=rez+list(CF[i+1,1]);
}
setring br@; // come back to the initial base ring
// define the specialization homomorphism
execute("map FF = r@,"+varstr(br@)+",0, c[1..r], C[1..R];");
return( FF( rez ) ); // bring the result to the initial ring
}
example
{
"EXAMPLE:"; echo =2;
// The Chern classes of the tensor product of a vector bundle of rank 3
// with Chern classes c(1), c(2), c(3) and a vector bundle of rank 1 with
// Chern class C(1)
ring r = 0, ( c(1..3), C(1)), dp;
list c=c(1..3);
list C=C(1);
print( chProdL(3,c,1,C) );
}
//---------------------------------------------------------------------------------------
proc chProdLP(int r, list c, int R, list C)
"USAGE: chProdLP(r, c, R, C); r, R integers; c, C lists of polynomials
RETURN: polynomial
PURPOSE: computes the total Chern class of the product of two vector bundles
in terms of their ranks and Chern clases
EXAMPLE: example chProdLP; shows an example
NOTE: Implementation of the formula of Lascoux, the Schur polynomials are computed
using the second Jacobi-Trudi formula (in terms of the Chern classes)
"
{
if(r<=0) // if r is negative or zero, return 1
{
return( 1 );
}
if(R<=0) // if R is negative or zero, return 1
{
return( 1 );
}
//-------------------------------------------
// now r and R are positive
//-------------------------------------------
c=append_by_zeroes(r, c);
C=append_by_zeroes(R, C);
c=c[1..r];
C=C[1..R];
list P;
P=part(r, R); // compute the partitions of numbers up to R into r summands
int sz=size(P); // number of such partitions
int szu;
int i, j;
list T;
list PU;
list TU;
poly rez; // the result will be computed here
poly ST;
// implement the formula of Lascoux:
for(i=1;i<=sz;i++) // run through all the partitions from P
{
T=P[i]; // the current partition
ST= SchurS( PartC(T, R) , C ); // compute the corresponding Schur polynomial
PU=partUnder(T); // compute the partitions under T
szu=size(PU); // number of such partitions
for(j=1;j<=szu;j++) // run through all the partitions lying under T
{
TU=PU[j]; // for each of them
rez=rez+IJcoef(T, TU)* SchurCh(TU, c) *ST; // add the corresponding term to the result
}
}
return(rez); // return the result
}
example
{
"EXAMPLE:"; echo =2;
// The total Chern class of the tensor product of a vector bundle of rank 3
// with Chern classes c(1), c(2), c(3) and a vector bundle of rank 1 with
// Chern class C(1)
ring r = 0, ( c(1..3), C(1)), ws(1,2,3, 1);
list c=c(1..3);
list C=C(1);
print( chProdLP(3,c,1,C) );
}
//---------------------------------------------------------------------------------------
proc chProdM(int r, list c, int R, list C)
"USAGE: chProdM(r, c, R, C); r, R integers; c, C lists of polynomials
RETURN: list
PURPOSE: computes the list of Chern classes of the product of two vector bundles
in terms of their Chern clases
EXAMPLE: example chProdM; shows an example
NOTE: Implementation of the formula of Manivel
"
{
// check the input data
if(r<=0) // if r is negative or zero return the empty list
{
return( list() );
}
//----------------------------
//now r is a positive integer
//----------------------------
c=append_by_zeroes(r, c); // append c by zeroes if r is greater than the length of c
c=c[1..r]; // make c shorter (of length r) if r is smaller than the length of c
if(R<=0) // if R is negative or zero return the empty list
{
return( list() );
}
//----------------------------
//now R is a positive integer
//----------------------------
C=append_by_zeroes(R, C); // append C by zeroes if R is greater than the length of C
C=C[1..R]; // make C shorter (of length R) if R is smaller than the length of C
//----------------------------------------------------------
// now r > 0 and R > 0
//----------------------------------------------------------
def br@=basering; // remember the base ring
// add additional variables to the base ring
execute("ring r@=("+charstr(basering)+"), ("+varstr(basering)+", t@, c@(1..r), C@(1..R)), dp;");
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
list c, C;
int i;
for(i=1;i<=r;i++)
{
c[i]=c@(i)*t@^i;
}
for(i=1;i<=R;i++)
{
C[i]=C@(i)*t@^i;
}
poly f = chProdMP(r,c,R,C); // get the total Chern class using the Manivel formula
matrix CF = coeffs(f, t@); // get its coefficients in front of the powers of t@
int N=r*R;
list rez; // write them in a list
for(i=1;i<=N;i++)
{
rez=rez+list(CF[i+1,1]);
}
setring br@; // come back to the initial base ring
// define the specialization homomorphism
execute("map FF = r@,"+varstr(br@)+",0, c[1..r], C[1..R];");
return( FF( rez ) ); // bring the result to the initial ring
}
example
{
"EXAMPLE:"; echo = 2;
// The Chern classes of the tensor product of a vector bundle of rank 3
// with Chern classes c(1), c(2), c(3) and a vector bundle of rank 1 with
// Chern class C(1)
ring r = 0, ( c(1..3), C(1)), dp;
list c=c(1..3);
list C=C(1);
print( chProdM(3,c,1,C) );
}
//---------------------------------------------------------------------------------------
proc chProdMP(int r, list c, int R, list C)
"USAGE: chProdMP(r, c, R, C); r, R integers; c, C lists of polynomials
RETURN: polynomial
PURPOSE: computes the total Chern class of the product of two vector bundles
in terms of their ranks and Chern clases
EXAMPLE: example chProdMP; shows an example
NOTE: Implementation of the formula of Lascoux, the Schur polynomials are computed
using the second Jacobi-Trudi formula (in terms of the Chern classes)
"
{
if(r<=0) // if r is negative or zero, return 1
{
return( 1 );
}
if(R<=0) // if R is negative or zero, return 1
{
return( 1 );
}
//-------------------------------------------
// now r and R are positive
//-------------------------------------------
c=append_by_zeroes(r, c);
C=append_by_zeroes(R, C);
c=c[1..r];
C=C[1..R];
list P;
P=part(r, R); // compute the partitions of numbers up to R into r summands
int sz=size(P); // number of such partitions
int szu;
int i, j;
list T;
list PU;
list TU;
poly rez; // the result will be computed here
poly ST;
// implement the formula of Manivel:
for(i=1;i<=sz;i++) // run through all the partitions from P
{
T=P[i]; // the current partition
ST= SchurS( PartC(T, R) , C ); // compute the corresponding Schur polynomial
PU=partUnder(T); // compute the partitions under T
szu=size(PU); // number of such partitions
for(j=1;j<=szu;j++) // run through all the partitions lying under T
{
TU=PU[j]; // for each of them
// add the corresponding term to the result
rez=rez+Pcoef( TU, PartC(dualPart(T, R), r), r, R )* SchurCh(TU, c) *ST;
}
}
return(rez); // return the result
}
example
{
"EXAMPLE:"; echo =2;
// The total Chern class of the tensor product of a vector bundle of rank 3
// with Chern classes c(1), c(2), c(3) and a vector bundle of rank 1 with
// Chern class C(1)
ring r = 0, ( c(1..3), C(1)), ws(1,2,3, 1);
list c=c(1..3);
list C=C(1);
print( chProdMP(3,c,1,C) );
}
//---------------------------------------------------------------------------------------
proc ChernRootsHom(list a, list b)
"USAGE: ChernRootsHom(a, b); a, b lists of polynomials
RETURN: list of polynomials
PURPOSE: for a vector bundle E with Chern roots a and a vector bundle F
with Chern roots b, computes the Chern roots of Hom(E, F)
EXAMPLE: example ChernRootsHom; shows an example
NOTE:
"
{
int na=size(a);
int nb=size(b);
int i;
int j;
list rez; // the result will be computed here
for(i=1;i<=na;i++) // compute the result
{
for(j=1;j<=nb;j++)
{
rez=rez+list(-a[i]+b[j]);
}
}
return(rez);
}
example
{
"EXAMPLE:"; echo=2;
ring r=0, (a(1..2), b(1..3)), dp;
list l=a(1..2);
list L=b(1..3);
// Let E be a vector bundle with Chern roots a(1). a(2),
// let F be a vector bundle with CHern roots b(1), b(2), b(3).
// Then the Chern roots of Hom(E, F) are
print(ChernRootsHom(l, L));
}
//-----------------------------------------------------------------------------------------
proc chHom(def r, list c, def R, list C, list #)
"USAGE: chHom(r, c, R, C [, N]); r, R polynomials (integers);
c, C lists of polynomials, N integer
RETURN: list of polynomials
PURPOSE: computes [up to degree N] the list of Chern classes of the vector bundle Hom(E, F)
in terms of the ranks and the Chern classes of E and F
EXAMPLE: example chHom; shows an example
NOTE:
"
{
return( chProd(r, chDual(c), R, C, # ) );
}
example
{
"EXAMPLE:"; echo=2;
ring H = 0, ( r, R, c(1..3), C(1..2) ), dp;
list l=c(1..3);
list L=C(1..2);
// the Chern classes of Hom(E, F) for a vector bundle E of rank 3
// with Chern classes c(1), c(2), c(3)
// and a vector bundle F of rank 2 with Chern classes C(1) and C(2):
print( chHom(3, l, 2, L) );
// the first two Chern classes of Hom(E, F) for a vector bundle E of rank r
// with Chern classes c(1) and c(2)
// and a vector bundle G of rank R with Chern classes C(1) and C(2)
// this gives the Chern classes of a tensor product on a complex surface
l=c(1..2);
L=C(1..2);
print( chHom(r, l, R, L, 2 ) );
}
//---------------------------------------------------------------------------------
proc ChernRootsSymm(int n, list l)
"USAGE: ChernRootsSymm(m, l); m integer, l a list of polynomials
RETURN: list of polynomials
PURPOSE: computes the Chern roots of m-th symmetric power
of a vector bundle with Chern roots from l
EXAMPLE: example ChernRootsSymm; shows an example
NOTE:
"
{
if(n<0) // return the empty list if n is negative
{
return(list(0));
}
int r=size(l);
def br@=basering; // remember the base ring
ring r@=0, (a@(1..r)), dp;
ideal mon = a@(1..r);
mon=mon^n; // all monomials of degree n
list rez;
int i, j;
int N = size(mon);
intvec v;
for(i=1; i<=N; i++) // collect in rez the exponents of the monomials of degree n
{
v = leadexp(mon[i]);
rez = rez + list(v);
}
setring br@;
poly f;
list rez1;
// run over all exponents and construct the corresponding sums of the Chern roots
for(i=1; i<=N; i++)
{
f=0;
for(j=1;j<=r;j++)
{
f=f+rez[i][j]*l[j];
}
rez1=rez1+list(f);
}
return(rez1);
}
example
{
"EXAMPLE:";echo =2;
ring r=0, (a(1..3)), dp;
list l=a(1..3);
// the Chern roots of the second symmetric power of a vector bundle
// with Chern roots a(1), a(2), a(3)
print( ChernRootsSymm(2, l) );
}
//------------------------------------------------------------
proc ChernRootsWedge( int m, list l)
"USAGE: ChernRootsWedge(m, l); m integer, l a list of polynomials
RETURN: list of polynomials
PURPOSE: computes the Chern roots of m-th exterior power
of a vector bundle with Chern roots from l
EXAMPLE: example ChernRootsWedge; shows an example
NOTE: makes sense only for list of polynomials
"
{
int n=size(l);
if((m>n)||(m<=0) ) // if m is bigger that n or non-positive
{
return( list(0) ); // return the list with one zero entry
}
else
{
if(m==n) // if m equals n, the only Chern root of the exterior power will be
{
return( list(sum(l)) ); // the sum of the initial Chern roots
}
else // otherwise proceed recursively
{
int i;
list rez;
list rez1;
list l1 = delete(l, 1); // throw away the first element from the list
poly f = l[1]; // remember the first entry of l
// compute the Chern roots of the (m-1)-th exterior power of the smaller list
rez1 = ChernRootsWedge(m-1, l1 );
int s = size( rez1 );
// add the first entry of the bigger list to every entry in the result,
// this will give all Chern roots involving f
for(i=1; i<=s; i++)
{
rez1[i] = f+rez1[i];
}
// return the union of those Chern roots with f and those without f
rez = ChernRootsWedge(m, l1) + rez1;
return( rez );
}
}
}
example
{
"EXAMPLE:";echo =2;
ring r=0, (a(1..3)), dp;
list l=a(1..3);
// the Chern roots of the second exterior power of a vector bundle
// with Chern roots a(1), a(2), a(3)
print( ChernRootsWedge(2, l) );
}
//---------------------------------------------------------------------------------
proc chSymm(int k, int r, list c, list #)
"USAGE: chSymm(k, r, c[, pos]); k, r integers, c list of polynomials, pos list of integers
RETURN: list with entries: int N, list of polynomials l
PURPOSE: computes the rank and the Chern classes of the symmetric power of a vector bundle
EXAMPLE: example chSymm; shows an example
NOTE: for the second symmetric power chSymm2L(...) could be faster
"
{
// insure that the entries of c are polynomials
// in order to be able to apply maps
int i;
for(i=1;i<=size(c);i++)
{
c[i]=poly(c[i]);
}
if(r<0) // if the rank is negative
{
print("The rank of a vector bundle can non be negative");
return(list()); // return the empty list in this case
}
if(r==0) // if we deal with the zero bundle
{
return( list( 0, list() ) ); // return the data corresponding to the zero bundle
}
//-----------------------------------
// from now on we are in the case r>0
//-----------------------------------
// if the length n of the list of Chern classes is smaller
// than the rank of the vector bundle,
// the higher classes are assumed to be zero and the list is appended by zeroes up to length r
c=append_by_zeroes(r, c);
// if the lenght of the list of the Chern classes is greater than the rank
c=c[1..r]; // throw away the redundant data
//-----------------------------------
// from now on the lenght of c is r>0
//-----------------------------------
if(k<0)
{
print("You are trying to compute a negative symmetric power of a vector bundle");
return( list(0, list() ) ); // assume such a power to be just a zero bundle
}
if(k==0) // the zeroth symmetric power is the trivial line bundle
{
return( list(1, list(0)) );
}
if(k==1) // the first symmetric power is equal to the vector bundle itself
{
return(list(r, c));
}
//-----------------------------------
// from now on we are in the case k>2
//-----------------------------------
list LM = integer_list(#);
int M = LM[2]; // maximum among the optional parameters
# = LM[1]; // take into account only the first integer optional parameters that are positive
//-------------------------------
// Perform the computations now
//-------------------------------
def br@=basering; // remember the base ring
// add additional variables to the base ring
execute("ring r@=(" + charstr(basering) + "),(x@,"+varstr(basering)+", a@(1..r)), dp;" );
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
list c=F(c); // embed c into the bigger ring
list rez; // the Chern classes of the symmetric power are going to be written here
poly E = product( list( a@(1..r ) ) ); // product of the Chern roots
list ss=ChernRootsSymm(k, list( a@(1..r) ) ); // list of the Chern roots of the symmetric power
int N=size(ss); // number of such roots, it equals the rank of the symmetric power
// the entries in C will be the Chern classes of the symmetric power
// expressed in terms of the Chern roots of the initial vector bundle
list C;
ideal I, J;
// list of the Chern classes of the initial vector bundle expressed in its Chern roots
list sym=symm(list(a@(1..r)));
if(size(#)==0) // if there are no optional parameters, compute all Chern classes
{
// the entries here are the Chern classes of the symmetric power
// expressed in terms of Chern roots of the initial vector bundle
C=symm(ss);
for(i=1;i<=N;i++) // eliminate the Chern roots
{
if(i<= r) // first add all relevant formulas for the Chern classes in terms of Chern roots
{
I=I, c[i]-sym[i];
}
J = I, x@-C[i];
// Notice that elim(...) is from the library "elim.lib",
// it is loaded as a result of loading "general.lib"
J=simplify(elim(J, E), 1);
// get the expression of the next Chern class
// in terms of the Chern classes of the initial vector bundle
rez=rez+list( -subst( J[1], x@, 0) );
}
}
else // otherwise compute only the needed Chern classes
{
C=symm(ss, M); // only the needed Chern classes
int j;
i=1;
// the maximal number of optional parameters to be considered does not exceed N,
// i.e., the rank of the symmetric power
int NN = min( size(#), N);
for(j=1; j <= NN; j++) // process the optional parameters
{
// process the optional parameters only untill they are not bigger than N;
// notice they are positive anyway after integer_list(...)
if( #[j]<=N )
{
for( ; i<=#[j];i++)
{
if(i<=r)
{
// add the relevant formulas for the Chern classes in terms of the Chern roots
I=I, c[i]-sym[i];
}
}
J= I, x@-C[ #[j]];
// Notice that elim(...) is from the library "elim.lib",
// it is loaded as a result of loading "general.lib"
J=simplify(elim(J, E), 1);
// get the expression of the next Chern class
// in terms of the Chern classes of the initial vector bundle
rez=rez+list( -subst( J[1], x@, 0) );
}
else // get out from the loop
{
break;
}
}
}
// used because Singular seems not to be able to apply maps to empty lists (see below)
if(size(rez)==0)
{
return(list(N, list()));
}
setring br@; // come back to the initial base ring
// define the specialization homomorphism,
// evaluate the formulas for the Chern classes on their given values
execute( "map FF = r@,0,"+varstr(br@)+";" );
list rez=FF( rez ); // bring the result back to the initial ring
return( list( N, rez ) ); // return the result together with the rank of the symmetric power
}
example
{
"EXAMPLE:";echo =2;
ring r=0, (c(1..5)), dp;
list l=c(1..5);
// the rank and the Chern classes of the second symmetric power of a vector bundle of rank 3
print( chSymm(2, 3, l) );
// the rank and the first 3 Chern classes
// of the second symmetric power of a vector bundle of rank 5
print( chSymm(2, 5, l, 1, 2, 3) );
}
//----------------------------------------------------------------------------------
proc chSymm2L(int r, list c)
"USAGE: chSymm2L(r, c); r integer, c list of polynomials
RETURN: list of polynomials
PURPOSE: computes the Chern classes of the second symmetric power of a vector bundle
EXAMPLE: example chSymm2L; shows an example
NOTE: Implementation of the formula of Lascoux, the Schur polynomials are computed
using the second Jacobi-Trudi formula (in terms of the Chern classes)
"
{
// insure that the entries of c are polynomials
// in order to be able to apply maps
int i;
for(i=1;i<=size(c);i++)
{
c[i]=poly(c[i]);
}
if(r<0) // if the rank is negative
{
print("The rank of a vector bundle can non be negative");
return(list()); // return the empty list in this case
}
if(r==0) // if we deal with the zero bundle
{
return( list( 0, list() ) ); // return the data corresponding to the zero bundle
}
//-----------------------------------
// from now on we are in the case r>0
//-----------------------------------
c=append_by_zeroes(r, c);
c=c[1..r];
def br@=basering; // remember the base ring
// add additional variables to the base ring
execute("ring r@=(" + charstr(basering) + "), ("+varstr(basering)+", t@, c@(1..r)), dp;" );
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
list c;
for(i=1;i<=r;i++)
{
c[i]=c@(i)*t@^i;
}
poly f = chSymm2LP(r,c); // get the total Chern class using the formula of Lascoux
matrix CF = coeffs(f, t@);
int N=r*(r+1) div 2;
list rez; // write the coefficients in front of the powers of t@ into a list
for(i=1;i<=N;i++)
{
rez=rez+list(CF[i+1,1]);
}
setring br@; // come back to the initial base ring
execute("map FF = r@,"+varstr(br@)+",0, c[1..r];"); // define the specialization homomorphism
return( list(N, FF( rez )) ); // bring the result to the initial ring
}
example
{
"EXAMPLE:";echo =2;
ring r=0, (c(1..2)), dp;
list l=c(1..2);
// the Chern classes of the second symmetric power of a vector bundle of rank 2
print( chSymm2L(2, l));
}
//---------------------------------------------------------------------------------------
proc chSymm2LP(int r, list c)
"USAGE: chSymm2LP(r, c); r integer, c list of polynomials
RETURN: poly
PURPOSE: computes the total Chern class of the second symmetric power of a vector bundle
EXAMPLE: example chSymm2LP; shows an example
NOTE: Implementation of the formula of Lascoux, the Schur polynomials are computed
using the second Jacobi-Trudi formula (in terms of the Chern classes)
"
{
if(r<0) // if the rank is negative
{
print("The rank of a vector bundle can non be negative");
return(1); // return 1 in this case
}
if(r==0) // if we deal with the zero bundle
{
return( 1 ); // return 1 in this case
}
//-------------------------------------------
// from now on we are in the case r > 0
//-------------------------------------------
c=append_by_zeroes(r, c);
c=c[1..r];
list I; // the partition (1,2,...,r) will be stored here
int i;
for(i=1;i<=r;i++)
{
I=I+list(i);
}
list PU = partUnder(I); // compute the partitions under I
int sz=size(PU); // get their number
poly rez; // the result will be computed here
list J;
poly cf;
int ex;
// implement the formula of Lascoux
for(i=1;i<=sz;i++)
{
J=PU[i];
ex=sum(J)- r*(r-1) div 2;
if(ex>=0)
{
cf=bigint(2)^ex*IJcoef(I, J);
}
else
{
cf=IJcoef(I, J)/bigint(2)^(-ex);
}
rez = rez + cf * SchurCh(J, c );
}
return(rez);
}
example
{
"EXAMPLE:";echo =2;
ring r=0, (c(1..2)), ws(1, 2);
list l=c(1..2);
// the total Chern class of the second symmetric power of a vector bundle of rank 2
print( chSymm2LP(2, l));
}
//---------------------------------------------------------------------------------------
proc chWedge(int k, int r, list c, list #)
"USAGE: chWedge(k, r, c [,pos]); k, r integers, c list of polynomials, pos list of integers
RETURN: list with entries: int N, list of polynomials l
PURPOSE: computes the rank and the Chern classes of the exterior power of a vector bundle
EXAMPLE: example chWedge; shows an example
NOTE: for the second exterior power chWedge2L(...) could be faster
"
{
// insure that the entries of c are polynomials
// in order to be able to apply maps
int i;
for(i=1;i<=size(c);i++)
{
c[i]=poly(c[i]);
}
if(r<0) // if the rank is negative
{
print("The rank of a vector bundle can non be negative");
return(list()); // return the empty list in this case
}
if(r==0) // if we deal with the zero bundle
{
return( list( 0, list() ) ); // return the data corresponding to the zero bundle
}
//-------------------------------------------
// from now on we are in the case r > 0
//-------------------------------------------
if(k<0)
{
print("You are trying to compute a negative exterior power of a vector bundle");
return( list(0, list() ) ); // assume such a power to be just a zero bundle
}
if(k==0) // the zeroth exterior power is the trivial line bundle
{
return( list(1, list(0)) );
}
if(k==1) // the first exterior power is equal to the vector bundle itself
{
c=append_by_zeroes(r, c);
c=c[1..r];
return(list(r, c));
}
//---------------------------------------
// from now on we are in the case k > 2
//---------------------------------------
// if the length of the list of Chern classes is smaller than the rank of the vector bundle,
// the higher classes are assumed to be zero and the list is appended by zeroes up to length r
c=append_by_zeroes(r, c);
// if the length of the list of the Chern classes is greater than the rank
c=c[1..r]; // throw away the redundant data
//------------------------------------------
// from now on the length of c is r > 0
//------------------------------------------
if( k>r ) // if k>r, the exterior power is zero
{
return( list( int(0), list() ) );
}
//-----------------------------------------------
// from now on we are in the case 0 < k <= r = n
//-----------------------------------------------
if(k==r)
{
return(list( int(1), list( c(1) ) ) );
}
//-----------------------------------------------
// from now on we are in the case 0 < k < r = n
//-----------------------------------------------
list LM = integer_list(#);
int M=LM[2]; // maximum among the optional parameters if there are any, zero otherwise
# = LM[1]; // take into account only the first integer optional parameters that are positive
//-----------------------------
// Let us compute now
//-----------------------------
def br@=basering; // remember the base ring
// add additional variables a@(1..r), x@ to the base ring
execute("ring r@= (" + charstr(basering) + "), (x@,"+varstr(basering)+", a@(1..r)), lp;" );
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
list c = F(c); // embed c into the bigger ring
list rez; // the result should be computed here
poly E = product( list( a@(1..r ) ) ); // product of the Chern roots to be eliminaned
list ss=ChernRootsWedge(k, list( a@(1..r) )); // list of the Chern roots of the exterior product
int N=size(ss); // length of ss, equals the rank of the exterior product
// list of the Chern classes of the initial vector bundle in terms of their Chern roots
list sym=symm(list(a@(1..r)));
// the entries here will be the Chern classes we need
// expressed in terms of the Chern roots of the initial vector bundle
list C;
ideal I, J;
if( size(#) == 0 ) // if there are no optional parameters, compute all Chern classes
{
// the entries here are the Chern classes we need
// expressed in terms of the Chern roots of the initial vector bundle
C=symm(ss);
for(i=1;i<=N;i++) // eliminate the Chern roots
{
if(i<= r) // first add all relevant formulas for the Chern classes in terms of Chern roots
{
I=I, c[i]-sym[i];
}
J = I, x@-C[i];
// Notice that elim(...) is from the library "elim.lib",
// it is loaded as a result of loading "general.lib"
J=simplify(elim(J, E), 1);
// get the expression of the next Chern class
// in terms of the Chern classes of the initial vector bundle
rez=rez+list( -subst( J[1], x@, 0) );
}
}
else // otherwise compute only the needed Chern classes
{
// the entries here are the Chern classes we need
// expressed in terms of the Chern roots of the initial vector bundle
C=symm(ss, M);
int j;
i=1;
// the maximal number of optional parameters to be considered
// does not exceed N, the rank of the exterior power
int NN = min( size(#), N);
for(j=1; j <= NN; j++) // process the optional parameters
{
// process the optional parameters only untill they are not bigger than N;
// notice they are positive anyway after integer_list(...)
if( #[j]<=N )
{
for( ; i<=#[j]; i++)
{
if( i<=r )
{
// add the relevant formulas for the Chern classes in terms of the Chern roots
I=I, c[i]-sym[i];
}
}
J= I, x@-C[ #[j]];
// Notice that elim(...) is from the library "elim.lib",
// it is loaded as a result of loading "general.lib"
J=simplify(elim(J, E), 1);
// get the expression of the next Chern class
// in terms of the Chern classes of the initial vector bundle
rez=rez+list( -subst( J[1], x@, 0) );
}
else // get out from the loop
{
break;
}
}
}
// used because Singular seems not to be able to apply maps to empty lists (see below)
if(size(rez)==0)
{
return(list(N, list()));
}
setring br@; // come back to the initial base ring
// define the specialization homomorphism,
// evaluate the formulas for the Chern classes on their given values
execute( "map FF = r@,0,"+varstr(br@)+";" );
list rez=FF( rez ); // bring the result back to the initial ring
return( list( N, rez ) ); //return the rank and the Chern classes of the exterior product
}
example
{
"EXAMPLE:";echo =2;
ring r=0, (c(1..5)), dp;
list l=c(1..5);
// the rank and the Chern classes of the second exterior power of a vector bundle of rank 3
print( chWedge(2, 3, l) );
// the rank and the first 3 Chern classes
// of the fourth exterior power of a vector bundle of rank 5
print( chWedge(4, 5, l, 1, 2, 3) );
}
//---------------------------------------------------------------------------------
proc chWedge2L(int r, list c)
"USAGE: chWedge2L(r, c ); r integer, c list of polynomials
RETURN: list of polynomials
PURPOSE: computes the Chern classes of the second exterior power of a vector bundle
EXAMPLE: example chWedge2L; shows an example
NOTE: Implementation of the formula of Lascoux, the Schur polynomials are computed
using the second Jacobi-Trudi formula (in terms of the Chern classes)
"
{
// insure that the entries of c are polynomials
// in order to be able to apply maps
int i;
for(i=1;i<=size(c);i++)
{
c[i]=poly(c[i]);
}
if(r<0) // if the rank is negative
{
print("The rank of a vector bundle can non be negative");
return(list()); // return the empty list in this case
}
if(r==0) // if we deal with the zero bundle
{
return( list( 0, list() ) ); // return the data corresponding to the zero bundle
}
//-------------------------------------------
// from now on we are in the case r > 0
//-------------------------------------------
c=append_by_zeroes(r, c);
c=c[1..r];
def br@=basering; // remember the base ring
// add additional variables to the base ring
execute("ring r@=(" + charstr(basering) + "), ("+varstr(basering)+", t@, c@(1..r)), dp;" );
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
list c;
for(i=1;i<=r;i++)
{
c[i]=c@(i)*t@^i;
}
poly f = chWedge2LP(r,c); // get the total Chern class using the formula of Lascoux
matrix CF = coeffs(f, t@);
int N=r*(r-1) div 2;
list rez; // write its coefficients in front of the powers of t@ to a list
for(i=1;i<=N;i++)
{
rez=rez+list(CF[i+1,1]);
}
setring br@; // come back to the initial base ring
execute("map FF = r@,"+varstr(br@)+",0, c[1..r];"); // define the specialization homomorphism
return( list(N, FF( rez )) ); // bring the result to the initial ring
}
example
{
"EXAMPLE:";echo =2;
ring r=0, (c(1..3)), dp;
list l=c(1..3);
// the Chern classes of the second exterior power of a vector bundle of rank 3
print(chWedge2L(3, l));
}
//---------------------------------------------------------------------------------------
proc chWedge2LP(int r, list c)
"USAGE: chWedge2LP(r, c ); r integer, c list of polynomials
RETURN: poly
PURPOSE: computes the total Chern class of the second exterior power of a vector bundle
EXAMPLE: example chWedge2LP; shows an example
NOTE: Implementation of the formula of Lascoux, the Schur polynomials are computed
using the second Jacobi-Trudi formula (in terms of the Chern classes)
"
{
if(r<0) // if the rank is negative
{
print("The rank of a vector bundle can non be negative");
return(1); // return 1 in this case
}
if(r==0) // if we deal with the zero bundle
{
return( 1 ); // return 1 in this case
}
//-------------------------------------------
// from now on we are in the case r > 0
//-------------------------------------------
c=append_by_zeroes(r, c);
c=c[1..r];
list I; // the partition (0,1,...,r-1) will be stored here
int i;
for(i=0;i<=r-1;i++)
{
I=I+list(i);
}
list PU = partUnder(I); // compute the partitions under I
int sz=size(PU); // get their number
poly rez; // the result will be computed here
list J;
poly cf;
// implement the Lascoux formula
for(i=1;i<=sz;i++)
{
J=PU[i];
cf = IJcoef(I,J)/bigint(2)^( r*(r-1) div 2-sum(J) );
rez = rez + cf * SchurCh(J, c );
}
return(rez);
}
example
{
"EXAMPLE:";echo =2;
ring r=0, (c(1..3)), ws(1,2,3);
list l=c(1..3);
// the total Chern class of the second exterior power of a vector bundle of rank 3
print(chWedge2LP(3, l));
}
//---------------------------------------------------------------------------------------
proc todd(list c, list #)
"USAGE: todd(l [, n] ); l a list of polynomials, n integer
RETURN: list of polynomials
PURPOSE: computes [the first n] terms of the Todd class
EXAMPLE: example todd; shows an example
NOTE: returns an empty list if l is empty
"
{
int i, j, k;
// insure that the entries of c are polynomials
// in order to be able to apply maps
for(i=1;i<=size(c); i++)
{
c[i]=poly(c[i]);
}
int n;
# = integer_list(#)[1]; // take into account only the first integer entries that are positive
if( size(#) == 0 ) // if there are no optional parameters
{
n = size(c);
}
else
{
// set n to be 0, if the parameter is non-positive,
// set n to the value of the parameter otherwise
n = max( #[1], 0 );
c = append_by_zeroes(n, c); // append c by zeroes if the length of c is smaller than n
if(n!=0) // throw away the redundant data if n is positive and smaller than the length of c
{
c = c[1..n];
}
}
if(n==0) // return the empty list
{
return(list());
}
else // otherwise proceed as follows
{
def br@=basering; // remember the base ring
// add additional variables to the base ring
execute("ring r@=(" + charstr(basering) + "), ("+varstr(basering)+", a@, c@(1..n)), dp;" );
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
list c=F(c); // embed c into the bigger ring
list prev;
list next;
next=tdTerms(n, c@(1)); // the Todd class terms of a line budle
list step = tdTerms(n, a@);
poly f;
list hC=c@(1)-a@; // "old" first Chern class
for(k=2;k<=n;k++) // do n-1 iterations
{
prev=next;
next=list();
hC=hC+list( c@(k)-a@*hC[k-1] ); // "old" k-th Chern class
for(i=0;i<k;i++) // these terms have already been computed in the previous iterations
{
next = next + list(prev[i+1]);
}
for(i=k;i<=n;i++) // new values in terms of "old" Chern classes and the Chern root a
{
f=0;
for(j=0; j<=i; j++)
{
f=f + step[j+1]*prev[i-j+1];
}
// substitute the old values of Chern classes
// by their expressions in the new ones and the Chern root a
for(j=1;j<k;j++)
{
f=subst(f, c@(j), hC[j] );
}
f=reduce(f, std(hC[k]) ); // eliminate the Chern root
next = next + list(f);
}
}
next = delete(next, 1); // throw away the zeroth term which is always equal to 1
setring br@; // come back to the initial base ring
execute("map FF = r@,"+varstr(br@)+",0, c[1..n];"); // define the specialization homomorphism
return( FF( next ) ); // bring the result to the initial ring
}
}
example
{
"EXAMPLE:";echo =2;
// the terms of the Todd class up to degree 5
// in terms of the Chern classes c(1), c(2), c(3), c(4), c(5)
ring r=0, (c(1..5)), dp;
list l=c(1..5);
print( todd( l ) );
// in the same situation compute only first two terms
print( todd(l, 2) );
// compute the first 5 terms corresponding to the Chern classes c(1), c(2)
l=c(1..2);
print( todd(l, 5) );
}
//------------------------------------------------------------------------------------------
proc toddE(list c)
"USAGE: toddE(l); l a list of polynomials
RETURN: polynomial
PURPOSE: computes the highest relevant term of the Todd class
EXAMPLE: example toddE; shows an example
NOTE: returns an empty list if l is empty,
very inefficient because the elimination is used, included for comparison with todd(c)
"
{
int i;
for(i=1;i<=size(c);i++)
{
c[i]=poly( c[i] );
}
int n=size(c);
if(n==0) // return the empty list if c is empty
{
return(list());
}
else
{
def br@=basering; // remember the base ring
// add additional variables a@(1..n), x@ to the base ring
execute("ring r@=(" + charstr(basering) + "), (x@,"+varstr(basering)+", a@(1..n)), dp;" );
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
list c=F(c); // embed c into the bigger ring
int j;
int k;
poly E = a@(1); // to be the product of the Chern roots that will be eliminated later
list ss=tdTerms( n, a@(1) );
list next; // to be the terms of the Todd class corresponding to the next Chern root
for(i=2;i<=n;i++) // compute the terms of the Todd class in terms of the Chern roots
{
E=E*a@(i); // to compute the product of variables to be eliminated
next=tdTerms( n, a@(i) );
for(j=n;j>=1;j--)
{
for(k=0;k<j;k++)
{
ss[j+1]=ss[j+1]+ss[k+1]*next[j-k+1];
}
}
}
ideal I=x@ - ss[n+1]; // formula for the highest degree term of the Todd class
list sym=symm(list(a@(1..n))); // expressions for the Chern classes in terms of the Chern roots
for(i=1;i<=n;i++)
{
I=I, c[i]-sym[i]; // add the relations
}
I=simplify(elim(I, E), 1); // eliminate the Chern roots
poly rez=-subst(I[1],x@, 0); // get the required formula
setring br@; // come back to the initial base ring
// define the specialization homomorphism (all added variables are set to zero)
execute( "map FF = r@,0, "+varstr(br@)+";" );
poly rez=FF( rez ); // bring the result back to the initial base ring
return(rez);
}
}
example
{
"EXAMPLE:";echo =2;
// first 3 terms of the Todd class in terms of the Chern classes c(1), c(2), c(3)
ring r=0, (c(1..3)), dp;
list l;
//first term
l=c(1);
print( toddE( l ) );
// second term
l=c(1..2);
print( toddE( l ) );
// third term
l=c(1..3);
print( toddE( l ) );
}
//---------------------------------------------------------------------------------
proc Bern(int n)
"USAGE: Bern(n); n non-negative integer
RETURN: list of numbers
PURPOSE: computes the list of (second) Bernoulli numbers from B(0) to B(n)
EXAMPLE: example Bern; shows an example
NOTE: needs a base ring to be defined, returns an empty list if n is negative,
uses the Akiyama-Tanigawa algorithm
"
{
// the Akiyama-Tanigawa algorithm
//could be replaced by a more efficient one
list rez, steprez;
int i, j;
if(n<0) // if n is negative, return the empty list
{
return(list());
}
for(i=0;i<=n;i++)
{
steprez=steprez+list( 1/number(i+1) );
for(j=i;j>=1;j--)
{
steprez[j]=j*(steprez[j]-steprez[j+1]);
}
rez=rez+list(steprez[1]);
}
return(rez);
}
example
{
"EXAMPLE:";echo =2;
// first 10 Bernoulli numbers: B(0), ..., B(9)
ring r=0,(t), dp;
print( Bern(9) );
}
//---------------------------------------------------------------------------------
proc tdCf(int n)
"USAGE: tdCf(n); n integer
RETURN: list of rational numbers
PURPOSE: computes up to degree n the coefficients of the Todd class of a line bundle
EXAMPLE: example tdCf; shows an example
NOTE:
"
{
list rez=Bern(n); // notice that Bern(n) is able to take care of negative n
int i;
for(i=1;i<=n+1;i++)
{
rez[i]=rez[i]/factorial(i-1);
}
return(rez);
}
example
{
"EXAMPLE:";echo =2;
// first 5 coefficients
ring r=0,(t), dp;
print( tdCf(4) );
}
//---------------------------------------------------------------------------------
proc tdTerms(int n, poly f)
"USAGE: tdTerms(n, f); n integer, f polynomial
RETURN: list of polynomials
PURPOSE: computes the terms of the Todd class of the line bundle with the Chern root f
EXAMPLE: example tdTerms; shows an example
NOTE:
"
{
list rez=Bern(n); // notice that Bern(n) takes care of negative n
int i;
for(i=1;i<=n+1;i++)
{
rez[i]=( rez[i]/factorial(i-1) )* f^(i-1);
}
return(rez);
}
example
{
"EXAMPLE:";echo =2;
ring r=0, (t), ls;;
// the terms of the Todd class of a line bundle with Chern root t up to degree 4
print( tdTerms(4, t) );
}
//---------------------------------------------------------------------------------
proc tdFactor(int n, poly t)
"USAGE: tdFactor(n, a); n integer, a polynomial
RETURN: polynomial
PURPOSE: computes up to degree n the Todd class
of the line bundle coresponding to the Chern root t
EXAMPLE: example tdFactor; shows an example
NOTE: returns 0 if n is negative
"
{
int i;
poly rez=0;
list l=Bern(n); // get the coefficients
for(i=0; i<=n; i++) // form the polynomial
{
rez=rez+(l[i+1]/factorial(i))*t^i;
}
return(rez);
}
example
{
"EXAMPLE:";echo =2;
// the Todd class up do degree 4
ring r=0,(t), ls;
print( tdFactor(4, t) );
}
//---------------------------------------------------------------------------------
proc cProj(int n)
"USAGE: cProj(n); n integer
RETURN: list of integers
PURPOSE: computes the terms of positive degree of the total Chern class
of the tangent bundle on the complex projective space
EXAMPLE: example cProj; shows an example
NOTE:
"
{
if(n<0)
{
print("The dimension of the projective space must be non-negative!");
return(list()); // return the empty list in this case
}
else
{
list rez;
int i;
for(i=1;i<=n;i++)
{
rez=rez+list( binomial(n+1, i) );
}
return(rez);
}
}
example
{
"EXAMPLE:";echo =2;
ring r=0, (t), dp;
// the coefficients of the total Chern class of the complex projective line
print( cProj(1) );
// the coefficients of the total Chern class of the complex projective line
print( cProj(2) );
// the coefficients of the total Chern class of the complex projective line
print( cProj(3) );
}
//------------------------------------------------------------------------------------------
proc chProj(int n)
"USAGE: chProj(n); n integer
RETURN: list of (rational) numbers
PURPOSE: computes the terms of the Chern character of the tangent bundle
on the complex projective space
EXAMPLE: example chProj; shows an example
NOTE:
"
{
if(n<0)
{
print("The dimension of the projective space must be non-negative!");
return( list() ); // return the empty list in this case
}
else
{
list rez=list(number(n));
int i;
for(i=1;i<=n;i++)
{
rez=rez+list( (n+1)/factorial(i) );
}
return(rez);
}
}
example
{
"EXAMPLE:";echo =2;
ring r=0, (t), dp;
// the coefficients of the Chern character of the complex projective line
print( chProj(1) );
// the coefficients of the Chern character of the complex projective plane
print( chProj(2) );
// the coefficients of the Chern character of the complex 3-dimentional projectice space
print( chProj(3) );
}
//------------------------------------------------------------------------------------------
proc tdProj(int n)
"USAGE: tdProj(n); n integer
RETURN: list of (rational) numbers
PURPOSE: computes the terms of the Todd class
of the (tangent bundle of the) complex projective space
EXAMPLE: example tdProj; shows an example
NOTE:
"
{
if(n<0)
{
print("The dimension of the projective space must be non-negative!");
return( list() ); // return the empty list in this case
}
else
{
def br@=basering; // remember the base ring
ring r@= 0, t@, lp; // ring with one variable t@
ideal T=std( t@^(n+1) );
poly f= tdFactor(n, t@);
f=reduce( f^(n+1), T);
matrix C = coeffs(f, t@);
list rez;
int i;
for(i=0;i<=n;i++)
{
rez=rez+list(C[i+1, 1]);
}
setring br@; // come back to the initial base ring
map FF= r@, 0 ; // define the specialization homomorphism t@=0
return(FF(rez)); // bring the result to the base ring
}
}
example
{
"EXAMPLE:";echo =2;
ring r=0, (t), dp;
// the coefficients of the Todd class of the complex projective line
print( tdProj(1) );
// the coefficients of the Todd class of the complex projective line
print( tdProj(2) );
// the coefficients of the Todd class of the complex projective line
print( tdProj(3) );
}
//------------------------------------------------------------------------------------------
proc eulerChProj(int n, def r, list c)
"USAGE: eulerChProj(n, r, c); n integer, r polynomial (or integer), c list of polynomials
RETURN: polynomial
PURPOSE: computes the Euler characteristic of a vector bundle on P_n
in terms of its rank and Chern classses
EXAMPLE: example eulerChProj; shows an example
NOTE:
"
{
if(n<0)
{
print("The dimension of the projective space must be non-negative!");
return(0); // return zero in this case
}
else
{
if(n==0)
{
return(r);
}
// now n is at least 1
c=append_by_zeroes(n, c); // append c by zeroes if its size is smaller than n
c=c[1..n]; // throw away the redundant data
// now the size of c is n
list td = tdProj(n); // terms of the Todd class of P_n
list ch = list(r) + chAll(c); // terms of the Chern character of the vector bundle
return( rHRR(n, ch, td) );
}
}
example
{
"EXAMPLE:";echo =2;
ring h=0, (r, c(1..3)), ws(0,1,2,3);
list l=c(1..3);
// the Euler characteristic of a vector bundle on the projective line
print( eulerChProj(1, r, l) );
// the Euler characteristic of a vector bundle on the projective plane
print( eulerChProj(2, r, l) );
// the Euler characteristic of a vector bundle on P_3
print( eulerChProj(3, r, l) );
// assume now that we have a bundle framed at a subplane of P_3
// this implies c(1)=c(2)=0
l= 0, 0, c(3);
// the Euler characteristic is
print( eulerChProj(3, r, l) );
// which implies that c(3) must be even in this case
}
//-------------------------------------------------------
proc chNumbersProj(int n)
"USAGE: chNumbersProj(n); n integer
RETURN: list of integers
PURPOSE: computes the Chern numbers of the projective space P_n
EXAMPLE: example chNumbersProj; shows an example
NOTE:
"
{
return( chNumbers( n, cProj(n) ) );
}
example
{
"EXAMPLE:";echo =2;
ring h=0, (t), dp;
// The Chern numbers of the projective plane P_2:
print( chNumbersProj(2) );
// The Chern numbers of P_3:
print( chNumbersProj(3) );
}
//-------------------------------------------------------
proc classpoly(list l, poly t)
"USAGE: classpoly(l, t); l list of polynomials, t polynomial
RETURN: polynomial
PURPOSE: computes the polynomial in t with coefficients being the entries of l
EXAMPLE: example classpoly; shows an example
NOTE:
"
{
int n=size(l);
poly pow=1; // powers of t will be compured here
poly rez=0; // result will be computed here
int i;
for(i=1; i<=n; i++)
{
pow=pow*t; // compute the required power of t
// add the i-th entry of l multiplied by the corresponding power of t to the result
rez=rez + l[i]*pow;
}
return( rez );
}
example
{
"EXAMPLE:";echo=2;
ring r=0, (c(1..5), t), ds;
list l=c(1..5);
// get the polynomial c(1)*t + c(2)*t^2 + ... + c(5)*t^5
print( classpoly(l, t) );
}
//----------------------------------------------------------------------------------------
proc chernPoly(list c, poly t)
"USAGE: chernPoly(c, t); c list of polynomials, t polynomial
RETURN: polynomial
PURPOSE: computes the Chern polynomial in t
EXAMPLE: example chernPoly; shows an example
NOTE: does the same as toddPoly(...)
"
{
return( 1+classpoly(c, t) );
}
example
{
"EXAMPLE:";echo=2;
ring r=0, (c(1..5), t), ds;
list l=c(1..5);
// get the Chern polynomial 1 + c(1)*t + c(2)*t^2 + ... + c(5)*t^5
print( chernPoly(l, t) );
}
//----------------------------------------------------------------------------------------
proc chernCharPoly(poly r, list ch, poly t)
"USAGE: chernCharPoly(r, ch, t); r polynomial, ch list of polynomials, t polynomial
RETURN: polynomial
PURPOSE: computes the polynomial in t corresponding to the Chern character
EXAMPLE: example chernpoly; shows an example
NOTE:
"
{
return( r+classpoly(ch, t) );
}
example
{
"EXAMPLE:";echo=2;
ring h=0, (r, ch(1..5), t), ds;
list l=ch(1..5);
// get the polynomial r + ch(1)*t + ch(2)*t^2 + ... + ch(5)*t^5
print( chernCharPoly(r, l, t) );
}
//----------------------------------------------------------------------------------------
proc toddPoly(list td, poly t)
"USAGE: toddPoly(td, t); td list of polynomials, t polynomial
RETURN: polynomial
PURPOSE: computes the polynomial in t corresponding to the Todd class
EXAMPLE: example toddPoly; shows an example
NOTE: does the same as chernPoly(...)
"
{
return( 1+classpoly(td, t) );
}
example
{
"EXAMPLE:"; echo=2;
ring r=0, (td(1..5), c(1..5), t), ds;
list l=td(1..5);
// get the polynomial 1 + td(1)*t + td(2)*t^2 + ... + td(5)*t^5
print( toddPoly(l, t) );
}
//---------------------------------------------------------------------------------------
proc rHRR(int N, list ch, list td)
"USAGE: rHRR( N, ch, td); N integer, ch, td lists of polynomials
RETURN: polynomial
PURPOSE: computes the the main ingredient of the right-hand side
of the Hirzebruch-Riemann-Roch formula
EXAMPLE: example rHRR; shows an example
NOTE: in order to get the right-hand side of the HRR formula
one needs to be able to compute the degree of the output of this procedure
"
{
poly rez; // to be the result
int i;
int nch=size(ch); // length of ch
int ntd=size(td); // length of td
for(i=1; i<=N+1; i++) // compute the highest degree term of ch.td
{
if( (i<=nch) && (N-i+2 <= ntd) )
{
rez = rez + ch[i]*td[N-i+2];
}
}
return(rez);
}
example
{
"EXAMPLE:"; echo=2;
ring r=0, (td(0..3), ch(0..3)), dp;
// Let ch(0), ch(1), ch(2), ch(3) be the terms of the Chern character
// of a vector bundle E on a 3-fold X.
list c = ch(0..3);
// Let td(0), td(1), td(2), td(3) be the terms of the Todd class of X.
list t = td(0..3);
// Then the highest term of the product ch(E).td(X) is:
print( rHRR(3, c, t) );
}
//---------------------------------------------------------------------------------------
proc SchurS(list I, list S)
"USAGE: SchurS(I, S); I list of integers representing a partition, S list of polynomials
RETURN: poly
PURPOSE: computes the Schur polynomial in the Segre classes S (of the dual vector bundle),
i.e., in the complete homogeneous symmetric polynomials, with respect to the partition I
EXAMPLE: example SchurS; shows an example
NOTE: if S are the Segre classes of the tautological bundle on a grassmanian,
this gives the cohomology class of a Schubert cycle
"
{
int m=size(I); // size of I
S=list(1)+S; // add the zeroth Segre class
int szS=size(S); // size of S
int h,k;
int in; // variable for the index of the required Segre class
// construct the required m x m matrix from the first determinantal (Jacobi-Trudi) formula
matrix M[m][m];
for(h=1;h<=m;h++)
{
for(k=1;k<=m;k++)
{
in=I[k]+k-h; // compute the index
if(in<0) // if it is negative, assume the corresponding Segre class to be zero
{
M[h,k]=0;
}
else
{
if(in>=szS) // if it is bigger than the number of the highest available Segre class in S
{
M[h, k]=0; // assume the corresponding Segre class is zero
}
else // otherwise
{
M[h, k]= S[in+1]; // use a value from S for the corresponding Segre class
}
}
}
}
return(det(M)); // return the determinant of the computed matrix
}
example
{
"EXAMPLE:"; echo=2;
// The Schur polynomial corresponding to the partition 1,2,4
// and the Segre classes 1, s(1), s(2),..., s(6)
ring r=0,(s(1..6)), dp;
list I=1,2,4;
list S=s(1..6);
print( SchurS(I, S) );
// compare this with the Schur polynomial computed using Chern classes
list C=chDual(chern(S));
print( SchurCh(I, C) );
}
//---------------------------------------------------------------------------------------
proc SchurCh(list I, list C)
"USAGE: SchurCh(I, C); I list of integers representing a partition, C list of polynomials
RETURN: poly
PURPOSE: computes the Schur polynomial in the Chern classes C,
i.e., in the elementary symmetric polynomials, with respect to the partition I
EXAMPLE: example SchurCh; shows an example
NOTE: if C are the Chern classes of the tautological bundle on a grassmanian,
this gives the cohomology class of a Schubert cycle
"
{
I=dualPart(I); // dual partition to I
int m=size(I); // size of I
C=list(1)+C; // add the zeroth Chern class
int szC=size(C); // size of C
int h,k;
int in; // variable for the index of the required Chern class
// construct the required m x m matrix from the second determinantal (Jacobi-Trudi) formula
matrix M[m][m];
for(h=1;h<=m;h++)
{
for(k=1;k<=m;k++)
{
in=I[k]+k-h; // compute the index
if(in<0) // if it is negative, assume the corresponding Chern class to be zero
{
M[h,k]=0;
}
else
{
if(in>=szC) // if it is bigger than the number of the highest available Chern class in C
{
M[h, k]=0; // assume the corresponding Chern class is zero
}
else // otherwise
{
M[h, k]= C[in+1]; // use a value from C for the corresponding Chern class
}
}
}
}
return(det(M)); // return the determinant of the computed matrix
}
example
{
"EXAMPLE:"; echo=2;
// The Schur polynomial corresponding to the partition 1,2,4
// and the Chern classes c(1), c(2), c(3)
ring r=0,(c(1..3)), dp;
list I=1,2,4;
list C=c(1..3);
print( SchurCh(I, C) );
// Compare this with the Schur polynomial computed using Segre classes
list S=segre( chDual( list(c(1..3)) ), 6 );
print(SchurS(I,S));
}
//---------------------------------------------------------------------------------------
proc part(int m, int n)
"USAGE: part( m, n ); m positive integer, n non-negative integer
RETURN: list of lists
PURPOSE: computes all partitions of integers not exceeding n into m non-negative summands
EXAMPLE: example part; shows an example
NOTE: if n is negative or m is non-positive, the list with one empty entry is returned
"
{
if( n<0 ) // if n is negative
{
return(list(list())); // return the list with one empty entry
}
if(n==0) // if n equals 0, there is only one partition of 0 into m non-negative summands
{
return(list(listSame(0,m))); // return the list with one entry consistion of m zeroes
}
// otherwise proceed recursively
list rez=part(m, n-1); // get all partitions for n-1
int i;
for(i=1;i<=m;i++) // for every i between 1 and m, add the partitions with exactly
{
rez=rez + appendToAll( part(m-i, n-1), listSame(n, i) ); // i summands equal to n
}
return(rez); // return the result
}
example
{
"EXAMPLE:"; echo=2;
// partitions into 3 summands of numbers not exceeding 1
print( part(3, 1) );
}
//---------------------------------------------------------------------------------------
proc dualPart(list I, list #)
"USAGE: dualPart( I [,N] ); I list of integers, N integer
RETURN: list of integers
PURPOSE: computes the partition dual (conjugate) to I
EXAMPLE: example dualPart; shows an example
NOTE: the result is extended by zeroes to length N if an optional integer
parameter N is given and the length of the computed dual partition
is smaller than N
"
{
int m= size(I); // size of I
if(m==0) // if I is the empty list
{
print("You are trying to compute the dual of the empty partition!");
print("The partition with one zero is returned.");
return(list(0));
}
// compute the dual partition
list J; // the result will be computed here
int i;
int j=I[1];
int k;
for(k=1;k<=j;k++)
{
J=list(m)+J;
}
for(i=2;i<=m;i++)
{
j=I[i]-I[i-1];
for(k=1;k<=j;k++)
{
J=list(m-i+1)+J;
}
}
if(size(J)==0) // if the dual partition J is empty (if I consists of zeroes)
{
J = list(0); // add zero to the result
}
if(size(#)>0) // if there is an optional parameter N
{
if( is_integer( #[1] ) ) // if the parameter is an integer,
{
if( size(J) < #[1] ) // if N is bigger than the length of J,
{
J=listSame(0, #[1]-size(J))+J; // extend J by zeroes to length N
}
}
}
return(J); // return the result
}
example
{
"EXAMPLE:"; echo =2;
// dual partition to (1, 3, 4):
list I = 1, 3, 4;
print( dualPart(I) );
}
//---------------------------------------------------------------------------------------
proc PartC(list I, int m)
"USAGE: PartC( I, m); I list of integers, m integer
RETURN: list of integers
PURPOSE: commputes the complement of a partition with respect to m
EXAMPLE: example PartC; shows an example
NOTE: returns the zero partition if the maximal element of the partition is smaller than m
"
{
int n=size(I); // size of I
if( m<I[n] ) // if m is smaller than the last term of I,
{
// give a warning
print("You are trying to compute a complement of a partition with respect");
print("to a number that is smaller than the maximal summand of the partition!");
print("The zero partition is returned.");
return(list(0)); // and return the zero partition
}
list J; // the result will be computed here
int i;
for(i=n;i>=1;i--) // invert the order of numbers
{
J=J+list(m-I[i]); // and substitute them by their complemenst to m
}
return(J); // return the result
}
example
{
"EXAMPLE:"; echo =2;
// Complement of the partition (1, 3, 4) with respect to 5
list I = 1, 3, 4;
print( PartC(I, 5) );
}
//---------------------------------------------------------------------------------------
proc partOver(int n, list J)
"USAGE: partOver( n, J); n integer, J list of integers (partition)
RETURN: list of lists
PURPOSE: computes the partitions over a given one with summands not exceeding n
EXAMPLE: example partOver; shows an example
NOTE:
"
{
int m=size(J); // size of J
if( m==0 ) // if J is an empty list
{
// give a warning
print("You are trying to compute partitions over an empty partition!");
return( list() ); // and return the emty list
}
if( J[m] > n ) // if the biggest summand of the partition is bigger than n
{
return( list( ) ); // return the emty list
}
if( J[m] == 0 ) // if J consists of zeroes
{
return( part(m,n) ); // return all partitions of n into m summands
}
// now J is non-empty, contains con-zero summands, has partitions over it
list rez1; // the result will be computed here
int i,j;
if(m==1) // if J has only one element
{
for(j=J[1]; j<=n; j++) // run through the integers from J[1] to n
{
rez1=rez1 + list(j); // add the corresponding one element lists to the result
}
return(rez1); // return the result
}
// now J has at least two elements
// get the partitions over the partition without the last summand
list rez = partOver(n, delete(J, m));
int sz=size(rez); // number of such partitions
list P;
int last;
for(i=1; i<=sz; i++) // run trough all such partitions
{
P=rez[i]; // for each partition P of this type
last = max( P[size(P)], J[m] );
for(j = last;j<= n;j++) // run through the integers exceding the last summands of P and J
{
// append them to P at the end and add the resulting partition to the result
rez1=rez1 + list(P+list(j));
}
}
return(rez1); // return the result
}
example
{
"EXAMPLE:"; echo =2;
// Partitions over the partition (3, 3, 4) with summands not exceeding 4
list I = 3, 3, 4;
print( partOver(4, I) );
}
//---------------------------------------------------------------------------------------
proc partUnder(list J)
"USAGE: partUnder(J); J list of integers (partition)
RETURN: list of lists
PURPOSE: computes the partitions under a given one
EXAMPLE: example partUnder; shows an example
NOTE:
"
{
int m=size(J); // size of J
if(m==0) // if J is empty
{
return(list()); // return an empty list
}
list rez1; // the result will be computed here
int i;
if(m==1) // if J contains only one element
{
for(i=0; i<=J[1]; i++)
{
rez1=rez1+list(list(i));
}
}
// now J contains at least two elements
list rez;
int Jlast=J[m]; // last element of J
rez = partUnder(delete(J, m)); // partitions under J without the last element
int j;
int sz=size(rez); // their number
list P;
int last;
for(i=1; i<=sz; i++) // for every such partition
{
P = rez[i];
last = P[size(P)];
for(j = last;j<=Jlast ;j++) // for every number between its last entry and the last entry of J
{
// append that number to the end of the partition
// and append the resulting partition to the final result
rez1 = rez1 + list(P+list(j));
}
}
return(rez1);
}
example
{
"EXAMPLE:"; echo =2;
// Partitions under the partition (0, 1, 1)
list I = 0, 1, 1;
print( partUnder(I) );
}
//-------------------------------------------------------------------------------------------
proc SegreA(ideal I)
"USAGE: SegreA(I); I an ideal
RETURN: list of integers
PURPOSE: computes the Segre classes of the subscheme defined by I
EXAMPLE: example SegreA; shows an example
NOTE:
"
{
if( !homog(I) ) // if the ideal is not homogeneous
{
print("You are trying to compute the Segre class of a non-homogeneous ideal!");
print("The ideal must be homogeneous, an empty list is returned.");
return( list() );
}
// modify the generators of the ideal so that all of them are of the same degree
I=equal_deg(I);
int d=deg(I[1]); // this degree is stored in this variable
int i;
list rez; // define the variable for the result
int n=nvars(basering)-1; // the dimension of the projective space
if(d==-1) // if the ideal is zero
{
for(i=0;i<=n;i++)
{
rez=rez+ list( int((-1)^i*binomial(n+i, i)) );
}
return(rez);
}
int sz=ncols(I); // the number of new generators is stored here
def br@=basering; // remember the base ring
// add additional variables t@(1), ... , t@(sz) and u@ to the base ring
execute("ring r@=("+ charstr(basering) +"),("+varstr(basering)+",t@(1..sz),u@), dp;");
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
ideal I=F(I); // the ideal generated by I in the new ring
ideal J(0..n); // define n+1 ideals J(0), ... , J(n)
// compute the ideal of the Rees algebra of the ideal I:
for(i=1; i<=sz; i++) // consider the ideal generated by t@(i)-u@*I[i]
{
J(0)=J(0) + ideal( t@(i)-u@*I[i] );
}
J(0)=eliminate(J(0), u@); // and eliminate the variable u@
ideal T=t@(1..sz); // define the ideal generated by the additional variables t@(1), ... , t@(sz)
for(i=1;i<=n;i++)// for all i=1, ... n define J(j) as in 3.6 of the Aluffi's paper
{
// add a random general linear form in variables t@(1), ... , t@(n) to J(i-1)
J(i)=sat( random_hypersurf(J(i-1), T) , T)[1]; // and saturate with respect to T
}
poly prd=product(T); // compute the product of t@(i)
poly cl;
poly mlt;
for(i=0;i<=n;i++)
{
// eliminate all t@(i) from J(i)
// compute the degree of the scheme defined by this ideal
// and use it to compute the class corresponding to c(O(d))^n * G\otimes O(d)
cl=cl+mult(std(eliminate(J(i), prd)))*u@^i*(1+d*u@)^(n-i);
// the (n+1)-st power of the inverse of the Chern class of O(d)
mlt=mlt+binomial(n+i, i)*(-d*u@)^i;
}
poly resPoly;
// compute the Segre class by the Aluffi's formula from Proposition 3.1 as polynomial in u@
resPoly= NF( 1-cl*mlt, u@^(n+1));
matrix cf=coeffs(resPoly, u@); // coefficients of the Segre class
rez=list(); // empty the list
for(i=0;i<=n;i++) // fill the list with the the Segre classes in positive degrees
{
if( i < nrows(cf) ) // if i is not bigger than the maximal degree of non-zero Segre classes
{
rez=rez+list(int(cf[i+1,1]));
}
else // otherwise fill the list with zeroes
{
rez=rez+list( int(0) );
}
}
return(rez);
}
example
{
"EXAMPLE:";echo =2;
// Consider a 3-dimensional projective space
ring r = 0, (x, y, z, w), dp;
// Consider 3 non-coplanar lines trough one point and compute the Segre class
ideal I=xy, xz, yz;
I;
SegreA(I);
// Now consider 3 coplanar lines trough one point and its Segre class
ideal J=w, x*y*(x+y);
J;
SegreA(J);
}
//-------------------------------------------------------------------------------------------
proc FultonA(ideal I)
"USAGE: FultonA(I); I an ideal
RETURN: list of integers
PURPOSE: computes the Fulton classes of the subscheme defined by I
EXAMPLE: example FultonA; shows an example
NOTE:
"
{
if( !homog(I) ) // if the ideal is not homogeneous
{
print("You are trying to compute the Segre class of a non-homogeneous ideal!");
print("The ideal must be homogeneous, an empty list is returned.");
return( list() );
}
// modify the generators of the ideal so that all of them are of the same degree
I=equal_deg(I);
int d=deg(I[1]); // this degree is stored in this variable
int i;
list rez; // define the variable for the result
int n=nvars(basering)-1; // the dimension of the projective space
if(d==-1) // if the ideal is zero
{
rez=rez+list(int(1));
for(i=1;i<=n;i++)
{
rez=rez+ list( int(0) );
}
return(rez);
}
int sz=ncols(I); // the number of new generators is stored here
def br@=basering; // remember the base ring
// add additional variables t@(1), ... , t@(sz) and u@ to the base ring
execute("ring r@=("+ charstr(basering) +"),("+varstr(basering)+",t@(1..sz),u@), dp;");
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
ideal I=F(I); // the ideal generated by I in the new ring
ideal J(0..n); // define n+1 ideals J(0), ... , J(n)
// compute the ideal of the Rees algebra of the ideal I:
for(i=1; i<=sz; i++) // consider the ideal generated by t@(i)-u@*I[i]
{
J(0)=J(0) + ideal( t@(i)-u@*I[i] );
}
J(0)=eliminate(J(0), u@); // and eliminate the variable u@
ideal T=t@(1..sz); // define the ideal generated by the additional variables t@(1), ... , t@(sz)
for(i=1;i<=n;i++)// for all i=1, ... n define J(j) as in 3.6 of the Aluffi's paper
{
// add a random general linear form in variables t@(1), ... , t@(n) to J(i-1)
J(i)=sat( random_hypersurf(J(i-1), T) , T)[1]; // and saturate with respect to T
}
poly prd=product(T); // compute the product of t@(i)
poly cl;
poly mlt;
for(i=0;i<=n;i++)
{
// eliminate all t@(i) from J(i)
// compute the degree of the scheme defined by this ideal
// the class corresponding to c(O(d))^n * G\otimes O(d)
cl=cl+ mult(std( eliminate( J(i), prd) ))*u@^i*(1+d*u@)^(n-i);
// the (n+1)-st power of the inverse of the Chern class of O(d)
mlt=mlt+binomial(n+i, i)*(-d*u@)^i;
}
poly resPoly;
// compute the Fulton class using the Aluffi's formula for the Segre class and
// multiplying it by the Chern class of the projective space (1+u@)^(n+1)
resPoly= NF( (1+u@)^(n+1)*(1-cl*mlt), u@^(n+1) );
matrix cf=coeffs(resPoly, u@); // coefficients of the Fulton class
rez=list(); // empty the list
for(i=0;i<=n;i++) // fill the list with the the Fulton classes in positive degrees
{
if( i < nrows(cf) ) // if i is not bigger than the maximal degree of non-zero Fulton classes
{
rez=rez+list(int(cf[i+1,1]));
}
else // otherwise fill the list with zeroes
{
rez=rez+list( int(0) );
}
}
return(rez);
}
example
{
"EXAMPLE:";echo =2;
// Consider a 3-dimensional projective space
ring r = 0, (x, y, z, w), dp;
// Consider 3 non-coplanar lines trough one point and compute the Fulton class
ideal I=xy, xz, yz;
I;
FultonA(I);
// Now consider 3 coplanar lines trough one point and its Fulton class
ideal J=w, x*y*(x+y);
J;
FultonA(J);
}
//-------------------------------------------------------------------------------------------
proc CSMA(ideal I)
"USAGE: CSMA(I); I an ideal
RETURN: list of integers
PURPOSE: computes the Chern-Schwartz-MacPherson classes of the variety defined by I
EXAMPLE: example CSMA; shows an example
NOTE:
"
{
if( !homog(I) ) // if the ideal is not homogeneous
{
print("You are trying to compute the Chern-Schwartz-MacPherson class.");
print("However the input ideal is not homogeneous!");
print("The ideal must be homogeneous, an empty list is returned.");
return( list() );
}
int sz=ncols(I);
int i;
int n=nvars(basering)-1;
bigintmat REZ[1][n+1];
int j;
int szpr;
list pr;
int sgn=-1;
for(i=1;i<=sz;i++)
{
sgn=-sgn;
pr=prds(i,I);
szpr=size(pr);
for(j=1;j<=szpr;j++)
{
REZ=REZ+sgn*CSM_hypersurf(pr[j]);
}
}
list rez;
for(i=0;i<=n;i++)
{
rez=rez+list(REZ[1,i+1]);
}
return(rez);
}
example
{
"EXAMPLE:";echo =2;
// consider the projective plane with homogeneous coordinates x, y, z
ring r = 0, (x, y, z), dp;
// the Chern-Schwartz-MacPherson class of a smooth cubic:
ideal I=x3+y3+z3;
I;
CSMA(I);
// the Chern-Schwartz-MacPherson class of singular cubic
// that is a union of 3 non-collinear lines:
ideal J=x*y*z;
J;
CSMA(J);
// the Chern-Schwartz-MacPherson class of singular cubic
// that is a union of 3 lines passing through one point
ideal K=x*y*(x+y);
K;
CSMA(K);
}
//-------------------------------------------------------------------------------------------
proc EulerAff(ideal I)
"USAGE: EulerAff(I); I an ideal
RETURN: integer
PURPOSE: computes the Euler characteristic of the affine variety defined by I
EXAMPLE: example EulerAff; shows an example
NOTE:
"
{
int n=nvars(basering);
def br@=basering; // remember the base ring
execute("ring r@=("+ charstr(basering) +"),("+varstr(basering)+",homvar@), dp;");
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
ideal I=F(I);
ideal J=homog(I, homvar@);
ideal JJ=J, homvar@;
return( CSMA(J)[n]-CSMA(JJ)[n] );
}
example
{
"EXAMPLE:";echo =2;
ring r = 0, (x, y), dp;
// compute the Euler characteristic of the affine ellipric curve y^2=x^3+x+1;
ideal I=y2-x3-x-1;
EulerAff(I);
}
//-------------------------------------------------------------------------------------------
proc EulerProj(ideal I)
"USAGE: EulerProj(I); I an ideal
RETURN: integer
PURPOSE: computes the highest degree term of the Chern-Schwartz-MacPherson class
of the variety defined by I, which equals the Euler characteristic
EXAMPLE: example EulerProj; shows an example
NOTE: uses CSMA(...)
"
{
if( !homog(I) ) // if the ideal is not homogeneous
{
print("The ideal must be homogeneous, zero is returned.");
return( int(0) );
}
int n=nvars(basering)-1;
return( CSMA(I)[n] );
}
example
{
"EXAMPLE:";echo =2;
// consider the projective plane with homogeneous coordinates x, y, z
ring r = 0, (x, y, z), dp;
// Euler characteristic of a smooth cubic:
ideal I=x3+y3+z3;
I;
EulerProj(I);
// Euler characteritic of 3 non-collinear lines:
ideal J=x*y*z;
J;
EulerProj(J);
// Euler characteristic of 3 lines passing through one point
ideal K=x*y*(x+y);
K;
EulerProj(K);
}
//----------------------------------------------------------------------------------------
// The procedures below are for the internal usage only
//----------------------------------------------------------------------------------------
static proc append_by_zeroes(int N, list c)
"USAGE: append_by_zeroes( N, c); N integer, c a list
RETURN: list
PURPOSE: appends by zeroes up to the length N
EXAMPLE: example append_by_zeroes; shows an example
NOTE:
"
{
int n=size(c);
if(N>n) // if N is greater than the length of c, append c by zeroes up to the length N
{
int i;
for(i=n+1;i<=N;i++)
{
c=c+list( poly(0) );
}
}
return(c);
}
example
{
"EXAMPLE:";echo =2;
ring r = 0, (x, y, z), dp;
list l=(x, y, z);
//append the list by two zeroes and get a list of lenght 5
print( append_by_zeroes(5, l) );
}
//-----------------------------------------------------------------------
static proc is_integer(def r)
"USAGE: is_integer(r); r any type
RETURN: 1 or 0
PURPOSE: checks whether r is of type int or bigint
EXAMPLE: example is_integer; shows an example
NOTE: returns 1 if r is of type int or bigint, otherwise returns 0
"
{
if( (typeof(r)=="int") || (typeof(r)=="bigint") )
{
return(1);
}
else
{
return(0);
}
}
example
{
"EXAMPLE:";echo =2;
// test on int, bigint, poly
ring r;
int i=12;
bigint j=16;
poly f=x;
print( is_integer(i) );
print( is_integer(j) );
print( is_integer(f) );
}
//------------------------------------------------------------------------------------
static proc integer_list(list l)
"USAGE: integer_list(l); l list
RETURN: list
PURPOSE: gets the first positive ingerer entries of l, computes their maximum;
used for adjusting the lists of optional parameters that are suposed to be integers
EXAMPLE: example integer_list; shows an example
NOTE: used in chWedge(...) and chSymm(...)
"
{
int M=0;
int n=size(l);
if(n==0)
{
return(list(l, M));
}
// now n>0
list rez; // the result will be computed here
int i=1;
while( is_integer( l[i] ) ) // take only the first integer entries of l
{
if(l[i]>0) // if they are positive
{
rez=rez+list( l[i] );
if(l[i]>M) // adjust the maximum if necessary
{
M=l[i];
}
i++;
}
else // otherwise get out from the loop
{
break;
}
}
return( list( rez, M) );
}
example
{
"EXAMPLE:";echo =2;
// the first integer entries of 1,2,3,t are 1,2,3
ring r=0,(t), ls;
list l=1,2,3, t;
print( integer_list(l) );
}
//---------------------------------------------------------------------------------------
static proc appendToAll(list L, list A)
"USAGE: appendToAll( L, A ); L list of lists, A list
RETURN: list
PURPOSE: appends A to every entry of L
EXAMPLE: example appendToAll; shows an example
NOTE:
"
{
int n=size(L);
int i;
for(i=1;i<=n;i++) // run through all elements of L
{
L[i]=L[i]+A; // and append A to each of them
}
return(L);
}
example
{
"EXAMPLE:"; echo=2;
// Consider two lists
list l1, l2;
l1=1,2;
l2=3,4;
// The first one is
print(l1);
// The second one is
print(l2);
// Now consider the list with entries l1 and l2
list L= l1, l2;
print(L);
// and consider a list A
list A = 7,9;
print(A);
// append A to all entries of L
print( appendToAll(L, A) );
}
//---------------------------------------------------------------------------------------
static proc listSame(int n, int k)
"USAGE: listSame( n, k ); n integer, k non-negative integer
RETURN: list
PURPOSE: list with k entries each equal to n
EXAMPLE: example listSame; shows an example
NOTE: if k is negative or zero, the empty list is returned
"
{
list rez;
int i;
for(i=1;i<=k;i++) // create a list with k entries, each equal to n
{
rez=rez+list(n);
}
return(rez);
}
example
{
"EXAMPLE:"; echo=2;
// list of 5 zeroes
print( listSame(0, 5) );
}
//---------------------------------------------------------------------------------------
static proc IJcoef(list I, list J)
"USAGE: IJcoef( I, J); J, J lists of integers
RETURN: bigint
PURPOSE: computes the coefficient used in the formula of Lascoux
EXAMPLE: example IJcoef; shows an example
NOTE: these coefficients are denoted (I, J) in the paper of Lascoux
"
{
int m = size(I);
if(m != size(J)) // if the sizes of I and J are different
{
// give a warning
print("The sizes of the partitions are different!");
print("Zero is returned.");
return( bigint(0) ); // and return zero
}
// now the sizes of I and J are equal m
int h, k;
bigintmat M[m][m]; // construct the required matrix
for(h=1; h<=m; h++)
{
for(k=1; k<=m; k++)
{
M[h,k] = binomial( I[k]+k-1, J[h]+h-1 );
}
}
return( det(M) ); // and return its determinant
}
example
{
"EXAMPLE:"; echo =2;
// The coefficient corresponding to the partitions (1, 3, 4) and (0, 3, 3)
list I = 1, 3, 4;
list J = 1, 3, 3;
print( IJcoef(I, J) );
}
//---------------------------------------------------------------------------------------
static proc invertPart(list l)
"USAGE: invertPart(I); I list of integers (partition),
RETURN: list of integers
PURPOSE: inverts the ordering of the elements in the list
EXAMPLE: example invertPart; shows an example
NOTE:
"
{
list L;
int sz=size(l);
int i;
for(i=sz;i>=1;i--)
{
L=L+list(l[i]);
}
return(L);
}
example
{
"EXAMPLE:"; echo = 2;
// Invert the ordering of elements in (3, 2, 1)
list l = 3, 2, 1;
print( invertPart(l) );
}
//---------------------------------------------------------------------------------------
static proc LRmul(list I, list J)
"USAGE: LRmul(x, y); x, y lists of integers (partitions)
RETURN: list of lists
PURPOSE: computes the partitions z for which the Littlewood-Richardson
coefficient c^z_{x,y} is non-zero together with that coefficient;
partitions up to length r
EXAMPLE: example LRmul; shows an example
NOTE: uses LRmult(..) from lrcalc.lib, does the same,
only uses the inverted ordering of the elements in the partition
"
{
list rez=LRmult(invertPart(I), invertPart(J));
int sz=size(rez);
int i;
for(i=1;i<=sz;i++)
{
rez[i][2]=invertPart(rez[i][2]);
}
return(rez);
}
example
{
"EXAMPLE:"; echo = 2;
// Compute the partitions z for which the Littlewood-Richardson coefficient
// c^z_{x,y} is non-zero together with that coefficient
// for x= (1, 2), y=(1, 2)
list x = 1, 2;
list y = 1, 2;
print( LRmul(x, y) );
}
//---------------------------------------------------------------------------------------
static proc hook(list I)
"USAGE: hook(I); I list of integers (partition),
RETURN: bigint
PURPOSE: computes the product of the hook lenhths of the partition I
EXAMPLE: example hook; shows an example
NOTE:
"
{
bigint rez=1;
list dI= invertPart( dualPart(I) );
I=invertPart( I );
int szI=size(I);
int szdI=size(dI);
int i, j;
for(i=1;i<=szI;i++)
{
for(j=1;j<=I[i];j++)
{
rez=rez*(I[i]+dI[j]-i-j+1);
}
}
return(rez);
}
example
{
"EXAMPLE:"; echo = 2;
// compute the product of all hook lengths of the partition (1, 1, 3)
list I = 1, 1, 3;
print( hook(I) );
}
//---------------------------------------------------------------------------------------
static proc apn0_int(int N, list c)
"USAGE: apn0_int( N, c); N integer, c list of integers (partition)
RETURN: list of integers
PURPOSE: appends by integer zeroes up to the length N
EXAMPLE: example apn0_int; shows an example
NOTE:
"
{
int n=size(c);
if(N>n) // if N is greater than the length of c, append c by zeroes up to the length N
{
int i;
for(i=n+1;i<=N;i++)
{
c=c+list( int(0) );
}
}
return(c);
}
example
{
"EXAMPLE:";echo =2;
ring r = 0, (x, y, z), dp;
list l=(1, 2, 3);
//append the list by two zeroes and get a list of lenght 5
print( apn0_int(5, l) );
}
//---------------------------------------------------------------------------------------
static proc contentPoly(list I, list J, poly e)
"USAGE: contentPoly(I, J, e); L, M lists of integers (partitions),
e polynomial
RETURN: poly
PURPOSE: computes the content polynomial of the skew partition corresponding to I>J
EXAMPLE: example contentPoly; shows an example
NOTE:
"
{
int i, j;
int szI=size(I);
I=invertPart(I);
J=invertPart(J);
J=apn0_int(szI, J);
poly rez=1;
for(i=1; i<=szI; i++)
{
for(j=J[i]+1; j<=I[i]; j++)
{
rez = rez*(e- i+j);
}
}
return(rez);
}
example
{
"EXAMPLE:"; echo = 2;
// compute the content Polynomial of the skew partition
// corresponding to (1,2) > (0, 1) with respect to the variable x
ring r = 0, (x), dp;
list L=1,2;
list M=0,1;
print( contentPoly(L, M, x) );
}
//---------------------------------------------------------------------------------------
static proc Pcoef(list L, list M, poly e, poly f)
"USAGE: Pcoef(L, M, e, f); L, M lists of integers (partitions),
e, f polynomials
RETURN: poly
PURPOSE: computes the polynomial P_{L, M}(e, f) from the paper of Manivel
EXAMPLE: example Pcoef; shows an example
NOTE:
"
{
list P = LRmul(dualPart(L), M);
int sz=size(P);
poly rez;
//poly h;
list T, DT;
//bigint lrc;
int i;
for(i=1;i<=sz;i++)
{
T=P[i][2];
DT=dualPart(T);
//lrc=P[i][1];
//h=contentPolyM(DT, L, e)*contentPoly(T, M, f);
rez=rez+P[i][1]* contentPoly(DT, L, e)*contentPoly(T, M, f)/hook(DT);
}
return(rez);
}
example
{
"EXAMPLE:"; echo = 2;
// compute P_{L, M}(e, f) from the paper of Manivel
// for L = (0,1) and M = (1, 1)
ring r = 0, (e, f), dp;
list L=1,2,3;
list M=1,2;
print( Pcoef(L, M, e, f) );
}
//---------------------------------------------------------------------------------------
static proc max_deg(ideal I)
"USAGE: max_deg(I); I an ideal
RETURN: integer
PURPOSE: computes the maximal degree of the generators of I
EXAMPLE: example max_deg; shows an example
NOTE:
"
{
int rez=0;
int i;
int sz = ncols(I);
for(i=1;i<=sz;i++)
{
rez=max(rez, deg(I[i]) );
}
return(rez);
}
example
{
"EXAMPLE:";echo =2;
// the maximal degree of the ideal in k[x, y]:
ring r = 0, (x, y), dp;
ideal I= x4, y7, x2y3;
print(max_deg(I));
}
//-------------------------------------------------------------------------------------------
static proc var_pow(int n)
"USAGE: var_pow(n); n an integer
RETURN: ideal
PURPOSE: computes the ideal generated by the n-th powers of the variables of the base ring
EXAMPLE: example var_pow; shows an example
NOTE:
"
{
ideal I=maxideal(1);
int sz=ncols(I);
int i;
ideal J;
for(i=1; i<=sz; i++)
{
J=J+ideal(I[i]^n);
}
return(J);
}
example
{
"EXAMPLE:";echo =2;
// the 3-rd powers of the variables in k[x, y]:
ring r = 0, (x, y), dp;
print(var_pow(3));
}
//-------------------------------------------------------------------------------------------
static proc equal_deg(ideal I)
"USAGE: equal_deg(I); I an ideal
RETURN: ideal
PURPOSE: computes an ideal generated by elements of the same degree
that defines the same projective subscheme as I
EXAMPLE: example equal_deg; shows an example
NOTE:
"
{
I=simplify(I, 8+2);
int sz=ncols(I);
int mxd=max_deg(I);
int i;
ideal J;
for(i=1;i<=sz;i++)
{
J=J+I[i]*var_pow( mxd-deg(I[i]) );
}
return(sort( simplify(J, 8+2) )[1]);
}
example
{
"EXAMPLE:"; echo=2;
// change the ideal (x, y^2) in k[x, y, z]:
ring r = 0, (x, y, z), dp;
ideal I=x, y*z;
// the ideal defines a two points subscheme in the projective plane
// and is generated by elements of different degrees
print(I);
ideal J=equal_deg(I);
// now the ideal is generated by elemets of degree 2
// and defines the same subscheme in the projective plane
J;
// notice that both ideals have the same saturation
// with respect to the irrelevant ideal (x, y, z)
// the saturation of the initial ideal coincides with the ideal itself
sat(I, maxideal(1))[1];
// the saturation of the modified ideal
sat(J, maxideal(1))[1];
}
//-------------------------------------------------------------------------------------------
static proc CSM_hypersurf(poly f)
"USAGE: CSM_hypersurf(f); f a polynomial
RETURN: list of integers
PURPOSE: computes the Chern-Schwartz-MacPherson classes of the hypersurface defined by f
EXAMPLE: example CSM_hypersurf; shows an example
NOTE:
"
{
ideal I=jacob(f);
I=simplify(I, 8+2); // ignore repetitions and zero generators
I=sort(I)[1]; // sort the generators, it speeds up the computations
int d=deg(I[1]); // the degree of the generators of the Jacobian ideal
int i;
int n=nvars(basering)-1; // the dimension of the projective space
bigintmat REZ[1][n+1];
if(d==-1) // if the Jacobian ideal is zero
{
for(i=0;i<=n;i++)
{
REZ[1,i+1]=binomial(n+1,i);
}
return(REZ);
}
//TODO need to check the zero ideal and I==1;
int sz=ncols(I);
def br@=basering; // remember the base ring
execute("ring r@=("+ charstr(basering) +"),("+varstr(basering)+",t@(1..sz),u@), dp;");
execute( "map F= br@,"+varstr(br@)+";" ); // define the corresponding inclusion of rings
ideal I=F(I);
ideal J(0..n);
for(i=1; i<=sz; i++)
{
J(0)=J(0) + ideal( t@(i)-u@*I[i] );
}
J(0)=eliminate(J(0), u@);
ideal T=t@(1..sz);
for(i=1;i<=n;i++)
{
J(i) = sat( random_hypersurf(J(i-1), T), T )[1];
}
poly prd=product(T);
poly cl;
poly mlt;
for(i=0;i<=n;i++)
{
cl=cl+ mult( std(eliminate( J(i), prd)) ) *(-u@)^i*(1+u@)^(n-i);
}
cl=(1+u@)^(n+1)-cl;
poly resPoly=NF( cl, u@^(n+1) );
matrix cf=coeffs(resPoly, u@);
for(i=0;i<=n;i++)
{
if( i < nrows(cf) )
{
REZ[1,i+1]=int(cf[i+1,1]);
}
else
{
REZ[1,i+1]=int(0);
}
}
return(REZ);
}
example
{
"EXAMPLE:";echo =2;
// consider the projective plane with homogeneous coordinates x, y, z
ring r = 0, (x, y, z), dp;
// the Chern-Schwartz-MacPherson class of a smooth cubic:
poly f=x3+y3+z3;
f;
CSM_hypersurf(f);
// the Chern-Schwartz-MacPherson class of singular cubic
// that is a union of 3 non-collinear lines:
poly g=x*y*z;
g;
CSM_hypersurf(g);
// the Chern-Schwartz-MacPherson class of singular cubic
// that is a union of 3 lines passing through one point
poly h=x*y*(x+y);
h;
CSM_hypersurf(h);
}
//-------------------------------------------------------------------------------------------
static proc random_hypersurf(ideal I, ideal V)
"USAGE: random_hypersurf(I, V); I, V ideals
RETURN: ideal
PURPOSE: computes the sum of I with the ideal generated by a random
linear combination of the generators of V such that the dimension decreases
EXAMPLE: example random_hypersurf; shows an example
NOTE: if the ideal I=1 (the whole ring), then I is returned
"
{
ideal H;
ideal J;
// if(isSubModule(ideal(1), I)) // if I equals 1 (the whole ring);
if( is_zero(I) )
{
return(I);
}
// otherwise
int ok=0;
int ntries; // number of tries
while( !ok ) // give two tries for every b in randomid(V, 1, b)
{
H=randomid(V, 1, ntries div 2 +1);
ntries++; // increase by 1
if( isSubModule( quotient(I, ideal(H) ), I) )
{
J=I + H;
ok=1;
}
}
return(J);
}
example
{
"EXAMPLE:";echo =2;
// Consider an ideal in k[x, y, z, s, t] and find its intersection with a general hyperplane
// given by as+bt=0
ring r = 0, (x, y, z, s, t), dp;
ideal I=x2, yz, s+t;
I;
ideal V= s, t;
V;
// the ideal of the intersection with the random general hyperplane
random_hypersurf(I, V);
}
//-------------------------------------------------------------------------------------------
static proc prds(int n, def l)
"USAGE: prds(n, l); n an integer, l list of polynomials or ideal
RETURN: list of polynomials
PURPOSE: computes all possible products of length n (without repetitions) of the entries of l
EXAMPLE: example prds; shows an example
NOTE:
"
{
int sz;
if(typeof(l)=="ideal")
{
sz=ncols(l);
}
else
{
sz=size(l);
}
if( (n>sz)||(sz==0)||(n<0) )
{
return( list() );
}
// otherwise
if(n==0)
{
return( list(int(1)) );
}
if(sz==n)
{
return(product(l));
}
list L, LL, ll;
ll=l[2..sz];
poly f=l[1];
L=prds(n, ll );
LL=prds(n-1,ll);
int i;
sz=size(LL);
for(i=1;i<=sz;i++)
{
LL[i]=f*LL[i];
}
return(L+LL);
}
example
{
"EXAMPLE:";echo =2;
ring r = 0, (x, y, z, w), dp;
// compute all possible 2-products between the variables x,y,z,w
list l=x,y,z,w;
prds(2, l);
// compute all possible 3-products between the variables x,y,z,w
ideal I=x,y,z,w;
prds(3, l);
}
//-------------------------------------------------------------------------------------------
|