/usr/share/singular/LIB/ainvar.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 | //////////////////////////////////////////////////////////////////////////////
version="version ainvar.lib 4.0.0.0 Jun_2013 "; // $Id: 43bf74d54af86b68f5f318ff2719221f2488449a $
category="Invariant theory";
info="
LIBRARY: ainvar.lib Invariant Rings of the Additive Group
AUTHORS: Gerhard Pfister (email: pfister@mathematik.uni-kl.de),
Gert-Martin Greuel (email: greuel@mathematik.uni-kl.de)
PROCEDURES:
invariantRing(m..); compute ring of invariants of (K,+)-action given by m
derivate(m,f); derivation of f with respect to the vector field m
actionIsProper(m); tests whether action defined by m is proper
reduction(p,I); SAGBI reduction of p in the subring generated by I
completeReduction(); complete SAGBI reduction
localInvar(m,p..); invariant polynomial under m computed from p,...
furtherInvar(m..); compute further invariants of m from the given ones
sortier(id); sorts generators of id by increasing leading terms
";
LIB "inout.lib";
LIB "general.lib";
LIB "algebra.lib";
///////////////////////////////////////////////////////////////////////////////
proc sortier(def id)
"USAGE: sortier(id); id ideal/module
RETURN: the same ideal/module but with generators ordered by their
leading terms, starting with the smallest
EXAMPLE: example sortier; shows an example
"
{
if(size(id)==0)
{return(id); }
intvec i=sortvec(id);
int j;
if( typeof(id)=="ideal")
{ ideal m; }
if( typeof(id)=="module")
{ module m; }
if( typeof(id)!="ideal" and typeof(id)!="module")
{ ERROR("input must be of type ideal or module"); }
for (j=1;j<=size(i);j++)
{
m[j] = id[i[j]];
}
return(m);
}
example
{ "EXAMPLE:"; echo = 2;
ring q=0,(x,y,z,u,v,w),dp;
ideal i=w,x,z,y,v;
sortier(i);
}
///////////////////////////////////////////////////////////////////////////////
proc derivate (matrix m, def id)
"USAGE: derivate(m,id); m matrix, id poly/vector/ideal
ASSUME: m is an nx1 matrix, where n = number of variables of the basering
RETURN: poly/vector/ideal (same type as input), result of applying the
vector field by the matrix m componentwise to id;
NOTE: the vector field is m[1,1]*d/dx(1) +...+ m[1,n]*d/dx(n)
EXAMPLE: example derivate; shows an example
"
{
execute (typeof(id)+ " j;");
ideal I = ideal(id);
matrix mh=matrix(jacob(I))*m;
if(typeof(j)=="poly")
{ j = mh[1,1];
}
else
{ j = mh[1];
}
return(j);
}
example
{ "EXAMPLE:"; echo = 2;
ring q=0,(x,y,z,u,v,w),dp;
poly f=2xz-y2;
matrix m[6][1] =x,y,0,u,v;
derivate(m,f);
vector v = [2xz-y2,u6-3];
derivate(m,v);
derivate(m,ideal(2xz-y2,u6-3));
}
///////////////////////////////////////////////////////////////////////////////
proc actionIsProper(matrix m)
"USAGE: actionIsProper(m); m matrix
ASSUME: m is a nx1 matrix, where n = number of variables of the basering
RETURN: int = 1, if the action defined by m is proper, 0 if not
NOTE: m defines a group action which is the exponential of the vector
field m[1,1]*d/dx(1) +...+ m[1,n]*d/dx(n)
EXAMPLE: example actionIsProper; shows an example
"
{
int i;
ideal id=maxideal(1);
def bsr=basering;
//changes the basering bsr to bsr[@t]
execute("ring s="+charstr(basering)+",("+varstr(basering)+",@t),dp;");
poly inv,delta,tee,j;
ideal id=imap(bsr,id);
matrix @m[size(id)+1][1];
@m=imap(bsr,m),0;
int auxv;
//computes the exp(@t*m)(var(i)) for all i
for(i=1;i<=nvars(basering)-1;i++)
{
inv=var(i);
delta=derivate(@m,inv);
j=1;
auxv=1;
tee=@t;
while(delta!=0)
{
inv=inv+1/j*delta*tee;
auxv=auxv+1;
j=j*auxv;
tee=tee*@t;
delta=derivate(@m,delta);
}
id=id+ideal(inv);
}
i=inSubring(@t,id)[1];
setring(bsr);
return(i);
}
example
{ "EXAMPLE:"; echo = 2;
ring rf=0,x(1..7),dp;
matrix m[7][1];
m[4,1]=x(1)^3;
m[5,1]=x(2)^3;
m[6,1]=x(3)^3;
m[7,1]=(x(1)*x(2)*x(3))^2;
actionIsProper(m);
ring rd=0,x(1..5),dp;
matrix m[5][1];
m[3,1]=x(1);
m[4,1]=x(2);
m[5,1]=1+x(1)*x(4)^2;
actionIsProper(m);
}
///////////////////////////////////////////////////////////////////////////////
proc reduction(poly p, ideal dom, list #)
"USAGE: reduction(p,I[,q,n]); p poly, I ideal, [q monomial, n int (optional)]
RETURN: a polynomial equal to p-H(f1,...,fr), in case the leading
term LT(p) of p is of the form H(LT(f1),...,LT(fr)) for some
polynomial H in r variables over the base field, I=f1,...,fr;
if q is given, a maximal power a is computed such that q^a divides
p-H(f1,...,fr), and then (p-H(f1,...,fr))/q^a is returned;
return p if no H is found
if n=1, a different algorithm is chosen which is sometimes faster
(default: n=0; q and n can be given (or not) in any order)
NOTE: this is a kind of SAGBI reduction in the subalgebra K[f1,...,fr] of
the basering
EXAMPLE: example reduction; shows an example
"
{
int i,choose;
int z=ncols(dom);
def bsr=basering;
if( size(#) >0 )
{ if( typeof(#[1]) == "int")
{ choose = #[1];
}
if( typeof(#[1]) == "poly")
{ poly q = #[1];
}
if( size(#)>1 )
{ if( typeof(#[2]) == "poly")
{ poly q = #[2];
}
if( typeof(#[2]) == "int")
{ choose = #[2];
}
}
}
// -------------------- first algorithm (default) -----------------------
if ( choose == 0 )
{
list L = algebra_containment(lead(p),lead(dom),1);
if( L[1]==1 )
{
// the ring L[2] = char(bsr),(x(1..nvars(bsr)),y(1..z)),(dp(n),dp(m)),
// contains polynomial check s.t. LT(p) is of the form check(LT(f1),...,LT(fr))
def s1 = L[2];
map psi = s1,maxideal(1),dom;
poly re = p - psi(check);
// divide by the maximal power of #[1]
if ( defined(q) == voice )
{ while ((re!=0) && (re!=#[1]) &&(subst(re,#[1],0)==0))
{ re=re/#[1];
}
}
return(re);
}
return(p);
}
// ------------------------- second algorithm ---------------------------
else
{
//----------------- arranges the monomial v for elimination -------------
poly v=product(maxideal(1));
//------------- changes the basering bsr to bsr[@(0),...,@(z)] ----------
execute("ring s="+charstr(basering)+",("+varstr(basering)+",@(0..z)),dp;");
// Ev hier die Reihenfolge der Vars aendern. Dazu muss unten aber entsprechend
// geaendert werden:
// execute("ring s="+charstr(basering)+",(@(0..z),"+varstr(basering)+"),dp;");
//constructs the leading ideal of dom=(p-@(0),dom[1]-@(1),...,dom[z]-@(z))
ideal dom=imap(bsr,dom);
for (i=1;i<=z;i++)
{
dom[i]=lead(dom[i])-var(nvars(bsr)+i+1);
}
dom=lead(imap(bsr,p))-@(0),dom;
//---------- eliminates the variables of the basering bsr --------------
//i.e. computes dom intersected with K[@(0),...,@(z)] (this is hard)
//### hier Variante analog zu algebra_containment einbauen!
ideal kern=eliminate(dom,imap(bsr,v));
//--------- test wether @(0)-h(@(1),...,@(z)) is in ker ---------------
// for some polynomial h and divide by maximal power of q=#[1]
poly h;
z=size(kern);
for (i=1;i<=z;i++)
{
h=kern[i]/@(0);
if (deg(h)==0)
{ h=(1/h)*kern[i];
// define the map psi : s ---> bsr defined by @(i) ---> p,dom[i]
setring bsr;
map psi=s,maxideal(1),p,dom;
poly re=psi(h);
// divide by the maximal power of #[1]
if (size(#)>0)
{ while ((re!=0) && (re!=#[1]) &&(subst(re,#[1],0)==0))
{ re=re/#[1];
}
}
return(re);
}
}
setring bsr;
return(p);
}
}
example
{ "EXAMPLE:"; echo = 2;
ring q=0,(x,y,z,u,v,w),dp;
poly p=x2yz-x2v;
ideal dom =x-w,u2w+1,yz-v;
reduction(p,dom);
reduction(p,dom,w);
}
///////////////////////////////////////////////////////////////////////////////
proc completeReduction(poly p, ideal dom, list #)
"USAGE: completeReduction(p,I[,q,n]); p poly, I ideal, [q monomial, n int]
RETURN: a polynomial, the SAGBI reduction of the polynomial p with respect to I
via the procedure 'reduction' as long as possible
if n=1, a different algorithm is chosen which is sometimes faster
(default: n=0; q and n can be given (or not) in any order)
NOTE: help reduction; shows an explanation of SAGBI reduction
EXAMPLE: example completeReduction; shows an example
"
{
poly p1=p;
poly p2=reduction(p,dom,#);
while (p1!=p2)
{
p1=p2;
p2=reduction(p1,dom,#);
}
return(p2);
}
example
{ "EXAMPLE:"; echo = 2;
ring q=0,(x,y,z,u,v,w),dp;
poly p=x2yz-x2v;
ideal dom =x-w,u2w+1,yz-v;
completeReduction(p,dom);
completeReduction(p,dom,w);
}
///////////////////////////////////////////////////////////////////////////////
proc completeReductionnew(poly p, ideal dom, list #)
"USAGE: completeReduction(p,I[,q,n]); p poly, I ideal, [q monomial, n int]
RETURN: a polynomial, the SAGBI reduction of the polynomial p with I
via the procedure 'reduction' as long as possible
if n=1, a different algorithm is chosen which is sometimes faster
(default: n=0; q and n can be given (or not) in any order)
NOTE: help reduction; shows an explanation of SAGBI reduction
EXAMPLE: example completeReduction; shows an example
"
{
if(p==0)
{
return(p);
}
poly p1=p;
poly p2=reduction(p,dom,#);
while (p1!=p2)
{
p1=p2;
p2=reduction(p1,dom,#);
}
poly re=lead(p2)+completeReduction(p2-lead(p2),dom,#);
return(re);
}
///////////////////////////////////////////////////////////////////////////////
proc localInvar(matrix m, poly p, poly q, poly h)
"USAGE: localInvar(m,p,q,h); m matrix, p,q,h polynomials
ASSUME: m(q) and h are invariant under the vector field m, i.e. m(m(q))=m(h)=0
h must be a ring variable
RETURN: a polynomial, the invariant polynomial of the vector field
@format
m = m[1,1]*d/dx(1) +...+ m[n,1]*d/dx(n)
@end format
with respect to p,q,h. It is defined as follows: set inv = p if p is
invariant, and else set
inv = m(q)^N * sum_i=1..N-1{ (-1)^i*(1/i!)*m^i(p)*(q/m(q))^i }
where m^N(p) = 0, m^(N-1)(p) != 0; the result is inv divided by h
as often as possible
EXAMPLE: example localInvar; shows an example
"
{
if ((derivate(m,h) !=0) || (derivate(m,derivate(m,q)) !=0))
{
"//the last two polynomials of the input must be invariant functions";
return(q);
}
int ii,k;
for ( k=1; k <= nvars(basering); k++ )
{ if (h == var(k))
{ ii=1;
}
}
if( ii==0 )
{ "// the last argument must be a ring variable";
return(q);
}
poly inv=p;
poly dif= derivate(m,inv);
poly a=derivate(m,q);
poly sgn=-1;
poly coeff=sgn*q;
k=1;
if (dif==0)
{
return(inv);
}
while (dif!=0)
{
inv=(a*inv)+(coeff*dif);
dif=derivate(m,dif);
k=k+1;
coeff=q*coeff*sgn/k;
}
while ((inv!=0) && (inv!=h) &&(subst(inv,h,0)==0))
{
inv=inv/h;
}
return(inv);
}
example
{ "EXAMPLE:"; echo = 2;
ring q=0,(x,y,z),dp;
matrix m[3][1];
m[2,1]=x;
m[3,1]=y;
poly in=localInvar(m,z,y,x);
in;
}
///////////////////////////////////////////////////////////////////////////////
proc furtherInvar(matrix m, ideal id, ideal karl, poly q, list #)
"USAGE: furtherInvar(m,id,karl,q); m matrix, id,karl ideals, q poly, n int
ASSUME: karl,id,q are invariant under the vector field m,
moreover, q must be a variable
RETURN: list of two ideals, the first ideal contains further invariants of
the vector field
@format
m = sum m[i,1]*d/dx(i) with respect to id,p,q,
@end format
i.e. we compute elements in the (invariant) subring generated by id
which are divisible by q and divide them by q as often as possible.
The second ideal contains all invariants given before.
If n=1, a different algorithm is chosen which is sometimes faster
(default: n=0)
EXAMPLE: example furtherInvar; shows an example
"
{
list ll = q;
if ( size(#)>0 )
{ ll = ll+list(#[1]);
}
int i;
ideal null,eins;
int z=ncols(id);
intvec v;
def br=basering;
ideal su;
for (i=1; i<=z; i++)
{
su[i]=subst(id[i],q,0);
}
// -- define the map phi : r1 ---> br defined by y(i) ---> id[i](q=0) --
execute ("ring r1="+charstr(basering)+",(y(1..z)),dp;");
setring br;
map phi=r1,su;
setring r1;
// --------------- compute the kernel of phi ---------------------------
ideal ker=preimage(br,phi,null);
ker=mstd(ker)[2];
// ---- define the map psi : r1 ---> br defined by y(i) ---> id[i] -----
setring br;
map psi=r1,id;
// ------------------- compute psi(ker(phi)) --------------------------
ideal rel=psi(ker);
// divide by maximal power of q, test wether we really obtain invariants
for (i=1;i<=size(rel);i++)
{
while ((rel[i]!=0) && (rel[i]!=q) &&(subst(rel[i],q,0)==0))
{
rel[i]=rel[i]/q;
if (derivate(m,rel[i])!=0)
{
"// error in furtherInvar, function not invariant:";
rel[i];
}
}
rel[i]=simplify(rel[i],1);
}
// ---------------------------------------------------------------------
// test whether some variables occur linearly and then delete the
// corresponding invariant function
setring r1;
int j;
for (i=1;i<=size(ker);i=i+1)
{
for (j=1;j<=z;j++)
{
if (deg(ker[i]/y(j))==0)
{
setring br;
rel[i]= completeReduction(rel[i],karl,ll);
if(rel[i]!=0)
{
karl[j+1]=rel[i];
rel[i]=0;
eins=1;
}
setring r1;
}
}
}
setring br;
rel=rel+null;
if(size(rel)==0){rel=eins;}
list l=rel,karl;
return(l);
}
example
{ "EXAMPLE:"; echo = 2;
ring r=0,(x,y,z,u),dp;
matrix m[4][1];
m[2,1]=x;
m[3,1]=y;
m[4,1]=z;
ideal id=localInvar(m,z,y,x),localInvar(m,u,y,x);
ideal karl=id,x;
list in=furtherInvar(m,id,karl,x);
in;
}
///////////////////////////////////////////////////////////////////////////////
proc invariantRing(matrix m, poly p, poly q, int b, list #)
"USAGE: invariantRing(m,p,q,b[,r,pa]); m matrix, p,q poly, b,r int, pa string
ASSUME: p,q variables with m(p)=q and q invariant under m
i.e. if p=x(i) and q=x(j) then m[j,1]=0 and m[i,1]=x(j)
RETURN: ideal, containing generators of the ring of invariants of the
additive group (K,+) given by the vector field
@format
m = m[1,1]*d/dx(1) +...+ m[n,1]*d/dx(n).
@end format
If b>0 the computation stops after all invariants of degree <= b
(and at least one of higher degree) are found or when all invariants
are computed.
If b<=0, the computation continues until all generators
of the ring of invariants are computed (should be used only if the
ring of invariants is known to be finitely generated, otherwise the
algorithm might not stop).
If r=1 a different reduction is used which is sometimes faster
(default r=0).
DISPLAY: if pa is given (any string as 5th or 6th argument), the computation
pauses whenever new invariants are found and displays them
THEORY: The algorithm for computing the ring of invariants works in char 0
or suffiently large characteristic.
(K,+) acts as the exponential of the vector field defined by the
matrix m.
For background see G.-M. Greuel, G. Pfister,
Geometric quotients of unipotent group actions, Proc.
London Math. Soc. (3) 67, 75-105 (1993).
EXAMPLE: example invariantRing; shows an example
"
{
ideal j;
int i,it;
list ll=q;
int bou=b;
if( size(#) >0 )
{ if( typeof(#[1]) == "int")
{ ll=ll+list(#[1]);
}
if( typeof(#[1]) == "string")
{ string pau=#[1];
}
if( size(#)>1 )
{
if( typeof(#[2]) == "string")
{ string pau=#[2];
}
if( typeof(#[2]) == "int")
{ ll=ll+list(#[2]);
}
}
}
int z;
ideal karl;
ideal k1=1;
list k2;
//------------------ computation of local invariants ------------------
for (i=1;i<=nvars(basering);i++)
{
karl=karl+localInvar(m,var(i),p,q);
}
if( defined(pau) )
{ "";
"// local invariants computed:";
"";
karl;
"";
pause("// hit return key to continue!");
"";
}
//------------------ computation of further invariants ----------------
it=0;
while (size(k1)!=0)
{
// test if the new invariants are already in the ring generated
// by the invariants we constructed so far
it++;
karl=sortier(karl);
j=q;
for (i=1;i<=size(karl);i++)
{
j=j + simplify(completeReduction(karl[i],j,ll),1);
}
karl=j;
j[1]=0;
j=simplify(j,2);
k2=furtherInvar(m,j,karl,q);
k1=k2[1];
karl=k2[2];
if(k1[1]!=1)
{
k1=sortier(k1);
z=size(k1);
for (i=1;i<=z;i++)
{
k1[i]= completeReduction(k1[i],karl,ll);
if (k1[i]!=0)
{
karl=karl+simplify(k1[i],1);
}
}
if( defined(pau) == voice)
{
"// the invariants after",it,"iteration(s):"; "";
karl;"";
pause("// hit return key to continue!");
"";
}
if( (bou>0) && (size(k1)>0) )
{
if( deg(k1[size(k1)])>bou )
{
return(karl);
}
}
}
}
return(karl);
}
example
{ "EXAMPLE:"; echo = 2;
//Winkelmann: free action but Spec(k[x(1),...,x(5)]) --> Spec(invariant ring)
//is not surjective
ring rw=0,(x(1..5)),dp;
matrix m[5][1];
m[3,1]=x(1);
m[4,1]=x(2);
m[5,1]=1+x(1)*x(4)+x(2)*x(3);
ideal in=invariantRing(m,x(3),x(1),0); //compute full invarint ring
in;
//Deveney/Finston: The ring of invariants is not finitely generated
ring rf=0,(x(1..7)),dp;
matrix m[7][1];
m[4,1]=x(1)^3;
m[5,1]=x(2)^3;
m[6,1]=x(3)^3;
m[7,1]=(x(1)*x(2)*x(3))^2;
ideal in=invariantRing(m,x(4),x(1),6); //all invariants up to degree 6
in;
}
///////////////////////////////////////////////////////////////////////////////
/* Further examplex
//Deveney/Finston: Proper Ga-action which is not locally trivial
//r[x(1),...,x(5)] is not flat over the ring of invariants
LIB "invar.lib";
ring rd=0,(x(1..5)),dp;
matrix m[5][1];
m[3,1]=x(1);
m[4,1]=x(2);
m[5,1]=1+x(1)*x(4)^2;
ideal in=invariantRing(m,x(3),x(1),0,1);
in;
actionIsProper(m);
//compute the algebraic relations between the invariants
int z=size(in);
ideal null;
ring r1=0,(y(1..z)),dp;
setring rd;
map phi=r1,in;
setring r1;
ideal ker=preimage(rd,phi,null);
ker;
//the discriminant
ring r=0,(x(1..2),y(1..2),z,t),dp;
poly p=z+(1+x(1)*y(2)^2)*t+x(1)*y(1)*y(2)*t^2+(1/3)*x(1)*y(1)^2*t^3;
matrix m[5][5];
m[1,1]=z;
m[1,2]=x(1)*y(2)^2+1;
m[1,3]=x(1)*y(1)*y(2);
m[1,4]=1/3*x(1)*y(1)^2;
m[1,5]=0;
m[2,1]=0;
m[2,2]=z;
m[2,3]=x(1)*y(2)^2+1;
m[2,4]=x(1)*y(1)*y(2);
m[2,5]=1/3*x(1)*y(1)^2;
m[3,1]=x(1)*y(2)^2+1;
m[3,2]=2*x(1)*y(1)*y(2);
m[3,3]=x(1)*y(1)^2;
m[3,4]=0;
m[3,5]=0;
m[4,1]=0;
m[4,2]=x(1)*y(2)^2+1;
m[4,3]=2*x(1)*y(1)*y(2);
m[4,4]=x(1)*y(1)^2;
m[4,5]=0;
m[5,1]=0;
m[5,2]=0;
m[5,3]=x(1)*y(2)^2+1;
m[5,4]=2*x(1)*y(1)*y(2);
m[5,5]=x(1)*y(1)^2;
poly disc=9*det(m)/(x(1)^2*y(1)^4);
LIB "invar.lib";
matrix n[6][1];
n[2,1]=x(1);
n[4,1]=y(1);
n[5,1]=1+x(1)*y(2)^2;
derivate(n,disc);
//x(1)^3*y(2)^6-6*x(1)^2*y(1)*y(2)^3*z+6*x(1)^2*y(2)^4+9*x(1)*y(1)^2*z^2-18*x(1)*y(1)*y(2)*z+9*x(1)*y(2)^2+4
//////////////////////////////////////////////////////////////////////////////
//constructive approach to Weizenboecks theorem
int n=5;
// int n=6; //limit
ring w=32003,(x(1..n)),wp(1..n);
// definition of the vector field m=sum m[i]*d/dx(i)
matrix m[n][1];
int i;
for (i=1;i<=n-1;i=i+1)
{
m[i+1,1]=x(i);
}
ideal in=invariantRing(m,x(2),x(1),0,"");
in;
*/
|