/usr/share/singular/LIB/KVequiv.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 | /////////////////////////////////////////////////////////////////////////////
version="version KVequiv.lib 4.0.0.0 Jun_2013 "; // $Id: fb5e49e92a1d4a305d8000f7f8825cab074b942c $
info="
LIBRARY: KVequiv.lib PROCEDURES RELATED TO K_V-EQUIVALENCE
AUTHOR: Anne Fruehbis-Krueger, anne@mathematik.uni-kl.de
OVERVIEW:
Let (V,0) be a complete intersection singularity in (C^p,0) and
f_0:(C^n,0) --> (C^p,0) an analytic map germ, which is viewed as a
section ov V so that the singularity V_0=f_0^-1(V) is a pullback.
K_V equivalence is then given by the group
K_V={g | g(C^n x V) (subset) C^n x V} (subset) K,
where K is the contact group of Mather. This library provides
functionality for computing K_V tangent space, K_V normal space
and liftable vector fields.
A more detailed introduction to K_V equivalence can e.g. be found
in [Damon,J.: On the legacy of free divisors, Amer.J.Math. 120,453-492]
PROCEDURES:
derlogV(iV); derlog(V(iV))
KVtangent(I,rname,dername,k) K_V tangent space to given singularity
KVversal(KVtan,I,rname,idname) K_V versal family
KVvermap(KVtan,I) section inducing K_V versal family
lft_vf(I,rname,idname) liftable vector fields
REMARKS:
* monomial ordering should be of type (c,...)
* monomial ordering should be local on the original (2) rings
SEE ALSO: sing_lib, deform_lib, spcurve_lib
";
////////////////////////////////////////////////////////////////////////////
// REQUIRED LIBRARIES
////////////////////////////////////////////////////////////////////////////
// first the ones written in Singular
LIB "poly.lib";
// then the ones written in C/C++
LIB("loctriv.so");
////////////////////////////////////////////////////////////////////////////
// PROCEDURES
////////////////////////////////////////////////////////////////////////////
proc derlogV(ideal iV)
"USAGE: @code{derlogV(iV)}; @code{iV} ideal
RETURN: matrix whose columns generate derlog(V(iV)),
i.e. the module of vector fields on (C^p,0) tangent to V
EXAMPLE: @code{example derlogV}; shows an example
"
{
//--------------------------------------------------------------------------
// Compute jacobian matrix of iV and add all iV[i]*gen(j) as extra columns
//--------------------------------------------------------------------------
int j;
def jiV=jacob(iV);
module mmV=jiV;
for(int i=1;i<=size(iV);i++)
{
for(j=1;j<=size(iV);j++)
{
mmV=mmV,iV[i]*gen(j);
}
}
//--------------------------------------------------------------------------
// The generators of derlog(V) are given by the part of the syzygy matrix
// of mmV which deals with the jacobian matrix
//--------------------------------------------------------------------------
def smmV=syz(mmV);
matrix smaV=matrix(smmV);
matrix smV[nvars(basering)][ncols(smaV)]=
smaV[1..nvars(basering),1..ncols(smaV)];
return(smV);
}
example
{ "EXAMPLE:";echo=2;
ring r=0,(a,b,c,d,e,f),ds;
ideal i=ad-bc,af-be,cf-de;
def dV=derlogV(i);
print(dV);
}
////////////////////////////////////////////////////////////////////////////
proc KVtangent(ideal mapi,string rname,string dername,list #)
"USAGE: @code{KVtangent(I,rname,dername[,k])}; @code{I} ideal
@code{rname,dername} strings
@code{[k]} int
RETURN: K_V tangent space to a singularity given as a section of a
model singularity
NOTE: The model singularity lives in the ring given by rname and
its derlog(V) is given by dername in that ring. The section is
specified by the generators of mapi. If k is given, the first k
variables are used as variables, the remaining ones as parameters
EXAMPLE: @code{example KVtangent}; shows an example
"
{
//--------------------------------------------------------------------------
// Sanity Checks
//--------------------------------------------------------------------------
if(size(#)==0)
{
int k=nvars(basering);
}
else
{
if(typeof(#[1])=="int")
{
int k=#[1];
}
else
{
int k=nvars(basering);
}
}
def baser=basering;
string teststr="setring " + rname + ";";
execute(teststr);
if(nameof(basering)!=rname)
{
ERROR("rname not name of a ring");
}
teststr="string typeder=typeof(" + dername + ");";
execute(teststr);
if((typeder!="matrix")&&(typeder!="module"))
{
ERROR("dername not name of a matrix or module in rname");
}
setring(baser);
if((k > nvars(basering))||(k < 1))
{
ERROR("k should be between 1 and the number of variables");
}
//--------------------------------------------------------------------------
// Define the map giving the section and use it for substituting the
// variables of the ring rname by the entries of mapi in the matrix
// given by dername
//--------------------------------------------------------------------------
setring baser;
string mapstr="map f0=" + rname + ",";
for(int i=1;i<ncols(mapi);i++)
{
mapstr=mapstr + string(mapi[i]) + ",";
}
mapstr=mapstr + string(mapi[ncols(mapi)]) + ";";
execute(mapstr);
string derstr="def derim=f0(" + dername + ");";
execute(derstr);
//---------------------------------------------------------------------------
// Form the derivatives of mapi by the first k variables
//---------------------------------------------------------------------------
matrix jmapi[ncols(mapi)][k];
for(i=1;i<=k;i++)
{
jmapi[1..nrows(jmapi),i]=diff(mapi,var(i));
}
//---------------------------------------------------------------------------
// Put everything together to get the tangent space
//---------------------------------------------------------------------------
string nvstr="int nvmodel=nvars(" + rname + ");";
execute(nvstr);
matrix M[nrows(derim)][ncols(derim)+k];
M[1..nrows(M),1..ncols(derim)]=derim[1..nrows(derim),1..ncols(derim)];
M[1..nrows(M),(ncols(derim)+1)..ncols(M)]=
jmapi[1..nrows(M),1..k];
return(M);
}
example
{ "EXAMPLE:";echo=2;
ring ry=0,(a,b,c,d),ds;
ideal idy=ab,cd;
def dV=derlogV(idy);
echo=1; export ry; export dV; echo=2;
ring rx=0,(x,y,z),ds;
ideal mi=x-z+2y,x+y-z,y-x-z,x+2z-3y;
def M=KVtangent(mi,"ry","dV");
print(M);
M[1,5];
echo=1; kill ry;
}
/////////////////////////////////////////////////////////////////////////////
proc KVversal(matrix KVtan, ideal mapi, string rname, string idname)
"USAGE: @code{KVversal(KVtan,I,rname,idname)}; @code{KVtan} matrix
@code{I} ideal
@code{rname,idname} strings
RETURN: list; The first entry of the list is the new ring in which the
K_V versal family lives, the second is the name of the ideal
describing a K_V versal family of a singularity given as section
of a model singularity (which was specified as idname in rname)
NOTE: The section is given by the generators of I, KVtan is the matrix
describing the K_V tangent space to the singularity (as returned
by KVtangent). rname denotes the ring in which the model
singularity lives, and idname is the name of the ideal in this ring
defining the singularity.
EXAMPLE: @code{example KVversal}; shows an example
"
{
//---------------------------------------------------------------------------
// Sanity checks
//---------------------------------------------------------------------------
def baser=basering;
string teststr="setring " + rname + ";";
execute(teststr);
if(nameof(basering)!=rname)
{
ERROR("rname not name of a ring");
}
teststr="string typeid=typeof(" + idname + ");";
execute(teststr);
if(typeid!="ideal")
{
ERROR("idname not name of an ideal in rname");
}
setring baser;
//---------------------------------------------------------------------------
// Find a monomial basis of the K_V normal space
// and check whether we can define new variables A(i)
//---------------------------------------------------------------------------
module KVt=KVtan;
module KVts=std(KVt);
module kbKVt=kbase(KVts);
for(int i=1; i<=size(kbKVt); i++)
{
if(rvar(A(i)))
{
int jj=-1;
break;
}
}
if (defined(jj)>1)
{
if (jj==-1)
{
ERROR("Your ring contains a variable A(i)!");
}
}
//---------------------------------------------------------------------------
// Extend our current ring by adjoining the correct number of variables
// A(i) for the parameters and copy our objects to this ring
//---------------------------------------------------------------------------
def rbas=basering;
ring rtemp=0,(A(1..size(kbKVt))),(c,dp);
def rpert=rbas + rtemp;
setring rpert;
def mapi=imap(rbas,mapi);
def kbKVt=imap(rbas,kbKVt);
matrix mapv[ncols(mapi)][1]=mapi; // I hate the conversion from ideal
vector mapV=mapv[1]; // to vector
//---------------------------------------------------------------------------
// Build up the map of the perturbed section and apply it to the ideal
// idname
//---------------------------------------------------------------------------
for(i=1;i<=size(kbKVt);i++)
{
mapV=mapV+A(i)*kbKVt[i];
}
string mapstr="map fpert=" + rname + ",";
for(int i=1;i<size(mapV);i++)
{
mapstr=mapstr + string(mapV[i]) + ",";
}
mapstr=mapstr + string(mapV[size(mapV)]) + ";";
execute(mapstr);
string idstr="ideal Ipert=fpert(" + idname + ");";
execute(idstr);
//---------------------------------------------------------------------------
// Return our new ring and the name of the perturbed ideal
//---------------------------------------------------------------------------
export Ipert;
list retlist=rpert,"Ipert";
return(retlist);
}
example
{ "EXAMPLE:";echo=2;
ring ry=0,(a,b,c,d),ds;
ideal idy=ab,cd;
def dV=derlogV(idy);
echo=1;
export ry; export dV; export idy; echo=2;
ring rx=0,(x,y,z),ds;
ideal mi=x-z+2y,x+y-z,y-x-z,x+2z-3y;
def M=KVtangent(mi,"ry","dV");
list li=KVversal(M,mi,"ry","idy");
def rnew=li[1];
setring rnew;
`li[2]`;
echo=1;
setring ry; kill idy; kill dV; setring rx; kill ry;
}
/////////////////////////////////////////////////////////////////////////////
proc KVvermap(matrix KVtan, ideal mapi)
"USAGE: @code{KVvermap(KVtan,I)}; @code{KVtan} matrix, @code{I} ideal
RETURN: list; The first entry of the list is the new ring in which the
versal object lives, the second specifies a map describing the
section which yields a K_V versal family of the original
singularity which was given as section of a model singularity
NOTE: The section is given by the generators of I, KVtan is the matrix
describing the K_V tangent space to the singularity (as returned
by KVtangent).
EXAMPLE: @code{example KVvermap}; shows an example
"
{
//---------------------------------------------------------------------------
// Find a monomial basis of the K_V normal space
// and check whether we can define new variables A(i)
//---------------------------------------------------------------------------
module KVt=KVtan;
module KVts=std(KVt);
module kbKVt=kbase(KVts);
for(int i=1; i<=size(kbKVt); i++)
{
if(rvar(A(i)))
{
int jj=-1;
break;
}
}
if (defined(jj)>1)
{
if (jj==-1)
{
ERROR("Your ring contains a variable A(i)!");
}
}
//---------------------------------------------------------------------------
// Extend our current ring by adjoining the correct number of variables
// A(i) for the parameters and copy our objects to this ring
//---------------------------------------------------------------------------
def rbas=basering;
ring rtemp=0,(A(1..size(kbKVt))),(c,dp);
def rpert=rbas + rtemp;
setring rpert;
def mapi=imap(rbas,mapi);
def kbKVt=imap(rbas,kbKVt);
matrix mapv[ncols(mapi)][1]=mapi;
vector mapV=mapv[1];
//---------------------------------------------------------------------------
// Build up the map of the perturbed section
//---------------------------------------------------------------------------
for(i=1;i<=size(kbKVt);i++)
{
mapV=mapV+A(i)*kbKVt[i];
}
ideal mappert=mapV[1..size(mapV)];
//---------------------------------------------------------------------------
// Return the new ring and the name of an ideal describing the perturbed map
//---------------------------------------------------------------------------
export mappert;
list retlist=basering,"mappert";
return(retlist);
}
example
{ "EXAMPLE:";echo=2;
ring ry=0,(a,b,c,d),ds;
ideal idy=ab,cd;
def dV=derlogV(idy);
echo=1;
export ry; export dV; export idy; echo=2;
ring rx=0,(x,y,z),ds;
ideal mi=x-z+2y,x+y-z,y-x-z,x+2z-3y;
def M=KVtangent(mi,"ry","dV");
list li=KVvermap(M,mi);
def rnew=li[1];
setring rnew;
`li[2]`;
echo=1;
setring ry; kill idy; kill dV; setring rx; kill ry;
}
/////////////////////////////////////////////////////////////////////////////
proc lft_vf(ideal mapi, string rname, string idname, intvec wv, int b, list #)
"USAGE: @code{lft_vf(I,rname,iname,wv,b[,any])}
@code{I} ideal
@code{wv} intvec
@code{b} int
@code{rname,iname} strings
@code{[any]} def
RETURN: list
[1]: ring in which objects specified by the strings [2] and [3] live
[2]: name of ideal describing the liftable vector fields -
computed up to order b in the parameters
[3]: name of basis of the K_V-normal space of the original singularity
[4]: (if 6th argument is given)
ring in which the reduction of the liftable vector fields has
taken place.
[5]: name of liftable vector fields in ring [4]
[6]: name of ideal we are using for reduction of [5] in [4]
ASSUME: input is assumed to be quasihomogeneous in the following sense:
there are weights for the variables in the current basering
such that, after plugging in mapi[i] for the i-th variable of the
ring rname in the ideal idname, the resulting expression is
quasihomogeneous; wv specifies the weight vector of the ring rname.
b is the degree bound up in the perturbation parameters up to which
computations are performed.
NOTE: the original ring should not contain any variables of name
A(i) or e(j)
EXAMPLE:@code{example lft_vf;} gives an example
"
{
//---------------------------------------------------------------------------
// Sanity checks
//---------------------------------------------------------------------------
def baser=basering;
def qid=maxideal(1);
string teststr="setring " + rname + ";";
execute(teststr);
if(nameof(basering)!=rname)
{
ERROR("rname not name of a ring");
}
def ry=basering;
teststr="string typeid=typeof(" + idname + ");";
execute(teststr);
if(typeid!="ideal")
{
ERROR("idname not name of an ideal in rname");
}
setring baser;
for(int i=1; i<=ncols(mapi); i++)
{
if(rvar(e(i)))
{
int jj=-1;
break;
}
}
if (defined(jj)>1)
{
if (jj==-1)
{
ERROR("Your ring contains a variable e(j)!");
}
}
setring ry;
//---------------------------------------------------------------------------
// first prepare derlog(V) for the model singularity
// and set the correct weights
//---------------------------------------------------------------------------
def @dV=derlogV(`idname`);
export(@dV);
setring baser;
map maptemp=`rname`,mapi;
def tempid=maptemp(`idname`);
intvec ivm=qhweight(tempid);
string ringstr="ring baserw=" + charstr(baser) + ",(" + varstr(baser) +
"),(c,ws(" + string(ivm) + "));";
execute(ringstr);
def mapi=imap(baser,mapi);
//---------------------------------------------------------------------------
// compute the unperturbed K_V tangent space
// and check K_V codimension
//---------------------------------------------------------------------------
def KVt=KVtangent(mapi,rname,"@dV",nvars(basering));
def sKVt=std(KVt);
if(dim(sKVt)>0)
{
ERROR("K_V-codimension not finite");
}
//---------------------------------------------------------------------------
// Construction of the versal family
//---------------------------------------------------------------------------
list lilit=KVvermap(KVt,mapi);
def rpert=lilit[1];
setring rpert;
def mapipert=`lilit[2]`;
def KVt=imap(baserw,KVt);
def mapi=imap(baserw,mapi);
def KVtpert=KVtangent(mapipert,rname,"@dV",nvars(baser));
//---------------------------------------------------------------------------
// put the unperturbed and the perturbed tangent space into a module
// (1st component unperturbed) and run a groebner basis computation
// which only considers spolys with non-vanishing first component
//---------------------------------------------------------------------------
def rxa=basering;
string rchange="ring rexa=" + charstr(basering) + ",(e(1.." +
string(ncols(mapi)) + ")," + varstr(basering) +
"),(c,ws(" + string((-1)*wv) + "," + string(ivm) + "),dp);";
execute(rchange);
def mapi=imap(rxa,mapi);
ideal eid=e(1..ncols(mapi)); // for later use
def KVt=imap(rxa,KVt);
def KVtpert=imap(rxa,KVtpert);
intvec iv=1..ncols(mapi);
ideal KVti=mod2id(KVt,iv);
//----------------------------------------------------------------------------
// small intermezzo (here because we did not have all input any earlier)
// get kbase of KVti for later use and determine an
// integer l such that m_x^l*(e_1,\dots,e_r) lies in KVt
//----------------------------------------------------------------------------
ideal sKVti=std(KVti);
ideal lsKVti=lead(sKVti);
module tmpmo=id2mod(lsKVti,iv);
setring baser;
def tmpmo=imap(rexa,tmpmo);
attrib(tmpmo,"isSB",1);
module kbKVt=kbase(tmpmo);
setring rexa;
def kbKVt=imap(baser,kbKVt);
ideal kbKVti=mod2id(kbKVt,iv);
def qid=imap(baser,qid);
intvec qiv;
for(i=1;i<=ncols(qid);i++)
{
qiv[rvar(qid[i])]=1;
}
int counter=1;
while(size(reduce(lsKVti,std(jet(lsKVti,i,qiv))))!=0)
{
counter++;
}
//----------------------------------------------------------------------------
// end of intermezzo
// proceed to the previously announced Groebner basis computation
//----------------------------------------------------------------------------
ideal KVtpi=mod2id(KVtpert,iv);
export(KVtpi);
matrix Eing[2][ncols(KVti)]=KVti,KVtpi;
module EinMo=Eing;
EinMo=EinMo,eid^2*gen(1),eid^2*gen(2);
module Ausg=Loctriv::kstd(EinMo,1);
//---------------------------------------------------------------------------
// * collect those elements of Ausg for which the first component is non-zero
// into mx and the others into mt
// * cut off the first component
// * find appropriate weights for the reduction
//---------------------------------------------------------------------------
intvec eiv;
for(i=1;i<=ncols(eid);i++)
{
eiv[rvar(eid[i])]=1;
}
if(size(reduce(var(nvars(basering)),std(eid)))!=0)
{
eiv[nvars(basering)]=0;
}
module Aus2=jet(Ausg,1,eiv);
Aus2=simplify(Aus2,2);
ideal mx;
ideal mt;
int ordmax,ordmin;
int ordtemp;
for (i=1;i<=size(Aus2);i++)
{
if(Aus2[1,i]!=0)
{
mx=mx,Aus2[2,i];
ordtemp=ord(lead(Aus2[1,i]));
if(ordtemp>ordmax)
{
ordmax=ordtemp;
}
else
{
if(ordtemp<ordmin)
{
ordmin=ordtemp;
}
}
}
else
{
mt=mt,Aus2[2,i];
}
}
//---------------------------------------------------------------------------
// * change weights of the A(i) such that Aus2[1,i] and Aus2[2,i] have the
// same leading term, if the first one is non-zero
// * reduce mt by mx
// * find l such that (x_1,...,x_n)^l * eid can be used instead of noether
// which we have to avoid because we are playing with the weights
//---------------------------------------------------------------------------
intvec oiv;
for(i=1;i<=(nvars(basering)-nvars(baser)-size(eid));i++)
{
oiv[i]=2*(abs(ordmax)+abs(ordmin));
}
mx=jet(mx,counter*(b+1),qiv);
rchange="ring rexaw=" + charstr(basering) + ",(" + varstr(basering) +
"),(c,ws(" + string((-1)*wv) + "," + string(ivm) +
"," + string(oiv) + "));";
execute(rchange);
ideal qid=imap(rexa,qid);
def eid=imap(rexa,eid);
def mx=imap(rexa,mx);
attrib(mx,"isSB",1);
def mto=imap(rexa,mt);
ideal Aid=A(1..size(oiv));
intvec Aiv;
for(i=1;i<=ncols(Aid);i++)
{
Aiv[rvar(Aid[i])]=1;
}
intvec riv=(b+1)*qiv+(b+2)*counter*Aiv;
def mt=mto;
for(i=1;i<=counter+1;i++)
{
mt=mt,mto*qid^i;
}
mt=jet(mt,(b+1)*(b+2)*counter,riv);
mt=jet(mt,1,eiv);
mt=simplify(mt,10);
module mmx=module(mx);
attrib(mmx,"isSB",1);
for(i=1;i<=ncols(mt);i++)
{
if(defined(watchProgress))
{
"reducing mt[i], i="+string(i);
}
mt[i]=system("locNF",vector(mt[i]),mmx,
(b+1)*(b+2)*counter,riv)[1][1,1];
}
mt=simplify(mt,10);
//----------------------------------------------------------------------------
// return the results by returning the ring and the names of the desired
// modules in the ring
// (if the list # is not empty, then we want to return this ring as well)
//----------------------------------------------------------------------------
if(size(#)!=0)
{
export mt;
export mx;
}
setring rexa;
def mtout=imap(rexaw,mt);
kbKVti=jet(kbKVti,1,eiv);
kbKVti=simplify(kbKVti,2);
intvec rediv;
int j=1;
for(i=1;i<=size(qiv);i++)
{
if(qiv[i]!=0)
{
rediv[j]=i;
j++;
}
}
list templi=subrInterred(kbKVti,mtout,rediv);
mtout=jet(templi[3],b+1,Aiv);
export mtout;
export kbKVti;
list result;
result[1]=rexa;
result[2]="mtout";
result[3]="kbKVti";
if(size(#)!=0)
{
result[4]=rexaw;
result[5]="mt";
result[6]="mx";
}
export rexa;
keepring rexa;
return(result);
}
example
{ "EXAMPLE:";echo=2;
ring ry=0,(a,b,c,d),ds;
ideal idy=ab,cd;
def dV=derlogV(idy);
echo=1;
export ry; export dV; export idy; echo=2;
ring rx=0,(x,y,z),ds;
ideal mi=x-z+2y,x+y-z,y-x-z,x+2z-3y;
intvec wv=1,1,1,1;
def M=KVtangent(mi,"ry","dV");
list li=lft_vf(mi,"ry","idy",wv,5);
def rr=li[1];
setring rr;
`li[2]`;
`li[3]`;
echo=1;
setring ry; kill idy; kill dV; setring rx; kill ry;
}
//////////////////////////////////////////////////////////////////////////////
// STATIC PROCEDURES
//////////////////////////////////////////////////////////////////////////////
static
proc abs(int c)
"absolute value
"
{
if(c>=0){ return(c);}
else{ return(-c);}
}
////////////////////////////////////////////////////////////////////////////
|