/usr/lib/python3/dist-packages/shredder/chart.py is in rmlint-gui 2.6.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 | #!/usr/bin/env python
# encoding: utf-8
"""
Chart rendering code and relevant Gtk widgets.
The chart is drawn via cairo and a tiny bit of math.
"""
# Stdlib:
import math
import colorsys
# Internal:
from shredder.util import size_to_human_readable
from shredder.tree import Column
# External:
import cairo
from gi.repository import Gtk
from gi.repository import Gdk
from gi.repository import GLib
from gi.repository import Pango
from gi.repository import PangoCairo
ANGLE_LIMIT_TOOLTIP = math.pi / 32
ANGLE_LIMIT_VISIBLE = math.pi / 256
###########################################################
# NOTE: This code is inspired by the baobab code, #
# since it's very clean and a good read. #
# However this code is not ported, but rewritten. #
###########################################################
def _draw_center_text(ctx, x, y, text, font_size=10, do_draw=True):
'''Draw a text at the center of ctx/alloc.
ctx: a cairo Context to draw to
alloc: size of area.
text: Actual text as unicode string
font_size: Size of the font to take
'''
layout = PangoCairo.create_layout(ctx)
font = Pango.FontDescription.from_string('Ubuntu Light')
font.set_size(font_size * Pango.SCALE)
layout.set_font_description(font)
layout.set_markup(text, -1)
layout.set_alignment(Pango.Alignment.CENTER)
fw, fh = (num / Pango.SCALE / 2 for num in layout.get_size())
if do_draw:
ctx.move_to(x - fw, y - fh)
PangoCairo.show_layout(ctx, layout)
ctx.stroke()
return fw, fh
def _draw_rounded(ctx, area, radius):
"""draws rectangles with rounded (circular arc) corners"""
a, b, c, d = area
mpi2 = math.pi / 2
ctx.arc(a + radius, c + radius, radius, 2 * mpi2, 3 * mpi2)
ctx.arc(b - radius, c + radius, radius, 3 * mpi2, 4 * mpi2)
ctx.arc(b - radius, d - radius, radius, 0 * mpi2, 1 * mpi2)
ctx.arc(a + radius, d - radius, radius, 1 * mpi2, 2 * mpi2)
ctx.close_path()
TANGO_TABLE = [
(0.000, 0.829, 0.94),
(0.096, 0.747, 0.99),
(0.104, 0.527, 0.91),
(0.251, 0.775, 0.89),
(0.590, 0.451, 0.82),
(0.850, 0.279, 0.68)
]
def _hsv_by_degree(degree):
"""Convert degree (in rad) to a predefined color.
Currently only one colorscheme is supported (Tango)
"""
percent = max(0.0, min(1.0, degree / (2 * math.pi)))
idx = percent * len(TANGO_TABLE)
h, s, v = TANGO_TABLE[max(0, int(idx) - 1)]
return h, s, v
def _draw_segment(
ctx, alloc, layer, max_layers,
deg_a, deg_b, is_selected, bg_col):
"""Draw a radial segment on the context ctx with the following params:
layer: The segment layer to draw (or "how far from the midpoint we are")
max_layers: How many layerst there are at max.
deg_a: Starting angle of the segment in degree.
deg_b: Ending angle of the segment in degree.
The dimensions of ctx are given by size in pixels.
"""
mid_x, mid_y = alloc.width / 2, alloc.height / 2
mid = min(mid_x, mid_y)
radius_a_px = (layer / (max_layers + 1)) * mid
radius_b_px = radius_a_px + (1 / (max_layers + 1)) * mid
if layer is 1:
radius_a_px += (radius_b_px - radius_a_px) / 2
# Draw the actual segment path
ctx.arc(mid_x, mid_y, radius_a_px, deg_a, deg_b)
ctx.arc_negative(mid_x, mid_y, radius_b_px, deg_b, deg_a)
ctx.close_path()
# Calculate the color as HSV
h, s, v = _hsv_by_degree(deg_a / 2 + deg_b / 2)
# "Fix" the color for some special cases
s += 0.2 if is_selected else -0.07
# Make more distant segments darker
v *= 1.25 - (layer / max_layers / 1.5)
if is_selected:
v += 0.2
# Fill it with the color: Add a bit of highlight on start & end
# to round it up. This should stay rather subtle of course.
pattern = cairo.RadialGradient(
mid_x, mid_y, radius_a_px, mid_x, mid_y, radius_b_px
)
rn, gn, bn = colorsys.hsv_to_rgb(h, s, v)
rh, gh, bh = colorsys.hsv_to_rgb(h, s + 0.05, v + 0.15)
rl, gl, bl = colorsys.hsv_to_rgb(h, s - 0.05, v - 0.25)
off = 42 / min(alloc.width, alloc.height)
pattern.add_color_stop_rgb(0.0, rl, gl, bl)
pattern.add_color_stop_rgb(off * 2, rn, gn, bn)
pattern.add_color_stop_rgb(1 - off, rn, gn, bn)
pattern.add_color_stop_rgb(1.0, rh, gh, bh)
ctx.set_source(pattern)
ctx.fill_preserve()
# Draw a little same colored border around.
thickness = min(alloc.width, alloc.height) / 160
r, g, b = colorsys.hsv_to_rgb(h, s, v - 0.5)
ctx.set_source_rgba(r, g, b, 0.5)
ctx.set_line_width(thickness * 1.5)
ctx.stroke_preserve()
# Draw a (probably) white border around
ctx.set_source_rgb(bg_col.red, bg_col.green, bg_col.blue)
ctx.set_line_width(thickness)
ctx.stroke()
ctx.set_line_width(1)
def _draw_tooltip(ctx, alloc, x, y, dist, angle, text):
"""Draw a tooltip rooting at (x,y) and hitting the bounding box with `text`
"""
# Draw the anchor circle on the segment
ctx.set_source_rgba(0, 0, 0, 1.0)
ctx.arc(x, y, 3, 0, 2 * math.pi)
ctx.fill()
# Guess the font width used for the tooltip text.
fw, fh = _draw_center_text(ctx, 0, 0, text, do_draw=False)
# Bounding box onto which the tooltips will be projected
w2, h2 = alloc.width / 2 - dist - fw, alloc.height / 2 - dist - fh
angle_norm = math.fmod(math.fabs(angle), math.pi / 2)
# Check if we are in the second or last quadrant.
# In that case we flip the dimensions in order
# to make the flipping logic below work.
if math.floor(angle / (math.pi / 2)) % 2:
w2, h2 = h2, w2
# Check where to paint the new point
if angle_norm < math.atan2(h2, w2):
new_x = w2
new_y = math.tan(angle_norm) * new_x
else:
new_y = h2
new_x = new_y / math.tan(angle_norm)
# Flip the x/y into the right quadrant
if angle < math.pi / 2:
pass # already in the right angle.
elif angle < math.pi:
new_x, new_y = -new_y, new_x
elif angle < (math.pi + math.pi / 2):
new_x, new_y = -new_x, -new_y
elif angle < 2 * math.pi:
new_x, new_y = new_y, -new_x
# Finally, move from first quadrant to the whole.
new_x += alloc.width / 2
new_y += alloc.height / 2
ctx.set_source_rgba(0, 0, 0, 0.3)
ctx.move_to(x, y)
ctx.line_to(new_x, new_y)
ctx.stroke()
ctx.set_source_rgba(0, 0, 0, 1.0)
tip_w, tip_h = fw + 5, fh + 3
_draw_rounded(
ctx, (new_x - tip_w, new_x + tip_w, new_y - tip_h, new_y + tip_h), 3
)
ctx.fill_preserve()
ctx.set_source_rgba(0.3, 0.3, 0.3, 1.0)
ctx.stroke()
ctx.set_source_rgba(0.8, 0.8, 0.8, 1.0)
_draw_center_text(ctx, new_x, new_y, text, do_draw=True)
class Chart(Gtk.DrawingArea):
"""Base class for charts providing the basic interfaces and signals."""
def __init__(self):
Gtk.DrawingArea.__init__(self)
self.connect('draw', self.on_draw)
self.add_events(
self.get_events() |
Gdk.EventMask.POINTER_MOTION_MASK |
Gdk.EventMask.BUTTON_PRESS_MASK
)
self.connect('motion-notify-event', self.on_motion)
self.connect('button-press-event', self.on_button_press_event)
##############################
# TO BE OVERWRITTEN BY CHILD #
##############################
def on_draw(self, area, ctx):
"""Put your subclass draw code here."""
pass
def on_motion(self, area, event):
"""Executed on ever pointer motion."""
pass
def on_button_press_event(self, area, event):
"""Executed on every pointer or keyboard press."""
pass
class Segment:
"""Helper and data class for a single segment in a RingChart."""
def __init__(self, node, layer, degree, size, tooltip=None):
self.node = node
self.children = []
self.layer, self.degree, self.size = layer, degree, size
self.degree = math.fmod(self.degree, math.pi * 2)
self.is_selected = False
# Cut off too long tooltips:
if len(tooltip) > 60:
self.tooltip = tooltip[:60] + '...'
else:
self.tooltip = tooltip
def draw(self, ctx, alloc, max_layers, bg_col):
"""Trigger the actual drawing of the segment."""
_draw_segment(
ctx, alloc,
self.layer, max_layers,
self.degree, self.degree + self.size,
self.is_selected,
bg_col
)
def hit(self, layer, deg):
"""Check if the segment was hit by a click,
depending on a certain layer and angle.
"""
if self.layer != layer:
self.is_selected = False
else:
self.is_selected = self.degree <= deg <= self.degree + self.size
return self.is_selected
def middle_point(self, alloc, max_layers):
"""Calculate the middle point of the segment.
The middle point is here defined as the mid between
start and end degree with the radius between both ends.
This is used to determine the place where to stick the
tooltip.
"""
# Middle point of the whole diagram
mid_x, mid_y = alloc.width / 2, alloc.height / 2
# Distance from (mid_x, mid_y) to middle point
if self.layer is 1:
offset = 0.75
else:
offset = 0.5
rad = ((self.layer + offset) / (max_layers + 1)) * min(mid_x, mid_y)
# Half of the degree range + start
deg = self.degree + self.size / 2
return mid_x + rad * math.cos(deg), mid_y + rad * math.sin(deg)
def middle_angle(self):
"""Calculate an angle that goes through the mid of the segment."""
return self.degree + self.size / 2
class RingChart(Chart):
"""Chart type for visualizing the node-tree as segmented ring.
Each depth becomes one ring. Each segment has 0 to one parent.
Size of the node determines the size of the segment.
"""
def __init__(self):
Chart.__init__(self)
# Id of the tooltip timeout
self._timeout_id = None
self._segment_list = []
self.max_layers = 0
self.total_size = 1
self._selected_segment = None
self._last_root = None
def recursive_angle(self, node, angle, offset, layer_offset=0):
"""Calculates the angles of the segments and stores them in a
list that is ordered by Z-Depth, so the plot appears to be layered
with the root circle on top. This resembles a depth first traversal.
"""
self._segment_list.append(Segment(
node, node.depth - layer_offset,
offset, angle, node[Column.PATH]
))
child_offset = offset
for child in node.indices:
node_size = node[Column.SIZE]
if node_size is not 0:
child_angle = (child[Column.SIZE] / node_size) * angle
else:
child_angle = angle
# Do not investigate smaller nodes:
if child_angle > ANGLE_LIMIT_VISIBLE:
self.recursive_angle(
child, child_angle, child_offset, layer_offset
)
# Remember deepest layer:
self.max_layers = max(
child.depth - layer_offset + 1,
self.max_layers
)
child_offset += child_angle
def find_root(self, node):
"""Iterate to the first child that has more than one children"""
if len(node.children) > 1:
return node
for child in node.children.values():
return self.find_root(child)
# Default to the actual root:
return node
def render(self, root, overwrite_root=True):
"""Render `root` and all children of it as chart."""
# Skip over duplicate full circles:
virt_root = self.find_root(root)
# Reset the segment list, fill it again by dfs and sort it.
self._segment_list = []
self.max_layers = 0
self.recursive_angle(virt_root, 2 * math.pi, 0, virt_root.depth - 1)
self._segment_list.sort(key=lambda node: node.layer)
# Make sure we show the right total size
self.total_size = virt_root[Column.SIZE]
if overwrite_root:
self._last_root = root
# Make sure it gets rendered soon:
self.queue_draw()
def on_draw(self, area, ctx):
"""Actual signal callback that triggers all the drawing."""
# May happen on empty charts:
max_layers = self.max_layers
if max_layers <= 0:
max_layers = 1
draw_empty = True
else:
draw_empty = False
# Figure out the background color of the drawing area
alloc = area.get_allocation()
# Caluclate the font size of the inner label.
# Make it smaller if not enough place but cut off at a size of 12
inner_circle = (1.4 / max_layers)
inner_circle *= min(alloc.width, alloc.height) / 2
font_size = min(12, inner_circle / 3)
# Draw the center text:
_draw_center_text(
ctx, alloc.width / 2, alloc.height / 2,
'<span color="#333"><small>{size}</small></span>'.format(
size=size_to_human_readable(self.total_size)
),
font_size=font_size
)
bg = self.get_toplevel().get_style_context().get_background_color(0)
if not draw_empty:
for segment in reversed(self._segment_list):
segment.draw(ctx, alloc, max_layers, bg)
else:
ctx.arc(
alloc.width / 2, alloc.height / 2,
inner_circle / 2, 0, 2 * math.pi
)
ctx.stroke()
if self._selected_segment is None or draw_empty:
return
for segment in self._segment_list:
if segment.layer != self._selected_segment.layer:
continue
if segment is not self._selected_segment:
if segment.size < ANGLE_LIMIT_TOOLTIP:
continue
x, y = segment.middle_point(alloc, max_layers)
_draw_tooltip(
ctx, alloc, x, y, 8,
segment.middle_angle(),
segment.tooltip
)
def on_tooltip_timeout(self, segment):
"""Called once the mouse stayed over a segment for a longer time.
"""
if self._timeout_id:
self._selected_segment = segment
else:
self._selected_segment = None
self.queue_draw()
self._timeout_id = None
def _hit(self, area, event, click_only=False):
"""Check what segments were hitten by a GdkEvent"""
alloc = area.get_allocation()
mid_x, mid_y = alloc.width / 2, alloc.height / 2
# Calculate the degree between the vectors
# a = (event.x + m, event.y + m) and (0, 1)
x, y = event.x - mid_x, event.y - mid_y
xy_abs = math.sqrt(x * x + y * y)
cos = x / xy_abs
if y < 0:
# upper half
selected_deg = (2 * math.pi) - math.acos(cos)
else:
# lower half
selected_deg = math.acos(cos)
# Check which layer we are operating on.
selected_layer = (self.max_layers + 1) / min(mid_x, mid_y)
selected_layer = math.floor(xy_abs * selected_layer)
if selected_layer is 0:
return (True, None)
hit_segment = None
for segment in self._segment_list:
if segment.hit(selected_layer, selected_deg):
hit_segment = segment
if click_only:
break
return bool(hit_segment), hit_segment
def on_motion(self, area, event):
"""Called on pointer motion."""
hit, segment = self._hit(area, event)
if self._timeout_id is not None:
GLib.source_remove(self._timeout_id)
self._timeout_id = None
self._selected_segment = None
if hit and segment:
id_ = GLib.timeout_add(
250, self.on_tooltip_timeout, segment
)
self._timeout_id = id_
self.queue_draw()
def on_button_press_event(self, area, event):
"""Called on pointer and keyboard events"""
hit, segment = self._hit(area, event, click_only=True)
if hit:
if segment is not None:
self.render(segment.node, overwrite_root=False)
elif self._last_root:
self.render(self._last_root, overwrite_root=False)
class ChartStack(Gtk.Stack):
"""Wrapper around the chart drawing area.
Provides a loading screen and "nothing" found screen.
Change between those are crossfaded.
"""
LOADING = 'loading'
CHART = 'chart'
EMPTY = 'empty'
def __init__(self):
Gtk.Stack.__init__(self)
self.set_transition_duration(750)
self.set_transition_type(Gtk.StackTransitionType.CROSSFADE)
# Make sure we don't stick on the border:
self.set_border_width(5)
self.spinner = Gtk.Spinner()
self.spinner.start()
self.add_named(self.spinner, ChartStack.LOADING)
self.chart = RingChart()
self.add_named(self.chart, ChartStack.CHART)
self.empty_label = Gtk.Label(
'<span font="90">✔</span>\nNothing found!'
)
self.empty_label.set_use_markup(True)
self.empty_label.get_style_context().add_class(
Gtk.STYLE_CLASS_DIM_LABEL
)
self.add_named(self.empty_label, ChartStack.EMPTY)
def render(self, root):
"""Trigger all render procedure"""
self.chart.render(root)
if __name__ == '__main__':
def main():
"""Stupid test main"""
from shredder.tree import PathTreeModel
model = PathTreeModel(['/home/sahib'])
def push(size, path):
"""Helper for pushing a dummy path"""
model.add_path(path, Column.make_row({'size': size}), True)
push(500, '/home/sahib/docs/stuff.pdf')
for idx, size in enumerate((700, 600, 200)):
push(size, '/home/sahib/docs/more/' + 'stuff.pdf-' + str(idx))
for idx in range(50):
push(10, '/home/sahib/docs/more/' + 'small.pdf-' + str(idx))
for idx in range(10):
push(100, '/home/sahib/' + 'dummy-' + str(idx))
push(1000, '/home/sahib/music/1.mp3')
push(1200, '/home/sahib/music/sub/2.mp3')
push(1200, '/home/sahib/music/sub/3.mp3')
push(600, '/home/sahib/music/sub/4.mp3')
model.trie.sort(Column.SIZE)
print(model.trie)
area = RingChart()
area.render(model.trie.root)
win = Gtk.Window()
win.set_size_request(300, 500)
win.connect('destroy', Gtk.main_quit)
win.add(area)
win.show_all()
Gtk.main()
main()
|