/usr/lib/python3/dist-packages/yapf-0.20.1.egg-info/PKG-INFO is in python3-yapf 0.20.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 | Metadata-Version: 1.2
Name: yapf
Version: 0.20.1
Summary: A formatter for Python code.
Home-page: UNKNOWN
Author: Google Inc.
Maintainer: Bill Wendling
Maintainer-email: morbo@google.com
License: Apache License, Version 2.0
Description: ====
YAPF
====
.. image:: https://badge.fury.io/py/yapf.svg
:target: https://badge.fury.io/py/yapf
:alt: PyPI version
.. image:: https://travis-ci.org/google/yapf.svg?branch=master
:target: https://travis-ci.org/google/yapf
:alt: Build status
.. image:: https://coveralls.io/repos/google/yapf/badge.svg?branch=master
:target: https://coveralls.io/r/google/yapf?branch=master
:alt: Coverage status
Introduction
============
Most of the current formatters for Python --- e.g., autopep8, and pep8ify ---
are made to remove lint errors from code. This has some obvious limitations.
For instance, code that conforms to the PEP 8 guidelines may not be
reformatted. But it doesn't mean that the code looks good.
YAPF takes a different approach. It's based off of 'clang-format', developed by
Daniel Jasper. In essence, the algorithm takes the code and reformats it to the
best formatting that conforms to the style guide, even if the original code
didn't violate the style guide. The idea is also similar to the 'gofmt' tool for
the Go programming language: end all holy wars about formatting - if the whole
codebase of a project is simply piped through YAPF whenever modifications are
made, the style remains consistent throughout the project and there's no point
arguing about style in every code review.
The ultimate goal is that the code YAPF produces is as good as the code that a
programmer would write if they were following the style guide. It takes away
some of the drudgery of maintaining your code.
Try out YAPF with this `online demo <https://yapf.herokuapp.com>`_.
.. footer::
YAPF is not an official Google product (experimental or otherwise), it is
just code that happens to be owned by Google.
.. contents::
Installation
============
To install YAPF from PyPI:
.. code-block::
$ pip install yapf
(optional) If you are using Python 2.7 and want to enable multiprocessing:
.. code-block::
$ pip install futures
YAPF is still considered in "alpha" stage, and the released version may change
often; therefore, the best way to keep up-to-date with the latest development
is to clone this repository.
Note that if you intend to use YAPF as a command-line tool rather than as a
library, installation is not necessary. YAPF supports being run as a directory
by the Python interpreter. If you cloned/unzipped YAPF into ``DIR``, it's
possible to run:
.. code-block::
$ PYTHONPATH=DIR python DIR/yapf [options] ...
Python versions
===============
YAPF supports Python 2.7 and 3.4.1+.
YAPF requires the code it formats to be valid Python for the version YAPF itself
runs under. Therefore, if you format Python 3 code with YAPF, run YAPF itself
under Python 3 (and similarly for Python 2).
Usage
=====
Options::
usage: yapf [-h] [-v] [-d | -i] [-r | -l START-END] [-e PATTERN]
[--style STYLE] [--style-help] [--no-local-style] [-p]
[-vv]
[files [files ...]]
Formatter for Python code.
positional arguments:
files
optional arguments:
-h, --help show this help message and exit
-v, --version show version number and exit
-d, --diff print the diff for the fixed source
-i, --in-place make changes to files in place
-r, --recursive run recursively over directories
-l START-END, --lines START-END
range of lines to reformat, one-based
-e PATTERN, --exclude PATTERN
patterns for files to exclude from formatting
--style STYLE specify formatting style: either a style name (for
example "pep8" or "google"), or the name of a file
with style settings. The default is pep8 unless a
.style.yapf or setup.cfg file located in the same
directory as the source or one of its parent
directories (for stdin, the current directory is
used).
--style-help show style settings and exit; this output can be saved
to .style.yapf to make your settings permanent
--no-local-style don't search for local style definition
-p, --parallel Run yapf in parallel when formatting multiple files.
Requires concurrent.futures in Python 2.X
-vv, --verbose Print out file names while processing
Formatting style
================
The formatting style used by YAPF is configurable and there are many "knobs"
that can be used to tune how YAPF does formatting. See the ``style.py`` module
for the full list.
To control the style, run YAPF with the ``--style`` argument. It accepts one of
the predefined styles (e.g., ``pep8`` or ``google``), a path to a configuration
file that specifies the desired style, or a dictionary of key/value pairs.
The config file is a simple listing of (case-insensitive) ``key = value`` pairs
with a ``[style]`` heading. For example:
.. code-block::
[style]
based_on_style = pep8
spaces_before_comment = 4
split_before_logical_operator = true
The ``based_on_style`` setting determines which of the predefined styles this
custom style is based on (think of it like subclassing).
It's also possible to do the same on the command line with a dictionary. For
example:
.. code-block::
--style='{based_on_style: chromium, indent_width: 4}'
This will take the ``chromium`` base style and modify it to have four space
indentations.
YAPF will search for the formatting style in the following manner:
1. Specified on the command line
2. In the `[style]` section of a `.style.yapf` file in either the current
directory or one of its parent directories.
3. In the `[yapf]` section of a `setup.cfg` file in either the current
directory or one of its parent directories.
4. In the `~/.config/yapf/style` file in your home directory.
If none of those files are found, the default style is used (PEP8).
Example
=======
An example of the type of formatting that YAPF can do, it will take this ugly
code:
.. code-block:: python
x = { 'a':37,'b':42,
'c':927}
y = 'hello ''world'
z = 'hello '+'world'
a = 'hello {}'.format('world')
class foo ( object ):
def f (self ):
return 37*-+2
def g(self, x,y=42):
return y
def f ( a ) :
return 37+-+a[42-x : y**3]
and reformat it into:
.. code-block:: python
x = {'a': 37, 'b': 42, 'c': 927}
y = 'hello ' 'world'
z = 'hello ' + 'world'
a = 'hello {}'.format('world')
class foo(object):
def f(self):
return 37 * -+2
def g(self, x, y=42):
return y
def f(a):
return 37 + -+a[42 - x:y**3]
Example as a module
===================
The two main APIs for calling yapf are ``FormatCode`` and ``FormatFile``, these
share several arguments which are described below:
.. code-block:: python
>>> from yapf.yapflib.yapf_api import FormatCode # reformat a string of code
>>> FormatCode("f ( a = 1, b = 2 )")
'f(a=1, b=2)\n'
A ``style_config`` argument: Either a style name or a path to a file that contains
formatting style settings. If None is specified, use the default style
as set in ``style.DEFAULT_STYLE_FACTORY``.
.. code-block:: python
>>> FormatCode("def g():\n return True", style_config='pep8')
'def g():\n return True\n'
A ``lines`` argument: A list of tuples of lines (ints), [start, end],
that we want to format. The lines are 1-based indexed. It can be used by
third-party code (e.g., IDEs) when reformatting a snippet of code rather
than a whole file.
.. code-block:: python
>>> FormatCode("def g( ):\n a=1\n b = 2\n return a==b", lines=[(1, 1), (2, 3)])
'def g():\n a = 1\n b = 2\n return a==b\n'
A ``print_diff`` (bool): Instead of returning the reformatted source, return a
diff that turns the formatted source into reformatter source.
.. code-block:: python
>>> print(FormatCode("a==b", filename="foo.py", print_diff=True))
--- foo.py (original)
+++ foo.py (reformatted)
@@ -1 +1 @@
-a==b
+a == b
Note: the ``filename`` argument for ``FormatCode`` is what is inserted into
the diff, the default is ``<unknown>``.
``FormatFile`` returns reformatted code from the passed file along with its encoding:
.. code-block:: python
>>> from yapf.yapflib.yapf_api import FormatFile # reformat a file
>>> print(open("foo.py").read()) # contents of file
a==b
>>> FormatFile("foo.py")
('a == b\n', 'utf-8')
The ``in-place`` argument saves the reformatted code back to the file:
.. code-block:: python
>>> FormatFile("foo.py", in_place=True)
(None, 'utf-8')
>>> print(open("foo.py").read()) # contents of file (now fixed)
a == b
Knobs
=====
``ALIGN_CLOSING_BRACKET_WITH_VISUAL_INDENT``
Align closing bracket with visual indentation.
``ALLOW_MULTILINE_LAMBDAS``
Allow lambdas to be formatted on more than one line.
``ALLOW_MULTILINE_DICTIONARY_KEYS``
Allow dictionary keys to exist on multiple lines. For example:
.. code-block:: python
x = {
('this is the first element of a tuple',
'this is the second element of a tuple'):
value,
}
``ALLOW_SPLIT_BEFORE_DICT_VALUE``
Allow splits before the dictionary value.
``BLANK_LINE_BEFORE_NESTED_CLASS_OR_DEF``
Insert a blank line before a ``def`` or ``class`` immediately nested within
another ``def`` or ``class``. For example:
.. code-block:: python
class Foo:
# <------ this blank line
def method():
pass
``BLANK_LINE_BEFORE_CLASS_DOCSTRING``
Insert a blank line before a class-level docstring.
``COALESCE_BRACKETS``
Do not split consecutive brackets. Only relevant when
``DEDENT_CLOSING_BRACKETS`` is set. For example:
.. code-block:: python
call_func_that_takes_a_dict(
{
'key1': 'value1',
'key2': 'value2',
}
)
would reformat to:
.. code-block:: python
call_func_that_takes_a_dict({
'key1': 'value1',
'key2': 'value2',
})
``COLUMN_LIMIT``
The column limit (or max line-length)
``CONTINUATION_INDENT_WIDTH``
Indent width used for line continuations.
``DEDENT_CLOSING_BRACKETS``
Put closing brackets on a separate line, dedented, if the bracketed
expression can't fit in a single line. Applies to all kinds of brackets,
including function definitions and calls. For example:
.. code-block:: python
config = {
'key1': 'value1',
'key2': 'value2',
} # <--- this bracket is dedented and on a separate line
time_series = self.remote_client.query_entity_counters(
entity='dev3246.region1',
key='dns.query_latency_tcp',
transform=Transformation.AVERAGE(window=timedelta(seconds=60)),
start_ts=now()-timedelta(days=3),
end_ts=now(),
) # <--- this bracket is dedented and on a separate line
``EACH_DICT_ENTRY_ON_SEPARATE_LINE``
Place each dictionary entry onto its own line.
``I18N_COMMENT``
The regex for an internationalization comment. The presence of this comment
stops reformatting of that line, because the comments are required to be
next to the string they translate.
``I18N_FUNCTION_CALL``
The internationalization function call names. The presence of this function
stops reformatting on that line, because the string it has cannot be moved
away from the i18n comment.
``INDENT_DICTIONARY_VALUE``
Indent the dictionary value if it cannot fit on the same line as the
dictionary key. For example:
.. code-block:: python
config = {
'key1':
'value1',
'key2': value1 +
value2,
}
``INDENT_WIDTH``
The number of columns to use for indentation.
``JOIN_MULTIPLE_LINES``
Join short lines into one line. E.g., single line ``if`` statements.
``SPACES_AROUND_POWER_OPERATOR``
Set to ``True`` to prefer using spaces around ``**``.
``NO_SPACES_AROUND_SELECTED_BINARY_OPERATORS``
Do not include spaces around selected binary operators. For example:
.. code-block:: python
1 + 2 * 3 - 4 / 5
will be formatted as follows when configured with a value ``"*,/"``:
.. code-block:: python
1 + 2*3 - 4/5
``SPACES_AROUND_DEFAULT_OR_NAMED_ASSIGN``
Set to ``True`` to prefer spaces around the assignment operator for default
or keyword arguments.
``SPACES_BEFORE_COMMENT``
The number of spaces required before a trailing comment.
``SPACE_BETWEEN_ENDING_COMMA_AND_CLOSING_BRACKET``
Insert a space between the ending comma and closing bracket of a list, etc.
``SPLIT_ARGUMENTS_WHEN_COMMA_TERMINATED``
Split before arguments if the argument list is terminated by a comma.
``SPLIT_BEFORE_BITWISE_OPERATOR``
Set to ``True`` to prefer splitting before ``&``, ``|`` or ``^`` rather
than after.
``SPLIT_BEFORE_DICT_SET_GENERATOR``
Split before a dictionary or set generator (comp_for). For example, note
the split before the ``for``:
.. code-block:: python
foo = {
variable: 'Hello world, have a nice day!'
for variable in bar if variable != 42
}
``SPLIT_BEFORE_EXPRESSION_AFTER_OPENING_PAREN``
Split after the opening paren which surrounds an expression if it doesn't
fit on a single line.
``SPLIT_BEFORE_FIRST_ARGUMENT``
If an argument / parameter list is going to be split, then split before the
first argument.
``SPLIT_BEFORE_LOGICAL_OPERATOR``
Set to ``True`` to prefer splitting before ``and`` or ``or`` rather than
after.
``SPLIT_BEFORE_NAMED_ASSIGNS``
Split named assignments onto individual lines.
``SPLIT_COMPLEX_COMPREHENSION``
For list comprehensions and generator expressions with multiple clauses
(e.g mutiple "for" calls, "if" filter expressions) and which need to be
reflowed, split each clause onto its own line. For example:
.. code-block:: python
result = [
a_var + b_var for a_var in xrange(1000) for b_var in xrange(1000)
if a_var % b_var]
would reformat to something like:
.. code-block:: python
result = [
a_var + b_var
for a_var in xrange(1000)
for b_var in xrange(1000)
if a_var % b_var]
``SPLIT_PENALTY_AFTER_OPENING_BRACKET``
The penalty for splitting right after the opening bracket.
``SPLIT_PENALTY_AFTER_UNARY_OPERATOR``
The penalty for splitting the line after a unary operator.
``SPLIT_PENALTY_BEFORE_IF_EXPR``
The penalty for splitting right before an ``if`` expression.
``SPLIT_PENALTY_BITWISE_OPERATOR``
The penalty of splitting the line around the ``&``, ``|``, and ``^``
operators.
``SPLIT_PENALTY_COMPREHENSION``
The penalty for splitting a list comprehension or generator expression.
``SPLIT_PENALTY_EXCESS_CHARACTER``
The penalty for characters over the column limit.
``SPLIT_PENALTY_FOR_ADDED_LINE_SPLIT``
The penalty incurred by adding a line split to the unwrapped line. The more
line splits added the higher the penalty.
``SPLIT_PENALTY_IMPORT_NAMES``
The penalty of splitting a list of ``import as`` names. For example:
.. code-block:: python
from a_very_long_or_indented_module_name_yada_yad import (long_argument_1,
long_argument_2,
long_argument_3)
would reformat to something like:
.. code-block:: python
from a_very_long_or_indented_module_name_yada_yad import (
long_argument_1, long_argument_2, long_argument_3)
``SPLIT_PENALTY_LOGICAL_OPERATOR``
The penalty of splitting the line around the ``and`` and ``or`` operators.
``USE_TABS``
Use the Tab character for indentation.
(Potentially) Frequently Asked Questions
========================================
Why does YAPF destroy my awesome formatting?
--------------------------------------------
YAPF tries very hard to get the formatting correct. But for some code, it won't
be as good as hand-formatting. In particular, large data literals may become
horribly disfigured under YAPF.
The reasons for this are manyfold. In short, YAPF is simply a tool to help
with development. It will format things to coincide with the style guide, but
that may not equate with readability.
What can be done to alleviate this situation is to indicate regions YAPF should
ignore when reformatting something:
.. code-block:: python
# yapf: disable
FOO = {
# ... some very large, complex data literal.
}
BAR = [
# ... another large data literal.
]
# yapf: enable
You can also disable formatting for a single literal like this:
.. code-block:: python
BAZ = {
(1, 2, 3, 4),
(5, 6, 7, 8),
(9, 10, 11, 12),
} # yapf: disable
To preserve the nice dedented closing brackets, use the
``dedent_closing_brackets`` in your style. Note that in this case all
brackets, including function definitions and calls, are going to use
that style. This provides consistency across the formatted codebase.
Why Not Improve Existing Tools?
-------------------------------
We wanted to use clang-format's reformatting algorithm. It's very powerful and
designed to come up with the best formatting possible. Existing tools were
created with different goals in mind, and would require extensive modifications
to convert to using clang-format's algorithm.
Can I Use YAPF In My Program?
-----------------------------
Please do! YAPF was designed to be used as a library as well as a command line
tool. This means that a tool or IDE plugin is free to use YAPF.
Gory Details
============
Algorithm Design
----------------
The main data structure in YAPF is the ``UnwrappedLine`` object. It holds a list
of ``FormatToken``\s, that we would want to place on a single line if there were
no column limit. An exception being a comment in the middle of an expression
statement will force the line to be formatted on more than one line. The
formatter works on one ``UnwrappedLine`` object at a time.
An ``UnwrappedLine`` typically won't affect the formatting of lines before or
after it. There is a part of the algorithm that may join two or more
``UnwrappedLine``\s into one line. For instance, an if-then statement with a
short body can be placed on a single line:
.. code-block:: python
if a == 42: continue
YAPF's formatting algorithm creates a weighted tree that acts as the solution
space for the algorithm. Each node in the tree represents the result of a
formatting decision --- i.e., whether to split or not to split before a token.
Each formatting decision has a cost associated with it. Therefore, the cost is
realized on the edge between two nodes. (In reality, the weighted tree doesn't
have separate edge objects, so the cost resides on the nodes themselves.)
For example, take the following Python code snippet. For the sake of this
example, assume that line (1) violates the column limit restriction and needs to
be reformatted.
.. code-block:: python
def xxxxxxxxxxx(aaaaaaaaaaaa, bbbbbbbbb, cccccccc, dddddddd, eeeeee): # 1
pass # 2
For line (1), the algorithm will build a tree where each node (a
``FormattingDecisionState`` object) is the state of the line at that token given
the decision to split before the token or not. Note: the ``FormatDecisionState``
objects are copied by value so each node in the graph is unique and a change in
one doesn't affect other nodes.
Heuristics are used to determine the costs of splitting or not splitting.
Because a node holds the state of the tree up to a token's insertion, it can
easily determine if a splitting decision will violate one of the style
requirements. For instance, the heuristic is able to apply an extra penalty to
the edge when not splitting between the previous token and the one being added.
There are some instances where we will never want to split the line, because
doing so will always be detrimental (i.e., it will require a backslash-newline,
which is very rarely desirable). For line (1), we will never want to split the
first three tokens: ``def``, ``xxxxxxxxxxx``, and ``(``. Nor will we want to
split between the ``)`` and the ``:`` at the end. These regions are said to be
"unbreakable." This is reflected in the tree by there not being a "split"
decision (left hand branch) within the unbreakable region.
Now that we have the tree, we determine what the "best" formatting is by finding
the path through the tree with the lowest cost.
And that's it!
Platform: UNKNOWN
Classifier: Development Status :: 4 - Beta
Classifier: Environment :: Console
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.4
Classifier: Programming Language :: Python :: 3.5
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Classifier: Topic :: Software Development :: Quality Assurance
|