This file is indexed.

/usr/lib/python3/dist-packages/xarray/core/dataarray.py is in python3-xarray 0.10.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
from __future__ import absolute_import, division, print_function

import functools
import warnings

import numpy as np
import pandas as pd

from . import computation, groupby, indexing, ops, resample, rolling, utils
from ..plot.plot import _PlotMethods
from .accessors import DatetimeAccessor
from .alignment import align, reindex_like_indexers
from .common import AbstractArray, DataWithCoords
from .coordinates import (
    DataArrayCoordinates, Indexes, LevelCoordinatesSource,
    assert_coordinate_consistent, remap_label_indexers)
from .dataset import Dataset, merge_indexes, split_indexes
from .formatting import format_item
from .options import OPTIONS
from .pycompat import OrderedDict, basestring, iteritems, range, zip
from .utils import decode_numpy_dict_values, ensure_us_time_resolution
from .variable import (
    IndexVariable, Variable, as_compatible_data, as_variable,
    assert_unique_multiindex_level_names)


def _infer_coords_and_dims(shape, coords, dims):
    """All the logic for creating a new DataArray"""

    if (coords is not None and not utils.is_dict_like(coords) and
            len(coords) != len(shape)):
        raise ValueError('coords is not dict-like, but it has %s items, '
                         'which does not match the %s dimensions of the '
                         'data' % (len(coords), len(shape)))

    if isinstance(dims, basestring):
        dims = (dims,)

    if dims is None:
        dims = ['dim_%s' % n for n in range(len(shape))]
        if coords is not None and len(coords) == len(shape):
            # try to infer dimensions from coords
            if utils.is_dict_like(coords):
                # deprecated in GH993, removed in GH1539
                raise ValueError('inferring DataArray dimensions from '
                                 'dictionary like ``coords`` is no longer '
                                 'supported. Use an explicit list of '
                                 '``dims`` instead.')
            for n, (dim, coord) in enumerate(zip(dims, coords)):
                coord = as_variable(coord,
                                    name=dims[n]).to_index_variable()
                dims[n] = coord.name
        dims = tuple(dims)
    else:
        for d in dims:
            if not isinstance(d, basestring):
                raise TypeError('dimension %s is not a string' % d)

    new_coords = OrderedDict()

    if utils.is_dict_like(coords):
        for k, v in coords.items():
            new_coords[k] = as_variable(v, name=k)
    elif coords is not None:
        for dim, coord in zip(dims, coords):
            var = as_variable(coord, name=dim)
            var.dims = (dim,)
            new_coords[dim] = var

    sizes = dict(zip(dims, shape))
    for k, v in new_coords.items():
        if any(d not in dims for d in v.dims):
            raise ValueError('coordinate %s has dimensions %s, but these '
                             'are not a subset of the DataArray '
                             'dimensions %s' % (k, v.dims, dims))

        for d, s in zip(v.dims, v.shape):
            if s != sizes[d]:
                raise ValueError('conflicting sizes for dimension %r: '
                                 'length %s on the data but length %s on '
                                 'coordinate %r' % (d, sizes[d], s, k))

        if k in sizes and v.shape != (sizes[k],):
            raise ValueError('coordinate %r is a DataArray dimension, but '
                             'it has shape %r rather than expected shape %r '
                             'matching the dimension size'
                             % (k, v.shape, (sizes[k],)))

    assert_unique_multiindex_level_names(new_coords)

    return new_coords, dims


class _LocIndexer(object):
    def __init__(self, data_array):
        self.data_array = data_array

    def __getitem__(self, key):
        if not utils.is_dict_like(key):
            # expand the indexer so we can handle Ellipsis
            labels = indexing.expanded_indexer(key, self.data_array.ndim)
            key = dict(zip(self.data_array.dims, labels))
        return self.data_array.sel(**key)

    def __setitem__(self, key, value):
        if not utils.is_dict_like(key):
            # expand the indexer so we can handle Ellipsis
            labels = indexing.expanded_indexer(key, self.data_array.ndim)
            key = dict(zip(self.data_array.dims, labels))

        pos_indexers, _ = remap_label_indexers(self.data_array, **key)
        self.data_array[pos_indexers] = value


# Used as the key corresponding to a DataArray's variable when converting
# arbitrary DataArray objects to datasets
_THIS_ARRAY = utils.ReprObject('<this-array>')


class DataArray(AbstractArray, DataWithCoords):
    """N-dimensional array with labeled coordinates and dimensions.

    DataArray provides a wrapper around numpy ndarrays that uses labeled
    dimensions and coordinates to support metadata aware operations. The API is
    similar to that for the pandas Series or DataFrame, but DataArray objects
    can have any number of dimensions, and their contents have fixed data
    types.

    Additional features over raw numpy arrays:

    - Apply operations over dimensions by name: ``x.sum('time')``.
    - Select or assign values by integer location (like numpy): ``x[:10]``
      or by label (like pandas): ``x.loc['2014-01-01']`` or
      ``x.sel(time='2014-01-01')``.
    - Mathematical operations (e.g., ``x - y``) vectorize across multiple
      dimensions (known in numpy as "broadcasting") based on dimension names,
      regardless of their original order.
    - Keep track of arbitrary metadata in the form of a Python dictionary:
      ``x.attrs``
    - Convert to a pandas Series: ``x.to_series()``.

    Getting items from or doing mathematical operations with a DataArray
    always returns another DataArray.

    Attributes
    ----------
    dims : tuple
        Dimension names associated with this array.
    values : np.ndarray
        Access or modify DataArray values as a numpy array.
    coords : dict-like
        Dictionary of DataArray objects that label values along each dimension.
    name : str or None
        Name of this array.
    attrs : OrderedDict
        Dictionary for holding arbitrary metadata.
    """
    _groupby_cls = groupby.DataArrayGroupBy
    _rolling_cls = rolling.DataArrayRolling
    _resample_cls = resample.DataArrayResample

    dt = property(DatetimeAccessor)

    def __init__(self, data, coords=None, dims=None, name=None,
                 attrs=None, encoding=None, fastpath=False):
        """
        Parameters
        ----------
        data : array_like
            Values for this array. Must be an ``numpy.ndarray``, ndarray like,
            or castable to an ``ndarray``. If a self-described xarray or pandas
            object, attempts are made to use this array's metadata to fill in
            other unspecified arguments. A view of the array's data is used
            instead of a copy if possible.
        coords : sequence or dict of array_like objects, optional
            Coordinates (tick labels) to use for indexing along each dimension.
            If dict-like, should be a mapping from dimension names to the
            corresponding coordinates. If sequence-like, should be a sequence
            of tuples where the first element is the dimension name and the
            second element is the corresponding coordinate array_like object.
        dims : str or sequence of str, optional
            Name(s) of the data dimension(s). Must be either a string (only
            for 1D data) or a sequence of strings with length equal to the
            number of dimensions. If this argument is omitted, dimension names
            are taken from ``coords`` (if possible) and otherwise default to
            ``['dim_0', ... 'dim_n']``.
        name : str or None, optional
            Name of this array.
        attrs : dict_like or None, optional
            Attributes to assign to the new instance. By default, an empty
            attribute dictionary is initialized.
        encoding : dict_like or None, optional
            Dictionary specifying how to encode this array's data into a
            serialized format like netCDF4. Currently used keys (for netCDF)
            include '_FillValue', 'scale_factor', 'add_offset', 'dtype',
            'units' and 'calendar' (the later two only for datetime arrays).
            Unrecognized keys are ignored.
        """
        if fastpath:
            variable = data
            assert dims is None
            assert attrs is None
            assert encoding is None
        else:
            # try to fill in arguments from data if they weren't supplied
            if coords is None:
                coords = getattr(data, 'coords', None)
                if isinstance(data, pd.Series):
                    coords = [data.index]
                elif isinstance(data, pd.DataFrame):
                    coords = [data.index, data.columns]
                elif isinstance(data, (pd.Index, IndexVariable)):
                    coords = [data]
                elif isinstance(data, pd.Panel):
                    coords = [data.items, data.major_axis, data.minor_axis]
            if dims is None:
                dims = getattr(data, 'dims', getattr(coords, 'dims', None))
            if name is None:
                name = getattr(data, 'name', None)
            if attrs is None:
                attrs = getattr(data, 'attrs', None)
            if encoding is None:
                encoding = getattr(data, 'encoding', None)

            data = as_compatible_data(data)
            coords, dims = _infer_coords_and_dims(data.shape, coords, dims)
            variable = Variable(dims, data, attrs, encoding, fastpath=True)

        # uncomment for a useful consistency check:
        # assert all(isinstance(v, Variable) for v in coords.values())

        # These fully describe a DataArray
        self._variable = variable
        self._coords = coords
        self._name = name

        self._file_obj = None

        self._initialized = True

    __default = object()

    def _replace(self, variable=None, coords=None, name=__default):
        if variable is None:
            variable = self.variable
        if coords is None:
            coords = self._coords
        if name is self.__default:
            name = self.name
        return type(self)(variable, coords, name=name, fastpath=True)

    def _replace_maybe_drop_dims(self, variable, name=__default):
        if variable.dims == self.dims:
            coords = None
        else:
            allowed_dims = set(variable.dims)
            coords = OrderedDict((k, v) for k, v in self._coords.items()
                                 if set(v.dims) <= allowed_dims)
        return self._replace(variable, coords, name)

    def _replace_indexes(self, indexes):
        if not len(indexes):
            return self
        coords = self._coords.copy()
        for name, idx in indexes.items():
            coords[name] = IndexVariable(name, idx)
        obj = self._replace(coords=coords)

        # switch from dimension to level names, if necessary
        dim_names = {}
        for dim, idx in indexes.items():
            if not isinstance(idx, pd.MultiIndex) and idx.name != dim:
                dim_names[dim] = idx.name
        if dim_names:
            obj = obj.rename(dim_names)
        return obj

    def _to_temp_dataset(self):
        return self._to_dataset_whole(name=_THIS_ARRAY,
                                      shallow_copy=False)

    def _from_temp_dataset(self, dataset, name=__default):
        variable = dataset._variables.pop(_THIS_ARRAY)
        coords = dataset._variables
        return self._replace(variable, coords, name)

    def _to_dataset_split(self, dim):
        def subset(dim, label):
            array = self.loc[{dim: label}]
            if dim in array.coords:
                del array.coords[dim]
            array.attrs = {}
            return array

        variables = OrderedDict([(label, subset(dim, label))
                                 for label in self.get_index(dim)])
        coords = self.coords.to_dataset()
        if dim in coords:
            del coords[dim]
        return Dataset(variables, coords, self.attrs)

    def _to_dataset_whole(self, name=None, shallow_copy=True):
        if name is None:
            name = self.name
        if name is None:
            raise ValueError('unable to convert unnamed DataArray to a '
                             'Dataset without providing an explicit name')
        if name in self.coords:
            raise ValueError('cannot create a Dataset from a DataArray with '
                             'the same name as one of its coordinates')
        # use private APIs for speed: this is called by _to_temp_dataset(),
        # which is used in the guts of a lot of operations (e.g., reindex)
        variables = self._coords.copy()
        variables[name] = self.variable
        if shallow_copy:
            for k in variables:
                variables[k] = variables[k].copy(deep=False)
        coord_names = set(self._coords)
        dataset = Dataset._from_vars_and_coord_names(variables, coord_names)
        return dataset

    def to_dataset(self, dim=None, name=None):
        """Convert a DataArray to a Dataset.

        Parameters
        ----------
        dim : str, optional
            Name of the dimension on this array along which to split this array
            into separate variables. If not provided, this array is converted
            into a Dataset of one variable.
        name : str, optional
            Name to substitute for this array's name. Only valid if ``dim`` is
            not provided.

        Returns
        -------
        dataset : Dataset
        """
        if dim is not None and dim not in self.dims:
            warnings.warn('the order of the arguments on DataArray.to_dataset '
                          'has changed; you now need to supply ``name`` as '
                          'a keyword argument',
                          FutureWarning, stacklevel=2)
            name = dim
            dim = None

        if dim is not None:
            if name is not None:
                raise TypeError('cannot supply both dim and name arguments')
            return self._to_dataset_split(dim)
        else:
            return self._to_dataset_whole(name)

    @property
    def name(self):
        """The name of this array.
        """
        return self._name

    @name.setter
    def name(self, value):
        self._name = value

    @property
    def variable(self):
        """Low level interface to the Variable object for this DataArray."""
        return self._variable

    @property
    def dtype(self):
        return self.variable.dtype

    @property
    def shape(self):
        return self.variable.shape

    @property
    def size(self):
        return self.variable.size

    @property
    def nbytes(self):
        return self.variable.nbytes

    @property
    def ndim(self):
        return self.variable.ndim

    def __len__(self):
        return len(self.variable)

    @property
    def data(self):
        """The array's data as a dask or numpy array"""
        return self.variable.data

    @data.setter
    def data(self, value):
        self.variable.data = value

    @property
    def values(self):
        """The array's data as a numpy.ndarray"""
        return self.variable.values

    @values.setter
    def values(self, value):
        self.variable.values = value

    @property
    def _in_memory(self):
        return self.variable._in_memory

    def to_index(self):
        """Convert this variable to a pandas.Index. Only possible for 1D
        arrays.
        """
        return self.variable.to_index()

    @property
    def dims(self):
        """Tuple of dimension names associated with this array.

        Note that the type of this property is inconsistent with
        `Dataset.dims`.  See `Dataset.sizes` and `DataArray.sizes` for
        consistently named properties.
        """
        return self.variable.dims

    @dims.setter
    def dims(self, value):
        raise AttributeError('you cannot assign dims on a DataArray. Use '
                             '.rename() or .swap_dims() instead.')

    def _item_key_to_dict(self, key):
        if utils.is_dict_like(key):
            return key
        else:
            key = indexing.expanded_indexer(key, self.ndim)
            return dict(zip(self.dims, key))

    @property
    def _level_coords(self):
        """Return a mapping of all MultiIndex levels and their corresponding
        coordinate name.
        """
        level_coords = OrderedDict()
        for cname, var in self._coords.items():
            if var.ndim == 1 and isinstance(var, IndexVariable):
                level_names = var.level_names
                if level_names is not None:
                    dim, = var.dims
                    level_coords.update({lname: dim for lname in level_names})
        return level_coords

    def _getitem_coord(self, key):
        from .dataset import _get_virtual_variable

        try:
            var = self._coords[key]
        except KeyError:
            dim_sizes = dict(zip(self.dims, self.shape))
            _, key, var = _get_virtual_variable(
                self._coords, key, self._level_coords, dim_sizes)

        return self._replace_maybe_drop_dims(var, name=key)

    def __getitem__(self, key):
        if isinstance(key, basestring):
            return self._getitem_coord(key)
        else:
            # xarray-style array indexing
            return self.isel(**self._item_key_to_dict(key))

    def __setitem__(self, key, value):
        if isinstance(key, basestring):
            self.coords[key] = value
        else:
            # Coordinates in key, value and self[key] should be consistent.
            # TODO Coordinate consistency in key is checked here, but it
            # causes unnecessary indexing. It should be optimized.
            obj = self[key]
            if isinstance(value, DataArray):
                assert_coordinate_consistent(value, obj.coords.variables)
            # DataArray key -> Variable key
            key = {k: v.variable if isinstance(v, DataArray) else v
                   for k, v in self._item_key_to_dict(key).items()}
            self.variable[key] = value

    def __delitem__(self, key):
        del self.coords[key]

    @property
    def _attr_sources(self):
        """List of places to look-up items for attribute-style access"""
        return self._item_sources + [self.attrs]

    @property
    def _item_sources(self):
        """List of places to look-up items for key-completion"""
        return [self.coords, {d: self[d] for d in self.dims},
                LevelCoordinatesSource(self)]

    def __contains__(self, key):
        warnings.warn(
            'xarray.DataArray.__contains__ currently checks membership in '
            'DataArray.coords, but in xarray v0.11 will change to check '
            'membership in array values.', FutureWarning, stacklevel=2)
        return key in self._coords

    @property
    def loc(self):
        """Attribute for location based indexing like pandas.
        """
        return _LocIndexer(self)

    @property
    def attrs(self):
        """Dictionary storing arbitrary metadata with this array."""
        return self.variable.attrs

    @attrs.setter
    def attrs(self, value):
        self.variable.attrs = value

    @property
    def encoding(self):
        """Dictionary of format-specific settings for how this array should be
        serialized."""
        return self.variable.encoding

    @encoding.setter
    def encoding(self, value):
        self.variable.encoding = value

    @property
    def indexes(self):
        """OrderedDict of pandas.Index objects used for label based indexing
        """
        return Indexes(self._coords, self.sizes)

    @property
    def coords(self):
        """Dictionary-like container of coordinate arrays.
        """
        return DataArrayCoordinates(self)

    def reset_coords(self, names=None, drop=False, inplace=False):
        """Given names of coordinates, reset them to become variables.

        Parameters
        ----------
        names : str or list of str, optional
            Name(s) of non-index coordinates in this dataset to reset into
            variables. By default, all non-index coordinates are reset.
        drop : bool, optional
            If True, remove coordinates instead of converting them into
            variables.
        inplace : bool, optional
            If True, modify this dataset inplace. Otherwise, create a new
            object.

        Returns
        -------
        Dataset, or DataArray if ``drop == True``
        """
        if inplace and not drop:
            raise ValueError('cannot reset coordinates in-place on a '
                             'DataArray without ``drop == True``')
        if names is None:
            names = set(self.coords) - set(self.dims)
        dataset = self.coords.to_dataset().reset_coords(names, drop)
        if drop:
            if inplace:
                self._coords = dataset._variables
            else:
                return self._replace(coords=dataset._variables)
        else:
            if self.name is None:
                raise ValueError('cannot reset_coords with drop=False '
                                 'on an unnamed DataArrray')
            dataset[self.name] = self.variable
            return dataset

    def __dask_graph__(self):
        return self._to_temp_dataset().__dask_graph__()

    def __dask_keys__(self):
        return self._to_temp_dataset().__dask_keys__()

    @property
    def __dask_optimize__(self):
        return self._to_temp_dataset().__dask_optimize__

    @property
    def __dask_scheduler__(self):
        return self._to_temp_dataset().__dask_scheduler__

    def __dask_postcompute__(self):
        func, args = self._to_temp_dataset().__dask_postcompute__()
        return self._dask_finalize, (func, args, self.name)

    def __dask_postpersist__(self):
        func, args = self._to_temp_dataset().__dask_postpersist__()
        return self._dask_finalize, (func, args, self.name)

    @staticmethod
    def _dask_finalize(results, func, args, name):
        ds = func(results, *args)
        variable = ds._variables.pop(_THIS_ARRAY)
        coords = ds._variables
        return DataArray(variable, coords, name=name, fastpath=True)

    def load(self, **kwargs):
        """Manually trigger loading of this array's data from disk or a
        remote source into memory and return this array.

        Normally, it should not be necessary to call this method in user code,
        because all xarray functions should either work on deferred data or
        load data automatically. However, this method can be necessary when
        working with many file objects on disk.

        Parameters
        ----------
        **kwargs : dict
            Additional keyword arguments passed on to ``dask.array.compute``.

        See Also
        --------
        dask.array.compute
        """
        ds = self._to_temp_dataset().load(**kwargs)
        new = self._from_temp_dataset(ds)
        self._variable = new._variable
        self._coords = new._coords
        return self

    def compute(self, **kwargs):
        """Manually trigger loading of this array's data from disk or a
        remote source into memory and return a new array. The original is
        left unaltered.

        Normally, it should not be necessary to call this method in user code,
        because all xarray functions should either work on deferred data or
        load data automatically. However, this method can be necessary when
        working with many file objects on disk.

        Parameters
        ----------
        **kwargs : dict
            Additional keyword arguments passed on to ``dask.array.compute``.

        See Also
        --------
        dask.array.compute
        """
        new = self.copy(deep=False)
        return new.load(**kwargs)

    def persist(self, **kwargs):
        """ Trigger computation in constituent dask arrays

        This keeps them as dask arrays but encourages them to keep data in
        memory.  This is particularly useful when on a distributed machine.
        When on a single machine consider using ``.compute()`` instead.

        Parameters
        ----------
        **kwargs : dict
            Additional keyword arguments passed on to ``dask.persist``.

        See Also
        --------
        dask.persist
        """
        ds = self._to_temp_dataset().persist(**kwargs)
        return self._from_temp_dataset(ds)

    def copy(self, deep=True):
        """Returns a copy of this array.

        If `deep=True`, a deep copy is made of all variables in the underlying
        dataset. Otherwise, a shallow copy is made, so each variable in the new
        array's dataset is also a variable in this array's dataset.
        """
        variable = self.variable.copy(deep=deep)
        coords = OrderedDict((k, v.copy(deep=deep))
                             for k, v in self._coords.items())
        return self._replace(variable, coords)

    def __copy__(self):
        return self.copy(deep=False)

    def __deepcopy__(self, memo=None):
        # memo does nothing but is required for compatibility with
        # copy.deepcopy
        return self.copy(deep=True)

    # mutable objects should not be hashable
    __hash__ = None

    @property
    def chunks(self):
        """Block dimensions for this array's data or None if it's not a dask
        array.
        """
        return self.variable.chunks

    def chunk(self, chunks=None, name_prefix='xarray-', token=None,
              lock=False):
        """Coerce this array's data into a dask arrays with the given chunks.

        If this variable is a non-dask array, it will be converted to dask
        array. If it's a dask array, it will be rechunked to the given chunk
        sizes.

        If neither chunks is not provided for one or more dimensions, chunk
        sizes along that dimension will not be updated; non-dask arrays will be
        converted into dask arrays with a single block.

        Parameters
        ----------
        chunks : int, tuple or dict, optional
            Chunk sizes along each dimension, e.g., ``5``, ``(5, 5)`` or
            ``{'x': 5, 'y': 5}``.
        name_prefix : str, optional
            Prefix for the name of the new dask array.
        token : str, optional
            Token uniquely identifying this array.
        lock : optional
            Passed on to :py:func:`dask.array.from_array`, if the array is not
            already as dask array.

        Returns
        -------
        chunked : xarray.DataArray
        """
        if isinstance(chunks, (list, tuple)):
            chunks = dict(zip(self.dims, chunks))

        ds = self._to_temp_dataset().chunk(chunks, name_prefix=name_prefix,
                                           token=token, lock=lock)
        return self._from_temp_dataset(ds)

    def isel(self, drop=False, **indexers):
        """Return a new DataArray whose dataset is given by integer indexing
        along the specified dimension(s).

        See Also
        --------
        Dataset.isel
        DataArray.sel
        """
        ds = self._to_temp_dataset().isel(drop=drop, **indexers)
        return self._from_temp_dataset(ds)

    def sel(self, method=None, tolerance=None, drop=False, **indexers):
        """Return a new DataArray whose dataset is given by selecting
        index labels along the specified dimension(s).

        See Also
        --------
        Dataset.sel
        DataArray.isel
        """
        ds = self._to_temp_dataset().sel(drop=drop, method=method,
                                         tolerance=tolerance, **indexers)
        return self._from_temp_dataset(ds)

    def isel_points(self, dim='points', **indexers):
        """Return a new DataArray whose dataset is given by pointwise integer
        indexing along the specified dimension(s).

        See Also
        --------
        Dataset.isel_points
        """
        ds = self._to_temp_dataset().isel_points(dim=dim, **indexers)
        return self._from_temp_dataset(ds)

    def sel_points(self, dim='points', method=None, tolerance=None,
                   **indexers):
        """Return a new DataArray whose dataset is given by pointwise selection
        of index labels along the specified dimension(s).

        See Also
        --------
        Dataset.sel_points
        """
        ds = self._to_temp_dataset().sel_points(
            dim=dim, method=method, tolerance=tolerance, **indexers)
        return self._from_temp_dataset(ds)

    def reindex_like(self, other, method=None, tolerance=None, copy=True):
        """Conform this object onto the indexes of another object, filling
        in missing values with NaN.

        Parameters
        ----------
        other : Dataset or DataArray
            Object with an 'indexes' attribute giving a mapping from dimension
            names to pandas.Index objects, which provides coordinates upon
            which to index the variables in this dataset. The indexes on this
            other object need not be the same as the indexes on this
            dataset. Any mis-matched index values will be filled in with
            NaN, and any mis-matched dimension names will simply be ignored.
        method : {None, 'nearest', 'pad'/'ffill', 'backfill'/'bfill'}, optional
            Method to use for filling index values from other not found on this
            data array:

            * None (default): don't fill gaps
            * pad / ffill: propagate last valid index value forward
            * backfill / bfill: propagate next valid index value backward
            * nearest: use nearest valid index value (requires pandas>=0.16)
        tolerance : optional
            Maximum distance between original and new labels for inexact
            matches. The values of the index at the matching locations most
            satisfy the equation ``abs(index[indexer] - target) <= tolerance``.
            Requires pandas>=0.17.
        copy : bool, optional
            If ``copy=True``, data in the return value is always copied. If
            ``copy=False`` and reindexing is unnecessary, or can be performed
            with only slice operations, then the output may share memory with
            the input. In either case, a new xarray object is always returned.

        Returns
        -------
        reindexed : DataArray
            Another dataset array, with this array's data but coordinates from
            the other object.

        See Also
        --------
        DataArray.reindex
        align
        """
        indexers = reindex_like_indexers(self, other)
        return self.reindex(method=method, tolerance=tolerance, copy=copy,
                            **indexers)

    def reindex(self, method=None, tolerance=None, copy=True, **indexers):
        """Conform this object onto a new set of indexes, filling in
        missing values with NaN.

        Parameters
        ----------
        copy : bool, optional
            If ``copy=True``, data in the return value is always copied. If
            ``copy=False`` and reindexing is unnecessary, or can be performed
            with only slice operations, then the output may share memory with
            the input. In either case, a new xarray object is always returned.
        method : {None, 'nearest', 'pad'/'ffill', 'backfill'/'bfill'}, optional
            Method to use for filling index values in ``indexers`` not found on
            this data array:

            * None (default): don't fill gaps
            * pad / ffill: propagate last valid index value forward
            * backfill / bfill: propagate next valid index value backward
            * nearest: use nearest valid index value (requires pandas>=0.16)
        tolerance : optional
            Maximum distance between original and new labels for inexact
            matches. The values of the index at the matching locations most
            satisfy the equation ``abs(index[indexer] - target) <= tolerance``.
        **indexers : dict
            Dictionary with keys given by dimension names and values given by
            arrays of coordinates tick labels. Any mis-matched coordinate
            values will be filled in with NaN, and any mis-matched dimension
            names will simply be ignored.

        Returns
        -------
        reindexed : DataArray
            Another dataset array, with this array's data but replaced
            coordinates.

        See Also
        --------
        DataArray.reindex_like
        align
        """
        ds = self._to_temp_dataset().reindex(
            method=method, tolerance=tolerance, copy=copy, **indexers)
        return self._from_temp_dataset(ds)

    def rename(self, new_name_or_name_dict):
        """Returns a new DataArray with renamed coordinates or a new name.


        Parameters
        ----------
        new_name_or_name_dict : str or dict-like
            If the argument is dict-like, it it used as a mapping from old
            names to new names for coordinates. Otherwise, use the argument
            as the new name for this array.


        Returns
        -------
        renamed : DataArray
            Renamed array or array with renamed coordinates.

        See Also
        --------
        Dataset.rename
        DataArray.swap_dims
        """
        if utils.is_dict_like(new_name_or_name_dict):
            dataset = self._to_temp_dataset().rename(new_name_or_name_dict)
            return self._from_temp_dataset(dataset)
        else:
            return self._replace(name=new_name_or_name_dict)

    def swap_dims(self, dims_dict):
        """Returns a new DataArray with swapped dimensions.

        Parameters
        ----------
        dims_dict : dict-like
            Dictionary whose keys are current dimension names and whose values
            are new names. Each value must already be a coordinate on this
            array.

        Returns
        -------
        renamed : Dataset
            DataArray with swapped dimensions.

        See Also
        --------

        DataArray.rename
        Dataset.swap_dims
        """
        ds = self._to_temp_dataset().swap_dims(dims_dict)
        return self._from_temp_dataset(ds)

    def expand_dims(self, dim, axis=None):
        """Return a new object with an additional axis (or axes) inserted at
        the corresponding position in the array shape.

        If dim is already a scalar coordinate, it will be promoted to a 1D
        coordinate consisting of a single value.

        Parameters
        ----------
        dim : str or sequence of str.
            Dimensions to include on the new variable.
            dimensions are inserted with length 1.
        axis : integer, list (or tuple) of integers, or None
            Axis position(s) where new axis is to be inserted (position(s) on
            the result array). If a list (or tuple) of integers is passed,
            multiple axes are inserted. In this case, dim arguments should be
            same length list. If axis=None is passed, all the axes will be
            inserted to the start of the result array.

        Returns
        -------
        expanded : same type as caller
            This object, but with an additional dimension(s).
        """
        ds = self._to_temp_dataset().expand_dims(dim, axis)
        return self._from_temp_dataset(ds)

    def set_index(self, append=False, inplace=False, **indexes):
        """Set DataArray (multi-)indexes using one or more existing
        coordinates.

        Parameters
        ----------
        append : bool, optional
            If True, append the supplied index(es) to the existing index(es).
            Otherwise replace the existing index(es) (default).
        inplace : bool, optional
            If True, set new index(es) in-place. Otherwise, return a new
            DataArray object.
        **indexes : {dim: index, ...}
            Keyword arguments with names matching dimensions and values given
            by (lists of) the names of existing coordinates or variables to set
            as new (multi-)index.

        Returns
        -------
        obj : DataArray
            Another dataarray, with this data but replaced coordinates.

        See Also
        --------
        DataArray.reset_index
        """
        coords, _ = merge_indexes(indexes, self._coords, set(), append=append)
        if inplace:
            self._coords = coords
        else:
            return self._replace(coords=coords)

    def reset_index(self, dims_or_levels, drop=False, inplace=False):
        """Reset the specified index(es) or multi-index level(s).

        Parameters
        ----------
        dims_or_levels : str or list
            Name(s) of the dimension(s) and/or multi-index level(s) that will
            be reset.
        drop : bool, optional
            If True, remove the specified indexes and/or multi-index levels
            instead of extracting them as new coordinates (default: False).
        inplace : bool, optional
            If True, modify the dataarray in-place. Otherwise, return a new
            DataArray object.

        Returns
        -------
        obj : DataArray
            Another dataarray, with this dataarray's data but replaced
            coordinates.

        See Also
        --------
        DataArray.set_index
        """
        coords, _ = split_indexes(dims_or_levels, self._coords, set(),
                                  self._level_coords, drop=drop)
        if inplace:
            self._coords = coords
        else:
            return self._replace(coords=coords)

    def reorder_levels(self, inplace=False, **dim_order):
        """Rearrange index levels using input order.

        Parameters
        ----------
        inplace : bool, optional
            If True, modify the dataarray in-place. Otherwise, return a new
            DataArray object.
        **dim_order : optional
            Keyword arguments with names matching dimensions and values given
            by lists representing new level orders. Every given dimension
            must have a multi-index.

        Returns
        -------
        obj : DataArray
            Another dataarray, with this dataarray's data but replaced
            coordinates.
        """
        replace_coords = {}
        for dim, order in dim_order.items():
            coord = self._coords[dim]
            index = coord.to_index()
            if not isinstance(index, pd.MultiIndex):
                raise ValueError("coordinate %r has no MultiIndex" % dim)
            replace_coords[dim] = IndexVariable(coord.dims,
                                                index.reorder_levels(order))
        coords = self._coords.copy()
        coords.update(replace_coords)
        if inplace:
            self._coords = coords
        else:
            return self._replace(coords=coords)

    def stack(self, **dimensions):
        """
        Stack any number of existing dimensions into a single new dimension.

        New dimensions will be added at the end, and the corresponding
        coordinate variables will be combined into a MultiIndex.

        Parameters
        ----------
        **dimensions : keyword arguments of the form new_name=(dim1, dim2, ...)
            Names of new dimensions, and the existing dimensions that they
            replace.

        Returns
        -------
        stacked : DataArray
            DataArray with stacked data.

        Examples
        --------

        >>> arr = DataArray(np.arange(6).reshape(2, 3),
        ...                 coords=[('x', ['a', 'b']), ('y', [0, 1, 2])])
        >>> arr
        <xarray.DataArray (x: 2, y: 3)>
        array([[0, 1, 2],
               [3, 4, 5]])
        Coordinates:
          * x        (x) |S1 'a' 'b'
          * y        (y) int64 0 1 2
        >>> stacked = arr.stack(z=('x', 'y'))
        >>> stacked.indexes['z']
        MultiIndex(levels=[[u'a', u'b'], [0, 1, 2]],
                   labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]],
                   names=[u'x', u'y'])

        See also
        --------
        DataArray.unstack
        """
        ds = self._to_temp_dataset().stack(**dimensions)
        return self._from_temp_dataset(ds)

    def unstack(self, dim):
        """
        Unstack an existing dimension corresponding to a MultiIndex into
        multiple new dimensions.

        New dimensions will be added at the end.

        Parameters
        ----------
        dim : str
            Name of the existing dimension to unstack.

        Returns
        -------
        unstacked : DataArray
            Array with unstacked data.

        See also
        --------
        DataArray.stack
        """
        ds = self._to_temp_dataset().unstack(dim)
        return self._from_temp_dataset(ds)

    def transpose(self, *dims):
        """Return a new DataArray object with transposed dimensions.

        Parameters
        ----------
        *dims : str, optional
            By default, reverse the dimensions. Otherwise, reorder the
            dimensions to this order.

        Returns
        -------
        transposed : DataArray
            The returned DataArray's array is transposed.

        Notes
        -----
        Although this operation returns a view of this array's data, it is
        not lazy -- the data will be fully loaded.

        See Also
        --------
        numpy.transpose
        Dataset.transpose
        """
        variable = self.variable.transpose(*dims)
        return self._replace(variable)

    def drop(self, labels, dim=None):
        """Drop coordinates or index labels from this DataArray.

        Parameters
        ----------
        labels : scalar or list of scalars
            Name(s) of coordinate variables or index labels to drop.
        dim : str, optional
            Dimension along which to drop index labels. By default (if
            ``dim is None``), drops coordinates rather than index labels.

        Returns
        -------
        dropped : DataArray
        """
        if utils.is_scalar(labels):
            labels = [labels]
        ds = self._to_temp_dataset().drop(labels, dim)
        return self._from_temp_dataset(ds)

    def dropna(self, dim, how='any', thresh=None):
        """Returns a new array with dropped labels for missing values along
        the provided dimension.

        Parameters
        ----------
        dim : str
            Dimension along which to drop missing values. Dropping along
            multiple dimensions simultaneously is not yet supported.
        how : {'any', 'all'}, optional
            * any : if any NA values are present, drop that label
            * all : if all values are NA, drop that label
        thresh : int, default None
            If supplied, require this many non-NA values.

        Returns
        -------
        DataArray
        """
        ds = self._to_temp_dataset().dropna(dim, how=how, thresh=thresh)
        return self._from_temp_dataset(ds)

    def fillna(self, value):
        """Fill missing values in this object.

        This operation follows the normal broadcasting and alignment rules that
        xarray uses for binary arithmetic, except the result is aligned to this
        object (``join='left'``) instead of aligned to the intersection of
        index coordinates (``join='inner'``).

        Parameters
        ----------
        value : scalar, ndarray or DataArray
            Used to fill all matching missing values in this array. If the
            argument is a DataArray, it is first aligned with (reindexed to)
            this array.

        Returns
        -------
        DataArray
        """
        if utils.is_dict_like(value):
            raise TypeError('cannot provide fill value as a dictionary with '
                            'fillna on a DataArray')
        out = ops.fillna(self, value)
        return out

    def interpolate_na(self, dim=None, method='linear', limit=None,
                       use_coordinate=True,
                       **kwargs):
        """Interpolate values according to different methods.

        Parameters
        ----------
        dim : str
            Specifies the dimension along which to interpolate.
        method : {'linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic',
                  'polynomial', 'barycentric', 'krog', 'pchip',
                  'spline', 'akima'}, optional
            String indicating which method to use for interpolation:

            - 'linear': linear interpolation (Default). Additional keyword
              arguments are passed to ``numpy.interp``
            - 'nearest', 'zero', 'slinear', 'quadratic', 'cubic',
              'polynomial': are passed to ``scipy.interpolate.interp1d``. If
              method=='polynomial', the ``order`` keyword argument must also be
              provided.
            - 'barycentric', 'krog', 'pchip', 'spline', and `akima`: use their
              respective``scipy.interpolate`` classes.
        use_coordinate : boolean or str, default True
            Specifies which index to use as the x values in the interpolation
            formulated as `y = f(x)`. If False, values are treated as if
            eqaully-spaced along `dim`. If True, the IndexVariable `dim` is
            used. If use_coordinate is a string, it specifies the name of a
            coordinate variariable to use as the index.
        limit : int, default None
            Maximum number of consecutive NaNs to fill. Must be greater than 0
            or None for no limit.

        Returns
        -------
        DataArray

        See also
        --------
        numpy.interp
        scipy.interpolate
        """
        from .missing import interp_na
        return interp_na(self, dim=dim, method=method, limit=limit,
                         use_coordinate=use_coordinate, **kwargs)

    def ffill(self, dim, limit=None):
        '''Fill NaN values by propogating values forward

        *Requires bottleneck.*

        Parameters
        ----------
        dim : str
            Specifies the dimension along which to propagate values when
            filling.
        limit : int, default None
            The maximum number of consecutive NaN values to forward fill. In
            other words, if there is a gap with more than this number of
            consecutive NaNs, it will only be partially filled. Must be greater
            than 0 or None for no limit.

        Returns
        -------
        DataArray
        '''
        from .missing import ffill
        return ffill(self, dim, limit=limit)

    def bfill(self, dim, limit=None):
        '''Fill NaN values by propogating values backward

        *Requires bottleneck.*

        Parameters
        ----------
        dim : str
            Specifies the dimension along which to propagate values when
            filling.
        limit : int, default None
            The maximum number of consecutive NaN values to backward fill. In
            other words, if there is a gap with more than this number of
            consecutive NaNs, it will only be partially filled. Must be greater
            than 0 or None for no limit.

        Returns
        -------
        DataArray
        '''
        from .missing import bfill
        return bfill(self, dim, limit=limit)

    def combine_first(self, other):
        """Combine two DataArray objects, with union of coordinates.

        This operation follows the normal broadcasting and alignment rules of
        ``join='outer'``.  Default to non-null values of array calling the
        method.  Use np.nan to fill in vacant cells after alignment.

        Parameters
        ----------
        other : DataArray
            Used to fill all matching missing values in this array.

        Returns
        -------
        DataArray
        """
        return ops.fillna(self, other, join="outer")

    def reduce(self, func, dim=None, axis=None, keep_attrs=False, **kwargs):
        """Reduce this array by applying `func` along some dimension(s).

        Parameters
        ----------
        func : function
            Function which can be called in the form
            `f(x, axis=axis, **kwargs)` to return the result of reducing an
            np.ndarray over an integer valued axis.
        dim : str or sequence of str, optional
            Dimension(s) over which to apply `func`.
        axis : int or sequence of int, optional
            Axis(es) over which to repeatedly apply `func`. Only one of the
            'dim' and 'axis' arguments can be supplied. If neither are
            supplied, then the reduction is calculated over the flattened array
            (by calling `f(x)` without an axis argument).
        keep_attrs : bool, optional
            If True, the variable's attributes (`attrs`) will be copied from
            the original object to the new one.  If False (default), the new
            object will be returned without attributes.
        **kwargs : dict
            Additional keyword arguments passed on to `func`.

        Returns
        -------
        reduced : DataArray
            DataArray with this object's array replaced with an array with
            summarized data and the indicated dimension(s) removed.
        """
        var = self.variable.reduce(func, dim, axis, keep_attrs, **kwargs)
        return self._replace_maybe_drop_dims(var)

    def to_pandas(self):
        """Convert this array into a pandas object with the same shape.

        The type of the returned object depends on the number of DataArray
        dimensions:

        * 1D -> `pandas.Series`
        * 2D -> `pandas.DataFrame`
        * 3D -> `pandas.Panel`

        Only works for arrays with 3 or fewer dimensions.

        The DataArray constructor performs the inverse transformation.
        """
        # TODO: consolidate the info about pandas constructors and the
        # attributes that correspond to their indexes into a separate module?
        constructors = {0: lambda x: x,
                        1: pd.Series,
                        2: pd.DataFrame,
                        3: pd.Panel}
        try:
            constructor = constructors[self.ndim]
        except KeyError:
            raise ValueError('cannot convert arrays with %s dimensions into '
                             'pandas objects' % self.ndim)
        indexes = [self.get_index(dim) for dim in self.dims]
        return constructor(self.values, *indexes)

    def to_dataframe(self, name=None):
        """Convert this array and its coordinates into a tidy pandas.DataFrame.

        The DataFrame is indexed by the Cartesian product of index coordinates
        (in the form of a :py:class:`pandas.MultiIndex`).

        Other coordinates are included as columns in the DataFrame.
        """
        if name is None:
            name = self.name
        if name is None:
            raise ValueError('cannot convert an unnamed DataArray to a '
                             'DataFrame: use the ``name`` parameter')

        dims = OrderedDict(zip(self.dims, self.shape))
        # By using a unique name, we can convert a DataArray into a DataFrame
        # even if it shares a name with one of its coordinates.
        # I would normally use unique_name = object() but that results in a
        # dataframe with columns in the wrong order, for reasons I have not
        # been able to debug (possibly a pandas bug?).
        unique_name = '__unique_name_identifier_z98xfz98xugfg73ho__'
        ds = self._to_dataset_whole(name=unique_name)
        df = ds._to_dataframe(dims)
        df.columns = [name if c == unique_name else c
                      for c in df.columns]
        return df

    def to_series(self):
        """Convert this array into a pandas.Series.

        The Series is indexed by the Cartesian product of index coordinates
        (in the form of a :py:class:`pandas.MultiIndex`).
        """
        index = self.coords.to_index()
        return pd.Series(self.values.reshape(-1), index=index, name=self.name)

    def to_masked_array(self, copy=True):
        """Convert this array into a numpy.ma.MaskedArray

        Parameters
        ----------
        copy : bool
            If True (default) make a copy of the array in the result. If False,
            a MaskedArray view of DataArray.values is returned.

        Returns
        -------
        result : MaskedArray
            Masked where invalid values (nan or inf) occur.
        """
        isnull = pd.isnull(self.values)
        return np.ma.MaskedArray(data=self.values, mask=isnull, copy=copy)

    def to_netcdf(self, *args, **kwargs):
        """
        Write DataArray contents to a netCDF file.

        Parameters
        ----------
        path : str or Path, optional
            Path to which to save this dataset. If no path is provided, this
            function returns the resulting netCDF file as a bytes object; in
            this case, we need to use scipy.io.netcdf, which does not support
            netCDF version 4 (the default format becomes NETCDF3_64BIT).
        mode : {'w', 'a'}, optional
            Write ('w') or append ('a') mode. If mode='w', any existing file at
            this location will be overwritten.
        format : {'NETCDF4', 'NETCDF4_CLASSIC', 'NETCDF3_64BIT',
                  'NETCDF3_CLASSIC'}, optional
            File format for the resulting netCDF file:

            * NETCDF4: Data is stored in an HDF5 file, using netCDF4 API
              features.
            * NETCDF4_CLASSIC: Data is stored in an HDF5 file, using only
              netCDF 3 compatible API features.
            * NETCDF3_64BIT: 64-bit offset version of the netCDF 3 file format,
              which fully supports 2+ GB files, but is only compatible with
              clients linked against netCDF version 3.6.0 or later.
            * NETCDF3_CLASSIC: The classic netCDF 3 file format. It does not
              handle 2+ GB files very well.

            All formats are supported by the netCDF4-python library.
            scipy.io.netcdf only supports the last two formats.

            The default format is NETCDF4 if you are saving a file to disk and
            have the netCDF4-python library available. Otherwise, xarray falls
            back to using scipy to write netCDF files and defaults to the
            NETCDF3_64BIT format (scipy does not support netCDF4).
        group : str, optional
            Path to the netCDF4 group in the given file to open (only works for
            format='NETCDF4'). The group(s) will be created if necessary.
        engine : {'netcdf4', 'scipy', 'h5netcdf'}, optional
            Engine to use when writing netCDF files. If not provided, the
            default engine is chosen based on available dependencies, with a
            preference for 'netcdf4' if writing to a file on disk.
        encoding : dict, optional
            Nested dictionary with variable names as keys and dictionaries of
            variable specific encodings as values, e.g.,
            ``{'my_variable': {'dtype': 'int16', 'scale_factor': 0.1,
               'zlib': True}, ...}``

        Notes
        -----
        Only xarray.Dataset objects can be written to netCDF files, so
        the xarray.DataArray is converted to a xarray.Dataset object
        containing a single variable. If the DataArray has no name, or if the
        name is the same as a co-ordinate name, then it is given the name
        '__xarray_dataarray_variable__'.

        All parameters are passed directly to `xarray.Dataset.to_netcdf`.
        """
        from ..backends.api import DATAARRAY_NAME, DATAARRAY_VARIABLE

        if self.name is None:
            # If no name is set then use a generic xarray name
            dataset = self.to_dataset(name=DATAARRAY_VARIABLE)
        elif self.name in self.coords or self.name in self.dims:
            # The name is the same as one of the coords names, which netCDF
            # doesn't support, so rename it but keep track of the old name
            dataset = self.to_dataset(name=DATAARRAY_VARIABLE)
            dataset.attrs[DATAARRAY_NAME] = self.name
        else:
            # No problems with the name - so we're fine!
            dataset = self.to_dataset()

        return dataset.to_netcdf(*args, **kwargs)

    def to_dict(self):
        """
        Convert this xarray.DataArray into a dictionary following xarray
        naming conventions.

        Converts all variables and attributes to native Python objects.
        Useful for coverting to json. To avoid datetime incompatibility
        use decode_times=False kwarg in xarrray.open_dataset.

        See also
        --------
        DataArray.from_dict
        """
        d = {'coords': {}, 'attrs': decode_numpy_dict_values(self.attrs),
             'dims': self.dims}

        for k in self.coords:
            data = ensure_us_time_resolution(self[k].values).tolist()
            d['coords'].update({
                k: {'data': data,
                    'dims': self[k].dims,
                    'attrs': decode_numpy_dict_values(self[k].attrs)}})

        d.update({'data': ensure_us_time_resolution(self.values).tolist(),
                  'name': self.name})
        return d

    @classmethod
    def from_dict(cls, d):
        """
        Convert a dictionary into an xarray.DataArray

        Input dict can take several forms::

            d = {'dims': ('t'), 'data': x}

            d = {'coords': {'t': {'dims': 't', 'data': t,
                                  'attrs': {'units':'s'}}},
                 'attrs': {'title': 'air temperature'},
                 'dims': 't',
                 'data': x,
                 'name': 'a'}

        where 't' is the name of the dimesion, 'a' is the name of the array,
        and  x and t are lists, numpy.arrays, or pandas objects.

        Parameters
        ----------
        d : dict, with a minimum structure of {'dims': [..], 'data': [..]}

        Returns
        -------
        obj : xarray.DataArray

        See also
        --------
        DataArray.to_dict
        Dataset.from_dict
        """
        coords = None
        if 'coords' in d:
            try:
                coords = OrderedDict([(k, (v['dims'],
                                           v['data'],
                                           v.get('attrs')))
                                      for k, v in d['coords'].items()])
            except KeyError as e:
                raise ValueError(
                    "cannot convert dict when coords are missing the key "
                    "'{dims_data}'".format(dims_data=str(e.args[0])))
        try:
            data = d['data']
        except KeyError:
            raise ValueError("cannot convert dict without the key 'data''")
        else:
            obj = cls(data, coords, d.get('dims'), d.get('name'),
                      d.get('attrs'))
        return obj

    @classmethod
    def from_series(cls, series):
        """Convert a pandas.Series into an xarray.DataArray.

        If the series's index is a MultiIndex, it will be expanded into a
        tensor product of one-dimensional coordinates (filling in missing
        values with NaN). Thus this operation should be the inverse of the
        `to_series` method.
        """
        # TODO: add a 'name' parameter
        name = series.name
        df = pd.DataFrame({name: series})
        ds = Dataset.from_dataframe(df)
        return ds[name]

    def to_cdms2(self):
        """Convert this array into a cdms2.Variable
        """
        from ..convert import to_cdms2
        return to_cdms2(self)

    @classmethod
    def from_cdms2(cls, variable):
        """Convert a cdms2.Variable into an xarray.DataArray
        """
        from ..convert import from_cdms2
        return from_cdms2(variable)

    def to_iris(self):
        """Convert this array into a iris.cube.Cube
        """
        from ..convert import to_iris
        return to_iris(self)

    @classmethod
    def from_iris(cls, cube):
        """Convert a iris.cube.Cube into an xarray.DataArray
        """
        from ..convert import from_iris
        return from_iris(cube)

    def _all_compat(self, other, compat_str):
        """Helper function for equals and identical"""

        def compat(x, y):
            return getattr(x.variable, compat_str)(y.variable)

        return (utils.dict_equiv(self.coords, other.coords, compat=compat) and
                compat(self, other))

    def broadcast_equals(self, other):
        """Two DataArrays are broadcast equal if they are equal after
        broadcasting them against each other such that they have the same
        dimensions.

        See Also
        --------
        DataArray.equals
        DataArray.identical
        """
        try:
            return self._all_compat(other, 'broadcast_equals')
        except (TypeError, AttributeError):
            return False

    def equals(self, other):
        """True if two DataArrays have the same dimensions, coordinates and
        values; otherwise False.

        DataArrays can still be equal (like pandas objects) if they have NaN
        values in the same locations.

        This method is necessary because `v1 == v2` for ``DataArray``
        does element-wise comparisons (like numpy.ndarrays).

        See Also
        --------
        DataArray.broadcast_equals
        DataArray.identical
        """
        try:
            return self._all_compat(other, 'equals')
        except (TypeError, AttributeError):
            return False

    def identical(self, other):
        """Like equals, but also checks the array name and attributes, and
        attributes on all coordinates.

        See Also
        --------
        DataArray.broadcast_equals
        DataArray.equal
        """
        try:
            return (self.name == other.name and
                    self._all_compat(other, 'identical'))
        except (TypeError, AttributeError):
            return False

    __default_name = object()

    def _result_name(self, other=None):
        # use the same naming heuristics as pandas:
        # https://github.com/ContinuumIO/blaze/issues/458#issuecomment-51936356
        other_name = getattr(other, 'name', self.__default_name)
        if other_name is self.__default_name or other_name == self.name:
            return self.name
        else:
            return None

    def __array_wrap__(self, obj, context=None):
        new_var = self.variable.__array_wrap__(obj, context)
        return self._replace(new_var)

    @staticmethod
    def _unary_op(f):
        @functools.wraps(f)
        def func(self, *args, **kwargs):
            with np.errstate(all='ignore'):
                return self.__array_wrap__(f(self.variable.data, *args,
                                             **kwargs))

        return func

    @staticmethod
    def _binary_op(f, reflexive=False, join=None, **ignored_kwargs):
        @functools.wraps(f)
        def func(self, other):
            if isinstance(other, (Dataset, groupby.GroupBy)):
                return NotImplemented
            if hasattr(other, 'indexes'):
                align_type = (OPTIONS['arithmetic_join']
                              if join is None else join)
                self, other = align(self, other, join=align_type, copy=False)
            other_variable = getattr(other, 'variable', other)
            other_coords = getattr(other, 'coords', None)

            variable = (f(self.variable, other_variable)
                        if not reflexive
                        else f(other_variable, self.variable))
            coords = self.coords._merge_raw(other_coords)
            name = self._result_name(other)

            return self._replace(variable, coords, name)

        return func

    @staticmethod
    def _inplace_binary_op(f):
        @functools.wraps(f)
        def func(self, other):
            if isinstance(other, groupby.GroupBy):
                raise TypeError('in-place operations between a DataArray and '
                                'a grouped object are not permitted')
            # n.b. we can't align other to self (with other.reindex_like(self))
            # because `other` may be converted into floats, which would cause
            # in-place arithmetic to fail unpredictably. Instead, we simply
            # don't support automatic alignment with in-place arithmetic.
            other_coords = getattr(other, 'coords', None)
            other_variable = getattr(other, 'variable', other)
            with self.coords._merge_inplace(other_coords):
                f(self.variable, other_variable)
            return self

        return func

    def _copy_attrs_from(self, other):
        self.attrs = other.attrs

    @property
    def plot(self):
        """
        Access plotting functions

        >>> d = DataArray([[1, 2], [3, 4]])

        For convenience just call this directly
        >>> d.plot()

        Or use it as a namespace to use xarray.plot functions as
        DataArray methods
        >>> d.plot.imshow()  # equivalent to xarray.plot.imshow(d)

        """
        return _PlotMethods(self)

    def _title_for_slice(self, truncate=50):
        """
        If the dataarray has 1 dimensional coordinates or comes from a slice
        we can show that info in the title

        Parameters
        ----------
        truncate : integer
            maximum number of characters for title

        Returns
        -------
        title : string
            Can be used for plot titles

        """
        one_dims = []
        for dim, coord in iteritems(self.coords):
            if coord.size == 1:
                one_dims.append('{dim} = {v}'.format(
                    dim=dim, v=format_item(coord.values)))

        title = ', '.join(one_dims)
        if len(title) > truncate:
            title = title[:(truncate - 3)] + '...'

        return title

    def diff(self, dim, n=1, label='upper'):
        """Calculate the n-th order discrete difference along given axis.

        Parameters
        ----------
        dim : str, optional
            Dimension over which to calculate the finite difference.
        n : int, optional
            The number of times values are differenced.
        label : str, optional
            The new coordinate in dimension ``dim`` will have the
            values of either the minuend's or subtrahend's coordinate
            for values 'upper' and 'lower', respectively.  Other
            values are not supported.

        Returns
        -------
        difference : same type as caller
            The n-th order finite difference of this object.

        Examples
        --------
        >>> arr = xr.DataArray([5, 5, 6, 6], [[1, 2, 3, 4]], ['x'])
        >>> arr.diff('x')
        <xarray.DataArray (x: 3)>
        array([0, 1, 0])
        Coordinates:
        * x        (x) int64 2 3 4
        >>> arr.diff('x', 2)
        <xarray.DataArray (x: 2)>
        array([ 1, -1])
        Coordinates:
        * x        (x) int64 3 4

        """
        ds = self._to_temp_dataset().diff(n=n, dim=dim, label=label)
        return self._from_temp_dataset(ds)

    def shift(self, **shifts):
        """Shift this array by an offset along one or more dimensions.

        Only the data is moved; coordinates stay in place. Values shifted from
        beyond array bounds are replaced by NaN. This is consistent with the
        behavior of ``shift`` in pandas.

        Parameters
        ----------
        **shifts : keyword arguments of the form {dim: offset}
            Integer offset to shift along each of the given dimensions.
            Positive offsets shift to the right; negative offsets shift to the
            left.

        Returns
        -------
        shifted : DataArray
            DataArray with the same coordinates and attributes but shifted
            data.

        See also
        --------
        roll

        Examples
        --------

        >>> arr = xr.DataArray([5, 6, 7], dims='x')
        >>> arr.shift(x=1)
        <xarray.DataArray (x: 3)>
        array([ nan,   5.,   6.])
        Coordinates:
          * x        (x) int64 0 1 2
        """
        variable = self.variable.shift(**shifts)
        return self._replace(variable)

    def roll(self, **shifts):
        """Roll this array by an offset along one or more dimensions.

        Unlike shift, roll rotates all variables, including coordinates. The
        direction of rotation is consistent with :py:func:`numpy.roll`.

        Parameters
        ----------
        **shifts : keyword arguments of the form {dim: offset}
            Integer offset to rotate each of the given dimensions. Positive
            offsets roll to the right; negative offsets roll to the left.

        Returns
        -------
        rolled : DataArray
            DataArray with the same attributes but rolled data and coordinates.

        See also
        --------
        shift

        Examples
        --------

        >>> arr = xr.DataArray([5, 6, 7], dims='x')
        >>> arr.roll(x=1)
        <xarray.DataArray (x: 3)>
        array([7, 5, 6])
        Coordinates:
          * x        (x) int64 2 0 1
        """
        ds = self._to_temp_dataset().roll(**shifts)
        return self._from_temp_dataset(ds)

    @property
    def real(self):
        return self._replace(self.variable.real)

    @property
    def imag(self):
        return self._replace(self.variable.imag)

    def dot(self, other, dims=None):
        """Perform dot product of two DataArrays along their shared dims.

        Equivalent to taking taking tensordot over all shared dims.

        Parameters
        ----------
        other : DataArray
            The other array with which the dot product is performed.
        dims: list of strings, optional
            Along which dimensions to be summed over. Default all the common
            dimensions are summed over.

        Returns
        -------
        result : DataArray
            Array resulting from the dot product over all shared dimensions.

        See also
        --------
        dot
        numpy.tensordot

        Examples
        --------

        >>> da_vals = np.arange(6 * 5 * 4).reshape((6, 5, 4))
        >>> da = DataArray(da_vals, dims=['x', 'y', 'z'])
        >>> dm_vals = np.arange(4)
        >>> dm = DataArray(dm_vals, dims=['z'])

        >>> dm.dims
        ('z')
        >>> da.dims
        ('x', 'y', 'z')

        >>> dot_result = da.dot(dm)
        >>> dot_result.dims
        ('x', 'y')
        """
        if isinstance(other, Dataset):
            raise NotImplementedError('dot products are not yet supported '
                                      'with Dataset objects.')
        if not isinstance(other, DataArray):
            raise TypeError('dot only operates on DataArrays.')

        return computation.dot(self, other, dims=dims)

    def sortby(self, variables, ascending=True):
        """
        Sort object by labels or values (along an axis).

        Sorts the dataarray, either along specified dimensions,
        or according to values of 1-D dataarrays that share dimension
        with calling object.

        If the input variables are dataarrays, then the dataarrays are aligned
        (via left-join) to the calling object prior to sorting by cell values.
        NaNs are sorted to the end, following Numpy convention.

        If multiple sorts along the same dimension is
        given, numpy's lexsort is performed along that dimension:
        https://docs.scipy.org/doc/numpy/reference/generated/numpy.lexsort.html
        and the FIRST key in the sequence is used as the primary sort key,
        followed by the 2nd key, etc.

        Parameters
        ----------
        variables: str, DataArray, or list of either
            1D DataArray objects or name(s) of 1D variable(s) in
            coords whose values are used to sort this array.
        ascending: boolean, optional
            Whether to sort by ascending or descending order.

        Returns
        -------
        sorted: DataArray
            A new dataarray where all the specified dims are sorted by dim
            labels.

        Examples
        --------

        >>> da = xr.DataArray(np.random.rand(5),
        ...                   coords=[pd.date_range('1/1/2000', periods=5)],
        ...                   dims='time')
        >>> da
        <xarray.DataArray (time: 5)>
        array([ 0.965471,  0.615637,  0.26532 ,  0.270962,  0.552878])
        Coordinates:
          * time     (time) datetime64[ns] 2000-01-01 2000-01-02 2000-01-03 ...

        >>> da.sortby(da)
        <xarray.DataArray (time: 5)>
        array([ 0.26532 ,  0.270962,  0.552878,  0.615637,  0.965471])
        Coordinates:
          * time     (time) datetime64[ns] 2000-01-03 2000-01-04 2000-01-05 ...
        """
        ds = self._to_temp_dataset().sortby(variables, ascending=ascending)
        return self._from_temp_dataset(ds)

    def quantile(self, q, dim=None, interpolation='linear', keep_attrs=False):
        """Compute the qth quantile of the data along the specified dimension.

        Returns the qth quantiles(s) of the array elements.

        Parameters
        ----------
        q : float in range of [0,1] (or sequence of floats)
            Quantile to compute, which must be between 0 and 1 inclusive.
        dim : str or sequence of str, optional
            Dimension(s) over which to apply quantile.
        interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
            This optional parameter specifies the interpolation method to
            use when the desired quantile lies between two data points
            ``i < j``:

                * linear: ``i + (j - i) * fraction``, where ``fraction`` is
                  the fractional part of the index surrounded by ``i`` and
                  ``j``.
                * lower: ``i``.
                * higher: ``j``.
                * nearest: ``i`` or ``j``, whichever is nearest.
                * midpoint: ``(i + j) / 2``.
        keep_attrs : bool, optional
            If True, the dataset's attributes (`attrs`) will be copied from
            the original object to the new one.  If False (default), the new
            object will be returned without attributes.

        Returns
        -------
        quantiles : DataArray
            If `q` is a single quantile, then the result
            is a scalar. If multiple percentiles are given, first axis of
            the result corresponds to the quantile and a quantile dimension
            is added to the return array. The other dimensions are the
             dimensions that remain after the reduction of the array.

        See Also
        --------
        numpy.nanpercentile, pandas.Series.quantile, Dataset.quantile
        """

        ds = self._to_temp_dataset().quantile(
            q, dim=dim, keep_attrs=keep_attrs, interpolation=interpolation)
        return self._from_temp_dataset(ds)

    def rank(self, dim, pct=False, keep_attrs=False):
        """Ranks the data.

        Equal values are assigned a rank that is the average of the ranks that
        would have been otherwise assigned to all of the values within that
        set.  Ranks begin at 1, not 0. If pct, computes percentage ranks.

        NaNs in the input array are returned as NaNs.

        The `bottleneck` library is required.

        Parameters
        ----------
        dim : str
            Dimension over which to compute rank.
        pct : bool, optional
            If True, compute percentage ranks, otherwise compute integer ranks.
        keep_attrs : bool, optional
            If True, the dataset's attributes (`attrs`) will be copied from
            the original object to the new one.  If False (default), the new
            object will be returned without attributes.

        Returns
        -------
        ranked : DataArray
            DataArray with the same coordinates and dtype 'float64'.

        Examples
        --------

        >>> arr = xr.DataArray([5, 6, 7], dims='x')
        >>> arr.rank('x')
        <xarray.DataArray (x: 3)>
        array([ 1.,   2.,   3.])
        Dimensions without coordinates: x
        """
        ds = self._to_temp_dataset().rank(dim, pct=pct, keep_attrs=keep_attrs)
        return self._from_temp_dataset(ds)


# priority most be higher than Variable to properly work with binary ufuncs
ops.inject_all_ops_and_reduce_methods(DataArray, priority=60)